Supporting Information

Hydroxy-directed peptide bond formation from a-amino acid-derived inert esters enabled by boronic acid catalysis

Naoya Takahashi, ${ }^{\dagger}$ Airi Takahashi ${ }^{\dagger}$ Naoyuki Shimada* ${ }^{\star}$

${ }^{\dagger}$ Laboratory of Organic Chemistry for Drug Development and Medical Research Laboratories, Department of Pharmaceutical Sciences, Kitasato University, Tokyo 108-8641, Japan
${ }^{\dagger}$ Laboratory of Organic Chemistry for Molecular Transformations, Department of Chemistry and the Institute of Natural Sciences, Nihon University, Tokyo 156-8550, Japan

* E-mail: shimada.naoyuki@nihon-u.ac.jp

Table of Contents

1. General information S2
2. Screening of organoboron catalysts S3
3. Supplemental data for the catalytic peptide bond formation using β-hydroxy- α-amino esters catalyzed by $\mathbf{1 i}$ S5
4. Preparation of amino esters $\mathbf{3}$ S7
5. Procedure for the catalytic peptide bond formation of β-hydroxy- α-amino esters and characterization of β-hydroxy- α-amino ester-derived dipeptides 4 (Scheme 2, Scheme 3) S8
6. Competition experiment (Scheme 4A) S21
7. Detection of presumed reaction intermediate (Scheme 4B) S22
8. Application to the catalytic synthesis of oligopeptides (Scheme 4C) S25
9. References S29
10. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra S30

1. General information

Melting points (mp) were obtained on AS ONE ATM-02 melting point apparatus. IR spectra were recorded on an FT/IR460-plus IR spectrometer and absorbance bands are reported in wavenumber $\left(\mathrm{cm}^{-1}\right)$. Optical rotation was recorded on a JASCO DIP-1000 polarimeter and reported as follows: $[\alpha]_{\mathrm{D}}$, concentration $(\mathrm{g} / 100 \mathrm{~mL})$, and solvent. NMR spectra were recorded on Agilent Technologies 400-MR DD2 (400 MHz for ${ }^{1} \mathrm{H}, 100 \mathrm{MHz}$ for ${ }^{13} \mathrm{C}$), 400-MR (400 MHz for ${ }^{1} \mathrm{H}, 100 \mathrm{MHz}$ for ${ }^{13} \mathrm{C}$), JEOL EX-270 spectrometer (270 MHz for ${ }^{1} \mathrm{H}$), JEOL JNM ECP-500 spectrometer (500 MHz for ${ }^{1} \mathrm{H}, 126 \mathrm{MHz}$ for ${ }^{13} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR data are reported as follows; chemical shift in parts per million (ppm) downfield or upfield from $\mathrm{CDCl}_{3}(\delta 7.26)$, integration, multiplicity $(\mathrm{br}=$ broad, $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, quint $=$ quintet, $\mathrm{dd}=$ double doublet, $\mathrm{ddd}=$ double double doublet, $\mathrm{dt}=$ double triplet, and $\mathrm{m}=$ multiplet $)$, and coupling constants $(\mathrm{Hz}) .{ }^{13} \mathrm{C}$ NMR chemical shifts are reported in ppm downfield or upfield from $\mathrm{CDCl}_{3}(\delta 77.0)$. Mass spectra were measured with JEOL JMS-AX505HA, JMS-700 MStation, and JEOL JMS-T100LP spectrometers. Thin-layer chromatography (TLC) was carried out on Merck 60F-254 or Fuji NH KP20610 (NH) precoated silica gel plates and were visualized by fluorescence quenching under UV light. Column chromatography was performed using Silica Gel 60N (spherical, neutral, 63$210 \mu \mathrm{~m}$) (Kanto Chemical Co., Inc.). Analytical high performance liquid chromatography (HPLC) was performed on a JASCO PU-2089 intelligent HPLC pump with JASCO UV-2075 intelligent UV/VIS detector. Detection was performed at 254 nm . CHIRALPAKR IA (f 0.46 cm $\times 25 \mathrm{~cm}$) from Daicel were used. Retention times $\left(\mathrm{t}_{\mathrm{R}}\right)$ and peak ratios were determined with ChromNAV. Air- and/or moisture-sensitive reactions were carried out under nitrogen atmosphere using oven-dried glassware. 2-bromo-4-(trifluoromethyl)phenylboronic acid (1i), N-protecting serine or threonine derivatives $\mathbf{2 a} \mathbf{- 2 d}$, amino esters $\mathbf{3 m}$, and amino esters HCl salt $\mathbf{3 a - 3 1}, \mathbf{3 n} \mathbf{-}$ 3r $\cdot \mathrm{HCl}$ were purchased. Molecular sieves 4 A was finely ground in mortar and heated with a microwave oven (2 min for 3 times) and then placed under vacuum for 10 min prior to use.

2. Screening of organoboron catalysts

SI-Scheme 1.

$90^{\circ} \mathrm{C}, 4 \mathrm{~h}$

1a
61\%

$1 f$
$>99 \%$
$60^{\circ} \mathrm{C}, 24 \mathrm{~h}$

1h
>99\%

1 g
$93 \%, 97 \%$ ee
$40^{\circ} \mathrm{C}, \mathbf{2 4} \mathrm{h}$

1d
$>99 \%$

$1 i$
$>99 \%$
4\% without catalyst
$\mathbf{1 e}$
69%

SI-Scheme 2.

3. Supplemental data for the catalytic peptide bond formation using β-hydroxy- α-amino

 esters catalyzed by 1 i
SI-Table 1. Optimization of amino ester 3 equivalent

entry	x (equiv)	yield (\%) a	ee (\%)
$\mathbf{1}$	1.0	60	98
2	1.5	92	98
$\mathbf{3}$	$\mathbf{3 . 0}$	$\mathbf{9 9 [9 6] ~}^{c}$	$\mathbf{9 7}$

${ }^{\text {a }}$ Determined by ${ }^{1} \mathrm{H}$ NMR of a crude mixture of products.
${ }^{b}$ Determined by chiral HPLC analysis.
${ }^{c}$ Isolated yield.

SI-Table 2. Effect of solvent

SI-Table 3. Optimization of reaction temperature

entry	temp. $\left({ }^{\circ} \mathrm{C}\right)$	${\text { yield }(\%)^{a}} \mathrm{dr}^{b}$	
1	40	28	$>99: 1$
2	60	79	$99: 1$
3	70	82	$98: 2$
4	80	$96[89]^{c}$	$97: 3$
5	90	97	$92: 8$

${ }^{\text {a }}$ Determined by ${ }^{1} \mathrm{H}$ NMR of a crude mixture of products.
${ }^{b}$ Determined by chiral HPLC analysis.
I Isolated yield.

4. Preparation of amino esters 3

Sat. $\mathrm{Na}_{2} \mathrm{CO}_{3}$ aq (3.0 mL) was added to a solution of amino ester hydrochloric salt $3 \cdot \mathrm{HCl}(0.9 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3.0 \mathrm{~mL})$ at room temperature. After stirring for 5 min , the reaction mixture was separated and aqueous layer was extracted three times with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layer was washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Filtration and concentration under reduced pressure furnished the crude product of $\mathbf{3}$, which was used for the reactions without further purification.

5. Procedure for the catalytic peptide bond formation of β-hydroxy- α-amino esters and characterization of β-hydroxy- α-amino ester-derived dipeptides 4 (Scheme 2, Scheme 3)

General Procedure A

Boronic acid 1i ($5.38 \mathrm{mg}, 20.0 \mu \mathrm{~mol}, 10.0 \mathrm{~mol} \%$) was added to a solution of N protecting serine or threonine derivative $2(0.200 \mathrm{mmol}, 1.0$ equiv) and amino ester $\mathbf{3}(0.600 \mathrm{mmol}$, 3.0 equiv) in toluene ($0.5 \mathrm{~mL}, 0.40 \mathrm{M}$) at room temperature. After stirring for $24-48 \mathrm{~h}$ at $60-$ $80^{\circ} \mathrm{C}$, the reaction mixture was cooled to room temperature. The reaction mixture was quenched by 1 M HCl and the resulting mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layer was successively washed with sat. NaHCO_{3} aq., $\mathrm{H}_{2} \mathrm{O}$, brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vacuo. The crude material was purified by silica gel column chromatography to give the corresponding dipeptide 4.

General Procedure B

Boronic acid 1i ($5.38 \mathrm{mg}, 20.0 \mu \mathrm{~mol}, 10.0 \mathrm{~mol} \%$) was added to a solution of N protecting serine derivative 2 ($0.200 \mathrm{mmol}, 1.0$ equiv) and amino ester $\mathbf{3}$ ($0.600 \mathrm{mmol}, 3.0$ equiv) in toluene $(0.5 \mathrm{~mL}, 0.40 \mathrm{M})$ at room temperature. After stirring for $24-48 \mathrm{~h}$ at $80^{\circ} \mathrm{C}$, the reaction mixture was cooled to room temperature. Concentration under reduced pressure furnished the crude product, which was purified by silica gel column chromatography to give the corresponding dipeptide 4.

