Supporting Information

Phosphine-catalyzed Formal Buchner [6+1] Annulation: De Novo
Construction of Cycloheptatrienes
Jingxiong Lai ${ }^{\dagger}$, You Huang*, ${ }^{\dagger}$
*State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China

Email:hyou@nankai.edu.cn

Table of Contents

1. General Information 1
2. General Procedure of Starting Material 2
3. Optimization of Reaction Conditions 7
4. General Procedure for New Products 3 8
5. Primary Attempt on Asymmetric Edition in the Presence of Chiral Phosphine Catalysts 8
6. Scale-up Experiment 22
7. Control and Deuterium-labeling Experiments 22
8. Characterization Data of New Products 3 27
9. Spectra 38
10. X-Ray Crystallography Data of 3sa 77
11. References 78

1. General Information

Commercial reagents and solvents were used as received without further purification, unless otherwise stated. Unless otherwise specified, reactions at $60^{\circ} \mathrm{C}$ have been performed using the pre-heated waterbath or the pre-heated oil-bath maintained at $60^{\circ} \mathrm{C}$. Yields referred to isolated compounds through preparative TLC. ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a Bruker Avance 400 (400 MHz) spectrometer. And ${ }^{19} \mathrm{~F}$ NMR were reported on a Bruker Avance (376 MHz) spectrometer. Chemical shifts for protons are reported in ppm and are referenced to the NMR solvent peak $\left(\mathrm{CDCl}_{3}: \delta 7.26 \mathrm{ppm}, \mathrm{D}\right)$. Chemical shifts for carbons are reported in ppm and are referenced to the carbon resonances of the NMR solvent peak ($\left.\mathrm{CDCl}_{3}: \delta 77.06 \mathrm{ppm}\right)$. Multiplicity was indicated as follows: s (singlet), d (doublet), t (triplet), q (quartet), dd (doublet of doublet), brs (broad singlet) and m (multiplet). Enantiomeric excesses of the cycloheptatrienes products were determined by Agilent 6890 chiral-phase high performance liquid chromatography (HPLC) or LabAlliance PC2001, using chiralcel AD-H, OD-H, and ID-H. High resolution mass spectrometry (HRMS) were obtained on Q Exactive Focus or Agilent 6520 Q-TOF LC/MS with ESI resource. Melting points were measured on a RY-I apparatus and reported uncorrected.

2. General Procedure of Starting Material

2.1. The substrates examined in this report.

The substituted 4-oxo-4H-chromene-3-carbaldehyde $\mathbf{1 a - 1 v}{ }^{[1]}, \mathbf{1 a - P h}$ are known compounds, and their NMR data were identical with the literature. 1a-D was prepared following the synthetic method according to the reported literature procedures ${ }^{[2]}$. The α-activated-allylic substituted allenoates $\mathbf{2 a - 2} \mathbf{j}$ were prepared following the synthetic method according to the reported literature procedures ${ }^{[3]}$.

2.2. General Procedure for substituted 3-formylchromones 1a-D:

To a 10 mL glass vial was added TBADT ($40.8 \mathrm{mg}, 0.012 \mathrm{mmol}, 4 \mathrm{~mol} \%$), aldehyde (0.3 mmol,
1.0 equiv), thiol ($28 \mathrm{mg}, 0.12 \mathrm{mmol}, 40 \mathrm{~mol} \%$) and $\mathrm{DCM} / \mathrm{D}_{2} \mathrm{O}(1: 1, \mathrm{v} / \mathrm{v} ; 3.0 \mathrm{~mL})$. The reaction mixture was degassed by bubbling with argon for 15 s with an outlet needle and the vial was sealed with PTFE cap. The mixture was then stirred rapidly and irradiated with a 36 W 390 nm LED (approximately 2 cm away from the light source) at room temperature for 4 days. The reaction mixture was diluted with 10 mL of aqueous $1 \mathrm{M} \mathrm{NaHCO}_{3}$ solution, and extracted with DCM $(3 \times 20 \mathrm{~mL})$. The combined organic extracts were washed with brine (40 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. Purification of the crude product by flash chromatography
on silica gel using the indicated solvent system afforded the desired product as a white solid ($27 \mathrm{mg}, 52 \%$ yield).
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 10.38(\mathrm{~s}, 0.38 \mathrm{H}), 8.54(\mathrm{~s}, 0.34 \mathrm{H}), 8.29(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.75(\mathrm{t}, J=$ $7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.51$ (dd, $J=17.3,8.2 \mathrm{~Hz}, 2 \mathrm{H}$).

2.3. General Procedure for α-activated-allylic substituted allenoates $\mathbf{2 a - 2 g}$:

Allenoates $\mathbf{2 a - 2 f}$ were prepared according to the reported methods described in the literature ${ }^{[4]}$

Allenoate 2a:

To a stirred solution of (carbethoxymethylene)triphenylphosphorane ($20.89 \mathrm{~g}, 60 \mathrm{mmol}$) in chloroform (250 mL) was added 1.0 eq of methyl 2-(bromomethyl)acrylate ($10.74 \mathrm{~g}, 60 \mathrm{mmol}$) in an oven-dried 500 mL glass vial at room temperature. The reaction mixture was refluxed until methyl 2-(bromomethyl)acrylate (monitored by TLC) was disappeared. The solvent was evaporated under reduced pressure. To the resulting phosphornium salt was added dichloromethane (300 mL) and 2.2 eq of triethylamine ($17 \mathrm{~mL}, 132 \mathrm{mmol}$). After stirred for about $1 \mathrm{hr}, 1.1 \mathrm{eq}$ of acetyl chloride (5.4 $\mathrm{mL}, 66 \mathrm{mmol}$) was added dropwise over 30 min . Then the reaction mixture was allowed to be stirred overnight. The resulting mixture was poured into a Buchner funnel that was packed with silica gel and was washed with dichloromethane for several times. The combined filtrate was carefully concentrated and the residue was subjected to a flash column chromatography (petroleum ether : ethyl acetate $=20: 1$) to provide allenoate 2a as a colorless oil ($7.5 \mathrm{~g}, 60 \mathrm{mmol}, 60 \%$ yield $)$.
${ }^{1} \mathbf{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathbf{C D C l}_{3}\right) \delta 6.17(\mathrm{~s}, 1 \mathrm{H}), 5.57(\mathrm{~s}, 1 \mathrm{H}), 5.06(\mathrm{t}, \mathrm{J}=2.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.14(\mathrm{q}, \mathrm{J}=7.1$ $\mathrm{Hz}, 2 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H}), 3.21(\mathrm{~s}, 2 \mathrm{H}), 1.21(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 3 \mathrm{H})$;
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1 ~ M H z}, \mathbf{C D C l}_{3}$) $\delta 213.97,166.83,166.33,137.16,126.61,98.09,79.31,60.96,51.70$, 30.81, 14.03;

HRMS (ESI): m/z calcd for $\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{O}_{4}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 211.0965$; found: 211.0963 .

Allenoate 2b:

The general procedure outlined above was followed (30 mmol scale, using 1.0 eq of methyl (triphenylphosphoranylidene)acetate). Allenoate 2b was formed as a colorless oil ($3.3 \mathrm{~g}, 30 \mathrm{mmol}$, 56\% yield).
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 6.19(\mathrm{~s}, 1 \mathrm{H}), 5.59(\mathrm{~s}, 1 \mathrm{H}), 5.10(\mathrm{t}, J=2.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.70(\mathrm{~s}, 6 \mathrm{H}), 3.22(\mathrm{~s}$, 2H).
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 214.21,166.91,137.15,126.81,97.93,79.50,52.24,51.83,30.94$.
HRMS (ESI): m/z calcd for $\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{O}_{4}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 197.0809$; found: 197.0809.

Allenoate 2c:

The general procedure outlined above was followed (30 mmol scale, using 1.0 eq of ethyl 2(bromomethyl)acrylate). Allenoate $\mathbf{2 c}$ was formed as a colorless oil ($4.5 \mathrm{~g}, 30 \mathrm{mmol}, 67 \%$ yield). ${ }^{1} \mathbf{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathbf{C D C l}_{3}\right) \delta 6.20(\mathrm{~s}, 1 \mathrm{H}), 5.57(\mathrm{~s}, 1 \mathrm{H}), 5.09(\mathrm{t}, \mathrm{J}=2.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.17(\mathrm{~m}, 4 \mathrm{H})$, 3.24 (s, 2H), 1.25 (m, 6H);
${ }^{13} \mathbf{C}$ NMR (101 MHz, $\left.\mathbf{C D C l}_{3}\right) \delta 214.14,166.47,166.43,144.87,122.97,97.45,79.97,61.42,60.40$, 31.29, 14.34, 14.32.

HRMS (ESI): m / z calcd for $\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{O}_{4}\left([\mathrm{M}+\mathrm{H}]^{+}\right):$225.1121; found: 225.1120 .

Allenoate 2d:

The general procedure outlined above was followed (using 30 mmol ethyl 2-(bromomethyl)acrylate and 1.0 eq benzyl 2-(triphenylphosphoranylidene)acetate). Allenoate $\mathbf{2 d}$ was formed as a colorless oil ($4.8 \mathrm{~g}, 30 \mathrm{mmol}, 56 \%$ yield);
${ }^{1} \mathbf{H}$ NMR (400 MHz, CDCl \mathbf{H}_{3}) $\delta 7.37-7.30(\mathrm{~m}, 5 \mathrm{H}), 6.24(\mathrm{~s}, 1 \mathrm{H}), 5.61(\mathrm{~d}, J=0.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.19(\mathrm{~s}, 2 \mathrm{H})$,
$5.14(\mathrm{t}, J=2.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.23-4.16(\mathrm{~m}, 2 \mathrm{H}), 3.29(\mathrm{~s}, 2 \mathrm{H}), 1.27(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, $\left.\mathbf{C D C l}_{3}\right) \delta 214.43,166.54,166.44,137.54,136.01,128.49,128.08,127.87,126.63$, 98.23, 79.71, 66.66, 60.75, 30.99, 14.19.

HRMS (ESI): m / z calcd for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{O}_{4}\left([\mathrm{M}+\mathrm{H}]^{+}\right):$287.1278; found: 287.1274 .

