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1. General methods

1H NMR, 13C NMR and 2D NMR spectra were recorded on Bruker AV500 MHz, 

AV600 MHz or AV850 MHz spectrometer in dimethyl sulfoxide-D6 (DMSO-

d6), acetonitrile-D3 (CD3CN) or their mixed solvents. High-resolution mass 

spectra (HR-MS) were obtained on a Bruker En Apex ultra 7.0 FT-MS. 

Absorption spectra were recorded on a Thermo Scientific Evolution 300 UV/Vis 

spectrophotometer. CD spectra were recorded with a JASCO J-1500 

spectrometer. DLS data were collected on Malvern Zetasizer Nano-ZS90. SEM 

experiments were conducted on Hitachi S-4800 scanning electron microscope. 

2. Syntheses and characterizations
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Scheme S1. Syntheses of 1L and 1D.

pIPAN2H3：p-Iodobenzoic acid (2.47 g, 10.0 mmol) was added to 60 mL CHCl3, 

followed by the gradual addition of 1.5 mL Et3N under the ice bath to obtain transparent 

solution. Then EDCI (2.11 g, 11.0 mmol) and HOBT (1.48 g, 11.0 mmol) were added 

and stirred for 30 min. L-or D-AOEt·HCl (1.50 g, 10.0 mmol) was added to the above 

solution. The reaction mixture was stirred at room temperature for 12 h. The solvent 

was removed by evaporated in vacuo, 20 mL ethyl acetate and 20 mL pure water were 

added in turn, and the organic phase was washed with dilute NH3·H2O (0.1 M), dilute 
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HCl (0.1 M) and saturated NaCl solution for 3 times in turn, then was dried by 

anhydrous Na2SO4. The solvent was removed by evaporated in vacuo to afford white 

solid pIPAOEt. Next, excess N2H4·H2O (85%, 3.0 mL) was added to pIPAOEt in 

EtOH (50 mL) and the mixture was refluxed for 12 hours. Filtrating to remove the 

solvent, and the crude product was washed with EtOH and Et2O several times to get 

white solid product pIPAN2H3 (60% yield).

pIPANCS: pIPAN2H3 (0.333 g, 1.0 mmol) was gradually added to excess m-

phenyldiisothiocyanate (0.384 g, 2.5 mmol) in CH3CN (50 mL) and then refluxed for 

24 h. The solvent was removed by filtration, and the crude product was washed with 

hot CH3CN and Et2O for several times, affording pure white solid product pIPANCS 

(50% yield).

mP(AN2H3)2: Isophthalic acid (1.67 g, 10.0 mmol) was added to 60 mL CHCl3, and 

gradually add 3 mL Et3N in the ice bat. Then EDCI (4.22 g, 22.0 mmol) and HOBT 

(2.97 g, 22.0 mmol) were added and stirred in the ice bath for 30 min. L-or D-AOEt·HCl 

(3.00 g, 10.0 mmol) was added to the above solution. The reaction mixture was stirred 

at room temperature for 12 h. The solvent was removed by evaporated in vacuo, 20 mL 

ethyl acetate and 20 mL pure water were added in turn, and the organic phase was 

washed with dilute NH3·H2O (0.1 M), dilute HCl (0.1 M) and saturated NaCl solution 

for 3 times in turn, and was dried by anhydrous Na2SO4. The solvent was removed by 

evaporated in vacuo, affording a white solid mP(AOEt)2. Excess N2H4·H2O (85%, 3.0 

mL) was added to mP(AOEt)2 in EtOH (50 mL) and the mixture was refluxed for 12 

hours. Filtrating to remove the solvent, and the crude product was washed with EtOH 

and Et2O several times, producing white solid product mP(AN2H3)2 (60% yield).

