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1. Syntheses of compounds

All reactions were carried out under anaerobic and anhydrous conditions, using standard Schlenk and
glovebox techniques unless otherwise stated. All starting materials, reagents and solvents, were
purchased from commercial sources and used without further purification, except if noted otherwise. All
technical solvents were purified by distillation on a rotary evaporator before using. EtO, THF, benzene,
n-hexane and n-pentane were distilled from purple Na/benzophenone solutions, toluene and 1,4-dioxane
from Na, CsD¢ from Na/K alloy, CH,Cl, and 1,2-difluorobenzene (DFB) from CaH,, and NEt; from K.
CDCl; and CD,Cl, were degassed with three freeze-pump-thaw cycles and then kept over activated
molecular sieves (4 A) in the glovebox. Compounds 4,' and [Rh(COE),Cl],,? epin pinacol boronic ester
12b,? and 1,3-diphenylallyl acetate* were synthesized according to known procedures. Indole was
recrystallized from dry hexane/Et,O, sublimed, and kept in a glovebox. 6-Fluoroindole was dissolved in
Et,0O, slurried in CaH,, filtered and dried in high vacuum. 4-Methyl indole (abcr) was purified by
Kugelrohr distillation and slurried over CaH,, filtered and dried in high vacuum. Arylboronic acids
(purchased from Sigma Aldrich and abcr), AgBF, (abcr) and NaBArF (aber) were used as received.
Sealed bottles of BH;*THF (Sigma Aldrich, 0.77 mol/L and TCI, 0.88 mol/L, determined by titration
with PPh;), (R)-BINOL (abcr) and [Pd(allyl)Cl], (abcr) were opened in the glovebox and used as
received. Elemental analyses (EA) were performed on a Euro EA 3000 analyzer, and air-sensitive
samples were handled and prepared in a glovebox. NMR spectra were recorded on Jeol EX 270, ECP
400, and ECX 400 instruments operating at 269.71, 399.78, and 400.18 MHz for 'H, at 67.82, 100.52,
and 100.62 MHz for *C, and at 161.83 and 162.00 MHz for *'P, respectively. Chemical shifts are given
in ppm and are reported relative to residual solvent peaks as secondary standards. Jeol’s Delta NMR
Processing and Control Software/Mestrelab Research S.L.. NMR Processing software was used to process
and visualize the NMR data. HPLC was performed on a Shimadzu LC10 series instrument.
5-(R)-(dinaphtho[2,1-d:1°,2°-f][1,3,2]dioxaphosphepin-4-yl)-10-phenyl-5H-dibenzo[b flazepine
((enriched (pS,R)-5 + enriched (pR,R)-5). Inside a glovebox, (R)-BINOL (8.755 g, 30.58 mmol) was
dissolved in CH,Cl, (450 mL) and transferred to an addition funnel with pressure equalizer, which was
connected to a 1000 mL flask containing a yellowish solution of 4 (11.32 g, 30.58 mmol) and NEt; (15.47
g, 152.9 mmol) in 400 mL of CH,Cl,. The (R)-BINOL solution was added dropwise over 5-10 min and
the resulting mixture was stirred overnight. Then, the volatiles were removed under reduced pressure and
Et,O (225 mL) added. The resulting slurry was stirred for 1 h, filtered (GF/B glass fiber filter), and the

mother liquor evaporated to dryness. The resulting solid was slurried and washed with pentane (100 mL)
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for 18 h. Separation by filtration and HV drying yielded an off-white powder (6.46 g,36%). This product
consists of mainly (pS,R)-5 with dr = 2.5:1. The solid that remained from the first extraction with Et,O
(containing all of the HNEt;ClI enriched (pR.R)-5) was re-extracted with toluene (1 x 170 mL, then 2 x
50 mL) and filtered over GF/B. The combined mother liquor was evacuated to dryness, slurried in
heptane (110 mL) for 16h, filtered through GF/B and dried in HV until no heptane was detected in the
NMR to yield an off-white powder (6.12 g, 34%). This product consists of mainly (pR,R)-S with dr =
2:12