Allenoate 2e:

The general procedure outlined above was followed (30 mmol scale, using 1.0 eq of N-butyl 2 (bromomethyl)acrylate). Allenoate $\mathbf{2 e}$ was formed as a colorless oil ($4.26 \mathrm{~g}, 30 \mathrm{mmol}, 56 \%$ yield $)$. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 6.19(\mathrm{~s}, 1 \mathrm{H}), 5.56(\mathrm{~s}, 1 \mathrm{H}), 5.08(\mathrm{~d}, \mathrm{~J}=1.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.08-4.18(\mathrm{~m}$, $4 \mathrm{H}), 3.22(\mathrm{~s}, 2 \mathrm{H}), 1.66-1.54(\mathrm{~m}, 2 \mathrm{H}), 1.41-1.29(\mathrm{~m}, 2 \mathrm{H}), 1.27-1.19(\mathrm{~m}, 3 \mathrm{H}), 0.93-0.85(\mathrm{~m}$, 3H);
${ }^{13} \mathbf{C}$ NMR (101 MHz, $\mathbf{C D C l}_{3}$) $\delta 214.07,166.54,166.47,137.61,126.39,98.35,79.42,64.54,61.05$, 30.92, 30.59, 19.11, 14.15, 13.63;

HRMS (ESI): m/z calcd for $\mathrm{C}_{14} \mathrm{H}_{21} \mathrm{O}_{4}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 253.1434$; found: 253.1433 .

Allenoate 2f:

The general procedure outlined above was followed (using 23.8 mmol methyl 2(bromomethyl)acrylate and 1.0 eq methyl (triphenylphosphoranylidene)acetate). Allenoate $\mathbf{2 f}$ was formed as a colorless oil ($2.16 \mathrm{~g}, 23.8 \mathrm{mmol}, 37 \%$ yield);
${ }^{1} \mathbf{H}$ NMR (400 MHz, CDCl \mathbf{H}_{3}) $\delta 6.08(\mathrm{~s}, 1 \mathrm{H}), 5.48(\mathrm{~d}, \mathrm{~J}=1.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.07(\mathrm{t}, \mathrm{J}=2.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.69$ (s, 3H), $3.18(\mathrm{~s}, 2 \mathrm{H}), 1.42(\mathrm{~s}, 9 \mathrm{H})$;
${ }^{13} \mathbf{C}$ NMR (101 MHz, $\mathbf{C D C l}_{3}$) $\delta 214.08,166.96,165.58,138.84,125.58,98.32,80.52,79.54,52.17$, 30.99, 27.91;

HRMS (ESI): m / z calcd for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{4} \mathrm{Na}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$: 261.1097; found: 261.1094 .

Allenoate 2g:

The general procedure outlined above was followed (using 40 mmol methyl 2(bromomethyl)acrylate and 1.0 eq methyl (triphenylphosphoranylidene)acetate). Allenoate $\mathbf{2 g}$ was formed as a colorless oil ($4.14 \mathrm{~g}, 40 \mathrm{mmol}, 29 \%$ yield);
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 7.40(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 3 \mathrm{H}), 7.36(\mathrm{~d}, J=1.0 \mathrm{~Hz}$, $1 \mathrm{H}), 7.34(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.33(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{t}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.29(\mathrm{t}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H})$, $6.94(\mathrm{~s}, 1 \mathrm{H}), 6.25(\mathrm{~d}, J=0.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.62(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.24(\mathrm{t}, J=2.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.21(\mathrm{q}, J=7.1$ $\mathrm{Hz}, 2 \mathrm{H}), 3.34(\mathrm{~s}, 2 \mathrm{H}), 1.28(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$;
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 214.62,166.48,165.55,140.32,137.46,128.43,127.80,126.89,126.60$, $98.40,79.67,77.34,60.70,30.86,14.13$;

HRMS (ESI): m / z calcd for $\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{O}_{4} \mathrm{Na}\left([\mathrm{M}+\mathrm{Na}]^{+}\right): 385.1410$; found: 385.1413.

Allenoate 2h:

The general procedure outlined above was followed (using 40 mmol 3 -(bromomethyl)but-3-en-2one and 1.0 eq methyl (triphenylphosphoranylidene)acetate). Allenoate $\mathbf{2 h}$ was formed as a colorless oil ($0.7 \mathrm{~g}, 7.5 \mathrm{mmol}, 52 \%$ yield);
${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 6.08(\mathrm{~s}, 1 \mathrm{H}), 5.84(\mathrm{~s}, 1 \mathrm{H}), 5.10(\mathrm{t}, J=2.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 3.22(\mathrm{~s}$, 2H), 2.32 ($\mathrm{s}, 3 \mathrm{H}$);
${ }^{13} \mathbf{C} \mathbf{N M R}\left(101 \mathrm{MHz}, \mathbf{C D C l}_{3}\right) \delta 214.40,198.76,167.09,145.78,126.62,98.17,79.37,52.32,30.03$, 25.83;

HRMS (ESI): m / z calcd for $\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{O}_{3}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 181.0859$; found: 181.0870 .

Allenoate 2i:

The general procedure outlined above was followed (using 40 mmol 3 -(bromomethyl)but-3-en-2one and 1.0 eq ethyl (triphenylphosphoranylidene)acetate). Allenoate $\mathbf{2 i}$ was formed as a colorless oil ($0.75 \mathrm{~g}, 10 \mathrm{mmol}, 32 \%$ yield);
${ }^{1} \mathbf{H}$ NMR ($400 \mathbf{M H z}, \mathbf{C D C l}_{3}$) $\delta 6.18(\mathrm{~s}, 1 \mathrm{H}), 5.57(\mathrm{~s}, 1 \mathrm{H}), 5.52-5.41(\mathrm{~m}, 1 \mathrm{H}), 4.17(\mathrm{qd}, J=7.1,2.7 \mathrm{~Hz}$, 4H), 3.31 - 3.16 (m, 2H), 1.69 (d, $J=7.3 \mathrm{~Hz}, 3 \mathrm{H}$), 1.26 (dd, $J=15.7,7.2 \mathrm{~Hz}, 6 \mathrm{H}$);
${ }^{13} \mathbf{C}$ NMR (101 MHz, $\mathbf{C D C l}_{3}$) $\delta 210.89,166.98,166.64,138.17,126.10,98.17,90.52,60.92,60.65$, 31.47, 14.25, 14.21, 13.01;

HRMS (ESI): m/z calcd for $\mathrm{C}_{13} \mathrm{H}_{19} \mathrm{O}_{4}\left([\mathrm{M}+\mathrm{H}]^{+}\right): ~ 239.1278$; found: 239.1287 .

Allenoate 2j:

The general procedure outlined above was followed (using 40 mmol 3 -(bromomethyl)but-3-en-2one and 1.0 eq ethyl (triphenylphosphoranylidene)acetate). Allenoate $\mathbf{2} \mathbf{j}$ was formed as a colorless oil ($7 \mathrm{~g}, 40 \mathrm{mmol}, 58 \%$ yield);
${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 6.53(\mathrm{t}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.21(\mathrm{~s}, 1 \mathrm{H}), 5.66(\mathrm{~s}, 1 \mathrm{H}), 4.26-4.17(\mathrm{~m}, 2 \mathrm{H})$, $4.10-3.97(\mathrm{~m}, 2 \mathrm{H}), 3.42$ (ddd, $J=46.8,15.9,2.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.25(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.17(\mathrm{t}, J=7.1 \mathrm{~Hz}$, 3H);
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 212.52,166.42,166.08,137.63,131.96,128.68,127.80,127.36,126.67$, 102.54, 99.09, 61.25, 60.73, 31.69, 14.22, 14.02;

HRMS (ESI): m / z calcd for $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{O}_{4}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 301.1434$; found: 301.1432 .

3. Optimization of Reaction Conditions

Table S1. Optimization of reaction conditions. ${ }^{\text {a }}$

	CHO 2a	Cat., add solvent,		
entry	cat.	additive	solvent	yield (\%) ${ }^{\text {b }}$
1	PPh_{3}	-	toluene	32
2	$\left(4-\mathrm{MeOC}_{6} \mathrm{H}_{4}\right)_{3} \mathrm{P}$	-	toluene	51
3	$\left(4-\mathrm{FC}_{6} \mathrm{H}_{4}\right)_{3} \mathrm{P}$	-	toluene	trace
4	PCy_{3}	-	toluene	trace
5	$\left(4-\mathrm{MeOC}_{6} \mathrm{H}_{4}\right)_{3} \mathrm{P}$	-	ClPh	51
6	$\left(4-\mathrm{MeOC}_{6} \mathrm{H}_{4}\right)_{3} \mathrm{P}$	-	CHCl_{3}	59
7	$\left(4-\mathrm{MeOC}_{6} \mathrm{H}_{4}\right)_{3} \mathrm{P}$	-	THF	NR
8	$\left(4-\mathrm{MeOC}_{6} \mathrm{H}_{4}\right)_{3} \mathrm{P}$	$\mathrm{Cs}_{2} \mathrm{CO}_{3}$	CHCl_{3}	30
9	$\left(4-\mathrm{MeOC}_{6} \mathrm{H}_{4}\right)_{3} \mathrm{P}$	$\mathrm{PhCO}_{2} \mathrm{H}$	CHCl_{3}	86
10	$\left(4-\mathrm{MeOC}_{6} \mathrm{H}_{4}\right)_{3} \mathrm{P}$	$4 \AA \mathrm{MS}$	CHCl_{3}	50
$11^{\text {c }}$	$\left(4-\mathrm{MeOC}_{6} \mathrm{H}_{4}\right)_{3} \mathrm{P}$	$\mathrm{PhCO}_{2} \mathrm{H}$	CHCl_{3}	89
$12^{\mathrm{c}, \mathrm{d}}$	$\left(4-\mathrm{MeOC}_{6} \mathrm{H}_{4}\right)_{3} \mathrm{P}$	$\left(\mathrm{PhCO}_{2} \mathrm{H}\right.$	CHCl_{3}	92
$13^{\text {c,d,e }}$	$\left(4-\mathrm{MeOC}_{6} \mathrm{H}_{4}\right)_{3} \mathrm{P}$	(L)-N-Ts- Proline	CHCl_{3}	95
14	-	$\mathrm{PhCO}_{2} \mathrm{H}$	CHCl_{3}	20

${ }^{\text {a }}$ Reaction conditions, unless otherwise noted: $0.1 \mathrm{mmol} 1 \mathbf{1 0}, 0.2 \mathrm{mmol} \mathbf{2 a}, 30 \mathrm{~mol} \%$ Cat., 1.2 equiv. additive at $25{ }^{\circ} \mathrm{C}$ in solvent $(2 \mathrm{~mL})$ for 24 h . ${ }^{\mathrm{b}}$ Isoalted yield. ${ }^{\mathrm{c}} 0.18 \mathrm{mmol} 2 \mathrm{a} .{ }^{\mathrm{d}} 60{ }^{\circ} \mathrm{C} .{ }^{\mathrm{e}}(\mathrm{L})-\mathrm{N}$-TsProline was used instead of $\mathrm{PhCO}_{2} \mathrm{H}$.