General Procedure C

Boronic acid 1i ($5.38 \mathrm{mg}, 20.0 \mu \mathrm{~mol}, 10.0 \mathrm{~mol} \%$) was added to a solution of N protecting serine derivative 2 ($0.200 \mathrm{mmol}, 1.0$ equiv) and HCl salt of amino ester $\mathbf{3}(0.600 \mathrm{mmol}$, 3.0 equiv) in toluene ($0.5 \mathrm{~mL}, 0.40 \mathrm{M}$) in the presence of $\mathrm{MS} 4 \mathrm{~A}(400 \mathrm{mg} / 0.200 \mathrm{mmol})$ at room temperature. After stirring for 24 h at $80^{\circ} \mathrm{C}$, the reaction mixture was cooled to room temperature and filtered through a pad of Celite with EtOAc. Concentration under reduced pressure furnished the crude product, which was purified by silica gel column chromatography to give the corresponding dipeptide 4.

Authentic samples of peptides were prepared from L-, D- or DL-amino acids, and used as references for HPLC analysis.

Cbz-Ser-Gly-O ${ }^{\boldsymbol{t}} \mathbf{B u}$ (4a) ${ }^{\mathbf{1}}$

4a

Compound $\mathbf{4 a}$ was prepared according to the procedure A from Cbz-Ser-OMe (2a) ($50.7 \mathrm{mg}, 0.200 \mathrm{mmol}$) and H-Gly-Ot ${ }^{t} \mathrm{Bu}(\mathbf{3 a})(78.7 \mathrm{mg}$, 0.600 mmol) at $60{ }^{\circ} \mathrm{C}$ for 24 h . Yield $96 \%(67.7 \mathrm{mg}, 0.192 \mathrm{mmol}$, 97% ee). Purified by column chromatography (silica gel, $4: 1 \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc}$). Data for $\mathbf{4 a}$; colorless oil; $\mathrm{R}_{f}=0.27\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc}=2: 1\right) ;[\alpha]_{\mathrm{D}}^{25}-6.3^{\circ}\left(c=1.0, \mathrm{CHCl}_{3}\right)$; IR (neat) $v=3379$, $3017,2352,1720,1527,1370,1217,1158,1063,757 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.39-$ $7.31(\mathrm{~m}, 5 \mathrm{H}), 6.99(\mathrm{br}, 1 \mathrm{H}), 5.90(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.13(\mathrm{~s}, 2 \mathrm{H}), 4.30(\mathrm{br}, 1 \mathrm{H}), 4.08(\mathrm{dd}, J=$ 11.3, 2.4 Hz, 1H), $3.93(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.68(\mathrm{dd}, J=11.3,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.92(\mathrm{br}, 1 \mathrm{H}), 1.46(\mathrm{~s}$, $9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.2,169.0,156.4,136.0,128.5,128.3,128.1,82.7,67.3$, 63.0, 55.7, 42.1, 28.0; HRMS (ESI) m / z calcd for $\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{NaO}_{6}[\mathrm{M}+\mathrm{Na}]^{+} 375.1532$, found 375.1528.

The ee was determined by chiral HPLC analysis [CHIRALPAK IA($\phi 0.46 \mathrm{~cm} \times 25 \mathrm{~cm})$, hexane / IPA $=80: 20,254 \mathrm{~nm}$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \mathrm{t}^{\mathrm{R}}=7.7 \mathrm{~min}$ (minor), 8.8 min (major)]

Boc-Ser-Gly-OBn (4b) ${ }^{1}$

4b

Compound $\mathbf{4 b}$ was prepared according to the procedure A from Boc-Ser-OMe (2b) (43.8 mg, 0.200 mmol$)$ and H-Gly-OBn (3b) $(99.1 \mathrm{mg}$, 0.600 mmol) at $60^{\circ} \mathrm{C}$ for 24 h . Yield $62 \% ~(43.8 \mathrm{mg}, 0.124 \mathrm{mmol}, 98 \%$ ee). Purified by column chromatography (silica gel, $4: 1 \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc}$). Data for $\mathbf{4 b}$; colorless oil; $\mathrm{R}_{f}=0.28\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc}=2: 1\right) ;[\alpha]_{\mathrm{D}}^{25}-9.1^{\mathrm{o}}\left(c=1.0, \mathrm{CHCl}_{3}\right) ;$ IR (neat) $v=3667,3316,2979$, $2448,1746,1538,1392,1164,1058,852,758 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.40-7.33(\mathrm{~m}$, $5 \mathrm{H}), 7.03(\mathrm{br}, 1 \mathrm{H}), 5.51(\mathrm{br}, 1 \mathrm{H}), 5.20(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.17(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.21$ (br, $1 \mathrm{H}), 4.16-4.12(\mathrm{~m}, 2 \mathrm{H}), 4.05(\mathrm{dd}, J=18.5,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.66(\mathrm{dd}, J=11.0,4.5 \mathrm{~Hz}, 1 \mathrm{H}) 1.55(\mathrm{~s}$, 9H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.9,169.7,156.0,135.0,128.7,128.6,128.4,80.6,67.4$, 63.0, 55.1, 41.4, 28.3; HRMS (ESI) m/z calcd. for $\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{Na}_{1} \mathrm{O}_{6}[\mathrm{M}+\mathrm{Na}]^{+}$375.1532, found 375.1535.

The ee was determined by chiral HPLC analysis [CHIRALPAK IA($\phi 0.46 \mathrm{~cm} \times 25 \mathrm{~cm})$, hexane / IPA $=80: 20,254 \mathrm{~nm}$, flow rate $0.5 \mathrm{~mL} / \mathrm{min}, \mathrm{t}^{\mathrm{R}}=22.3 \mathrm{~min}$ (minor), 24.1 min (major)]

Fmoc-Ser-Gly-OEt (4c) ${ }^{1}$

Compound $4 \mathbf{c}$ was prepared according to the procedure A from Fmoc-Ser-OMe (2c) ($68.3 \mathrm{mg}, 0.200 \mathrm{mmol}$) and H-Gly-OEt (3c) $(61.9 \mathrm{mg}, 0.600 \mathrm{mmol})$ at $60^{\circ} \mathrm{C}$ for 24 h . Yield $65 \%(53.7 \mathrm{mg}, 0.130$ mmol, 96% ee). Purified by column chromatography (silica gel, $2: 1 \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc}$). Data for $\mathbf{4 c}$; white solid; $\mathrm{R}_{f}=0.28\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc}=2: 1\right) ;[\alpha]_{\mathrm{D}}^{25}-10.1^{\circ}\left(c=1.0, \mathrm{CHCl}_{3}\right) ; \operatorname{IR}(\mathrm{KBr}) v=3067$, $2889,1930,1584,1448,1296,1220,1116,929,726,570 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $7.77(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.59(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.41(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.32(\mathrm{t}, J=7.3 \mathrm{~Hz}$, $2 \mathrm{H}), 6.87(\mathrm{br}, 1 \mathrm{H}), 5.81-5.77(\mathrm{~m}, 1 \mathrm{H}), 4.46(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.25-4.17(\mathrm{~m}, 5 \mathrm{H}), 4.04(\mathrm{~d}, J=$ $5.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.72-3.66(\mathrm{~m}, 1 \mathrm{H}), 1.28(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.3$, $170.0,156.5,143.6,141.3,127.8,127.7,127.1,125.0,124.0,120.1,120.0,67.3,62.9,61.8,55.7$, 47.0, 41.4, 14.0; HRMS (ESI) m / z calcd. for $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{Na}_{1} \mathrm{O}_{6}[\mathrm{M}+\mathrm{Na}]^{+} 435.1532$, found 435.1525 .

The ee was determined by chiral HPLC analysis [CHIRALPAK IA($\phi 0.46 \mathrm{~cm} \times 25 \mathrm{~cm})$, hexane $/ \mathrm{IPA}=80: 20,254 \mathrm{~nm}$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \mathrm{t}_{\mathrm{R}}=12.1 \mathrm{~min}($ minor $), 17.7 \mathrm{~min}$ (major) $]$

Cbz-Ser-Ala-O ${ }^{\boldsymbol{t}} \mathbf{B u}(\mathbf{4 d})^{\mathbf{1}}$

Compound $\mathbf{4 d}$ was prepared according to the procedure A from Cbz-Ser-OMe (2a) ($50.7 \mathrm{mg}, 0.200 \mathrm{mmol})$ and $\mathrm{H}-\mathrm{Ala-O}{ }^{t} \mathrm{Bu}(\mathbf{3 d})(87.1 \mathrm{mg}$, 0.600 mmol) at $80^{\circ} \mathrm{C}$ for 24 h . Yield 89% ($65.4 \mathrm{mg}, 0.179 \mathrm{mmol}$). Purified by column chromatography (silica gel, $3: 1 \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc}$). Data for $\mathbf{4 d}$; yellow oil; R_{f} $=0.26\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc}=3: 1\right) ;[\alpha]_{\mathrm{D}}^{25}-4.5^{\circ}\left(c=1.0, \mathrm{CHCl}_{3}\right) ;$ IR (neat) $v=3413,2981,1722,1520$, 1370, 1218, 1151, 1059, 846, $757 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.36-7.28(\mathrm{~m}, 5 \mathrm{H}), 7.08$ (br, 1H), $5.92(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.11(\mathrm{~s}, 2 \mathrm{H}), 4.43$ (quint, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.30(\mathrm{br}, 1 \mathrm{H}), 4.00$ (dd, $J=11.0,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.67(\mathrm{dd}, J=11.0,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.45(\mathrm{~s}, 9 \mathrm{H}), 1.35(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H})$; ${ }^{13}$ C NMR (126 MHz, CDCl_{3}) $\delta 172.1,170.4,156.3,136.0,128.5,128.2,128.0,82.4,67.1,63.0$, 55.5, 48.9, 27.9, 17.8; HRMS (ESI) m/z calcd. for $\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{NaO}_{6}[\mathrm{M}+\mathrm{Na}]^{+}$389.1689, found 389.1677.