Purification of (pR,R)-5. The enriched diastereomer (pR,R)-5 (vide supra, 6.12 g, 10.49 mmol) was
dissolved in toluene (31 mL) and the pale yellowish solution was layered carefully with pentane (109
mL) in a 500 mL flask. The flask was left undisturbed at -35° C for 3 d. After this time, the solvent
mixture was decanted off and the remaining white solid was dried under high vacuum to yield (pR,R)-5
in a 4:1 dr ratio. Repeating the procedure twice more leads to a diastereomerically pure product (4.08 g,
23% with respect to 4). [a] ZDS -269° (¢ = 0.7, THF). EA calc. for C4,H,sNO,P¢(CH,Cl,),,: C 81.34, H
446,N 2.37. Found: C 81.18, H 4.77, N 2.29.3'P{'"H} NMR (162 MHz, C¢Ds) &: 140.9. 'H NMR (400
MHz, C¢Dg, 0): 7.62 (d,J =8.0 Hz, 1H), 7.54 — 7.25 (m, 10H), 7.21 — 7.01 (m, 7H), 6.94 (dd, J = 8.0 Hz,
3.6 Hz, 1H), 6.89 — 6.80 (m, 2H), 6.78 — 6.62 (m, 5H).*C{1H} NMR (101 MHz, CsDs, 6): 150.4, 150.3,
1495, 144.7,144.6, 1442, 144 .1, 1440, 143.3, 138.3, 136 4, 133.5, 1334, 1320, 131 .0, 130.9, 130.7,
129.8,129.8,129.7,129.6, 129.5, 128.8, 128.7, 128.6, 128 4, 128.0, 127.9, 127.6, 1274, 126.7, 126 .6,
126.5,126.4,125.1,125.0,124.7,124.6,123.1,123.0, 122.5, 122 4. The spectra indicate the presence of
CH,Cl,, which was used to transfer the product for yield determination.
pS-5-(R)-(dinaphtho[2,1-d:1°,2°-f][1,3,2]dioxaphosphepin-4-yl)-10-phenyl-5H dibenzo[b.flazepine
borane complex ((pS,R)-6). Enriched (pS,R)-5 (vide supra, 6.462 g, 11.07 mmol) was dissolved in C¢Hg
(35 ml) in a 250mL round bottom flask followed by addition of BH;*THF solution in THF (38 mL, 17
mmol) via syringe.® The resulting yellow solution was stirred for 1.5 h at room temperature. The volatiles
were removed under reduced pressure and the remaining white glassy solid slurried in pentane (30 mL)
for 2 h before filtration. Additional washing with pentane (3 x 20 mL) and drying in HV yielded a finely
divided white powder (4.14 g, 63 %) with dr = 2.2:1 (by '"H NMR). Depending on the quality of the
employed commercial BH;*THF solution, additional purification may be necessary by flash filtration
through silica (hexane/EtOAc 95:5) and subsequent n-pentane washing (100 mL) to remove unidentified
contaminants that affect crystallization. The enriched (pS,R)-6 (4.14 g) was then transferred to a 250 mL
Schlenk tube and dissolved in DFB (85 mL). The pale-yellow solution was carefully layered with n-
heptane (298 mL) and cooled to -40 °C for 2 h. After this time, the tube was let to warm up to RT and
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kept at 26 °C in a thermostated bath for the solvents to slowly diffuse over the course of 12 d (Picture
P1). This afforded large sized crystals. The mother liquor was decanted off and the crystals washed with
heptane (6.00 mL) and dried under HV to yield a white microcrystalline powder (940 mg, 44 %) with dr
> 99:1. EA calcd. for C4H»BNO,P: C 80.41, H 4.89, N 2.34. Found: C 80.70, H 4.88, N 2.34. 8.00. *'P
NMR (162 MHz, C¢Ds, coupled, 8): 124.4. 'H NMR (400 MHz, CDCL;, 8) 8.00 (d,J = 8.8 Hz, 1H), 7.91
(d,J=82Hz, 1H),7.82 (d,J =8.8 Hz, 1H), 7.59 — 7.52 (m, 4H), 7.44 — 7.36 (m, 6H), 7.27 — 7.07 (m,
11),7.00(d,J=7.1Hz,1H),6.92 (d,/=8.8 Hz, 1H),6.76 - 6.71 (qt, 1H), 0.39 (bm, 3H). *C{'H} NMR
(101 MHz, CDCl;, 6) 148.4 (d, J = 14.1 Hz), 1475 (d,J = 6 Hz), 144.1, 143.0, 142.2 (d, J = 9.5 Hz),
141.1, 1380 (d, J = 3.5 Hz), 136.1 (d, J = 2.5 Hz), 1325 (d, / = 1.5 Hz), 132.2, 131.9,131.0, 130.9,
130.3,129.9, 129.6, 1294, 129.2 (2C), 128.9 (2C), 128.8, 128.7, 128.5 (2C), 128.1, 128.0 (2C), 127 4,
127.3,127.2,127.1,126.5, 126 .3, 125.6, 125.4,122.0 (d,J = 2.5 Hz), 121.8 (d,J =3.0 Hz), 121.0 (d, J
=2.5Hz),120.5 (d,J=2.0 Hz).

Picture S1. Photograph of a 250 ml Schlenk tube containing diastereomerically pure crystals of (pS,R)-
6 in a DFB/heptane solvent mixture. The tube is inside a thermostatisized water-filled beaker.

S4



Deprotection of (pS,R)-6 to pS-5-(R)-(dinaphtho[2,1-d:1°,2°-f][1,3,2]dioxaphosphepin-4-yl)-10-
phenyl-5H dibenzo[b.flazepine ((pS,R)-5). (pS.R)-6 (940 mg, 1.57 mmol) was dissolved in benzene
(15 mL) in a 40 mL vial. To this clear solution, NEt; (1.168 g, 11.3 mmol) was added neat, under vigorous
stirring. The resulting solution was heated to 50 °C for 24 h. After this time, the volatiles were removed
under reduced pressure and the remaining off-white solid was thoroughly washed with pentane and
filtered through GF/B (3 x 10 mL). Finally, the residue was dried under high vacuum to yield a white
powder (660 mg, 72%, 4% overall from rac-4) with dr > 99:1. [a]3° = -312° (¢ = 1, THF). EA calcd. for
CioHosNO,Pe(CH,Cl,)o,: C 81.34,H4.46,N 2.37. Found: C 81.18,H4.77,N 2.29.3'P NMR (162 MHz,
CsDg, coupled, 5): 140.4. '"H NMR (400 MHz, C¢Ds, 6): 7.58 (d,J = 8.0 H, 1H), 7.51 (m, 2H), 7.47 —
7.36 (m, 7H),7.20 - 7.04 (m, 11H),6.97-6.95 (d,J =7.7Hz, 1H),6.91 - 6.78 (m,4H), 6.70 — 6.66 (t,
J=175Hz,1H),6.59 - 6.55 (t,J = 7.2 Hz, 1H). BC{1H} NMR (101 MHz, C¢Ds, 8): 150.1 (d,J =150
Hz), 1493, 1449 (d,J =15 Hz), 144.2, 143.8, 143.8, 138.4 (d,J = 2.3 Hz), 136.2, 133.2, 132.7, 131.7,
130.7,130.6,130.4,129.7,129.3,129.3,129.2,129.1,128.9,128.7,128 .4 (2C), 128.3 (2C), 127.9,127 .6,
127.2,127.1,126.3 (d,J =3.5Hz), 126.2,126.0, 124.8, 124.5,122.3 (d,J =2.3 Hz), 122.2,122.0.
[((pR,R)-5),CIRh], ((pR,R)-8). A solution of ligand (pR,R)-5 (319 mg, 0.547 mmol) in 4 mL of C¢Hs
was slowly added dropwise to a slurry of [Rh(COE),Cl], (98.2 mg, 0.137 mmol) in 4 mL of C¢Hs. After
a few seconds, an orange precipitate was formed, and the reaction mixture was stirred for 16 h. After this
time, n-hexane (4 mL) was added and the mixture was filtered through GF/B. The product was washed
with hexane (3 x 2.5 mL) and dried in HV to afford 253 mg (71%) of an orange powder. Single crystals
were obtained by vapor diffusion of pentane into a saturated solution of (pR,R)-8 in CH,Cl,. EA calcd.
for Ci60H104C1LN4OsPsRh, . (CH,Cl,)o 462 (CsHe)o 150 C 72.59, H 441, N 2.18. Found: C 72.59, H 441, N
2.18. 3P{'H} NMR (243 MHz, CD,Cl,) 6: 143.4 (d, Jprs = 305 Hz). 'H NMR (600 MHz, CD,Cl,) &:
8.61 — 8.58 (m, 4H), 7.96 (d, J = 6.0 Hz, 2H), 7.86 (d, J = 12.0 Hz, 2H), 7.60 (d, J = 6.0 Hz, 2H), 7.55
(t,J=12.0Hz,2H), 747 —7.44 (m,4H), 7.39 - 7.34 (m, 4H) 7.30 - 7.26 (m,4H), 7.21 — 7.18 (m, 6H),
707 (d,J=60Hz,4H),6.97 - 691 (m, 6H),6.71 (dd,J = 6.0 Hz, 3 Hz, 2H), 6.58 — 6.54 (m, 4H), 6.33
(t, J =120 Hz, 2H), 6.26 (t, J = 12.0 Hz, 2H), 5.50 (d, J = 6.0 Hz, 2H). B"C{1H} NMR (151 MHz,
CD,Cl,, 6): 150.3, 149.8, 146.3, 142.3, 140.3, 135.8, 135.1, 133.2, 132.5, 132.3. 131.5, 130.9, 130.7,
130.2,130.1, 129.6, 129.2, 1290, 128.9, 128.7, 128.6, 128.5, 128 4, 128.2, 128.1, 127.6, 127.3, 126 0,
125.7,125.3,125.0,1249,124.7,123.2,122.5,121.1.