4. General Procedure of New Products 3

Procedure A:

To an oven-dried 10 mL glass vial was added substituted 4-oxo-4H-chromene-3-carbaldehyde $\mathbf{1}$ (0.1 $\mathrm{mmol})$, allenoate $2(0.18 \mathrm{mmol}), \mathrm{PhCO}_{2} \mathrm{H}(0.12 \mathrm{mmol}),\left(p-\mathrm{MeOC}_{6} \mathrm{H}_{4}\right)_{3} \mathrm{P}(0.3 \mathrm{eq})$ and 2.0 mL of CHCl_{3}. The resulting mixture was stirred at $60^{\circ} \mathrm{C}$ for 24 hours until the complete consumption of the starting materials monitored by TLC. After removal of CHCl_{3}, the residue was diluted with ethyl acetate (2.0 mL) and washed with brine. The volatile was removed under reduced pressure and the residue was purified by preparative TLC (petroleum ether: ethyl acetate $=5: 1$) to afford 3 .

Procedure B:

To an oven-dried 10 mL glass vial was added substituted 4-oxo-4H-chromene-3-carbaldehyde 1 (0.1 mmol), allenoate $2(0.18 \mathrm{mmol}),(L)-\mathrm{N}$-Ts-Proline (0.12 mmol), $\left(p-\mathrm{MeOC}_{6} \mathrm{H}_{4}\right){ }_{3} \mathrm{P}(0.3 \mathrm{eq})$ and 2.0 mL of CHCl_{3}. The resulting mixture was stirred at $60{ }^{\circ} \mathrm{C}$ for 24 hours until the complete consumption of the starting materials monitored by TLC. After removal of CHCl_{3}, the residue was diluted with ethyl acetate $(2.0 \mathrm{~mL})$ and washed with brine. The volatile was removed under reduced pressure and the residue was purified by preparative TLC (petroleum ether: ethyl acetate $=5: 1$) to afford 3.

5. Primary Attempt on Asymmetric Edition in the Presence of Chiral Phosphine

Catalysts

5.1. Primary attempt on asymmetric edition

Table S2. Optimization of an asymmetric version of [6+1] annulation ${ }^{\text {a }}$

entry	Cat.	Solvent	Temp $\left({ }^{\circ} \mathrm{C}\right.$ $)$	Time	Yield(\%) ${ }^{\text {b }}$	ee(\%) $)^{\text {c }}$
1	$\mathbf{P 1 4 (0 . 3 ~ e q) ~}$	$\mathrm{CHCl}_{3}(2 \mathrm{~mL})$	60	48	34	65
2	$\mathbf{P 1 4}(0.4 \mathrm{eq})$	$\mathrm{CHCl}_{3}(2 \mathrm{~mL})$	60	48	49	65
3	$\mathbf{P 1 4}(0.4 \mathrm{eq})$	$\mathrm{CHCl}_{3}(0.5 \mathrm{~mL})$	60	48	57	66
4	$\mathbf{P 1 4}(0.4 \mathrm{eq})$	$\mathrm{CHCl}_{3}(1 \mathrm{~mL})$	60	48	45	66
5	$\mathbf{P 1 4}(0.4 \mathrm{eq})$	$\mathrm{CHCl}_{3}(3 \mathrm{~mL})$	60	48	38	66
6	$\mathbf{P 1 4}(0.4 \mathrm{eq})$	$\mathrm{CHCl}_{3}(0.5 \mathrm{~mL})$	0	48	-	-
7	$\mathbf{P 1 4}(0.4 \mathrm{eq})$	$\mathrm{CHCl}_{3}(0.5 \mathrm{~mL})$	50	48	48	42

8	$\mathbf{P 1 4}(0.4 \mathrm{eq})$	$\mathrm{CHCl}_{3}(0.5 \mathrm{~mL})$	70	12	12	46
9	$\mathbf{P 1 4}(0.4 \mathrm{eq})$	$\mathrm{CHCl}_{3}(0.5 \mathrm{~mL})$	80	12	48	66
10	$\mathbf{P 1 4}(0.4 \mathrm{eq})$	$\mathrm{CHCl}_{3}(0.5 \mathrm{~mL})$	90	12	39	66

${ }^{a}$ Reaction conditions: $\mathbf{1}(0.1 \mathrm{mmol}), \mathbf{2}(0.18 \mathrm{mmol}), \mathrm{PhCO}_{2} \mathrm{H}(120 \mathrm{~mol} \%)$ in $\mathrm{CHCl}_{3}(\mathrm{x} \mathrm{mL})$ at $\mathrm{T}^{\circ} \mathrm{C}$; ${ }^{b}$ Yields of isolated products; ${ }^{c}$ ee was determined by chiral HPLC.

5.2. General Procedure for Enantioselective version of New Products 4

To an oven-dried 10 mL glass vial was added substituted 4-oxo-4H-chromene-3-carbaldehyde $\mathbf{1}$ (0.1 $\mathrm{mmol})$, allenoate $2(0.18 \mathrm{mmol}), \mathrm{PhCO}_{2} \mathrm{H}(0.12 \mathrm{mmol}), \mathrm{P} 14(0.4 \mathrm{eq})$ and 0.5 mL of CHCl_{3}. The resulting mixture was stirred at $60^{\circ} \mathrm{C}$ for 48 hours until the complete consumption of the starting materials monitored by TLC. After removal of CHCl_{3}, the residue was diluted with ethyl acetate $(2.0 \mathrm{~mL})$ and washed with brine. The volatile was removed under reduced pressure and the residue was purified by preparative TLC (petroleum ether: ethyl acetate $=5: 1$) to afford 4 . The ee was determined chiral HPLC analysis of the isolated products.

Chiral product 4aa:

Purification by column chromatography on silica gel (petroleum ether: ethyl acetate $=5: 1$) afforded the compound 4 aa ($21.3 \mathrm{mg}, 55 \%$ yield) as a yellow oil. $[\alpha]{ }^{25_{\mathrm{D}}}=+13\left(\mathrm{c}=0.5, \mathrm{CHCl}_{3}\right)$. The ee value was $66 \%, \operatorname{tR}($ major $)=21.528 \mathrm{~min}, \operatorname{tR}($ minor $)=25.594 \mathrm{~min}($ Chiralcel AD-H, $\lambda=220 \mathrm{~nm}$, hexanes : $i \operatorname{PrOH}$ $=85: 10$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min})$.

<Chromatogram>

1 Det.A Ch1/254nm
PeakTable
Detector A Ch1 254 nm

Peak\#	Ret. Time	Area	Height	Area $\%$	Height $\%$
1	21.479	5974025	148879	51.728	57.158
2	25.757	5575005	111591	48.272	42.842
Total		11549030	260470	100.000	100.000

1 Det.A Ch1/254nm
PeakTable
Detector A Ch1 254 nm

Peak\#	Ret. Time	Area	Height	Area $\%$	Height $\%$
1	21.528	5022154	125820	83.124	85.884
2	25.594	1019613	20680	16.876	14.116
Total		6041768	146500	100.000	100.000

Chiral product 4da:

Purification by column chromatography on silica gel (petroleum ether: ethyl acetate $=5: 1$) afforded the compound $4 \mathrm{da}\left(23.2 \mathrm{mg}, 54 \%\right.$ yield) as a yellow oil. $[\alpha]^{25}=+0.6(\mathrm{c}=0.4, \mathrm{CHCl} 3)$. The ee value was $51 \%, \operatorname{tR}($ major $)=14.607 \mathrm{~min}, \operatorname{tR}($ minor $)=18.604 \mathrm{~min}($ Chiralcel AD-H, $\lambda=220 \mathrm{~nm}$, hexanes : $i \mathrm{PrOH}$ $=85: 15$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min})$.

E:IHPLCVIjxLLJX-AD-H-85-15ILJX-5-64-R.Icd

1 Det.A Ch1/254nm
Detector A Ch1 254nm

Peak\#	Ret. Time	Area	Height	Area $\%$	Height $\%$
1	14.893	9549744	359044	47.844	56.070
2	19.076	10410357	281302	52.156	43.930
Total		19960102	640346	100.000	100.000

E:IHPLCVIJxILJX-AD-H-85-15ILJX-2-199-2-A.Icd

1 Det.A Ch1/254nm
PeakTable
Detector A Ch1 254nm

Peak\#	Ret. Time	Area	Height	Area $\%$	Height $\%$
1	14.607	2342562	91186	74.987	83.399
2	18.604	781376	18151	25.013	16.601
Total		3123938	109337	100.000	100.000

Chiral product 4ha:

Purification by column chromatography on silica gel (petroleum ether: ethyl acetate $=5: 1$) afforded the compound 4 ha ($23 \mathrm{mg}, 68 \%$ yield) as a white solid. $[\alpha]{ }^{25_{\mathrm{D}}}=+4.3\left(\mathrm{c}=0.7, \mathrm{CHCl}_{3}\right)$. The ee value was $72.5 \%, \operatorname{tR}($ major $)=24.628 \mathrm{~min}, \operatorname{tr}($ minor $)=33.392 \mathrm{~min}($ Chiralcel AD-H, $\lambda=220 \mathrm{~nm}$, hexanes : $i \operatorname{PrOH}$ $=85: 15$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min})$.

E:IHPLCVIjxILJX-2-199-3-R.Icd
mV

1 Det.A Ch1/254nm
Detector A Ch1 254nm

Peak\#	Ret. Time	Area	Height	Area \%	Height \%
1	24.534	8078997	191312	49.632	58.975
2	33.121	8198640	133084	50.368	41.025
Total		16277637	324396	100.000	100.000

Chiral product 4ka:

Purification by column chromatography on silica gel (petroleum ether: ethyl acetate $=5: 1$) afforded the compound $\mathbf{4 k a}(28.2 \mathrm{mg}, 61 \%$ yield $)$ as a white solid. $[\alpha]^{2 s_{\mathrm{D}}}=+0.8\left(\mathrm{c}=1, \mathrm{CHCl}_{3}\right)$. The ee value was $71 \%, \operatorname{tr}($ major $)=27.957 \mathrm{~min}, \operatorname{tr}($ minor $)=33.298 \mathrm{~min}($ Chiralcel AD-H, $\lambda=220 \mathrm{~nm}$, hexanes $: i \operatorname{PrOH}$ $=85: 15$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min})$.

Chiral product 4oa:

Purification by column chromatography on silica gel (petroleum ether: ethyl acetate $=5: 1$) afforded the compound $40 a(27.4 \mathrm{mg}, 60 \%$ yield $)$ as a white solid. $[\alpha]^{25_{\mathrm{D}}}=+6.7\left(\mathrm{c}=0.9, \mathrm{CHCl}_{3}\right)$. The ee value was $67 \%, \operatorname{tR}($ major $)=20.773 \mathrm{~min}, \mathrm{tR}($ minor $)=23.775 \mathrm{~min}($ Chiralcel AD-H, $\lambda=220 \mathrm{~nm}$, hexanes : $i \operatorname{PrOH}=85: 15$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min})$.