1L: mP(AN2H3)2 (0.033 g, 0.1 mmol) was gradually added to pIPANCS (0.115 g, 0.22 

mmol) dropwise in 30 mL CH3CN and then refluxed for 48 h. The solvent was removed 

by filtration, and the crude product was washed with hot CH3CN and Et2O for several 

times, producing pure white solid product 1L (67% yield). 1D was similarly 

synthesized.

According to similar synthetic routes for 1L, 2L-5L (Fig. 1) were obtained. Replacing 

p-iodobenzoic acid with benzoic acid to generate 2L; replacing the isophthalic acid with 
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terephthalic acid leads to 3L; replacing m-phenyldiisothiocyanate with p-

phenyldiisothiocyanate leads to 4L; replacing isophthalic acid and m-

phenyldiisothiocyanate with terephthalic acid and p-phenyldiisothiocyanate leads to 

5L. 

1L: 1H NMR (500 MHz, DMSO-d6) δ (ppm) 10.40 (s, 1H), 9.73 (s, 1H), 9.25 (s, 1H), 

8.99 (s, 1H), 7.89 (d, J = 8.2 Hz, 2H), 7.68 (d, J = 8.3 Hz, 2H), 7.65 (d, J = 5.8 Hz, 2H), 

7.35 (t, J = 7.7 Hz, 2H), 7.16 (t, J = 7.1 Hz, 1H), 4.32 (s, 1H), 1.39 (d, J = 6.9 Hz, 3H). 
13C NMR (151 MHz, DMSO-d6) δ (ppm) 180.19, 171.82, 166.93, 138.97, 137.24, 

133.71, 132.66, 130.80, 129.75, 128.52, 127.70, 126.98, 121.35, 99.60, 49.25, 48.97, 

16.92, 16.62. HRMS (ESI): calcd for [C50H52I2N16O8S4Na]+: 1409.1018, found: 

1409.1021.

1D: 1H NMR (500 MHz, DMSO-d6) δ 10.40 (s, 4H), 9.75 (s, 4H), 9.31 (s, 4H), 8.97 (s, 

4H), 8.41 (s, 1H), 8.03 (d, J = 6.5 Hz, 3H), 7.88 (d, J = 7.8 Hz, 4H), 7.71 (d, J = 7.0 

Hz, 4H), 7.61 (s, 1H), 7.45 (s, 2H), 7.31 (s, 3H), 4.44 (s, 2H), 4.31 (s, 2H), 1.41 (d, J = 

11.1 Hz, 11H). 13C NMR (151 MHz, DMSO-d6) δ (ppm) 180.20, 171.83, 166.94, 

138.98, 137.25, 133.71, 132.69, 130.82, 129.76, 128.53, 127.71, 127.00, 121.36, 99.59, 

49.25, 16.93, 16.64. HRMS (ESI): calcd for [C50H52I2N16O8S4Na]+: 1409.1018, found: 

1409.1019.

2L: 1H NMR (500 MHz, DMSO-d6) δ (ppm) 10.39 (s, 4H), 9.73 (s, 4H), 9.36 (s, 2H), 

8.89 (s, 3H), 8.41 (s, 1H), 8.03 (d, J = 7.6 Hz, 3H), 7.92 (d, J = 7.4 Hz, 4H), 7.61 (d, J 

= 7.4 Hz, 1H), 7.53 (t, J = 7.2 Hz, 2H), 7.48 (t, J = 7.4 Hz, 4H), 7.42 (s, 2H), 7.31 (d, J 

= 6.9 Hz, 3H), 4.39 (d, J = 55.2 Hz, 4H), 1.41 (t, J = 8.1 Hz, 12H). 13C NMR (214 MHz, 

DMSO-d6) δ (ppm) 180.30, 171.81, 167.00, 138.91, 133.68, 133.19, 131.68, 130.78, 

128.49, 128.32, 127.77, 126.95, 121.46, 48.91, 16.90, 16.59. HRMS (ESI): calcd for 

[C50H54N16O8S4Na]+: 1157.3086, found: 1157.3086.