[((pR,R)-5),Rh][BF,] (cis-(pR,R)-9). In a dark glovebox, complex 5§ (123 mg, 0.0471 mmol) and AgBF,
(18 mg, 0.095 mmol) were mixed in a vial and toluene (4 mL) was added. The resulting orange mixture

was stirred for 3 h, during which lots of white precipitate formed. The solvent was removed in HV,
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extracted with CH,Cl, (5 mL) and centrifuged (5000 rpm for 5 min). The supernatant was decanted into
a vial, evacuated to dryness, washed with n-pentane (3 x 3 mL), filtered (GF/B), and dried in HV to yield
122 mg (95 %). EA calcd. for CsHs,BF.N,O4P,Rhe(CH,Cl,),,: C, 70.46; H, 3.85; N, 2.05. Found: C,
70.38; H, 3.80; N, 1.99. 3'P{'H} NMR (243 MHz, CD,Cl,) 6: 163.9 (d, Jp.rn = 289.9 Hz). 'H NMR (400
MHz, CD,Cl,) &: 8.12 —7.85 (br.m, Cp,—H,4H), 7.89 (d, *Juu = 6.9 Hz,2H), 7.81 - 7.77 (m, Csw—H, 2H),
7.77-17.73 (m, 4H), 7.69 — 7.50 (br.m, Cex—H, 4H), 7.53 (td, *Jyn = 8.0 Hz, *Jyn = 1.3 Hz, 2H), 7.48 (d,
3Jun = 8.9 Hz,2H), 7.39 - 7.34 (m, 2H), 7.37 — 7.33 (m, 4H), 7.23 — 7.19(m, 4H), 7.17 - 7.13 (m, 4H),
7.16 —7.12 (m, 2H), 7.07 (ddd, *Juu = 8.3 Hz,3Juu = 6.8 Hz, *Jyn = 1.3 Hz, 2H), 6.83 (d, *Juu = 8.6 Hz,
4H), 6.69 (ddd, 3Jyu = 8.3 Hz,*Jyy = 6.9 Hz, “Juu = 1.2 Hz, 2H), 6.43 (dd, 3Jyu = 7.8 Hz, *Jyn = 1.6 Hz,
2H), 6.29 (d, *Juu = 8.6 Hz, 2H), 5.62 (s, Cyt—H, 2H), 5.59 (d, 3Jun = 8.9 Hz, 2H) ppm. BC{'H} NMR
(151 MHz, CD,Cl,, 8) 147.5,146.5, 141.1, 140.4,140.2,138.6, 136.7,132.9,131.9,131.8, 131.7, 131.6,
131.5,130.9,130.8, 130.1, 129.7, 1294, 128.8, 128.7, 128.3, 128.1, 127.3, 126.6, 126.5, 126 .2, 126.1,
126.0,125.5,122.3,120.2, 120.1, 199.7, 102.0.

[((pR,R)-2),Pd][BArF] ((pR,R)-10). Inside a glovebox, a 3 mL solution of (pR,R)-2 (302 mg, 0.518
mmol) in CH,Cl, was added dropwise to a well stirred 2 mL solution of [PdClI(allyl)], (47 mg,0.13 mmol)
in CH,Cl,. The resulting pale yellowish solution was stirred for 30 min. After this time, NaBArF (230
mg, 0.259 mmol) was added, forming a white precipitate. The resulting orange slurry was stirred for 2.5
h. After this time, the mixture was centrifuged for 10 min at 6000 rpm. The supernatant was carefully
decanted and evacuated to dryness to yield an orange solid (532 mg, 94%). EA calcd. for
Ci15sHeoBF24N,O,P,Pd: C, 63.42%; H,3.19%; N, 1.29%. Found: C, 63.06%; H, 3.09%; N, 1.36%. *'P{'H}
NMR (242 MHz, CD,Cl,) 6: 134.2, 134.3. '"H NMR (600 MHz, CD,Cl,) 8: 7.98 (dd, J = 15.7, 8.5 Hz,
2H),793 (d,J =8.1 Hz, 1H), 7.85 (d,J = 8.2 Hz, 1H), 7.80 (dd, J = 13.6, 8.5 Hz, 2H), 7.67 (d, J = 8.7
Hz, 1H), 7.64-7.60 (m,9H),7.55 (t,J/ =7.4 Hz, 1H), 7.50 (dd, J = 13.5, 8.1 Hz, 3H), 7.45 (s, 6H), 7.44—
7.35 (m,4H),7.32 (d,J=8.7Hz, 1H),7.31-7.14 (m, 15H), 7.12-7.05 (m,4H), 7.03 (d,J = 8.7 Hz, 1H),
6.92 (d,J=8.1 Hz, 1H), 6.90-6.83 (m, 3H), 6.80-6.74 (m, 1H), 6.70-6.66 (m, 2H), 6.66—-6.59 (m, 2H),
6.56 (d,J =79 Hz, 1H),6.42 (t,J =7.6 Hz, 1H), 6.39-6.32 (m, 2H), 6.31-6.22 (m, 2H), 6.15-6.07 (m,
1H),5.79 (t,/=7.5Hz,1H),548 (d,J=8.1 Hz, 1H),5.38 (d,J =7.5 Hz, 1H), 5.24-5.14 (m, 1H), 4.89—
474 (m, 1H), 4.72-4.64 (m, 1H), 3.13 (td, J/ = 12.9, 4.3 Hz, 1H), 2.67 (td, J = 12.7, 4.1 Hz, 1H). 3C
NMR (151 MHz, CD,Cl,, 0) 162.3,161.9,161.6,161.3,147.3,147.2,146.0, 141.6,141.2,140.9, 140 .8,
1400, 1359, 1354, 134.8,132.7,132.7, 132.3, 132.1, 132.1, 131.2, 131.1, 131.0, 130.9, 130.7, 130.6,
130.3, 130.1, 129.2, 129.1, 129.0 (2C), 1289, 128.8, 128.7, 128.6, 128.6, 128.5, 128 4, 128.3, 128.3,
128.2,128.0, 1279, 127.6,127.6,127.5,127.4,1274,127.3,127.3,127.2,127.1,127.1, 126 .9, 126 .8,
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126.7, 126.6, 126 4, 126.1, 126.0, 125.5, 124.4, 123.7,121.9, 1203, 119.8, 119.7, 1190, 117.5, 117.5,
117.5.