E:IHPLCVIjxLLJX-AD-H-85-15ILJX-2-199-6-R.Icd

E:IHPLC\IjxILJX-AD-H-85-15ILJX-2-199-6-A.Icd

1 Det.A Ch1/254nm
PeakTable
Detector A Ch1 254 nm

Peak\#	Ret. Time	Area	Height	Area $\%$	Height $\%$
1	20.773	6176557	168831	83.496	85.504
2	23.775	1220905	28622	16.504	14.496
Total		7397462	197453	100.000	100.000

Chiral product 4pa:

Purification by column chromatography on silica gel (petroleum ether: ethyl acetate $=5: 1$) afforded the compound 4pa ($37 \mathrm{mg}, 69 \%$ yield) as a white solid. $[\alpha]^{25_{\mathrm{D}}}=+6.8\left(\mathrm{c}=1, \mathrm{CHCl}_{3}\right)$. The ee value was $53 \%, \operatorname{tr}($ major $)=22.431 \mathrm{~min}, \operatorname{tr}($ minor $)=25.847 \mathrm{~min}($ Chiralcel AD-H, $\lambda=220 \mathrm{~nm}$, hexanes $: i \operatorname{PrOH}$ $=85: 15$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min})$.

E:IHPLCVjxILJX-AD-H-85-15ILJX-2-199-7-R.Icd

PeakTable
Detector A Ch1 254 nm

Peak\#	Ret. Time	Area	Height	Area $\%$	Height $\%$
1	22.484	2115355	53260	50.319	54.075
2	25.839	2088548	45232	49.681	45.925
Total		4203903	98493	100.000	100.000

1 Det.A Ch1/254nm
Detector A Ch1 254nm

Peak\#	Ret. Time	Area					Height	Area $\%$	Height $\%$
1	22.431	3350918	83150	76.424	79.083				
2	25.847	1033747	21993	23.576	20.917				
Total		4384665	105143	100.000	100.000				

Chiral product 4ua:

Purification by column chromatography on silica gel (petroleum ether: ethyl acetate $=5: 1$) afforded the compound 4pa ($30 \mathrm{mg}, 72 \%$ yield) as a white solid. $[\alpha]{ }^{2 s_{\mathrm{D}}}=+4.5\left(\mathrm{c}=0.5, \mathrm{CHCl}_{3}\right)$. The ee value was $63.5 \%, \operatorname{tR}($ major $)=20.443 \mathrm{~min}, \operatorname{tR}($ minor $)=32.097 \mathrm{~min}($ Chiralcel AD-H, $\lambda=220 \mathrm{~nm}$, hexanes : $i \mathrm{PrOH}$ $=85: 15$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min})$.

1 Det.A Ch1/254nm
PeakTable
Detector A Ch1 254 nm

Peak\#	Ret. Time	Area	Height	Area $\%$	Height $\%$
1	20.510	5871664	152957	51.249	63.130
2	31.960	555388	89331	48.751	36.870
Total		11457052	242288	100.000	100.000

1 Det.A Ch1/254nm
Detector A Ch1 254nm

Peak\#	Ret. Time	Area	Height	Area $\%$	Height $\%$
1	20.443	2996794	81169	81.756	88.726
2	32.097	668720	10313	18.244	11.27
Total		3665514	91482	100.000	100.000

Chiral product 4ja:

Purification by column chromatography on silica gel (petroleum ether: ethyl acetate $=5: 1$) afforded
the compound $\mathbf{4 j a}(25.3 \mathrm{mg}, 57 \%$ yield $)$ as a white solid. $[\alpha]^{25_{\mathrm{D}}}=+15\left(\mathrm{c}=0.5, \mathrm{CHCl}_{3}\right)$. The ee value was $66 \%, \operatorname{tR}($ major $)=28.286 \mathrm{~min}, \operatorname{tR}($ minor $)=32.998 \mathrm{~min}($ Chiralcel AD-H, $\lambda=220 \mathrm{~nm}$, hexanes $: i \mathrm{PrOH}$ $=85: 15$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min})$.

E:IHPLCUjxlljx-8-47-r-ADH-85-15.Icd

1 Det.A Ch1/254nm
Detector A Ch1 254nm

PeakTable					
Peak\#	Ret. Time	Area	Height	Area $\%$	Height $\%$
1	37.326	10690611	180685	49.738	54.664
2	44.709	10803129	149853	50.262	45.336
Total		21493740	330538	100.000	100.000

E:IHPLCIIjxIJx-2-166-A-ADH-85-15.Icd

1 Det.A Ch1/254nm
PeakTable

Detector A Chl 254nm					
Peak\#	Ret. Time	Area	Height	Area \%	Height \%
1	37.066	32114531	541250	83.183	85.606
2	44.233	6492403	91005	16.817	14.394
Total		38606935	632255	100.000	100.000

Chiral product 4jd:

Purification by column chromatography on silica gel (petroleum ether: ethyl acetate $=5: 1$) afforded the compound $\mathbf{4 j d}\left(30 \mathrm{mg}, 56 \%\right.$ yield) as a white $\operatorname{solid}\left(\mathrm{m} . \mathrm{p} .160-162^{\circ} \mathrm{C}\right) .[\alpha]^{25}{ }_{\mathrm{D}}=+6(\mathrm{c}=0.5, \mathrm{CHCl} 3)$. The ee value was 69.3%, $\operatorname{tR}($ major $)=37.958 \mathrm{~min}, \mathrm{tr}($ minor $)=47.234 \mathrm{~min}($ Chiralcel AD-H, $\lambda=220$ nm , hexanes : $i \mathrm{PrOH}=85: 15$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min})$.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 8.36(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.27(\mathrm{~s}, 1 \mathrm{H}), 7.84$ (s, 1H), 7.77 (dd, $J=8.9,2.4$ $\mathrm{Hz}, 1 \mathrm{H}), 7.40(\mathrm{ddd}, J=16.3,12.5,4.9 \mathrm{~Hz}, 6 \mathrm{H}), 6.92(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.54(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.41$ $-5.36(\mathrm{~m}, 1 \mathrm{H}), 5.31(\mathrm{dd}, J=24.9,12.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.25(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.77(\mathrm{t}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.30$ (t, $J=7.1 \mathrm{~Hz}, 3 \mathrm{H}$).
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1 ~ M H z}, \mathbf{C D C l}_{3}$) $\delta 175.68,166.48,165.68,155.09,153.35,136.93,135.82,134.35,132.99$, $130.13,128.64,128.62,128.50,128.35,128.29,126.13,125.35,122.95,120.15,118.85,118.07,67.07$, 61.38, 36.75, 14.28.

HRMS (ESI): m / z calcd for $\mathrm{C}_{27} \mathrm{H}_{22} \mathrm{BrO}_{6}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 521.0594 ; found: 521.0592

1 Det.A Ch1/254nm
PeakTable

PeakTable						
Detector A Ch1 254nm						
Peak\# Ret. Time Area Height Area $\%$ Height $\%$ 1 41.479 5966084 77056 50.837 57.086 2 51.121 5769676 57927 49.163 42.914 Total 11735759 134983 100.000 100.000						

6. Scale-up Experiment of the New Product 3

To an oven-dried 100 mL glass vial was added compound $\mathbf{1 j}$ (2 mmol), allenoate $\mathbf{2 a}$ (3.6 mmol), (L)-N-Ts-Proline (2.4 mmol), ($\left.p-\mathrm{MeOC}_{6} \mathrm{H}_{4}\right)_{3} \mathrm{P}(0.3 \mathrm{eq})$ and 40 mL of CHCl_{3}. The resulting mixture was stirred at $60^{\circ} \mathrm{C}$ for 24 hours until the complete consumption of the starting materials monitored by TLC. After removal of CHCl_{3}, the residue was subjected to a flash column chromatography (petroleum ether: ethyl acetate $=5: 1$) to provide $\mathbf{3 j a}$ as a white solid ($853 \mathrm{mg}, 2 \mathrm{mmol}, 96 \%$ yield)

7. Control and Deuterium-labeling Experiments

7.1. Control experiment

a) Cyclization of the allenoate under phosphine.

To an oven-dried 10 mL glass vial was added allenoate $\mathbf{2 a}(0.18 \mathrm{mmol}), \mathrm{PhCO}_{2} \mathrm{H}(0.12 \mathrm{mmol}),(p-$ $\left.\mathrm{MeOC}_{6} \mathrm{H}_{4}\right)_{3} \mathrm{P}(0.3 \mathrm{eq})$ and 2 mL of CHCl_{3}. The resulting mixture was stirred at $60{ }^{\circ} \mathrm{C}$ for 24 hours until the complete consumption of the starting materials monitored by TLC. The volatile was removed under reduced pressure and the residue was purified by preparative TLC (petroleum ether: ethyl acetate $=5: 1$) to afford 4 A as colorless oil $(28.6 \mathrm{mg}, 76 \%$ yield $)$.
${ }^{1} \mathrm{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 7.42(\mathrm{~s}, 1 \mathrm{H}), 7.23-7.17(\mathrm{~m}, 1 \mathrm{H}), 4.23(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H})$, $2.45(\mathrm{~s}, 4 \mathrm{H}), 1.30(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, $\mathbf{C D C l}_{3}$) $\delta 167.40,164.80,142.70,130.52,128.85,128.16,60.84,51.78,23.65$, 20.06, 14.24.

HRMS (ESI): m / z calcd for $\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{O}_{4}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 211.0965$; found: 211.0963 .

Under standard condition, cyclization product of allenoate 2a confirmed our hypothesis that the newly-designed allenoate can work as C_{6} synthon under proper conditions.

Under the standard conditions, product 4C was obtained as colorless oil ($30.8 \mathrm{mg}, 84 \%$ yield) with exchange value of deuterium labeling, suggesting that the reaction may undergo a ring opening and ring closing process. Therefore, the electronic property of substituted 3-formylchromones affected the reaction greatly.
${ }^{1} \mathbf{H}$ NMR (400 MHz, $\mathbf{C D C l}_{3}$) $\delta 8.26(\mathrm{dd}, J=8.0,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.22(\mathrm{~s}, 1 \mathrm{H}), 7.86(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.74$ $-7.68(\mathrm{~m}, 1 \mathrm{H}), 7.48(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.89(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.63(\mathrm{~d}, J=$ $6.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.44(\mathrm{dd}, J=9.2,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.38-4.29(\mathrm{~m}, 2 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 2.78(\mathrm{t}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H})$, $1.38(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$.

c) Substrates control experiments

Under the standard conditions, no corresponding product was obtained when allenoate 2a reacted with $\mathbf{1 a}-\mathbf{P h}$, suggesting that the steric phenyl could stop the Michael addition of zwitterion \mathbf{A} to C 2 of $\mathbf{1 - a}-\mathbf{P h}$,
which thus inhibited the reaction. This experiment also confirmed the existence of ring opening and ring closing process. Alkenyl-carbaldehyde substrates $\mathbf{5 a - 5 b}$ could not undergo the process of ring opening and ring closing, which plays important role in the reaction, failed to give the desired products.