Cbz-Ser-Val-OMe (4e) ${ }^{1}$

Condition A: Compound $\mathbf{4 e}$ was prepared according to the procedure A from Cbz-Ser-OMe (2a) ($50.7 \mathrm{mg}, 0.200 \mathrm{mmol}$) and H-Val-OMe (3e) $(78.7 \mathrm{mg}, 0.600 \mathrm{mmol})$ at $80^{\circ} \mathrm{C}$ for 24 h . Yield $>99 \%(69.8 \mathrm{mg}$, 0.198 mmol). Purified by column chromatography (silica gel, $4: 1$ $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc}$). Condition B: Compound 4 e was also prepared according to the procedure C from Cbz-Ser-OMe (2a) $(50.7 \mathrm{mg}, 0.200 \mathrm{mmol})$ and $\mathrm{H}-\mathrm{Val}-\mathrm{OMe} \cdot \mathrm{HCl}(\mathbf{3 e} \cdot \mathrm{HCl})(100.6 \mathrm{mg}, 0.600$ mmol) at $80^{\circ} \mathrm{C}$ for 24 h . Yield $81 \%(57.1 \mathrm{mg}, 0.162 \mathrm{mmol})$. Purified by column chromatography (silica gel, $4: 1 \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc}$). Data for $4 \mathbf{e}$; colorless oil; $\mathrm{R}_{f}=0.31\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc}=2: 1\right) ;[\alpha]_{\mathrm{D}}^{25}$ $-9.7^{\circ}\left(c=1.0, \mathrm{CHCl}_{3}\right) ;$ IR (neat) $v=3670,3330,2966,2448,1669,1531,1216,1147,1061,752$ $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.36-7.30(\mathrm{~m}, 5 \mathrm{H}), 6.90(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.82(\mathrm{~d}, J=7.0$ $\mathrm{Hz}, 1 \mathrm{H}), 5.16(\mathrm{~d}, J=12.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.11(\mathrm{~d}, J=12.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.50(\mathrm{dd}, J=8.5,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.29-$ $4.26(\mathrm{~m}, 1 \mathrm{H}), 4.10(\mathrm{dd}, J=11.5,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 3.66(\mathrm{dd}, J=11.5,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.23-$ $2.14(\mathrm{~m}, 1 \mathrm{H}), 0.91(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.87(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (126 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta$ $172.3,171.1,156.6,136.0,128.5,128.2,128.0,67.2,62.8,57.4,55.1,52.3,30.7,19.0,17.6$; HRMS (ESI) m/z calcd. for $\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{NaO}_{6}[\mathrm{M}+\mathrm{Na}]^{+} 375.1532$, found 375.1528.

Cbz-Ser-Val-OMe (4e) ${ }^{1}: 1 \mathrm{mmol}$ scale reaction

Boronic acid $1 \mathbf{1 i}(26.9 \mathrm{mg}, 0.100 \mathrm{~mol}, 10.0 \mathrm{~mol} \%$) was added to a solution of Cbz-SerOMe (2a) ($253.3 \mathrm{mg}, 1.00 \mathrm{mmol}, 1.0$ equiv) and H -Val-OMe (3e) ($393.5 \mathrm{mg}, 3.00 \mathrm{mmol}, 3.0$ equiv) in toluene ($2.5 \mathrm{~mL}, 0.40 \mathrm{M}$) at room temperature. After stirring for 24 h at $80^{\circ} \mathrm{C}$, the reaction mixture was cooled to room temperature. The reaction mixture was quenched by 1 M HCl and the resulting mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layer was successively washed with sat. NaHCO_{3} aq., $\mathrm{H}_{2} \mathrm{O}$, brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentration in vacuo. The crude material was purified by silica gel column chromatography ($4: 1 \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc}$) to give Cbz -Ser-Val-OMe (4e) ($351.4 \mathrm{mg}, 0.997 \mathrm{mmol},>99 \%,>20: 1 \mathrm{dr}$) as a colorless oil.

Cbz-Ser-Leu-OMe (4f) ${ }^{1}$

Compound $\mathbf{4 f}$ was prepared according to the procedure A from Cbz-Ser-OMe (2a) ($50.7 \mathrm{mg}, 0.200 \mathrm{mmol})$ and H-Leu-OMe (3f) $(87.1 \mathrm{mg}$, 0.600 mmol) at $80^{\circ} \mathrm{C}$ for 24 h . Yield $94 \% ~(68.8 \mathrm{mg}, 0.188 \mathrm{mmol})$.

Purified by column chromatography (silica gel, $4: 1 \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc}$). Data for $\mathbf{4 f}$; colorless oil; $\mathrm{R}_{f}=0.33\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc}=2: 1\right) ;[\alpha]_{\mathrm{D}}^{26}-10.1^{\circ}\left(c=1.0, \mathrm{CHCl}_{3}\right)$; IR (neat) $v=3420,2958,1722,1670,1512,1439,1346,1216,1151,1062,763 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.38-7.30(\mathrm{~m}, 5 \mathrm{H}), 6.79(\mathrm{br}, 1 \mathrm{H}), 5.80(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.14(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H})$, $5.11(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.61-4.55(\mathrm{~m}, 1 \mathrm{H}), 4.30-4.26(\mathrm{~m}, 1 \mathrm{H}), 4.06(\mathrm{dd}, J=11.2,2.8 \mathrm{~Hz}, 1 \mathrm{H})$, $3.74(\mathrm{~s}, 3 \mathrm{H}), 3.65(\mathrm{dd}, J=11.2,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.28(\mathrm{br}, 1 \mathrm{H}), 1.69-1.51(\mathrm{~m}, 3 \mathrm{H}), 0.92(\mathrm{~d}, J=6.4$ $\mathrm{Hz}, 3 \mathrm{H}), 0.91(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}){ }^{13}{ }^{3} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 173.5,170.9,156.4,136.0$, $128.5,128.2,128.0,67.2,63.0,55.2,52.5,51.1,40.7,24.8,22.8,21.6 ;$ HRMS (ESI) m/z calcd. for $\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{NaO}_{6}[\mathrm{M}+\mathrm{Na}]^{+} 389.1689$, found 389.1666.

Cbz-Ser-Ile-OMe (4g) ${ }^{2}$

Compound 4 g was prepared according to the procedure A from Cbz-Ser-OMe (2a) ($50.7 \mathrm{mg}, 0.200 \mathrm{mmol})$ and H-Ile-OMe (3g) $(87.1 \mathrm{mg}$, $0.600 \mathrm{mmol})$ at $80^{\circ} \mathrm{C}$ for 24 h . Yield $87 \%(63.8 \mathrm{mg}, 0.174 \mathrm{mmol})$. Purified by column chromatography (silica gel, $4: 1 \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc}$). Data for $\mathbf{4 g}$; colorless oil; $\mathrm{R}_{f}=0.30\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc}=3: 1\right) ;[\alpha]_{\mathrm{D}}^{25}-3.1^{\mathrm{o}}\left(c=1.0, \mathrm{CHCl}_{3}\right)$; IR (neat) $v=3320,2964,1730,1531,1215,1961,698 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.37-7.30(\mathrm{~m}$, $5 \mathrm{H}), 6.91(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.81(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.16(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.11(\mathrm{~d}, J=$ $12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.54(\mathrm{dd}, J=8.0,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.29-4.25(\mathrm{~m}, 1 \mathrm{H}), 4.11-4.06(\mathrm{~m}, 1 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H})$, 3.69-3.62 (m, 1H) $3.14(\mathrm{br}, 1 \mathrm{H}), 1.94-1.86(\mathrm{~m}, 1 \mathrm{H}), 1.43-1.34(\mathrm{~m}, 1 \mathrm{H}), 1.20-1.09(\mathrm{~m}, 1 \mathrm{H}), 0.92-$ $0.84(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 172.3,171.0,156.5,136.0,128.5,128.2,128.0$, $67.2,62.8,56.8,55.2,52.3,37.3,25.0,15.5,11.5 ;$ HRMS (ESI) m / z calcd. for $\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{NaO}_{6}[\mathrm{M}+\mathrm{Na}]^{+}$389.1689, found 389.1676.