[((pS,R)-5):CIRh]: ((pS,R)-8). In a glovebox, a 3 mL solution of (pS,R)-5 (125.4 mg; 0.214 mmol; 4 eq)
in CsHe was added to a 2 mL solution of [Rh(COE)Cl]> (38.7 mg; 0.054 mmol; 1 eq) in C¢Hs. After 18
h of stirring at room temperature, the remaining solution was evaporated to dryness. The resultant orange
solid was slurried in pentane (4.00 mL) for 15 min and filtered through GF/B (3 x 4 mL). After drying
in HV, the product was obtained as a fine, orange powder (125 mg, 88 %). From the pentane mother
liquor, X-ray quality crystals were formed after 3 d. EA found: C 73.25 H 3.95 N 1.97; calcd. for
Ci60H104C1a2N4OsP4Rho: C 73.60 H 4.01 N 2.15. 3'P{'"H} NMR (162 MHz, CsDs) &: 146.4 (d, "Jorn =
309.95 Hz, 4P) . '"H NMR (400 MHz, C¢Hp) &: 10.12 (bs, 1H), 9.02 (bd, J = 6.6 Hz, 1H), 8.10 (bd, J =
6.0 Hz, 1H) , 7.74 (bs, 1H), 7.63 (d,J = 8.6 Hz, 1H), 7.55 (d,J = 8.2 Hz,2H) , 7.40 (bd, J = 8.9 Hz, 2H)
,7.25 (bd,J=6.1 Hz, 2H), 7.0-7.1 (m, 5H), 6.69-6.65 (m, 7H), 6.67 (bt,J =7.4 Hz, 1H), 6.52 (bs, 1H),
6.37 (d,J = 7.4 Hz, 1H), 5.58 (bs, 1H). *C{'H} NMR (151 MHz, C¢Ds) 5: 149.6, 149.3, 143.8, 143.7,
142.8, 141.4, 137.3, 135.0, 134.9, 133.0, 132.5, 132.2, 131.8, 131.5, 131.2, 130.6, 130.3, 129.6, 129.0,
128.8, 128.7, 128.7, 128.6, 128.5, 128.5, 128.4, 128.4, 128.3, 128.1, 127.9, 127.6, 125.6, 125.5, 125.1,
124.8, 124.6, 124.0, 123.1, 122.4.

[cis-((pS,R)-5).Rh][BF,] (cis-(pS,R)-9). In a dark glovebox, complex (pS,R)-8 (101 mg, 0.039 mmol)
was mixed with AgBF4 (15 mg, 0.077 mmol) in a tin foil wrapped vial. Toluene (4.00 mL) was added
and the orange mixture was stirred for 3 h at room temperature. After this time, the solvent was removed
in HV and the resulting pale-orange solid was extracted with CH2Cl (5.00 mL) and centrifuged (5000
rpm, 5 min). The orange supernatant was decanted and evaporated to dryness. The resulting orange solid
was washed with n-pentane and separated by filtration (3 x 3 mL). HV drying yielded a bright orange
powder (104 mg, >99%). EA found: C 6294, H 3.55, N 1.75; calculated for
CsoHs2BF4sN204P2Rhe(CH2Cla)25: C 63.14, H 3.66, N 1.79. 3'P{'"H} NMR (162 MHz, CD>Cl»): 142.5
(dd, Uprn =269.3 Hz, 2Jp» = 40.4 Hz 1P), 139.6 (dd, 'Jprn = 269.3 Hz, 2Jp» = 40.4 Hz 1P). '"H NMR (600
MHz, CD>Cl>): 9.29 (bs, 1H), 8.43-8.22 (dt, 6H), 7.98-7.85 (m, 7H), 7.73-7.54 (m, 16H), 7.46—7.08 (m,
24H), 6.99-6.84 (m, 8H), 6.71 (s, 1H), 6.58-6.45 (m, 6H), 6.20 (s, 2H), 5.67-5.64 (m, 1H), 4.89-4.86
(m, 1H), 4.45 (m, 1H). BC{'H} NMR (151 MHz, CD,Cl,) &: 145.7, 144.2, 140.0, 139.9, 139.7, 138.7,
138.6, 137.0, 136.2, 132.9, 132.0, 131.9, 131.6, 131.5, 131.4, 131.3, 131.3, 131.2, 131.1, 131.0, 130.9,
130.3, 130.2, 130.0, 129.8, 129.7, 129.6, 129.5, 129.4.