7.2. Deuterium-labeling reaction(d)

To an oven-dried 10 mL glass vial was added compound $\mathbf{1 a}(0.1 \mathrm{mmol})$, allenoate $\mathbf{2}(0.18 \mathrm{mmol})$, $\mathrm{PhCO}_{2} \mathrm{H}(0.12 \mathrm{mmol}),\left(p-\mathrm{MeOC}_{6} \mathrm{H}_{4}\right)_{3} \mathrm{P}\left(0.3\right.$ equiv) and 2.0 mL of CHCl_{3}. Then $\mathrm{D}_{2} \mathrm{O}(2.0 \mathrm{mmol}, 20.0$ equiv) was added to the system. The resulting mixture was stirred at $60^{\circ} \mathrm{C}$ for 24 hours until the complete consumption of the starting materials monitored by TLC. After removal of CHCl_{3}, the residue was diluted with ethyl acetate $(2.0 \mathrm{~mL})$ and washed with brine. The volatile was removed under reduced pressure and the residue was purified by preparative TLC (petroleum ether: ethyl acetate $=5: 1$) to afford colorless oil \boldsymbol{d}-3aa ($30 \mathrm{mg}, 82 \%$).
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 8.24(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.20(\mathrm{~s}, 1 \mathrm{H}), 7.85(\mathrm{~s}, 1 \mathrm{H}), 7.69(\mathrm{t}, J=7.7 \mathrm{~Hz}$, $1 \mathrm{H}), 7.50-7.39(\mathrm{~m}, 2 \mathrm{H}), 6.89(\mathrm{~s}, 1 \mathrm{H}), 6.59(\mathrm{dd}, J=11.3,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.40(\mathrm{dd}, J=9.7,4.9 \mathrm{~Hz}, 1 \mathrm{H})$, $4.37-4.27(\mathrm{~m}, 2 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 2.75(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.36(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$.

During annulation reaction catalyzed by nucleophilic phosphine, there may be four position of the allenoate involving nucleophilic site or carbanion (intermediate $\mathbf{A}, \mathbf{E}, \mathbf{G}, \mathbf{H}, \mathbf{I}, \mathbf{J}$,), which would be deuterated in the present of $\mathrm{D}_{2} \mathrm{O}$ (Figure S1). The nucleophilic addition of phosphine to allenoate formed zwitterion \mathbf{A}, with its γ position 75% deuterated.

Figure S1. The exchange process of hydrogen and deuterium

8. Characterization Data of New Products 3

1-ethyl 3-methyl 5-(4-oxo-4H-chromen-3-yl)cyclohepta-1,3,6-triene-1,3-dicarboxylate (3aa).

Yellow oil ($34.9 \mathrm{mg}, 95 \%$ yield) according to procedure B.
${ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathbf{C D C l}_{3}\right) \delta 8.18-8.21(\mathrm{~m}, J=10.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.85(\mathrm{~s}, 1 \mathrm{H}), 7.69-7.63(\mathrm{~m}, 1 \mathrm{H}), 7.46$ $-7.37(\mathrm{~m}, 2 \mathrm{H}), 6.85(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.59(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.41(\mathrm{dd}, J=9.1,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.29$ (m, $J=7.7,3.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 2.73(\mathrm{t}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.33(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 176.75,166.46,166.04,156.12,153.06,133.74,133.67,133.20,131.46$, $127.78,125.71,125.61,125.19,123.86,122.48,119.02,117.99,61.17,52.07,36.92,14.13$.
HRMS (ESI): m / z calcd for $\mathrm{C}_{21} \mathrm{H}_{19} \mathrm{NO}_{6}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 367.1176$; found: 367.1174

1-ethyl 3-methyl 5-(6-methyl-4-oxo-4H-chromen-3-yl)cyclohepta-1,3,6-triene-1,3-dicarboxylate

(3ba).

Yellow oil ($28.1 \mathrm{mg}, 74 \%$ yield) according to procedure A.
${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 8.20(\mathrm{~s}, 1 \mathrm{H}), 8.00(\mathrm{~s}, 1 \mathrm{H}), 7.82(\mathrm{~s}, 1 \mathrm{H}), 7.49(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.35$ (d, $J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.86(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.60(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.42(\mathrm{dd}, J=8.7,5.8 \mathrm{~Hz}, 1 \mathrm{H})$, $4.31(\mathrm{dd}, J=6.9,4.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 2.74(\mathrm{t}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.45(\mathrm{~s}, 3 \mathrm{H}), 1.35(\mathrm{t}, J=7.1 \mathrm{~Hz}$, $3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 176.98,166.68,166.26,154.60,153.08,135.36,135.16,133.84$, 133.37, 131.92, 127.91, 125.73, 125.14, 123.71, 122.43, 119.42, 117.89, 61.34, 52.22, 37.13, 20.97, 14.28.

HRMS (ESI): m / z calcd for $\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{O}_{6}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 381.1333$; found: 381.1328

1-ethyl 3-methyl 5-(6-ethyl-4-oxo-4H-chromen-3-yl)cyclohepta-1,3,6-triene-1,3-dicarboxylate (3ca).

Yellow oil ($29.2 \mathrm{mg}, 74 \%$ yield) according to procedure A.
${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}$) $\delta 8.22(\mathrm{~s}, 1 \mathrm{H}), 8.05(\mathrm{~s}, 1 \mathrm{H}), 7.83(\mathrm{~s}, 1 \mathrm{H}), 7.53(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.39$ (d, $J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.87(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.63(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.44(\mathrm{dd}, J=8.8,5.7 \mathrm{~Hz}, 1 \mathrm{H})$, $4.32(\mathrm{dd}, J=6.9,4.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 2.74-2.79(\mathrm{~m}, J=14.8,7.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.37(\mathrm{~m}, J=7.1 \mathrm{~Hz}$, $3 \mathrm{H}), 1.28(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 177.11,166.71,166.29,154.77,153.09,141.72,134.19,133.89$,
$133.41,132.06,127.94,125.73,123.97,123.85,122.43,119.54,118.02,61.36,52.25,37.23,28.40$, 15.53, 14.31.

HRMS (ESI): m/z calcd for $\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{O}_{6}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 395.1489; found: 395.1486

1-ethyl 3-methyl 5-(6-isopropyl-4-oxo-4H-chromen-3-yl)cyclohepta-1,3,6-triene-1,3-dicarboxylate (3da).

Yellow oil ($25.7 \mathrm{mg}, 63 \%$ yield) according to procedure A.
${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 8.22(\mathrm{~s}, 1 \mathrm{H}), 8.16(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.82(\mathrm{~s}, 1 \mathrm{H}), 7.34-7.29(\mathrm{~m}, 2 \mathrm{H})$, $6.88(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.63(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.44(\mathrm{dd}, J=9.3,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.39-4.28(\mathrm{~m}, 2 \mathrm{H})$, $3.79(\mathrm{~s}, 3 \mathrm{H}), 3.05(\mathrm{~m}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.76(\mathrm{t}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.38(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.32(\mathrm{~d}, J=6.9$ $\mathrm{Hz}, 6 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 176.83,166.69,166.28,156.66,156.13,152.95,133.85,133.38$, $131.82,127.95,125.81,125.76,124.52,122.52,122.15,119.37,115.19,61.34,52.22,50.00,37.11$, 34.38, 23.57, 14.30.

HRMS (ESI): m / z calcd for $\mathrm{C}_{24} \mathrm{H}_{25} \mathrm{O}_{6}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 409.1646; found: 409.1643

1-ethyl 3-methyl 5-(6-(tert-butyl)-4-oxo-4H-chromen-3-yl)cyclohepta-1,3,6-triene-1,3dicarboxylate (3ea).

Yellow oil ($27.5 \mathrm{mg}, 65 \%$ yield) according to procedure A.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 8.22(\mathrm{~s}, 2 \mathrm{H}), 7.82(\mathrm{~s}, 1 \mathrm{H}), 7.75(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.41(\mathrm{~d}, J=8.8 \mathrm{~Hz}$, $1 \mathrm{H}), 6.87(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.65(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.46(\mathrm{dd}, J=8.9,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.32(\mathrm{dd}, J=6.9$, $4.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 2.75(\mathrm{t}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.38(\mathrm{~s}, 12 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, $\mathbf{C D C l}_{3}$) $\delta 177.46,166.86,166.44,154.66,153.22,148.86,134.00,133.81$, $133.49,132.12,132.04,130.29,128.58,128.02,125.83,123.51,122.48,121.65,119.57,117.89,61.49$, 52.37, 37.41, 35.01, 31.40, 14.40.

HRMS (ESI): m / z calcd for $\mathrm{C}_{25} \mathrm{H}_{27} \mathrm{O}_{6}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 423.1802; found: 423.1801

1-ethyl 3-methyl 5-(6-acetoxy-4-oxo-4H-chromen-3-yl)cyclohepta-1,3,6-triene-1,3-dicarboxylate

 (3fa).

Yellow oil ($27.4 \mathrm{mg}, 65 \%$ yield) according to procedure A.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 8.21(\mathrm{~s}, 1 \mathrm{H}), 7.92(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.85(\mathrm{~s}, 1 \mathrm{H}), 7.50(\mathrm{~d}, J=9.0 \mathrm{~Hz}$, $1 \mathrm{H}), 7.43(\mathrm{dd}, J=9.0,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.88(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.59(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.40(\mathrm{dd}, J=9.3$, $5.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.41-4.24(\mathrm{~m}, 2 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 2.77(\mathrm{t}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}), 1.37(\mathrm{t}, J=7.1 \mathrm{~Hz}$, 3H).
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 176.30,169.29,166.65,166.23,153.84,153.29,147.70,133.84$, $133.42,130.88,128.21,128.10,126.02,124.77,122.38,119.56,118.59,117.93,61.40,52.28,36.87$, 21.02, 14.30 .

HRMS (ESI): m / z calcd for $\mathrm{C}_{23} \mathrm{H}_{21} \mathrm{O}_{8}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 425.1231; found: 425.1233

1-ethyl 3-methyl 5-(6-nitro-4-oxo-4H-chromen-3-yl)cyclohepta-1,3,6-triene-1,3-dicarboxylate

 (3ga).