Cbz-Ser-Tle-OMe (4h)

Compound $\mathbf{4 h}$ was prepared according to the procedure A from Cbz-Ser-OMe (2a) ($50.7 \mathrm{mg}, 0.200 \mathrm{mmol})$ and $\mathrm{H}-\mathrm{Tle-OMe}(\mathbf{3 h})(87.1 \mathrm{mg}$, 0.600 mmol) at $80^{\circ} \mathrm{C}$ for 24 h . Yield 98% ($72.2 \mathrm{mg}, 0.197 \mathrm{mmol}$). Purified by column chromatography (silica gel, $4: 1 \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc}$). Data for $\mathbf{4 h}$; white solid; $\mathrm{R}_{f}=0.20\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc}=4: 1\right) ;[\alpha]_{\mathrm{D}}^{25}-27.8^{\circ}\left(c=1.0, \mathrm{CHCl}_{3}\right)$; $\mathrm{IR}(\mathrm{KBr})$ $v=3401,3276,2960,2727,1962,1720,1639,1509,1359,1221,1056,759 \mathrm{~cm}^{-1} ; \mathrm{mp} 85-87{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (270 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 7.35-7.30(\mathrm{~m}, 5 \mathrm{H}), 7.20(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.95(\mathrm{~d}, J=7.6 \mathrm{~Hz}$, $1 \mathrm{H}), 5.16(\mathrm{~d}, J=12.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.10(\mathrm{~d}, J=12.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.37(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.30-4.25(\mathrm{~m}$, $1 \mathrm{H}), 4.06(\mathrm{dd}, J=11.6,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 3.65(\mathrm{dd}, J=11.6,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.84(\mathrm{br}, 1 \mathrm{H})$, $0.94(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 171.7,170.9,156.7,136.0,128.5,128.2,128.0,67.3$, 62.5, 60.5, 55.0, 51.9, 34.4, 26.5; HRMS (ESI) m/z calcd for $\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{NaO}_{6}[\mathrm{M}+\mathrm{Na}]^{+} 389.1689$, found 389.1686 .

Cbz-Ser-Phe-OMe (4i) ${ }^{3}$

Compound $\mathbf{4} \mathbf{i}$ was prepared according to the procedure A from $\mathrm{Cbz}-$ Ser-OMe (2a) ($50.7 \mathrm{mg}, 0.200 \mathrm{mmol}$) and H-Phe-OMe (3i) (108 mg, 0.600 mmol) at $80^{\circ} \mathrm{C}$ for 24 h . Yield $>99 \%$ ($79.9 \mathrm{mg}, 0.200 \mathrm{mmol}$). Purified by column chromatography (silica gel, 40:1 $\mathrm{Et}_{2} \mathrm{O} / \mathrm{MeOH}$). Data for 4i; colorless amorphous; $\mathrm{R}_{f}=0.30$ (hexane $/ \mathrm{EtOAc}=2: 3$); $[\alpha]_{\mathrm{D}}^{25}+9.9^{\circ}\left(c=1.0, \mathrm{CHCl}_{3}\right)$; IR (neat) $v=3271,3017,1743,1552,1447,1179,1028,910,771 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.38-7.31(\mathrm{~m}, 5 \mathrm{H}), 7.28-7.21(\mathrm{~m}, 3 \mathrm{H}), 7.10-7.09(\mathrm{~m}, 2 \mathrm{H}), 6.88(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H})$, $5.69(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.12(\mathrm{~d}, J=12.0,1 \mathrm{H}), 5.08(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.85(\mathrm{dt}, J=7.0,5.5$ Hz, 1H), 4.22-4.19 (m, 1H), $4.02(\mathrm{dd}, J=11.5,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 3.59(\mathrm{dd}, J=11.5,5.5$ $\mathrm{Hz}, 1 \mathrm{H}), 3.17(\mathrm{dd}, J=13.5,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.03(\mathrm{dd}, J=13.5,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.34(\mathrm{br}, 1 \mathrm{H}){ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 171.8,170.6,156.4,135.9,135.5,129.1,128.7,128.6,128.3,128.1,127.3$, 67.3, 62.8, 55.1, 53.3, 52.6, 37.6; HRMS (ESI) m/z calcd for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{NaO}_{6}[\mathrm{M}+\mathrm{Na}]^{+} 423.1532$, found 423.1521 .

Cbz-Ser-Tyr(${ }^{\text {t }} \mathbf{B u}$)-OMe (4j) ${ }^{1}$

Compound $\mathbf{4} \mathbf{j}$ was prepared according to the procedure A from Cbz-Ser-OMe (2a) ($50.7 \mathrm{mg}, 0.200 \mathrm{mmol}$) and $\mathrm{H}-\mathrm{Tyr}\left({ }^{(} \mathrm{Bu}\right)-$ OMe (3j) $(150.8 \mathrm{mg}, 0.600 \mathrm{mmol})$ at $80^{\circ} \mathrm{C}$ for 24 h . Yield 97% ($91.4 \mathrm{mg}, 0.193 \mathrm{mmol}$). Purified by column chromatography (silica gel, $4: 1 \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc}$). Data for $\mathbf{4} \mathbf{j}$; yellow oil; $\mathrm{R}_{f}=0.30$ $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc}=3: 1\right) ;[\alpha]_{\mathrm{D}}^{25}+11.4^{\mathrm{o}}\left(c=1.0, \mathrm{CHCl}_{3}\right) ;$ IR (neat) $v=3418,2979,2097,1664,1507$, 1366, 1217, 1160, 1059, 896, $753 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.40-7.25(\mathrm{~m}, 5 \mathrm{H}), 7.03-$ $6.98(\mathrm{~m}, 2 \mathrm{H}), 6.93-6.88(\mathrm{~m}, 3 \mathrm{H}), 5.70(\mathrm{br}, 1 \mathrm{H}), 5.15-5.11(\mathrm{~m}, 2 \mathrm{H}), 4.81-4.80(\mathrm{~m}, 1 \mathrm{H}), 4.21(\mathrm{br}$, $1 \mathrm{H}), 4.01(\mathrm{br}, 1 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 3.61-3.58(\mathrm{~m}, 1 \mathrm{H}), 3.13-3.07(\mathrm{~m}, 1 \mathrm{H}), 3.05-2.95(\mathrm{~m}, 1 \mathrm{H}), 2.17$ (br, 1H), $1.31(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.9,170.6,156.4,154.6,135.9,130.3$, $129.6,128.6,128.3,128.1,124.3,78.5,67.3,62.8,55.1,53.4,52.5,37.0,28.8 ;$ HRMS (ESI) m/z calcd. for $\mathrm{C}_{25} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{NaO}_{7}[\mathrm{M}+\mathrm{Na}]^{+} 495.2107$, found 495.2089.

Cbz-Ser-Asp(${ }^{\text {t }} \mathbf{B u}$)-O ${ }^{t} \mathbf{B u}$ (4I)

Compound $\mathbf{4 1}$ was prepared according to the procedure A from Cbz-Ser-OMe (2a) (50.7 mg, 0.200 mmol$)$ and $\mathrm{H}-\mathrm{Asp}\left({ }^{t} \mathrm{Bu}\right)-\mathrm{O}^{t} \mathrm{Bu}(\mathbf{3 I})(147$ $\mathrm{mg}, 0.600 \mathrm{mmol})$ at $80^{\circ} \mathrm{C}$ for 24 h . Yield $93 \%(86.6 \mathrm{mg}, 0.186 \mathrm{mmol})$. Purified by column chromatography (silica gel, $2: 1 \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc}$). Data for 4I; white solid; $\mathrm{R}_{f}=0.36\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc}=2: 1\right) ;[\alpha]_{\mathrm{D}}^{23}+21.5^{\circ}\left(c=1.0, \mathrm{CHCl}_{3}\right) ; \mathrm{IR}(\mathrm{KBr})$ $v=3355,3263,3073,2981,1736,1561,1457,1366,1270,1173,1055,909,755,701,553 \mathrm{~cm}^{-1}$; mp 137-139 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.37-7.29(\mathrm{~m}, 5 \mathrm{H}), 7.19(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.81$ $(\mathrm{d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.11(\mathrm{~s}, 2 \mathrm{H}), 4.72(\mathrm{dt}, J=9.0,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.32-4.28(\mathrm{~m}, 1 \mathrm{H}), 4.03(\mathrm{dd}, J=$ $11.5,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.69(\mathrm{dd}, J=11.5,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.87(\mathrm{dd}, J=16.5,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.70(\mathrm{dd}, J=$ $16.5,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.45(\mathrm{~s}, 9 \mathrm{H}), 1.43(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.6,170.0,169.8$, 156.1, 136.1, 128.5, 128.1, 128.0, 83.0, 82.0, 67.1, 63.3, 55.8, 49.4, 37.0, 28.0, 27.8; HRMS (ESI) m / z calcd for $\mathrm{C}_{23} \mathrm{H}_{34} \mathrm{~N}_{2} \mathrm{NaO}_{8}[\mathrm{M}+\mathrm{Na}]^{+} 489.2213$, found 489.2218.