[((pR,R)-5),Pd][BArF] ((pR,R)-10). Inside a glovebox, a 3 mL solution of (pR,R)-2 (302 mg, 0.518
mmol) in CH,Cl, was added dropwise to a well stirred 2 mL solution of [PdClI(allyl)], (47 mg,0.13 mmol)
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in CH,Cl,. The resulting pale yellowish solution was stirred for 30 min. After this time, NaBArF (230
mg, 0.259 mmol) was added, forming a white precipitate. The resulting orange slurry was stirred for 2.5
h. After this time, the mixture was centrifuged for 10 min at 6000 rpm. The supernatant was carefully
decanted and evacuated to dryness to yield an orange solid (532 mg, 94%). EA calcd. for
Ci15sHeoBF24N,O,P,Pd: C, 63.42%; H, 3.19%; N, 1.29%. Found: C, 63.06%; H, 3.09%; N, 1.36%. 3'P
NMR (242 MHz, CD,Cl,) 8: 134.3 (dd, J = 110.5, 17.3 Hz, 1P). '"H NMR (600 MHz, CD,Cl,) 6: 7.98
(dd,J=15.7,8.5Hz,2H),793 (d,J=8.1 Hz, 1H), 7.85 (d,J =8.2 Hz, 1H), 7.80 (dd, J = 13.6, 8.5 Hz,
2H), 7.67 (d, J = 8.7 Hz, 1H), 7.64-7.60 (m, 9H), 7.55 (t,J = 7.4 Hz, 1H), 7.50 (dd, J = 13.5, 8.1 Hz,
3H), 7.45 (s, 6H), 7.44-7.35 (m, 4H), 7.32 (d, J = 8.7 Hz, 1H), 7.31-7.14 (m, 15H), 7.12-7.05 (m, 4H),
703 (d,J=8.7Hz,1H),692 (d,J=8.1 Hz, 1H), 6.90-6.83 (m, 3H), 6.80-6.74 (m, 1H), 6.70-6.66 (m,
2H), 6.66—6.59 (m,2H), 6.56 (d,J=7.9 Hz, 1H),6.42 (t,J =7.6 Hz, 1H), 6.39-6.32 (m, 2H), 6.31-6.22
(m, 2H), 6.15-6.07 (m, 1H), 5.79 (t,J = 7.5 Hz, 1H), 548 (d,J = 8.1 Hz, 1H), 5.38 (d,J = 7.5 Hz, 1H),
5.24-5.14 (m, 1H), 4.89—4.74 (m, 1H), 4.72-4.64 (m, 1H), 3.13 (td, J = 12.9,4.3 Hz, 1H), 2.67 (td, J =
12.7,4.1 Hz, 1H). *C NMR (151 MHz, CD,Cl,,0) 162.3,161.9,161.6,161.3,147.3,147.2,146 .0, 141.6,
1412, 1409, 140.8, 140.0, 1359, 1354, 134 .8, 132.7, 132.7, 132.3, 132.1, 132.1, 131.2, 131.1, 131 0,
130.9, 130.7, 130.6, 130.3, 130.1, 129.2, 129.1, 129.0 (2C), 128.9, 128.8, 128.7, 128.6, 128.6, 128.5,
1284, 128.3,128.3, 128.2, 128.0, 1279, 127.6, 127.6, 127.5, 1274, 127.4,127.3, 127.3, 127.2, 127.1,
127.1, 1269, 126 .8, 126.7, 126.6, 126 4, 126.1, 126 .0, 125.5, 1244, 123.7, 121.9, 120.3, 119.8, 119.7,
119.0,117.5,117.5,117.5.