3L: 1H NMR (500 MHz, DMSO-d6) δ (ppm) 10.40 (s, 4H), 9.73 (s, 4H), 9.28 (s, 4H), 

8.98 (s, 4H), 7.97 (d, J = 9.5 Hz, 6H), 7.86 (dd, J = 8.0, 3.2 Hz, 4H), 7.67 (d, J = 8.0 

Hz, 4H), 7.58 (s, 9H), 4.34 (s, 4H), 1.40 (d, J = 7.0 Hz, 12H). 13C NMR (214 MHz, 

DMSO-d6) δ (ppm) 180.20, 171.85, 166.84, 138.96, 137.23, 135.93, 132.62, 129.73, 

127.68, 121.43, 99.59, 49.22, 16.68. HRMS (ESI): calcd for [C50H52I2N16O8S4Na]+: 
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1409.1019, found: 1409.1019.

4L: 1H NMR (500 MHz, DMSO-d6) δ (ppm) 10.41 (s, 4H), 9.76 (s, 4H), 9.35 (s, 4H), 

8.98 (s, 4H), 8.07 (s, 1H), 8.00 (s, 8H), 7.95 (s, 1H), 7.88 (d, J = 8.1 Hz, 1H), 7.70 (d, 

J = 8.0 Hz, 1H), 7.31 (s, 6H), 4.38 (s, 4H), 1.41 (d, J = 5.7 Hz, 12H). 13C NMR (214 

MHz, DMSO-d6) δ (ppm) 180.17, 171.83, 166.96, 137.21, 135.82, 133.88, 132.79, 

130.65, 129.61, 128.34, 127.06, 124.35, 124.07, 99.56, 49.21, 16.89, 16.61. HRMS 

(ESI): calcd for [C50H52I2N16O8S4Na]+: 1409.1019, found: 1409.1005.

5L: 1H NMR (500 MHz, DMSO-d6) δ (ppm) δ 10.39 (s, 4H), 9.72 (s, 4H), 9.31 (s, 4H), 

8.98 (s, 4H), 8.41 (s, 2H), 8.02 (s, 3H), 7.85 (d, J = 8.3 Hz, 3H), 7.67 (d, J = 6.9 Hz, 

4H), 7.58 (s, 11H), 4.43 (s, 4H), 1.41 (dd, J = 13.2, 7.8 Hz, 12H). 13C NMR (214 MHz, 

DMSO-d6) δ (ppm) 180.17, 171.84, 166.82, 137.20, 135.79, 132.81, 129.59, 127.59, 

124.06, 99.54, 49.18, 16.63. HRMS (ESI): calcd for [C50H52I2N16O8S4Na]+: 1409.1019, 

found: 1409.1014.
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Scheme S2. Syntheses of 6L and 7L.

6L: L-pIPAN2H3 (0.333 g, 1.0 mmol) was gradually added to 4-iodophenyl 

isothiocyanate (0.261 g, 1 mmol) dropwise in 50 mL CH3CN and then refluxed for 12 

h. The solvent was removed by filtration, and the crude product was washed with hot 

CH3CN and Et2O for several times to afford pure white solid product 6L (81% yield).

7L: L,L-mP(AN2H3)2 (0.336 g, 1.0 mmol) was gradually added to 4-iodophenyl 

isothiocyanate (0.574 g, 2.2 mmol) dropwise in 50 mL CH3CN and then refluxed for 
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12 h. The solvent was removed by filtration, and the crude product was washed with 

hot CH3CN and Et2O for several times to afford pure white solid product 7L (88% 

yield).