White solid ($30.3 \mathrm{mg}, 74 \%$ yield, m.p. $178-181^{\circ} \mathrm{C}$) according to procedure B .
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 9.10(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.52(\mathrm{dd}, J=9.2,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.19(\mathrm{~s}, 1 \mathrm{H})$, $7.90(\mathrm{~d}, J=0.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.64(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.92(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.51(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H})$, $5.35(\mathrm{dd}, J=9.3,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.40-4.22(\mathrm{~m}, 2 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 2.84(\mathrm{t}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.36(\mathrm{t}, J=$ 7.1 Hz, 3H).
${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 175.58,166.46,166.09,159.05,153.48,144.88,133.73,133.35$, $128.36,128.22,126.66,124.01,123.60,122.80,120.04,116.42,116.33,61.47,52.37,36.17,14.29$. HRMS (ESI): m / z calcd for $\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{NO}_{8}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 412.1027; found: 412.1022.

1-ethyl 3-methyl 5-(6-fluoro-4-oxo-4H-chromen-3-yl)cyclohepta-1,3,6-triene-1,3-dicarboxylate (3ha).

White solid ($37.5 \mathrm{mg}, 98 \%$ yield, m.p. $138-140{ }^{\circ} \mathrm{C}$) according to procedure B .
${ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 8.18(\mathrm{~s}, 1 \mathrm{H}), 7.86(\mathrm{~s}, 1 \mathrm{H}), 7.83(\mathrm{~m}, J=8.2,2.6,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.47(\mathrm{dd}, J$ $=9.2,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.44-7.36(\mathrm{~m}, 1 \mathrm{H}), 6.86(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.55(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.38(\mathrm{dd}, J=$ $9.3,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.36-4.24(\mathrm{~m}, 2 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 2.74(\mathrm{t}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.34(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, $\mathbf{C D C l}_{3}$) $\delta 176.19,166.57,166.16,159.57(\mathrm{~d}, J=247.2 \mathrm{~Hz}), 153.42,152.54$, $133.79,133.36,130.75,128.05,125.99,125.14(\mathrm{~d}, J=7.5 \mathrm{~Hz}), 122.24(\mathrm{~d}, J=25.6 \mathrm{~Hz}), 122.08,120.36$ (d, $J=8.1 \mathrm{~Hz}$), 118.44, $110.65(\mathrm{~d}, J=23.7 \mathrm{~Hz}), 61.37,52.26,36.80,14.28$.
${ }^{19}$ F NMR ($\mathbf{3 7 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta-114.60$.
HRMS (ESI): m / z calcd for $\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{FO}_{6}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 385.1082; found: 385.1079

1-ethyl 3-methyl 5-(6-chloro-4-oxo-4H-chromen-3-yl)cyclohepta-1,3,6-triene-1,3-dicarboxylate (3ia).

White solid ($39 \mathrm{mg}, 98 \%$ yield, m.p. $160-163{ }^{\circ} \mathrm{C}$) according to procedure B.
${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz, $\left.\mathbf{C D C l}_{3}\right) \delta 8.19(\mathrm{~s}, 1 \mathrm{H}), 8.17(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.84(\mathrm{~s}, 1 \mathrm{H}), 7.62(\mathrm{dd}, J=8.9$, $2.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.88(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.54(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.37(\mathrm{dd}, J=$ $9.2,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.39-4.23(\mathrm{~m}, 2 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 2.77(\mathrm{t}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.36(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 175.78,166.56,166.16,154.63,153.32,134.15,133.78,133.37$, $131.35,130.28,128.12,126.14,125.32,124.94,122.82,119.92,118.03,61.38,52.27,36.70,14.28$. HRMS (ESI): m / z calcd for $\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{ClO}_{6}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 401.0786 ; found: 401.0784

1-ethyl 3-methyl 5-(6-bromo-4-oxo-4H-chromen-3-yl)cyclohepta-1,3,6-triene-1,3-dicarboxylate

 (3ja).

White solid ($42.5 \mathrm{mg}, 96 \%$ yield, m.p. $150-152^{\circ} \mathrm{C}$) according to procedure B .
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 8.31(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.18(\mathrm{~s}, 1 \mathrm{H}), 7.84(\mathrm{~s}, 1 \mathrm{H}), 7.74(\mathrm{dd}, J=8.9$, $2.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.87(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.54(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.36(\mathrm{dd}, J=$ $9.3,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.38-4.25(\mathrm{~m}, 2 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 2.75(\mathrm{t}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.35(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$. ${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 175.59,166.51,166.11,155.00,153.31,136.85,133.75,133.32$, $130.43,128.47,128.04,126.06,125.24,122.86,120.12,118.76,118.13,61.35,52.25,36.71,14.26$. HRMS (ESI): m / z calcd for $\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{BrO}_{6}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 445.0281 ; found: 445.0279

1-ethyl 3-methyl 5-(7-bromo-4-oxo-4H-chromen-3-yl)cyclohepta-1,3,6-triene-1,3-dicarboxylate (3ka).

White solid ($44.1 \mathrm{mg}, 99 \%$ yield, m.p. $128-130^{\circ} \mathrm{C}$) according to procedure B .
${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 8.19(\mathrm{~s}, 1 \mathrm{H}), 8.08(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.81(\mathrm{~s}, 1 \mathrm{H}), 7.65(\mathrm{~s}, 1 \mathrm{H}), 7.53$ $(\mathrm{d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.88(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.55(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.37(\mathrm{dd}, J=9.0,5.6 \mathrm{~Hz}, 1 \mathrm{H})$, $4.36-4.25(\mathrm{~m}, 2 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 2.76(\mathrm{t}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.35(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, $\mathbf{C D C l}_{3}$) $\delta 176.47,166.80,166.40,156.55,153.34,134.02,133.60,130.57$, $129.28,128.47,128.34,127.61,126.35,123.35,123.15,121.48,118.32,61.62,52.51,36.97,14.53$. HRMS (ESI): m / z calcd for $\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{BrO}_{6}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 445.0281 ; found: 445.0277

1-ethyl 3-methyl 5-(7-methoxy-4-oxo-4H-chromen-3-yl)cyclohepta-1,3,6-triene-1,3-dicarboxylate (31a).

Yellow oil ($29.8 \mathrm{mg}, 75 \%$ yield) according to procedure A.
${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 8.21(\mathrm{~s}, 1 \mathrm{H}), 8.14(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.77(\mathrm{~s}, 1 \mathrm{H}), 6.99(\mathrm{dd}, J=8.9$, $2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.87(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.84(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.62(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.43(\mathrm{dd}, J=$
$9.3,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.40-4.23(\mathrm{~m}, 2 \mathrm{H}), 3.91(\mathrm{~s}, 3 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 2.74(\mathrm{t}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.37(\mathrm{t}, J=$ $7.1 \mathrm{~Hz}, 3 \mathrm{H}$).
${ }^{13} \mathbf{C}$ NMR (101 MHz, $\mathbf{C D C l}_{3}$) $\delta 176.53,166.99,166.58,164.52,158.41,152.93,134.14,133.67$, $132.21,128.20,127.61,126.00,122.80,119.75,118.30,115.12,100.43,61.63,56.15,52.51,37.37$, 14.58.

HRMS (ESI): m / z calcd for $\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{O}_{7}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 397.1282$; found: 397.1277

1-ethyl 3-methyl 5-(6,7-dimethyl-4-oxo-4H-chromen-3-yl)cyclohepta-1,3,6-triene-1,3-

 dicarboxylate (3ma).

Yellow oil ($25 \mathrm{mg}, 63 \%$ yield) according to procedure A.
${ }^{\mathbf{1}} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 8.21(\mathrm{~s}, 1 \mathrm{H}), 7.96(\mathrm{~s}, 1 \mathrm{H}), 7.79(\mathrm{~s}, 1 \mathrm{H}), 7.23(\mathrm{~s}, 1 \mathrm{H}), 6.87(\mathrm{~d}, J=9.3 \mathrm{~Hz}$, $1 \mathrm{H}), 6.62(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.43(\mathrm{dd}, J=9.3,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.38-4.26(\mathrm{~m}, 2 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 2.73(\mathrm{t}$, $J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.39(\mathrm{~s}, 3 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H}), 1.37(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 176.91,166.76,166.34,154.94,152.85,144.48,134.76,133.88$, $133.39,132.24,127.89,125.69,125.44,122.36,121.96,119.69,118.20,61.37,52.25,37.22,20.50$, 19.39, 14.31 .

HRMS (ESI): m/z calcd for $\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{O}_{6}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 395.1489$; found: 395.1488

1-ethyl 3-methyl 5-(6,8-dimethyl-4-oxo-4H-chromen-3-yl)cyclohepta-1,3,6-triene-1,3dicarboxylate (3na).

Yellow oil ($33.6 \mathrm{mg}, 85 \%$ yield) according to procedure A.
${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 8.21(\mathrm{~s}, 1 \mathrm{H}), 7.87(\mathrm{~s}, 1 \mathrm{H}), 7.85(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{~s}, 1 \mathrm{H}), 6.87$ (d, $J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.62(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.43(\mathrm{dd}, J=9.3,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.38-4.24(\mathrm{~m}, 2 \mathrm{H}), 3.78$ ($\mathrm{s}, 3 \mathrm{H}$), $2.76(\mathrm{t}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}), 1.37(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$. ${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1 ~ M H z , ~} \mathbf{C D C l}_{3}$) $\delta 177.34,166.74,166.30,153.21,152.87,136.16,134.81,133.89$, $133.39,132.23,127.93,127.28,125.70,123.69,122.74,122.20,119.70,61.36,52.24,37.17,20.95$, 15.45, 14.31 .

HRMS (ESI): m/z calcd for $\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{O}_{6}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 395.1489; found: 395.1486

1-ethyl 3-methyl 5-(6,8-dichloro-4-oxo-4H-chromen-3-yl)cyclohepta-1,3,6-triene-1,3-
dicarboxylate (30a).

White solid ($41.4 \mathrm{mg}, 95 \%$ yield, m.p. $131-133{ }^{\circ} \mathrm{C}$) according to procedure B .
${ }^{1}{ }^{\mathbf{H}}$ NMR (400 MHz, CDCl ${ }_{3}$) $\delta 8.20(\mathrm{~s}, 1 \mathrm{H}), 8.10(\mathrm{~s}, 1 \mathrm{H}), 7.92(\mathrm{~s}, 1 \mathrm{H}), 7.74(\mathrm{~s}, 1 \mathrm{H}), 6.91(\mathrm{~d}, J=9.2 \mathrm{~Hz}$, $1 \mathrm{H}), 6.53(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.43-5.28(\mathrm{~m}, 1 \mathrm{H}), 4.33(\mathrm{dd}, J=6.3,4.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 2.82(\mathrm{t}$, $J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.37(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 175.18,166.48,166.08,153.21,150.67,134.04,133.76,133.35$, $131.08,129.21,128.28,126.45,125.70,124.42,124.07$, 123.17, 117.07, 61.44, 52.33, 36.35, 14.28. HRMS (ESI): m / z calcd for $\mathrm{C}_{21} \mathrm{H}_{17} \mathrm{Cl}_{2} \mathrm{O}_{6}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 435.0397$; found: 435.0393

1-ethyl 3-methyl 5-(6,8-dibromo-4-oxo-4H-chromen-3-yl)cyclohepta-1,3,6-triene-1,3dicarboxylate (3pa).