Cbz-Ser-Asn-O ${ }^{t}$ Bu (4m)

Compound $\mathbf{4 m}$ was prepared according to the procedure A from $\mathrm{Cbz}-$ Ser-OMe (2a) ($50.7 \mathrm{mg}, 0.200 \mathrm{mmol})$ and $\mathrm{H}-\mathrm{Asn}-\mathrm{O}^{t} \mathrm{Bu}(\mathbf{3 m})(113 \mathrm{mg}$, $0.600 \mathrm{mmol})$ at $80^{\circ} \mathrm{C}$ for 48 h in toluene $(0.2 \mathrm{M})$ in the absence of MS 4A (400 mg). Yield $91 \% ~(74.9 \mathrm{mg}, 0.183 \mathrm{mmol})$. Purified by column chromatography (silica gel, $19: 1 \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}$). Data for $\mathbf{4 m}$; yellow amorphous; $\mathrm{R}_{f}=$ $0.31\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}=9: 1\right) ;[\alpha]_{\mathrm{D}}^{24}+12.8^{\circ}\left(c=1.0, \mathrm{CHCl}_{3}\right) ;$ IR (neat) $v=3340,2980,1672,1524$, $1410,1370,1217,1157,1059,845,756 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.82(\mathrm{~d}, J=7.0 \mathrm{~Hz}$, $1 \mathrm{H}), 7.33-7.28(\mathrm{~m}, 5 \mathrm{H}), 6.40(\mathrm{br}, 2 \mathrm{H}), 5.09(\mathrm{~s}, 2 \mathrm{H}), 4.67(\mathrm{br}, 1 \mathrm{H}), 4.32(\mathrm{br}, 1 \mathrm{H}), 3.95(\mathrm{dd}, J=$ $10.5,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{br}, 1 \mathrm{H}), 3.69(\mathrm{dd}, J=10.5,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.76(\mathrm{br}, 1 \mathrm{H}), 1.42(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (126 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 173.0,170.9,170.0,156.4,136.2,128.5,128.1,128.0,82.8,67.0$, 63.0, 56.5, 50.0, 37.0, 27.8; HRMS (ESI) m/z calcd for $\mathrm{C}_{19} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{NaO}_{7}[\mathrm{M}+\mathrm{Na}]^{+} 432.1747$, found 432.1746.

Cbz-Ser-Glu($\left.{ }^{t} \mathbf{B u}\right)-\mathbf{O}^{t} \mathbf{B u}$ (4n)

Compound $\mathbf{4 n}$ was prepared according to the procedure A from Cbz-Ser-OMe (2a) (50.7 mg, 0.200 mmol) and $\mathrm{H}-\mathrm{Glu}\left({ }^{(} \mathrm{Bu}\right)-\mathrm{O}^{t} \mathrm{Bu}(\mathbf{3 n})$ $(156 \mathrm{mg}, 0.600 \mathrm{mmol})$ at $80^{\circ} \mathrm{C}$ for 24 h . Yield $90 \%(86.6 \mathrm{mg}, 0.180$ mmol). Purified by column chromatography (silica gel, 40:1 $\mathrm{Et}_{2} \mathrm{O} / \mathrm{MeOH}$). Data for $\mathbf{4 n}$; white solid; $\mathrm{R}_{f}=0.21$ (hexane $/ \mathrm{EtOAc}=$ $2: 1) ;[\alpha]_{\mathrm{D}}^{26}-19.1^{\circ}(c=1.0, \mathrm{MeOH}) ; \operatorname{IR}(\mathrm{KBr}) v=3478,3314,2984,2367,1727,1544,1367,1260$, $1154,1016,848,759 \mathrm{~cm}^{-1} ; \mathrm{mp} 96-97{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.35-7.29(\mathrm{~m}, 5 \mathrm{H}), 7.13$ $(\mathrm{d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.84(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.12(\mathrm{~s}, 2 \mathrm{H}), 4.46(\mathrm{dt}, J=8.0,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.30-$ $4.27(\mathrm{~m}, 1 \mathrm{H}), 4.04(\mathrm{dd}, J=11.5,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.66(\mathrm{dd}, J=11.5,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.61(\mathrm{br}, 1 \mathrm{H}), 2.34-$ $2.23(\mathrm{~m}, 2 \mathrm{H}), 2.17-2.10(\mathrm{~m}, 1 \mathrm{H}), 1.95-1.87(\mathrm{~m}, 1 \mathrm{H}), 1.46(\mathrm{~s}, 9 \mathrm{H}), 1.43(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (126 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 172.3,171.0,170.7,156.3,136.1,128.5,128.2,128.0,82.8,81.0,67.2,63.2,55.7$, 52.7, 31.5, 28.0, 27.9, 26.8; HRMS (ESI) m/z calcd for $\mathrm{C}_{24} \mathrm{H}_{36} \mathrm{~N}_{2} \mathrm{NaO}_{8}[\mathrm{M}+\mathrm{Na}]^{+} 503.2369$, found 503.2389 .

Cbz-Ser-Trp-OMe (4o) ${ }^{4}$

Compound 40 was prepared according to the procedure A from Cbz-Ser-OMe (2a) ($50.7 \mathrm{mg}, 0.200 \mathrm{mmol}$) and H-Trp-OMe (3o) $(131 \mathrm{mg}, 0.600 \mathrm{mmol})$ at $80^{\circ} \mathrm{C}$ for 24 h . Yield $75 \%(65.9 \mathrm{mg}$, 0.150 mmol). Purified by column chromatography (silica gel, $40: 1$ $\left.\mathrm{Et}_{2} \mathrm{O} / \mathrm{MeOH}\right)$. Data for $\mathbf{4 0}$; brown amorphous; $\mathrm{R}_{f}=0.32$ $\left(\mathrm{Et}_{2} \mathrm{O} / \mathrm{MeOH}=40: 1\right) ;[\alpha]_{\mathrm{D}}^{24}+22.3^{\circ}\left(c=1.0, \mathrm{CHCl}_{3}\right) ;$ IR (neat) $v=3629,3317,3016,2953,1713$, 1670, 1525, 1457, 1342, 1217, 1060, $761 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($270 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.46(\mathrm{br}, 1 \mathrm{H}), 7.48$ (d, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.33-7.24(\mathrm{~m}, 6 \mathrm{H}), 7.20(\mathrm{br}, 1 \mathrm{H}), 7.16-7.04(\mathrm{~m}, 2 \mathrm{H}), 6.91(\mathrm{~d}, J=1.9 \mathrm{~Hz}$, $1 \mathrm{H}), 5.98(\mathrm{br}, 1 \mathrm{H}), 5.04(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.99(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.87(\mathrm{dt}, J=8.1,5.4 \mathrm{~Hz}$, $1 \mathrm{H}), 4.28-4.22(\mathrm{~m}, 1 \mathrm{H}), 3.84(\mathrm{dd}, J=11.3,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.63(\mathrm{~s}, 3 \mathrm{H}), 3.56(\mathrm{dd}, J=11.3,5.7 \mathrm{~Hz}$, $1 \mathrm{H}), 3.27(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.07(\mathrm{br}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 172.3, 170.7, 156.4, $136.0,128.5,128.2,128.1,128.0,127.2,123.3,122.0,119.4,118.2,111.4,109.1,67.1,62.7,55.7$, 52.9, 52.5, 27.1; HRMS (ESI) m/z calcd for $\mathrm{C}_{23} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{NaO}_{6}[\mathrm{M}+\mathrm{Na}]^{+} 462.1641$, found 462.1653 .

Cbz-Ser-His(Trt)-OMe (4p)

Compound $\mathbf{4 p}$ was prepared according to the procedure B from Cbz-Ser-OMe (2a) ($50.7 \mathrm{mg}, 0.200 \mathrm{mmol}$) and H-His(Trt)-OMe (3p) $(247 \mathrm{mg}, 0.600 \mathrm{mmol})$ at $80^{\circ} \mathrm{C}$ for 24 h . Yield $70 \%(88.0 \mathrm{mg}$, 0.139 mmol). Purified by column chromatography (silica gel, 30:1 $\left.\mathrm{Et}_{2} \mathrm{O} / \mathrm{MeOH}\right)$. Data for $\mathbf{4 p}$; yellow amorphous; $\mathrm{R}_{f}=0.27$ $\left(\mathrm{Et}_{2} \mathrm{O} / \mathrm{MeOH}=30: 1\right) ;[\alpha]_{\mathrm{D}}^{25}+8.3^{\circ}\left(c=1.0, \mathrm{CHCl}_{3}\right)$; IR (neat) $v=3414,3015,2952,1724,1672$, $1495,1445,1333,1216,1133,1059,760 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.45-7.29(\mathrm{~m}, 16 \mathrm{H})$, 7.10-7.05 (m, 6H), $6.53(\mathrm{~s}, 1 \mathrm{H}), 6.14(\mathrm{br}, 1 \mathrm{H}), 5.14(\mathrm{~d}, J=12.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.11(\mathrm{~d}, J=12.5 \mathrm{~Hz}$, $1 \mathrm{H}), 4.81-4.78(\mathrm{~m}, 1 \mathrm{H}), 4.24(\mathrm{br}, 1 \mathrm{H}), 4.13(\mathrm{br} \mathrm{d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.71(\mathrm{dd}, J=11.5,4.5 \mathrm{~Hz}$, $1 \mathrm{H}), 3.58(\mathrm{~s}, 3 \mathrm{H}), 3.31(\mathrm{dd}, J=15.0,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.90(\mathrm{dd}, J=15.0,5.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (126 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 171.2,170.8,156.0,141.7,138.4,136.2,129.7,128.5,128.3,128.2,128.1,128.0$, $127.9,120.0,67.0,63.1,57.4,53.2,52.4,28.7 ;$ HRMS (ESI) m / z calcd for $\mathrm{C}_{37} \mathrm{H}_{37} \mathrm{~N}_{4} \mathrm{O}_{6}[\mathrm{M}+\mathrm{H}]^{+}$ 633.2713 , found 633.2720 .