[((pS,R)-2):Pd][BArF] ((pS,R)-10). Inside a glovebox, a 3 mL solution of (pS,R)-5 (233 mg, 0.399
mmol) in CH2Cl; was added dropwise to a well stirred 2 mL solution of [PdCl(allyl)]> (39 mg, 0.11
mmol) in CH>Cl. The resulting pale yellowish solution was stirred for 30 min. After this time, NaBArF
(180 mg, 0.203 mmol) was added. After 2.5h, the mixture turned violet and a white precipitate formed,
which was separated by centrifugation (10 min, 6000 rpm) by carefully decanting the supernatant.
Evacuation to dryness yielded a violet solid (271 mg, 98%). EA found: C 58.09 H 2.98 N 0.92; calcd.
for C115HgoBF24N>04P2Pd(CH2Clo)3: C, 58.26%; H, 3.11%; N, 1.15%. 3'P{'"H} NMR (162 MHz, CD:Cl,,
8): 137.6 (s). 'H NMR (400 MHz, CD,Cl,) é: 8.41 (dd, J = 8.6, 6.4 Hz, 2H), 8.11-8.24 (m, 6H), 8.08
(dd,J=5.08,3.02 Hz, 2H), 8.01 (s, 4H), 7.95 (dd, J = 4.95, 3.85 Hz, 2H), 7.19-7.80 (m, 50H), 7.16 (d,
J=797Hz, 1H), 6.98 (d, J=6.98 Hz, 1H), 6.91-6.85 (m, 4H), 6.77 (d, J = 3.30 Hz, 2H), 6.67-6.64 (m,
4H), 6.29—6.25 (m, 2H), 5.93-5.88 (m, 2H), 5.78 (dd,J = 8.0, 3.4 Hz, 2H), 5.53 (t,/=7.6 Hz, 1H), 5.43
(t, J=7.6 Hz, 1H), 4.90 (m, 1H), 4.35 (bm, 1H), 4.22 (bm, 1H), 2.76-2.72 (bm, 1H), 2.49-2.44 (bm,
1H), 1.92-1.89 (m, 1H). *C{'H} NMR (100.6 MHz, CD>Cl,) 3: 162.6, 161.6, 161.1, 145.0, 144.8, 142.3,
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137.1, 134.9, 134.4, 133.1, 133.0, 132.2, 131.9, 131.5, 131.2, 130.6, 130.0, 129.9, 129.2, 128.8, 128.7,
128.5, 128.5, 128.3, 128.0, 127.5, 127.4, 127.3, 127.1, 127.0, 126.4, 126.0, 125.7, 125.3, 124.8, 123.3,
122.9,122.7,122.3,122,2, 121.2, 120.6, 119.6, 119.3, 117.6, 54.0, 54.0, 53.8, 53.7, 53.5, 53.2, 52.9.
NMR scale synthesis of [((S)-1)2Pd][BArF] ((S)-11). In an NMR tube, an intensely yellow solution of
[PdCl(allyl)]2 (7.6 mg, 0.021 mmol) in CD,Cl; was combined with a pale-yellow solution of (§)-1 (21.3
mg, 0.0415 mmol) in CD,Cl,. Upon mixing, the intensely yellow color disappeared instantly and NMR
was measured. 3'P{'"H} NMR (162 MHz, CD>Cl,, 8): 142.84 (s), 142.77 (s). 'HNMR (400 MHz, CD,Cl,
0): 8.41(d,/=8.8 Hz, 1H), 8.33 (d,/=8.9 Hz, 1H), 8.06 (d, /= 8.9 Hz, 1H) , 8.01 (d, /= 8.9 Hz, 1H),
7.93 (m, 2H), 7.81 (m, 2H), 7.61-7.58 (m, 4H), 7.42—-7.36 (m, 5H), 7.29 — 7.13 (m, 24H), 7.10-7.01 (m,
8H), 6.91 (m, 2H), 6.69 (m, 2H), 5.19 (m, 1H), 4.42-4.29 (m, 3H), 3.70 (d, /= 6.5 Hz, 1H), 3.61 (d, J =
5.9 Hz, 1H) , 3.30 (m, 1H), 2.92 (d, J = 14.8 Hz, 1H), 2.49 (d, J = 12.1 Hz, 1H), 1.68 (d, J = 12.1 Hz,
1H). These signals coincide with the supine/supra isomers with complex formula (S)-[(1)Pd(ally])Cl].
After 3 h, (5)-1 (21.4 mg, 0.0415 mmol) and NaBArF (36.7 mg, 0.0415 mmol) were added. Upon
addition the pale-yellow solution turned more intense and a white precipitate was formed after 15 min,
which was removed by centrifugation (6000 rpm, 4 min). The NMR of intense yellow supernatant was
measured and showed formation of the cationic complex along with 5% of free ligand. 3'P{'H} NMR
(162 MHz, CD,Cl,, 8): 140.31 (s, free (S)-1), 135.5 (d, Jep = 104 Hz), 134.9 (d, Jer = 104 Hz). '"H NMR
(400 MHz, CD2Cly, 9): 8.12 — 8.08 (m, 2H), 8.01 — 7.90 (m, 6H), 7.83 — 7.81 (d, 2H), 7.77 — 7.73 (m,
13H), 7.76 — 7.58 (m, 8H), 7.54 — 7.41 (m, 7H), 7.38 — 7.20 (m, 9H), 7.02 — 7.00 (d, 2H), 6.96 — 6.90 (m,
3H), 6.77 (t, 1H), 6.66 (m, 1H), 6.60 — 6.46 (m, 7H), 6.39 (t, 1H), 6.16 — 6.13 (d, 1H), 6.08 — 5.99 (m,
2H), 5.93 -5.91 (d, 1H), 5.56 - 5.5 (d, 1H), 5.24 —5.22 (d, 1H), 5.11 —4.99 (m, 2H), 4.93 (bt, 1H), 3.08
—2.99 (m, 2H), 2.03 (s, 3H)
Preparative scale synthesis of [((S)-1):Pd][BArF] ((S)-11). [PdCl(allyl)]> (36.5 mg, 0.100 mmol) was
placed in a vial with a stir bar and dissolved in CH2Cl> (2 mL). A solution of (S)-1 (102.7 mg, 0.200
mmol) in CH>Cl, (2 mL) was added dropwise. The resulting yellow solution was stirred at room
temperature for 2 h. After this time, the solvent was removed in HV and the remaining yellow solid was
washed with n-pentane, filtered (3 x 3 mL) and dried in HV. The product was obtained as off-white solid
(133 mg, 94%). This product shows the same NMR signal pattern as the previous synthesis. To prepare
the cationic complex, 67 mg (0.097 mmol) were dissolved in CH>Cl, (2 mL) and a solution ligand (S)-1
(50 mg, 0.097 mmol) in 2 mL of CH>Cl> was added dropwise. After 3 min, NaBArF (86 mg, 0.097 mmol)
was added and the turbid yellow solution was stirred for 2 h at room temperature, centrifuged (6000 rpm,
7 min) and the supernatant decanted and evaporated to dryness. The product was obtained as pale-orange
solid (176 mg, 86 %). This product shows the same NMR signal pattern as the previous synthesis.
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2. X-ray crystallography

CCDC-2295527 for (pS,R)-5, CCDC-2295528 for (pR,R)-5, CCDC-2295529 for (pS,R)-8, and CCDC-
2295530 for (pR,R)-8 contain the supplementary crystallographic data for this paper. The data can be
obtained free of charge from Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge, CB2
1EZ, UK (fax: ++44-1223-336-033; e-mail: deposit@ccdc.cam.ac.uk).

Suitable single crystals of the investigated compounds were embedded in protective
perfluoropolyalkyether oil on a microscope slide and a single specimen was selected and subsequently
transferred to the cold nitrogen gas stream of the diffractometer. Intensity data for (pS,R)-5 and (pS,R)-8
were collected using MoK, radiation (A = 0.71073 A) on a Bruker Kappa PHOTON2 IuS Duo
diffractometer equipped with QUAZAR focusing Montel optics. Intensity data for (pR,R)-5 were
collected using MoK, radiation (A = 0.71073 A) on a Bruker Kappa APEX2 IuS Duo diffractometer
equipped with QUAZAR focusing Montel optics. Intensity data for (pR,R)-8 were collected using Cuk,
radiation (1 = 1.54184 A) on an Agilent SuperNova diffractometer equipped with an Atlas S2 detector.
All intensity data sets were collected at a temperature of 100 K. For (pS,R)-5, (pR,R)-5, and (pS,R)-8 data
were corrected for Lorentz and polarization effects, semi-empirical absorption corrections were
performed on the basis of multiple scans using SADABS.” The structures were solved by direct methods
(SHELX XT 2014/5)® and refined by full-matrix least-squares procedures on F? using SHELXL 2018/3.°
The data set of (pS,R)-8 was refined in blocked matrix mode using three roughly equally sized refinement
blocks. All non-hydrogen atoms were refined with anisotropic displacement parameters. For (pS,R)-5
and (pR,R)-S the positions of the B1 bound hydrogen atoms were taken from a difference Fourier
synthesis and their positional parameters were refined. All other hydrogen atoms were placed in positions
of optimized geometry, their isotropic displacement parameters were tied to those of the corresponding
carrier atoms by a factor of either 1.2 or 1.5. The asymmetric unit in the crystal structure of (pS,R)-8
contained two independent molecules of the Rh complex and a total of 15 molecules of benzene and 0.5
molecules of n-pentane. Similarity and, in part, pseudo-isotropic restraints were applied in the refinement
of the anisotropic displacement parameters of the atoms of the solvent molecules. Additional fixed
distance restraints were applied in the refinement of the n-pentane molecule. Olex2!° was used to prepare
material for publication. The measured data for (pR,R)-8 were processed with the CrysAlisPro software
package.!! Using Olex2,’ the structures were solved with the ShelXT!? structure solution program using
Intrinsic Phasing and refined with the ShelXL 2016/6% refinement package using Least Squares