White solid ($40 \mathrm{mg}, 77 \%$ yield, m.p. $128-131^{\circ} \mathrm{C}$) according to procedure A .
${ }^{1} \mathbf{H}$ NMR ($400 \mathbf{M H z}, \mathbf{C D C l}_{3}$) $\delta 8.25(\mathrm{t}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.16(\mathrm{~s}, 1 \mathrm{H}), 7.99(\mathrm{t}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.92(\mathrm{~s}$, $1 \mathrm{H}), 6.89(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.48(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.32(\mathrm{dd}, J=9.2,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.36-4.24(\mathrm{~m}$, $2 \mathrm{H}), 3.77(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 3 \mathrm{H}), 2.80(\mathrm{t}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.35(\mathrm{td}, J=7.1,1.1 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 175.01,166.40,166.00,153.30,151.91,139.52,133.68,133.26$, $128.89,128.22,127.92,126.43,125.90,123.13,118.62,116.80,112.88,76.74,61.37,52.27,36.23$, 14.25.

HRMS (ESI): m / z calcd for $\mathrm{C}_{21} \mathrm{H}_{17} \mathrm{Br}_{2} \mathrm{O}_{6}\left([\mathrm{M}+\mathrm{H}]^{+}\right): ~ 522.9386$; found: 522.9382

1-ethyl 3-methyl 5-(4-oxo-6-phenyl-4H-chromen-3-yl)cyclohepta-1,3,6-triene-1,3-dicarboxylate

 (3qa).

Yellow oil ($41.2 \mathrm{mg}, 93 \%$ yield) according to procedure B .
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 8.44(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.23(\mathrm{~s}, 1 \mathrm{H}), 7.93(\mathrm{dd}, J=8.7,2.3 \mathrm{~Hz}, 1 \mathrm{H})$, $7.86(\mathrm{~s}, 1 \mathrm{H}), 7.65(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.54(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.47(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.39(\mathrm{t}, J=7.3$ $\mathrm{Hz}, 1 \mathrm{H}), 6.90(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.63(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.44(\mathrm{dd}, J=9.3,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.38-4.28$ (m, 2H), $3.79(\mathrm{~s}, 3 \mathrm{H}), 2.79(\mathrm{t}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.37(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, $\mathbf{C D C l}_{3}$) $\delta 176.89,166.60,166.19,155.64,153.13,139.14,138.47,133.80$, $133.33,132.74,131.32,128.98,127.95,127.89,127.11,125.85,124.11,123.61,122.64,118.89$, 118.62, 61.32, 52.21, 36.97, 14.26.

HRMS (ESI): m/z calcd for $\mathrm{C}_{27} \mathrm{H}_{23} \mathrm{O}_{6}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 443.1489; found: 443.1484

1-ethyl 3-methyl 5-(6-(4-methoxyphenyl)-4-oxo-4H-chromen-3-yl)cyclohepta-1,3,6-triene-1,3dicarboxylate (3ra).

White solid ($40.7 \mathrm{mg}, 86 \%$ yield, m.p. $78-81^{\circ} \mathrm{C}$) according to procedure A.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 8.38(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.22(\mathrm{~s}, 1 \mathrm{H}), 7.85(\mathrm{~s}, 1 \mathrm{H}), 7.57(\mathrm{~d}, J=8.6 \mathrm{~Hz}$, $2 \mathrm{H}), 7.50(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.99(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.89(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H})$, $6.62(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.43(\mathrm{dd}, J=9.2,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.32(\mathrm{dtt}, J=10.8,7.4,3.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H})$, $3.79(\mathrm{~s}, 3 \mathrm{H}), 2.78(\mathrm{t}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.37(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 177.01,166.65,166.25,159.62,155.32,153.13,138.18,133.82,133.35$, $132.41,131.64,130.12,128.42,128.22,127.98,125.90,124.13,122.88,122.58,118.55,114.45,61.34$, 55.35, 52.23, 36.97, 14.28.

HRMS (ESI): m / z calcd for $\mathrm{C}_{28} \mathrm{H}_{25} \mathrm{O}_{7}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 473.1595; found: 473.1593

1-ethyl 3-methyl 5-(4-oxo-6-(4-(trifluoromethyl)phenyl)-4H-chromen-3-yl)cyclohepta-1,3,6-triene-1,3-dicarboxylate (3sa).

White solid ($31 \mathrm{mg}, 61 \%$ yield, m.p. $160-163{ }^{\circ} \mathrm{C}$) according to procedure A
${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}\right) \delta 8.47(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.22(\mathrm{~s}, 1 \mathrm{H}), 7.93(\mathrm{dd}, J=8.7,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.89$ (d, $J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.75(\mathrm{q}, J=8.6 \mathrm{~Hz}, 4 \mathrm{H}), 7.59(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.61(\mathrm{~d}$, $J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.43(\mathrm{dd}, J=9.2,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.41-4.26(\mathrm{~m}, 2 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 2.82(\mathrm{t}, J=6.0 \mathrm{~Hz}$, $1 \mathrm{H}), 1.38(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 176.84,166.67,166.27,156.17,153.30,142.74,137.06,133.87,133.43$, $132.77,130.98, \delta 130.04(\mathrm{q}, J=32.8 \mathrm{~Hz}), 128.11,127.53,126.04(\mathrm{~m}, J=6.3,2.3 \mathrm{~Hz}), 124.15(\mathrm{~d}, J=$ 272.0 Hz), 124.30, 122.93, 119.08, 118.60, 61.44, 52.34, 36.93, 14.33.
${ }^{19} \mathbf{F}$ NMR ($\mathbf{3 7 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) δ-62.49.

HRMS (ESI): m / z calcd for $\mathrm{C}_{28} \mathrm{H}_{22} \mathrm{~F}_{3} \mathrm{O}_{6}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 511.1363 ; found: 511.1363

1-ethyl 3-methyl 5-(6-(benzo[b]thiophen-2-yl)-4-oxo-4H-chromen-3-yl)cyclohepta-1,3,6-triene-1,3-

 dicarboxylate (3ta)

White solid ($33.4 \mathrm{mg}, 67 \%$ yield, m.p. $133-135^{\circ} \mathrm{C}$) according to procedure A .
${ }^{1} \mathbf{H}$ NMR ($400 \mathbf{M H z}, \mathbf{C D C l}_{3}$) $\delta 8.53(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.23(\mathrm{~s}, 1 \mathrm{H}), 8.02(\mathrm{dd}, J=8.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.84$ (d, $J=4.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.80(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.64(\mathrm{~s}, 1 \mathrm{H}), 7.53(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.40-7.31(\mathrm{~m}, 2 \mathrm{H})$, $6.91(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.63(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.44(\mathrm{dd}, J=9.2,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.40-4.26(\mathrm{~m}, 2 \mathrm{H})$, $3.81(\mathrm{~s}, 3 \mathrm{H}), 2.80(\mathrm{t}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.38(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 176.64,166.65,166.24,155.89,153.15,141.99,140.49,139.66,133.83$, $133.37,131.80,130.14,128.45,128.03,126.00,124.81,124.75,124.22,123.84,122.99,122.77,122.32$, 120.62, 118.93, 118.47, 61.39, 52.28, 36.93, 14.30.

HRMS (ESI): m / z calcd for $\mathrm{C}_{29} \mathrm{H}_{23} \mathrm{O}_{6} \mathrm{~S}_{8}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 499.1210; found: 499.1212

1-ethyl 3-methyl 5-(1-oxo-1H-benzo[f]chromen-2-yl)cyclohepta-1,3,6-triene-1,3-dicarboxylate (3ua).

Yellow solid ($31.1 \mathrm{mg}, 75 \%$ yield) according to procedure A.
${ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 10.04(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.24(\mathrm{~s}, 1 \mathrm{H}), 8.09(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.91(\mathrm{~d}$, $J=9.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.75(\mathrm{~m}, J=8.5,7.0,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.66-7.59(\mathrm{~m}, 1 \mathrm{H}), 7.50(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.91$ $(\mathrm{d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.70(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.51(\mathrm{dd}, J=9.3,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.38-4.29(\mathrm{~m}, 2 \mathrm{H}), 3.80(\mathrm{~s}$, $3 \mathrm{H}), 2.88(\mathrm{t}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.38(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1 ~ M H z}, \mathbf{C D C l}_{3}$) $\delta 178.44,166.65,166.24,157.57,150.68,135.72,133.85,133.38,132.30$, $130.56,130.39,129.35,128.37,128.25,127.91,127.00,126.73,125.69,125.08,119.70,117.44,61.30$, 52.20, 37.13, 14.27.

HRMS (ESI): m / z calcd for $\mathrm{C}_{25} \mathrm{H}_{21} \mathrm{O}_{6}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 417.1333$; found: 417.1327
dimethyl 5-(4-oxo-4H-chromen-3-yl)cyclohepta-1,3,6-triene-1,3-dicarboxylate (3ab).

Yellow oil ($33.7 \mathrm{mg}, 96 \%$ yield) according to procedure B.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 8.23(\mathrm{dd}, J=8.1,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.21(\mathrm{~s}, 1 \mathrm{H}), 7.85(\mathrm{~s}, 1 \mathrm{H}), 7.74-7.63(\mathrm{~m}$, $1 \mathrm{H}), 7.48-7.39(\mathrm{~m}, 2 \mathrm{H}), 6.86(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.62(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.44(\mathrm{dd}, J=9.2,5.6 \mathrm{~Hz}$, $1 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 2.77(\mathrm{t}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 176.97,167.16,166.22,156.35,153.19,134.08,133.94,133.08,131.86$, 128.03, 125.97, 125.81, 125.41, 124.09, 122.65, 119.38, 118.18, 52.41, 52.29, 37.12.

HRMS (ESI): m / z calcd for $\mathrm{C}_{20} \mathrm{H}_{17} \mathrm{O}_{6}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 353.1020; found: 353.1017
diethyl 5-(4-oxo-4H-chromen-3-yl)cyclohepta-1,3,6-triene-1,3-dicarboxylate (3ac).