Cbz-Ser-Lys(Boc)-OMe (4q) ${ }^{5}$

Compound $\mathbf{4 q}$ was prepared according to the procedure B from Cbz-Ser-OMe (2a) ($50.7 \mathrm{mg}, 0.200 \mathrm{mmol}$) and H-Lys(Boc)$\mathrm{OMe}(\mathbf{3 q})(156 \mathrm{mg}, 0.600 \mathrm{mmol})$ at $80^{\circ} \mathrm{C}$ for 48 h . Yield 92% $(88.7 \mathrm{mg}, 0.184 \mathrm{mmol})$. Purified by column chromatography (silica gel, $1: 1 \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc}$). Data for $\mathbf{4 q}$; white solid; $\mathrm{R}_{f}=0.26\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc}=1: 1\right) ;[\alpha]_{\mathrm{D}}^{26}$ $-10.9^{\circ}(c=1.0, \mathrm{MeOH}) ; \operatorname{IR}(\mathrm{KBr}) v=3469,3335,2956,2371,1687,1526,1365,1254,1174$, $1065,869,746,697,613 \mathrm{~cm}^{-1} ; \mathrm{mp} 104-105^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.35-7.28(\mathrm{~m}, 5 \mathrm{H})$, 7.25-7.22 (m, 1H), $6.02(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.11(\mathrm{~s}, 2 \mathrm{H}), 4.79(\mathrm{br}, 1 \mathrm{H}), 4.59-4.52(\mathrm{~m}, 1 \mathrm{H}), 4.35-$ $4.29(\mathrm{~m}, 1 \mathrm{H}), 4.03(\mathrm{dd}, J=10.5,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.71-3.65(\mathrm{~m}, 4 \mathrm{H}), 3.25(\mathrm{br}, 1 \mathrm{H}), 3.04(\mathrm{br}, 1 \mathrm{H})$, $1.90-1.78(\mathrm{~m}, 1 \mathrm{H}), 1.72-1.59(\mathrm{~m}, 1 \mathrm{H}), 1.50-1.17(\mathrm{~m}, 14 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 172.8$, $170.9,156.4,156.2,136.0,128.5,128.1,128.0,79.3,67.1,62.8,55.7,52.5,52.1,40.0,31.2,29.2$, 28.3, 22.3; HRMS (ESI) m/z calcd for $\mathrm{C}_{23} \mathrm{H}_{35} \mathrm{~N}_{3} \mathrm{NaO}_{8}[\mathrm{M}+\mathrm{Na}]^{+} 504.2322$, found 504.2315 .

Cbz-Ser-Met-OMe (4r) ${ }^{6}$

$4 r$

Compound $\mathbf{4 r}$ was prepared according to the procedure A from Cbz-Ser-OMe (2a) (50.7 mg, 0.200 mmol$)$ and H-Met-OMe (3r) (97.9 mg, $0.600 \mathrm{mmol})$ at $80^{\circ} \mathrm{C}$ for 24 h . Yield $65 \%(49.7 \mathrm{mg}, 0.129 \mathrm{mmol})$. Purified by column chromatography (silica gel, $4: 1 \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc}$). Data for $4 \mathbf{r}$; white solid; $\mathrm{R}_{f}=0.32\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc}=1: 1\right) ;[\alpha]_{\mathrm{D}}^{26}-21.7^{\circ}(c=1.0, \mathrm{MeOH}) ; \mathrm{IR}(\mathrm{KBr})$ $v=3301,3073,2932,2344,1727,1655,1543,1439,1249,1019,698 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.37-7.28(\mathrm{~m}, 5 \mathrm{H}), 5.93(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.11(\mathrm{~s}, 2 \mathrm{H}), 4.70(\mathrm{dt}, J=8.0,5.0 \mathrm{~Hz}, 1 \mathrm{H})$, $4.33-4.29(\mathrm{~m}, 1 \mathrm{H}), 4.02(\mathrm{dd}, J=11.5,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 3.72-3.66(\mathrm{~m}, 1 \mathrm{H}), 3.46(\mathrm{br}, 1 \mathrm{H})$, $2.50(\mathrm{br}, 2 \mathrm{H}), 2.19-2.12(\mathrm{~m}, 1 \mathrm{H}), 2.06(\mathrm{~s}, 3 \mathrm{H}), 2.01-1.94(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.4,170.9,156.4,135.9,128.5,128.2,128.0,67.2,62.9,55.5,52.7,51.7,30.9,29.9,15.4 ;$ HRMS (ESI) m / z calcd for $\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{NaO}_{6} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+} 407.1253$, found 407.1250.

Cbz-Thr-Val-OMe (4s)

Compound $\mathbf{4 s}$ was prepared according to the procedure A from Cbz-Thr-OMe (2d) ($53.5 \mathrm{mg}, 0.200 \mathrm{mmol}$) and H-Val-OMe (3e) $(78.7 \mathrm{mg}$, 0.600 mmol) at $80^{\circ} \mathrm{C}$ for 48 h . Yield $91 \% ~(66.9 \mathrm{mg}, 0.183 \mathrm{mmol})$. 4s

Purified by column chromatography (silica gel, $4: 1 \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc}$). Data for $\mathbf{4 s}$; colorless oil; $\mathrm{R}_{f}=0.34\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc}=4: 1\right) ;[\alpha]_{\mathrm{D}}^{26}-29.4^{\circ}\left(c=1.0, \mathrm{CHCl}_{3}\right)$; IR (neat) $v=3327,2967,1739,1663,1531,1215,1147,1065,740,698 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 7.37-7.29(\mathrm{~m}, 5 \mathrm{H}), 7.07(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.87(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.15(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H})$, $5.09(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.48(\mathrm{dd}, J=9.0,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.34-4.30(\mathrm{~m}, 1 \mathrm{H}), 4.20(\mathrm{dd}, J=7.5,2.5$ $\mathrm{Hz}, 1 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 2.63(\mathrm{br}, 1 \mathrm{H}), 2.20-2.13(\mathrm{~m}, 1 \mathrm{H}), 1.18(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}, 3 \mathrm{H}), 0.89(\mathrm{~d}, J$ $=6.5 \mathrm{~Hz}, 1 \mathrm{H}, 3 \mathrm{H}), 0.86(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 172.1, 171.1, $156.9,136.0,128.5,128.2,128.0,67.2,66.8,58.1,57.3,52.2,30.7,19.0,17.9,17.5$; HRMS (ESI) m / z calcd for $\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{NaO}_{6}[\mathrm{M}+\mathrm{Na}]^{+} 389.1689$, found 389.1707.

6. Competition experiment (Scheme 4A)

Boronic acid 1i ($5.38 \mathrm{mg}, 20.0 \mu \mathrm{~mol}, 10.0 \mathrm{~mol} \%$) was added to a solution of Cbz-SerOMe (2a) ($50.7 \mathrm{mg}, 0.200 \mathrm{mmol}, 1.0$ equiv), Cbz-Ala-OMe (5) ($47.5 \mathrm{mg}, 0.200 \mathrm{mmol}, 1.0$ equiv) and H-Leu-OMe (3f) ($87.1 \mathrm{mg}, 0.600 \mathrm{mmol}, 3.0$ equiv) in toluene $(0.5 \mathrm{~mL}, 0.40 \mathrm{M})$ at room temperature. After stirring for 24 h at $80^{\circ} \mathrm{C}$, the reaction mixture was cooled to room temperature. The reaction mixture was quenched by 1 M HCl and the resulting mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layer was successively washed with sat. NaHCO_{3} aq., $\mathrm{H}_{2} \mathrm{O}$, brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vacuo. Compound $\mathbf{6}$ was not detected by ${ }^{1} \mathrm{H}$ NMR analysis of the crude product. The crude product was purified by silica gel column chromatography (eluent, $4: 1 \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc}$) to give the corresponding peptide $\mathbf{4 f}$ ($69.5 \mathrm{mg}, 0.190$ $\mathrm{mmol}, 95 \%,>20: 1 \mathrm{dr})$ as a colorless oil.