Minimization. All non-hydrogen atoms were refined anisotropically. All hydrogen atoms were placed in
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ideal positions and refined as riding atoms with relative isotropic displacement parameters. The
asymmetric unit in the crystal structure of (pR,R)-8 contained one molecule of the Rh complex, 4
molecules of benzene and 1 molecule of n-hexane. Two of the benzene molecules are disordered over
two positions. In order to obtain a satisfying disorder model, these moieties (as well as a third benzene)
were refined as rigid hexagons. Additionally, rigid bond restraints (RIGU),"3!* similarity restraints
(SIMU) and in some cases even pseudo-isotropic restraints (ISOR) were applied to the disordered solvent
molecules.

Crystallographic data, data collection, and structure refinement details are given in Table S1.
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Table S1. Crystallographic data and refinement details for (pS,R)-5, (pR,R)-5, (pS,R)-8, (pR,R)-8

Compound (pS,R)-5 (pR,R)-5 (pS,R)-8 (pR,R)-8

CCDC-no. 2295527 2295528 2295529 2295530
Empirical formula Cs0H290BNO,P C40H290BNO,P C20625H152C12N4OsP4Rh2 - Ci90H142C12N4OsPsRhy
Molecular weight 583.63 583.63 321491 3009.67

Crystal shape, color
Crystal size [mm]
Temperature [K]

Crystal system
Space group
a[A]

b[A]

c[A]
a[°]

BI]

y [°]
VA3]

Z
p [g em™] (calc.)
u [mm]

F (000)
Tmin; Tmax
26 interval [°]
Collected refl.
Independent refl.; Rint
Obs. refl. Fy >40(F))
No. ref. param.
wR> (all data)
R1 (Fo >40(Fy))
GooF on F?
Apmax/min [e A_3]

Absolute struct. param.'*

block, colorless
0.22x0.17 x0.15
100
monoclinic
P2,
7.8461 (10)
15.3010 (19)
13.0363 (15)
90
98.601(4)
90
1547.4 (3)
2
1.282
0.13
624
0.673; 0.746
5.7<260<61.0
119304
9440, 0.045
9154
415
0.0812
0.0307
1.054
0.284; -0.228
—0.013(14)

needle, colorless
0.28 x 0.07 x 0.07
100
trigonal
R3
28.285(3)
28.285(3)
10.097(2)
90
90
120
6996(2)
9
1.276
0.126
2808
0.476; 0.746
43<260<53.1
67265
6374,0.117
5839
407
0.1310
0.0594
1.212
0.25;-0.41
0.04(5)

block, yellow
0.34 x0.23 x 0.17
100
triclinic
Pl
17.4039(12)
19.9901(14)
25.7764(17)
67.834(2)
80.669(3)
76.916(3)
8060(1)
2
1.325
0.342
3331
0.698; 0.746
3.7<260<59.2
472238
90374, 0.085
74503
4072
0.1170
0.0510
1.041
1.093; —0.894
—0.009(5)

needle, orange
0.262 x 0.143 x 0.047
100
monoclinic
P2,
12.44859(10)
37.3327(2)
16.40694(15)
90
102.2954(8)
90
7450.06(10)
2
1.342
3.031
3116.0
0.624; 0.867
7.268 <260<144.8
83261
28917, 0.0493
27880
1943
0.1315
0.0500
1.020
0.88; 0.88
-0.021(3)
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Figure S1. Thermal ellipsoid representation of the molecular structure of (pS,R)-5 with the applied
numbering scheme (50 % probability ellipsoids, H atoms omitted for clarity).

Figure S2. Thermal ellipsoid representation of the molecular structure of (pR,R)-5 with the applied
numbering scheme (50 % probability ellipsoids, H atoms omitted for clarity).
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Figure S3. Thermal ellipsoid representation of the molecular structure of the two independent molecules
of (pS,R)-8 in crystals of (pS,R)-8:(CsHs)7.5(n-CsHi2)o.2s with the applied numbering scheme (50 %
probability ellipsoids, H atoms and solvent molecules omitted for clarity).
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molecules omitted for clarity).
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3. NMR spectra
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Figure S6. '"H NMR of the aromatic region of the enriched diastereomeric mixture of 5 in CsDs
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Figure S16. 3C {'H} NMR of diastereopure (pS,R)-5 in C¢Ds
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Figure S22. Zoom-in on Figure S21
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Figure S33. 3C{'H} NMR of complex (pR,R)-9 in CD2Cl»
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Figure S48. 3'P{'H} NMR of complex (pR,R)-10 in CD>Cl>
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Figure S50. 3C{'H} NMR of complex (pR,R)-10 in CD>Cl»
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Figure S52. 3'P{'H} NMR of complex (pS,R)-10 in CD>Cl»
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Figure S54. 'H NMR of complex (S)-11 in CD>Cl»
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4. Catalytic reactions and HPLC traces