Yellow oil ($36 \mathrm{mg}, 95 \%$ yield) according to procedure B.
${ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathbf{C D C l}_{3}\right) \delta 8.24(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.22(\mathrm{~s}, 1 \mathrm{H}), 7.85(\mathrm{~s}, 1 \mathrm{H}), 7.69(\mathrm{t}, J=7.5 \mathrm{~Hz}$, $1 \mathrm{H}), 7.52-7.37(\mathrm{~m}, 2 \mathrm{H}), 6.88(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.58(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.43(\mathrm{dd}, J=9.0,5.6 \mathrm{~Hz}$, $1 \mathrm{H}), 4.37-4.20(\mathrm{~m}, 4 \mathrm{H}), 2.76(\mathrm{t}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.36(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.30(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1 ~ M H z}, \mathbf{C D C l}_{3}$) $\delta 176.92,166.69,165.78,156.31,153.18,133.95,133.88,133.30,131.19$, $128.34,125.93,125.80,125.35,124.05,122.75,119.06,118.14,61.31,61.25,37.02,14.27$.
HRMS (ESI): m / z calcd for $\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{O}_{6}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 381.1333$; found: 381.1330

1-benzyl 3-ethyl 5-(4-oxo-4H-chromen-3-yl)cyclohepta-1,3,6-triene-1,3-dicarboxylate (3ad).

Yellow oil ($42.3 \mathrm{mg}, 96 \%$ yield) according to procedure B.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 8.28(\mathrm{~s}, 1 \mathrm{H}), 8.24(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.84(\mathrm{~s}, 1 \mathrm{H}), 7.69(\mathrm{t}, J=7.7 \mathrm{~Hz}$, $1 \mathrm{H}), 7.51-7.30(\mathrm{~m}, 7 \mathrm{H}), 6.91(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.59(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.43(\mathrm{dd}, J=9.1,5.6 \mathrm{~Hz}$, $1 \mathrm{H}), 5.31(\mathrm{q}, J=12.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.24(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.76(\mathrm{t}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.30(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$. ${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 176.91,166.51,165.70,156.31,153.19,135.84,134.35,133.88,132.96$, $131.15,128.59,128.34,128.28,128.23,125.93,125.80,125.36,124.05,122.68,118.95,118.14,66.98$, 61.27, 37.01, 14.25 .

HRMS (ESI): m/z calcd for $\mathrm{C}_{27} \mathrm{H}_{23} \mathrm{O}_{6}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 443.1489; found: 443.1489

3-butyl 1-ethyl 5-(4-oxo-4H-chromen-3-yl)cyclohepta-1,3,6-triene-1,3-dicarboxylate (3ae).

Yellow oil ($35.3 \mathrm{mg}, 87 \%$ yield) according to procedure B.
${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 8.24(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.22(\mathrm{~s}, 1 \mathrm{H}), 7.85(\mathrm{~s}, 1 \mathrm{H}), 7.68(\mathrm{t}, J=7.2 \mathrm{~Hz}$, $1 \mathrm{H}), 7.51-7.37(\mathrm{~m}, 2 \mathrm{H}), 6.88(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.56(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.42(\mathrm{dd}, J=9.0,5.6 \mathrm{~Hz}$, $1 \mathrm{H}), 4.31(\mathrm{q}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.19(\mathrm{t}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.78(\mathrm{t}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.72-1.59(\mathrm{~m}, 2 \mathrm{H}), 1.38$ (dt, $J=21.5,7.3 \mathrm{~Hz}, 5 \mathrm{H}), 0.92(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 176.90,166.69,165.86,156.32,153.16,133.95,133.87,133.25,130.77$, $128.41,125.96,125.91,125.35,124.08,122.77,118.74,118.15,65.16,61.31,36.90,30.66,19.17,14.27$, 13.74.

HRMS (ESI): m/z calcd for $\mathrm{C}_{24} \mathrm{H}_{25} \mathrm{O}_{6}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 409.1646; found: 409.1647

3-(tert-butyl) 1-methyl 5-(4-oxo-4H-chromen-3-yl)cyclohepta-1,3,6-triene-1,3-dicarboxylate (3af).

White solid ($37.1 \mathrm{mg}, 94 \%$ yield, m.p. $131-133^{\circ} \mathrm{C}$) according to procedure B .
${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 8.24(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.20(\mathrm{~s}, 1 \mathrm{H}), 7.84(\mathrm{~s}, 1 \mathrm{H}), 7.68(\mathrm{t}, J=7.6 \mathrm{~Hz}$, $1 \mathrm{H}), 7.54-7.36(\mathrm{~m}, 2 \mathrm{H}), 6.85(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.49(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.44(\mathrm{dd}, J=8.8,5.7 \mathrm{~Hz}$, $1 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 2.75(\mathrm{t}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.49(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 176.88,167.26,164.89,156.31,153.16,134.43,133.85,132.69,130.98$, 129.74, 125.97, 125.59, 125.32, 124.08, 122.88, 119.57, 118.14, 81.64, 52.31, 36.93, 28.10.

HRMS (ESI): m / z calcd for $\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{O}_{6}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 395.1489$; found: 395.1486
1-benzhydryl 3-ethyl 5-(4-oxo-4H-chromen-3-yl)cyclohepta-1,3,6-triene-1,3-dicarboxylate (3ag).

Yellow oil ($50.5 \mathrm{mg}, 97 \%$ yield) according to procedure B.
${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 8.38(\mathrm{~s}, 1 \mathrm{H}), 8.26(\mathrm{dd}, J=8.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.85(\mathrm{~s}, 1 \mathrm{H}), 7.69(\mathrm{ddd}, J=$ $8.6,7.2,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.47(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\mathrm{t}, J=7.1 \mathrm{~Hz}, 5 \mathrm{H}), 7.39-7.33(\mathrm{~m}, 4 \mathrm{H}), 7.30(\mathrm{dd}, J$ $=8.2,6.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.07(\mathrm{~s}, 1 \mathrm{H}), 6.98(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.61(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.46(\mathrm{dd}, J=9.2,5.6$ $\mathrm{Hz}, 1 \mathrm{H}), 4.26(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.77(\mathrm{t}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.32(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 176.92,165.67,165.64,156.29,153.25,140.12,140.10,134.51,133.89$, $132.94,131.09,128.57,128.30,128.01,127.96,127.17,127.04,125.91,125.80,125.37,124.04,122.62$, 118.74, 118.14, 77.75, 61.27, 36.98, 14.24.

HRMS (ESI): m / z calcd for $\mathrm{C}_{33} \mathrm{H}_{26} \mathrm{O}_{6} \mathrm{Na}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$: 541.1622; found: 541.1620.
methyl 3-acetyl-5-(4-oxo-4H-chromen-3-yl)cyclohepta-1,3,6-triene-1-carboxylate (3ah).

Yellow oil ($33 \mathrm{mg}, 99 \%$ yield) according to procedure A.
${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathbf{C D C l}_{3}\right) \delta 8.24(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.17(\mathrm{~s}, 1 \mathrm{H}), 7.84(\mathrm{~s}, 1 \mathrm{H}), 7.70(\mathrm{t}, J=7.6 \mathrm{~Hz}$, $1 \mathrm{H}), 7.51-7.42(\mathrm{~m}, 2 \mathrm{H}), 6.97(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.14(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.20-5.12(\mathrm{~m}, 1 \mathrm{H}), 3.84$ $(\mathrm{s}, 3 \mathrm{H}), 2.55(\mathrm{t}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, $\mathbf{C D C l}_{3}$) $\delta 197.31,177.18,166.97,156.32,153.37,136.03,133.99,133.00,132.02$, 130.11, 128.43, 128.02, 125.85, 125.45, 124.00, 122.34, 118.20, 52.36, 35.61, 26.44.

HRMS (ESI): m / z calcd for $\mathrm{C}_{20} \mathrm{H}_{17} \mathrm{O}_{5} \mathrm{Na}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 337.1071; found: 337.1074.
9. Spectra

$\stackrel{\text { ~ }}{\substack{\text { ® }}}$

6-(Меос6н4)

${ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCb}_{b}\right)$

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCb}$)

10. X-Ray Crystallography Data of 3sa

Figure S2. ORTEP diagram of 3sa (CCDC: 2008499). Thermal ellipsoids are shown at the 50% probability level. A colorless block crystal of 3sa for X-ray diffraction was obtained by slowly volatilizing a solution of 3sa in hexane/ ethyl acetate (5:1). The X-ray intensity data was measured on a Rigaku 007 Saturn 70 single crystal diffractometer.

Table S3 Crystal data and structure refinement for 3sa.

Identification code	3sa
Empirical formula	$\mathrm{C}_{28} \mathrm{H}_{21} \mathrm{~F}_{3} \mathrm{O}_{6}$
Formula weight	510.45
Temperature/K	113.15
Crystal system	monoclinic
Space group	P2 $1 / \mathrm{c}$
a / \AA	15.8322(6)
b/Å	13.7887(4)
c/Å	10.6237(4)
$\alpha /{ }^{\circ}$	90
$\beta /{ }^{\circ}$	92.720(4)
γ°	90
Volume/ \AA^{3}	2316.60(14)
Z	4
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$	1.464
μ / mm^{-1}	0.118
F(000)	1056.0
Crystal size/mm ${ }^{3}$	$0.2 \times 0.18 \times 0.14$
Radiation	$\operatorname{MoK} \alpha(\lambda=0.71073)$
2Θ range for data collection/ ${ }^{\circ}$	3.918 to 52.736
Index ranges	$-19 \leq \mathrm{h} \leq 19,-17 \leq \mathrm{k} \leq 17,-13 \leq 1 \leq 13$
Reflections collected	24452
Independent reflections	$4734\left[\mathrm{R}_{\text {int }}=0.0453, \mathrm{R}_{\text {sigma }}=0.0289\right]$
Data/restraints/parameters	4734/64/356
Goodness-of-fit on F^{2}	1.048
Final R indexes [$\mathrm{I}>=2 \sigma$ (I)]	$\mathrm{R}_{1}=0.0485, \mathrm{wR}_{2}=0.1189$
Final R indexes [all data]	$\mathrm{R}_{1}=0.0583, \mathrm{wR}_{2}=0.1281$
Largest diff. peak/hole / e \AA^{-3}	0.45/-0.53

11. References

[1] J. R. Zimmerman, O. Johntony, D. Steigerwald, C. Criss, B. J. Myers, D. H. Kinder, Org. Lett. 2015, 17, 3256.
[2] J.-Y. Dong, X.-C. Wang, Z. Wang, H.-J. Song, Y.-X. Liu, Q.-M. Wang, Chem Sci 2019, 11, 1026.
[3] X.-F. Zhu, J. Lan, O. Kwon, J. Am. Chem. Soc. 2003, 125, 4716.