7. Detection of presumed reaction intermediate (Scheme 4B)

ESI-MS analysis

Boronic acid $1 \mathbf{i}$ ($2.69 \mathrm{mg}, 10.0 \mu \mathrm{~mol}, 1.0$ equiv) was added to a solution of Cbz-Ser$\mathrm{OMe}(\mathbf{2 a})(2.53 \mathrm{mg}, 10.0 \mu \mathrm{~mol}, 1.0$ equiv) in toluene $(0.5 \mathrm{~mL}, 0.02 \mathrm{M})$ at room temperature. After stirring for 15 min at room temperature, ESI-MS (SI-Figure 1) was recorded using methanol as an eluent. The negative ESI-LRMS spectrum shown in SI-Figure 1 gave a peak corresponding to the expected intermediate 7. The ESI-HRMS analysis showed m / z peak at 751.9701 $\left(\mathrm{C}_{26} \mathrm{H}_{20}{ }^{11} \mathrm{~B}_{2}{ }^{79} \mathrm{Br}_{2} \mathrm{~F}_{6} \mathrm{NO}_{7}[\mathrm{M}-\mathrm{H}]^{-}\right.$, calcd $\left.m / z 751.9697\right)$. Other peaks such as complex SI-4 (1i : 2a $=1: 2$) and dimer of boronic acid SI-5 were also detected by the negative ESI-MS analysis.

SI-4

$$
\begin{gathered}
{ }^{12} \mathrm{C}_{14}{ }^{1} \mathrm{H}_{8}{ }^{11} \mathrm{~B}_{2}{ }^{79} \mathrm{Br}_{2}{ }^{19} \mathrm{~F}_{6}{ }^{16} \mathrm{O}_{3}[\mathrm{M}-\mathrm{H}]^{-} \\
\text {calcd } \mathrm{m} / \mathrm{z}: 516.8852 \\
\text { found } \mathrm{m} / \mathrm{z}: 516.8862
\end{gathered}
$$

SI-Figure 1. Negative ESI-LRMS spectrum

SI-Figure 2. Enlarged view of negative ESI-LRMS spectrum shown SI-Figure 1.

${ }^{11} \mathrm{~B}$ NMR analysis

Boronic acid 1i ($5.38 \mathrm{mg}, 20.0 \mu \mathrm{~mol}, 1.0$ equiv) was added to a solution of Cbz-Ser$\mathrm{OMe}(\mathbf{2 a})(5.07 \mathrm{mg}, 20.0 \mu \mathrm{~mol}, 1.0$ equiv $)$ in $\mathrm{C}_{6} \mathrm{D}_{6}(0.5 \mathrm{~mL}, 0.05 \mathrm{M})$ at room temperature. After stirring for 1 h at room temperature, ${ }^{11} \mathrm{~B}$ NMR was recorded (SI-Figure 3).

SI-Figure 3. The ${ }^{11} \mathrm{~B}-\mathrm{NMR}$ spectrum of an equimolar mixture of Cbz-Ser-OMe (2a) and boronic acid 1 i in $\mathrm{C}_{6} \mathrm{D}_{6}$.

The ${ }^{11} \mathrm{~B}-\mathrm{NMR}$ of a mixture of Cbz-Ser-OMe (2a) and boronic acid $\mathbf{1 i}$ in $\mathrm{C}_{6} \mathrm{D}_{6}$ suggested a tricoordinated boron structure instead of the expected tetra-coordinated boron structure, probably due to the weak coordination of the ester functional group. (SI-Figure 3).

8. Application to the catalytic synthesis of oligopeptides (Scheme 4C)

Cbz-Ser-Val-Ala-Ot'Bu (9)

$20 \% \mathrm{Pd} / \mathrm{C}(22.8 \mathrm{mg}, 5 \mathrm{wt} \%)$ was added to a solution of Cbz-Val-Ala-O'Bu (SI-7) (114 $\mathrm{mg}, 0.300 \mathrm{mmol}, 3.0$ equiv) in $\mathrm{MeOH}(3.0 \mathrm{~mL}, 0.10 \mathrm{M})$ at room temperature and the atmosphere was filled with H_{2} (1 atm, balloon). After stirred for 1 h , the resulting mixture was filtered through a pad of Celite ${ }^{\circledR}$ and the resulting filtrate was concentrated under reduced pressure to furnish the crude product, which was subjected to the next step without further purification.

Boronic acid $1 \mathrm{il}(2.69 \mathrm{mg}, 10.0 \mu \mathrm{~mol}, 10.0 \mathrm{~mol} \%)$ was added to a solution of Cbz-SerOMe (2a) ($25.3 \mathrm{mg}, 0.100 \mathrm{mmol}, 1.0$ equiv) and $\mathrm{H}-\mathrm{Val}-\mathrm{Ala}-\mathrm{O}^{t} \mathrm{Bu}(\mathbf{8})(73.3 \mathrm{mg}, 0.300 \mathrm{mmol}, 3.0$ equiv) in toluene ($0.5 \mathrm{~mL}, 0.20 \mathrm{M}$) at room temperature. After stirring for 24 h at $90^{\circ} \mathrm{C}$, the reaction mixture was cooled to room temperature. The reaction mixture was quenched by 1 M HCl and the resulting mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layer was successively washed with sat. NaHCO_{3} aq., $\mathrm{H}_{2} \mathrm{O}$, brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentration in vacuo. The crude material was purified by silica gel column chromatography $\left(1: 1 \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc}\right)$ to give Cbz-Ser-Val-Ala-O ${ }^{t} \mathrm{Bu}(9)(30.0 \mathrm{mg}, 0.064 \mathrm{mmol}, 64 \%,>20: 1 \mathrm{dr})$ as a white solid.

Data for 9; white solid; $\mathrm{R}_{f}=0.31\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc}=1: 1\right) ;[\alpha]_{\mathrm{D}}^{26}-20.0^{\circ}\left(c=1.0, \mathrm{CHCl}_{3}\right)$; IR (KBr) $v=3287,2980,2344,1641,1534,1369,1261,1152,1028,695 \mathrm{~cm}^{-1} ; \mathrm{mp} 168-170{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (500 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 7.33-7.27(\mathrm{~m}, 5 \mathrm{H}), 7.18(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.03(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $1 \mathrm{H}), 6.02(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.10(\mathrm{~s}, 2 \mathrm{H}), 4.44-4.40(\mathrm{~m}, 2 \mathrm{H}), 4.35-4.32(\mathrm{~m}, 1 \mathrm{H}), 3.95(\mathrm{dd}, J=$ $11.0,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.66(\mathrm{dd}, J=11.0,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.63(\mathrm{br}, 2 \mathrm{H}), 2.18-2.14(\mathrm{~m}, 1 \mathrm{H}), 1.43(\mathrm{~s}, 9 \mathrm{H})$, $1.32(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 0.94(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.90(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (126 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 172.0,171.2,170.6,156.3,136.1,128.5,128.2,128.0,82.1,67.0,63.0,59.0,55.6,48.8$, 30.6, 27.9, 19.2, 18.2, 17.8; HRMS (ESI) m/z calcd for $\mathrm{C}_{23} \mathrm{H}_{35} \mathrm{~N}_{3} \mathrm{NaO}_{7}[\mathrm{M}+\mathrm{Na}]^{+} 488.2373$, found 488.2387.

Cbz-Gly-Ser-Val-OMe (11)

Boronic acid $\mathbf{1 i}(5.38 \mathrm{mg}, 20.0 \mu \mathrm{~mol}, 10.0 \mathrm{~mol} \%)$ was added to a solution of Cbz-Gly-Ser-OMe (10) ($62.1 \mathrm{mg}, 0.200 \mathrm{mmol}, 1.0$ equiv) and $\mathrm{H}-\mathrm{Val-OMe}(\mathbf{3 e})(78.7 \mathrm{mg}, 0.600 \mathrm{mmol}, 3.0$ equiv) in toluene ($0.5 \mathrm{~mL}, 0.40 \mathrm{M}$) at room temperature. After stirring for 24 h at $90{ }^{\circ} \mathrm{C}$, the reaction mixture was cooled to room temperature. The reaction mixture was quenched by 1 M HCl and the resulting mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layer was successively washed with sat. NaHCO_{3} aq., $\mathrm{H}_{2} \mathrm{O}$, brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentration in vacuo. The crude material was purified by silica gel column chromatography $\left(20: 1 \mathrm{Et}_{2} \mathrm{O} / \mathrm{MeOH}\right)$ to give Cbz-Gly-Ser-Val-OMe (11) (71.4 mg, $\left.0.174 \mathrm{mmol}, 87 \%,>20: 1 \mathrm{dr}\right)$ as a yellow oil.