6L: 1H NMR (500 MHz, DMSO-d6) δ (ppm) 10.41 (s, 1H), 9.83 (s, 1H), 9.28 (s, 1H), 

9.00 (s, 1H), 7.90 (d, J = 8.2 Hz, 2H), 7.69 (t, J = 7.6 Hz, 4H), 7.54 (s, 2H), 4.30 (s, 

1H), 1.39 (d, J = 7.0 Hz, 3H). 13C NMR (214 MHz, DMSO-d6) δ (ppm) 179.95, 171.80, 

166.99, 138.94, 137.22, 136.85, 132.63, 129.58, 126.02, 99.59, 89.23, 49.25, 16.48. 

HRMS (ESI): calcd for [C17H16I2N4O2SNa]+: 616.8970, found: 616.8962.

7L: 1H NMR (500 MHz, DMSO-d6) δ (ppm) 10.44 (s, 2H), 9.85 (s, 2H), 9.32 (s, 2H), 

9.06 (s, 2H), 8.41 (s, 1H), 8.06 (d, J = 6.5 Hz, 2H), 7.65 (t, J = 11.6 Hz, 6H), 7.56 (s, 

4H), 4.38 (s, 2H), 1.42 (d, J = 5.0 Hz, 6H). 13C NMR (214 MHz, DMSO-d6) δ (ppm) 

180.18, 171.87, 167.09, 139.03, 133.74, 130.61, 128.31, 128.17, 127.24, 124.86, 

124.20, 49.10, 16.72. HRMS (ESI): calcd for [C28H28I2N8O4S2Na]+: 880.9657, found: 

8880.9637.

3. Experimental data

Figure S1. Temperature-dependent partial 1H NMR spectra of -NH protons of 1L in 

90:10 (v/v) CD3CN/DMSO-d6 mixture. [1L] = 2 mM.
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Figure S2. Partial 1H NMR spectra of -NH protons of 1L in CD3CN/DMSO-d6 

mixtures of varying volume fraction of DMSO-d6 (500 MHz, 298 K). [1L] = 2 mM.

20 40 60 80 100

8.5

9.0

9.5

10.0

10.5

 
/ p

pm

VDMSO-d6 / %

b

c

d

a

Figure S3. Influence on resonances of -NH protons of 1L in CD3CN/DMSO-d6 mixture 

by volume fraction of DMSO-d6 (500 MHz, 298 K). [1L] = 2 mM.
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Figure S4. Partial 1H NMR spectrum of 1L in DMSO-d6. [1L] = 2 mM.
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Figure S5. Hydrodynamic diameters of 1L in 1:199 (v/v) DMSO/CH3CN and in 

CH3CN measured by dynamic light scattering. [1L] = 5 µM.
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Figure S6. (a) Concentration-dependent CD spectra of 1L in CH3CN and (b) plots of 

CD signals at 259 nm and 280 nm versus concentration of 1L over 0 to 5 µM.
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Figure S9. Absorption (a) and CD (b) spectra of 1L (red line) and 2L (blue line) in 

CH3CN. [1L] = [2L] =10 M.
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Figure S10. Absorption (a) and CD (b) spectra of 2L of 10 and 30 μM in CH3CN.
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Figure S12. Hydrodynamic diameters of 1L and 2L in CH3CN measured by dynamic 

light scattering. [1L] = [2L] =10 M.

Figure S13. SEM images of air-dried samples of 2L in CH3CN and 1:199 (v/v) 

DMSO/CH3CN on platinum coated silicon wafers. [2L] = 10 μM.
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Figure S14. (a) Time-dependent CD spectra and (b) CD signals at 281 nm and 259 nm 

of 1L in CH3CN with 20% by volume H2O. [1L] = 8 μM.
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Figure S15. (a) Time-dependent CD spectra and (b) CD signals at 281 nm and 259 nm 

of 1L in CH3CN with 20% by volume THF. [1L] = 8 μM.
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exist as their n-Bu4N+ salts.
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Figure S18. Time profiles of CD signal at 282 nm of 1L in the presence of 100 eq I-, 

Br- and Cl- in CH3CN. [1L] = 10 μM, [I-] = [Br-] = [Cl-] = 1000 μM. I-, Br- and Cl- exist 

as their (n-Bu)4N+ salts.