Data for 11; yellow oil; $\mathrm{R}_{f}=0.23\left(\mathrm{Et}_{2} \mathrm{O} / \mathrm{MeOH}=20: 1\right) ;[\alpha]_{\mathrm{D}}^{26}-13.1^{\circ}\left(c=1.0, \mathrm{CHCl}_{3}\right)$; IR (neat) $v=3319,3018,2966,1728,1659,1529,1439,1217,1153,1051,999,757 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (270 MHz, CDCl_{3}) $\delta 7.43(\mathrm{br}, 1 \mathrm{H}), 7.40(\mathrm{br}, 1 \mathrm{H}), 7.34-7.28(\mathrm{~m}, 5 \mathrm{H}), 5.93-5.89(\mathrm{~m}, 1 \mathrm{H})$, $5.09(\mathrm{~s}, 2 \mathrm{H}), 4.68-4.62(\mathrm{~m}, 1 \mathrm{H}), 4.46(\mathrm{dd}, J=8.1,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.97-3.90(\mathrm{~m}, 3 \mathrm{H}), 3.75-3.64(\mathrm{~m}$, $4 \mathrm{H}), 3.43(\mathrm{br}, 1 \mathrm{H}), 2.22-2.10(\mathrm{~m}, 1 \mathrm{H}), 0.91(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.88(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (126 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 172.3,170.7,170.0,156.7,136.1,128.5,128.2,128.0,67.1,62.6$, 55.6, 54.2, 52.3, 44.3, 30.6, 18.9, 17.7; HRMS (ESI) m/z calcd for $\mathrm{C}_{19} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{NaO}_{7}[\mathrm{M}+\mathrm{Na}]^{+}$ 432.1747, found 432.1751 .

Cbz-Gly-Ser-Val-Ala-O'Bu (12)

$20 \% \mathrm{Pd} / \mathrm{C}(22.8 \mathrm{mg}, 5 \mathrm{wt} \%)$ was added to a solution of Cbz-Val-Ala-Ot ${ }^{t} \mathrm{Bu}(\mathbf{S I}-7)(114$ $\mathrm{mg}, 0.300 \mathrm{mmol}, 3.0$ equiv) in $\mathrm{MeOH}(3.0 \mathrm{~mL}, 0.10 \mathrm{M})$ at room temperature and the atmosphere was filled with H_{2} (1 atm, balloon). After stirred for 1 h , the resulting mixture was filtered through a pad of Celite ${ }^{\circledR}$ and the resulting filtrate was concentrated under reduced pressure to furnish the crude product, which was subjected to the next step without further purification.

Boronic acid $1 \mathrm{i}(2.69 \mathrm{mg}, 10.0 \mu \mathrm{~mol}, 10.0 \mathrm{~mol} \%)$ was added to a solution of Cbz-Gly-Ser-OMe (10) ($31.0 \mathrm{mg}, 0.100 \mathrm{mmol}, 1.0$ equiv) and $\mathrm{H}-\mathrm{Val-Ala-O}{ }^{t} \mathrm{Bu}(\mathbf{8})(73.3 \mathrm{mg}, 0.300 \mathrm{mmol}$, 3.0 equiv) in toluene $(0.5 \mathrm{~mL}, 0.20 \mathrm{M})$ at room temperature. After stirring for 24 h at $90^{\circ} \mathrm{C}$, the reaction mixture was cooled to room temperature. The reaction mixture was quenched by 1 M HCl and the resulting mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layer was successively washed with sat. NaHCO_{3} aq., $\mathrm{H}_{2} \mathrm{O}$, brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentration in vacuo. The crude material was purified by silica gel column chromatography $\left(1: 9 \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc}\right)$ to give Cbz-Gly-Ser-Val-Ala-O${ }^{t} \mathrm{Bu}(12)(37.0 \mathrm{mg}, 0.071 \mathrm{mmol}, 71 \%,>20: 1$ dr) as a white solid.

Data for 12; white solid; $\mathrm{R}_{f}=0.30\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc}=1: 9\right) ;[\alpha]_{\mathrm{D}}^{26}-16.1^{\circ}(c=1.0$, CHCl_{3}); IR (KBr) $v=3266,3088,2963,2371,1735,1620,1560,1455,1367,1235,1159,1056$, 937, 752, $696590 \mathrm{~cm}^{-1} ; \mathrm{mp} \mathrm{168-171}{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($270 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.37-7.31(\mathrm{~m}, 5 \mathrm{H}), 7.13$ (br, 1H), 6.82-6.80(m, 2H), $5.49(\mathrm{br}, 1 \mathrm{H}), 5.12(\mathrm{~s}, 2 \mathrm{H}), 4.60-4.56(\mathrm{~m}, 1 \mathrm{H}), 4.43(\mathrm{dt}, J=7.8$, $4.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.34-4.31(\mathrm{~m}, 1 \mathrm{H}), 4.01$ (br d, $J=4.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.95$ (d, $J=2.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.62$ (dd, J $=5.4,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.28-2.21(\mathrm{~m}, 1 \mathrm{H}), 1.45(\mathrm{~s}, 9 \mathrm{H}), 1.35(\mathrm{~d}, J=3.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.98(\mathrm{~d}, J=3.5 \mathrm{~Hz}$, $3 \mathrm{H}), 0.93(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.0,170.9,170.8,169.4,156.7$,
136.2, 129.5, 128.5, 128.2, 128.0, 82.0, 67.1, 63.1, 59.0, 54.5, 48.9, 44.3, 30.9, 27.9, 19.2, 18.0; HRMS (ESI) m / z calcd for $\mathrm{C}_{25} \mathrm{H}_{38} \mathrm{~N}_{4} \mathrm{NaO}_{8}[\mathrm{M}+\mathrm{Na}]^{+} 545.2587$, found 545.2595 .

9. References

(1) M. Koshizuka, K. Makino and N. Shimada, Org. Lett., 2020, 22, 8658-8664.
(2) M. Cortes-Clerget, J.-Y. Berthon, I. Krolikiewicz-Renimel, L. Chaisemartin and B. H. Lipshutz, Green Chem., 2017, 19, 4263-4267.
(3) D. Ranganathan and S. Saini, J. Am. Chem. Soc., 1991, 113, 1042-1044.
(4) G. L. Tolnai, J. P. Brand and J. Waser, Beilstein J. Org. Chem., 2016, 12, 745-749.
(5) A. A. Costopanagiotis, B. O. Handford and B. Weinstein, J. Org. Chem., 1968, 33, 12611264.
(6) D. Ranganathan, N. K. Vaish and K. Shah, J. Am. Chem. Soc., 1994, 116, 6545-6557.
10. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{4 b}\left(\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{4 b}\left(\mathbf{1 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathbf{H}$ NMR spectrum of $\mathbf{4 c}\left(\mathbf{2 7 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{4 d}\left(\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{4 e}\left(\mathbf{5 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{4 e}\left(\mathbf{1 2 6} \mathbf{~ M H z}, \mathrm{CDCl}_{3}\right)$

${ }^{\mathbf{1}} \mathrm{H}$ NMR spectrum of $\mathbf{4 f} \mathbf{(\mathbf { 4 0 0 } \mathbf { ~ M H z } , \mathrm { CDCl } _ { 3 })}$

${ }^{\mathbf{1}} \mathrm{H}$ NMR spectrum of $\left.\mathbf{4 g} \mathbf{(4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{4 g}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{4 h}\left(\mathbf{2 7 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{4 h}\left(\mathbf{1 2 6} \mathbf{~ M H z}, \mathrm{CDCl}_{3}\right)$

${ }^{\mathbf{1}} \mathrm{H}$ NMR spectrum of $\left.\mathbf{4 i} \mathbf{(5 0 0 ~} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right)$

${ }^{13} \mathbf{C}$ NMR spectrum of $\left.\mathbf{4 i} \mathbf{(1 2 6 ~ M H z}, \mathrm{CDCl}_{3}\right)$
(
${ }^{\mathbf{1}} \mathbf{H}$ NMR spectrum of $\mathbf{4 j} \mathbf{(5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}} \mathbf{)}$

${ }^{13} \mathbf{C}$ NMR spectrum of $\mathbf{4 j}\left(\mathbf{1 2 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{4 1}\left(\mathbf{5 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{\mathbf{3}}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $41\left(\mathbf{1 2 6} \mathbf{~ M H z}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{4 m}\left(\mathbf{2 7 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of $\left.\mathbf{4 n} \mathbf{(5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{4 n}\left(\mathbf{1 2 6} \mathbf{~ M H z}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{4 0}\left(\mathbf{2 7 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{4 0}\left(\mathbf{1 2 6} \mathbf{~ M H z}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{4 p}\left(\mathbf{5 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}\right)$
(
${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{4 p}\left(\mathbf{1 2 6} \mathbf{~ M H z}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{4 q}\left(\mathbf{2 7 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right)$

${ }^{13}$ C NMR spectrum of $\mathbf{4 q}\left(\mathbf{1 2 6} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of $\left.\mathbf{4 r} \mathbf{(5 0 0 ~ M H z}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{4 s}\left(\mathbf{5 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{4 s}\left(\mathbf{1 2 6} \mathbf{~ M H z}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of $9\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
(
${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{9}\left(\mathbf{1 2 6} \mathbf{~ M H z}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 1}\left(\mathbf{2 7 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{1 1}\left(\mathbf{1 2 6} \mathbf{~ M H z}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of $\left.\mathbf{1 2} \mathbf{(2 7 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right)$
(
${ }^{13} \mathrm{C}$ NMR spectrum of $12\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