Figure S19. Partial 1H NMR spectra of 1L in DMSO-d6 and in 200:1 (v/v) 

CD3CN/DMSO-d6 mixture (850 MHz, 25 °C). Hf’, Hl’, Hg’, Hk’ and Hj’ are those from 

the oligomers of 1L. Numbering of protons is shown in Figure 1a. [1L] = 200 μM.
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Figure S20. Expanded 2D COSY spectra of couplings between protons in phenyl rings 

in 1L in 200:1 (v/v) CD3CN/DMSO-d6 mixture (850 MHz, 25 °C). Numbering of 

protons is given in Figure 1a. [1L] = 200 μM.

Figure S21. Expanded 2D NOESY spectra of 1L in (a) 200:1 (v/v) CD3CN/DMSO-d6 

mixture and (b) DMSO-d6 (850 MHz, 25 °C). [1L] = 200 μM. The proposed structure 

of the dimer of 1L shows that two molecules are connected by C-I···O halogen bonding 

(dashed black line), allowing couplings of He-Hk, He-Hl, Hf-Hk, Hf-Hl and Hj-Hl.
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Figure S22. Absorption (a) and CD (b) spectra of 1L, 3L, 4L and 5L in CH3CN. [1L] 

= [3L] = [4L] = [5L] = 10 M.
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Figure S24. Concentration-dependent absorption (a) and CD (b) spectra of 6L in 

CH3CN and plots of absorbance at 248 nm (c) and CD signal at 258 nm (d) versus 

concentration of 6L over 10 to 60 µM.
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Figure S25. Concentration-dependent absorption (a) and CD (b) spectra of 7L in 

CH3CN and plots of absorbance at 242 nm (c) and CD signal at 247 nm (d) versus 

concentration of 7L over 40 to 200 µM.
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Figure S26. SEM images of air-dried samples of 2L, 3L, 4L, 5L, 6L and 7L in CH3CN 

on platinum coated silicon wafers. Concentrations of 2L-7L are 10 μM.
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Figure S27. Temperature-dependent CD spectra of 1L in CH3CN. [1L] = 10 μM.
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Figure S28. Temperature-dependent CD signals at 259 nm and 281 nm of 1L in CH3CN 

in the heating (a) and next cooling (b) processes. [1L] = 10 μM.
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4. 1H NMR and 13C NMR spectra

Figure S29. 500 MHz 1H NMR spectrum of 1L in DMSO-d6.

Figure S30. 214 MHz 13C NMR spectrum of 1L in DMSO-d6.
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Figure S31. 500 MHz 1H NMR spectrum of 1D in DMSO-d6.

Figure S32. 214 MHz 13C NMR spectrum of 1D in DMSO-d6.
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Figure S33. 500 MHz 1H NMR spectrum of 2L in DMSO-d6.

Figure S34. 214 MHz 13C NMR spectrum of 2L in DMSO-d6.
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Figure S35. 500 MHz 1H NMR spectrum of 3L in DMSO-d6.

Figure S36. 214 MHz 13C NMR spectrum of 3L in DMSO-d6.
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Figure S37. 500 MHz 1H NMR spectrum of 4L in DMSO-d6.

Figure S38. 214 MHz 13C NMR spectrum of 4L in DMSO-d6.
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Figure S39. 500 MHz 1H NMR spectrum of 5L in DMSO-d6.

Figure S40. 214 MHz 13C NMR spectrum of 5L in DMSO-d6.
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Figure S41. 500 MHz 1H NMR spectrum of 6L in DMSO-d6.

Figure S42. 214 MHz 13C NMR spectrum of 6L in DMSO-d6.
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Figure S43. 500 MHz 1H NMR spectrum of 7L in DMSO-d6.

Figure S44. 214 MHz 13C NMR spectrum of 7L in DMSO-d6.