Rh catalyzed addition of PhB(OH), to cyclohexenone

Method A. Inside a glovebox, the Rh catalyst (0.0096 mmol, 0.02 equiv) was combined with boronic
nucleophile (0.75 mmol, 1.5 equiv.) in a 20 mL vial. Dioxane (1.0 mL), enone (0.50 mmol, 1 equiv) and
degassed aqueous KOH solution (1.0 M, 0.25 mL, 0.5 equiv) were added. The reaction mixture was
stirred at 50 °C for 48 h. The vial was taken out of the glovebox. The reaction mixture was diluted in
Et,O (10 mL) and washed with water (3 x 10 mL). The aqueous phase was extracted with Et,O (10 mL).
The combined organic phases were dried over MgSO, and all volatiles were removed under reduced
pressure. The product was purified by flash column chromatography. Enantiomeric excess was

determined from the purified product by chiral stationary HPLC.!>

Method B. In the glovebox, a vial was loaded with Rh catalyst (0.0083 mmol, 0.02 equiv), boronic
nucleophile (0.830 mmol, 2 equiv) and solid K;PO, (0.207 mmol, 0.5 equiv). Enone (0.415 mmol, 1
equiv) was dissolved in toluene (2 mL) and added to the reaction mixture. Finally, H,O (0.2 mL) was
added via syringe. The reaction mixture was stirred for 24 h at 40 °C, then taken out of the glove box,
diluted with Et,O (15 mL), washed with H,O (3 x 20 mL), and the aqueous phase extracted with Et,O
(20 mL). The combined organic phases were dried over MgSO,, filtered, the volatiles removed under
reduced pressure, and the product purified by flash column chromatography. Enantiomeric excess was

determined by chiral stationary HPLC.

3-(4-Methylphenyl)cyclohexanone 14aa: The product was purified with flash column chromatography
(Hexane/EtOAc 12:1) and obtained as a yellowish oil Chiral stationary HPLC: Chiracel AD-H,
hexane/isopropanol 95:5, ts = 9.0 min, tg, = 9.5 min. 'H NMR (CDCl;, 600 MHz, 3): 7.41 — 7.31 (m,
2H),7.15-7.11 (m, 7H), 6.97 - 6.94 (m, 1H), 6.85 - 6.70 (m, 2H), 3.00 - 2.96 (m, 1H), 2.59 — 2.44 (m,
4H), 2.33 (s,3H),2.16 — 2.05 (m, 3H), 1.84 — 1.76 (m, 3H).
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Figure S56. HPLC trace entry 1, Table 1: Chiracel AD-H; Hexane/Isopropanol 95:5; flow = 0.5
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Figure S57. HPLC trace entry 2, Table 1: Chiracel AD-H; Hexane/Isopropanol 95:5; flow = 0.5 mL/min

3-Phenylcyclohexanone 14ab: The product was purified by flash column chromatography
(Hexane/EtOAc 9:1) and obtained as a colorless oil. Chiral stationary HPLC (Chiracel AD-H;
Hexane/Isopropanol 98:2; flow = 0.5 mL/min; ts = 16.71 min; tg = 19.50 min, Chiracel OD-H
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Hexane/Isopropanol 98:2; flow = 0.5 mL/min; ts, = 24.39 min; tg, = 26.37 min). 'H NMR (CDCl;, 400
MHz, §): 7.61-7.42 (m, 1H), 7.38-7.31 (m, 2H), 7.24-7.17 (m, 3H), 3.51-3.45 (q, 0.3H), 3.19-3.12 (tt,
0.2H), 3.05-2.97 (tt, 1H), 2.63-2.58 (m, 1H), 2.55-2.53 (m, 1H), 2.50-2.44 (m, 1H), 2.42-2.34 (m, 1H),
2.16-2.05 (m, 2H), 1.93-1.87 (m, 1H), 1.85-1.79 (m, 2H).
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Figure S58. HPLC trace entry 3, Table 1: Chiracel AD-H; Hexane/Isopropanol 98:2; flow = 0.5 mL/min
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Figure S59. HPLC trace entry 4, Table 1: Chiracel OD-H; Hexane/Isopropanol 98:2; flow = 0.5 mL/min
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Figure S60. HPLC trace entry 5, Table 1: Chiracel OD-H; Hexane/Isopropanol 98:2; flow = 0.5 mL/min

4-Phenyl-2-octanone 14bb: The product was purified by flash column chromatography (hexane/EtOAc
9:1) and obtained as a yellowish oil. Chiral stationary HPLC: Chiracel OD-H, hexane/i-PrOH 98:2, t5, =
13.013 min, tg, = 13.437 min. 'H NMR (CDCl;, 400 MHz, §): 7.30-7.28 (m, 1H), 7.20-7.16 (m, 3H),
3.12-3.06 (m, 1H), 2.72-2.70 (d, 2H), 2.01 (s, 3H), 1.67-1.53 (m, 3H), 1.39-1.32 (m, 3H), 0.81 (t, 3H).
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Figure S61. HPLC trace entry 6, Table 1: Chiracel OD-H; Hexane/Isopropanol 98:2; flow = 0.5 mL/min
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Pd catalyzed allylic alkylation

Inside a glovebox, a solution of cationic Pd complex (24 mg, 0.01 mmol) in 0.5 mL CH,Cl, was added
to a stirring slurry of 1,3-diphenylallyl acetate 16 (190 mg, 0.75 mmol), indole 15 (88 mg, 0.75 mmol)
and CsCO; (488 mg, 1.50 mmol) in 3 mL 1,2-difluorobenzene. The resulting brownish slurry was stirred
for 72 h at 40 °C and then evacuated to dryness and purified by flash column chromatography.

[1,3-Diphenyl-2-propen-1-yl]-1H-indole 17a: The product was purified by flash column
chromatography (Hexane/EtOAc 95:5) and obtained as a white solid. 'H NMR (400 MHz, CDCl;) &
(ppm) 7.80 (s, 1H), 7.37 (d,J = 8.0 Hz, 1H), 7.33 — 7.03 (m, 12H), 6.96 (t,J = 7.5 Hz, 1H), 6.74 — 6.57
(m, 1H), 6.40 (s, 1H), 6.36 (s, 1H), 5.05 (d,J = 7.4 Hz, 1H).
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Figure S62. HPLC trace of entry 1, Table 2: Chiracel AD-H, 90:10 Hex/iPrOH, flow: 1.0 mL/min
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Figure S63. HPLC trace of entry 2, Table 2: Chiracel AD-H, 90:10 Hex/iPrOH, flow: 1.0 mL/min
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Figure S64. HPLC trace of entry 3, Table 2: Chiracel AD-H, 90:10 Hex/iPrOH, flow: 1.0 mL/min

[1,3-Diphenyl-2-propen-1-yl]-6-fluoro-1H-indole 17b: The product was purified by flash column
chromatography (Hexane/EtOAc 98:2) and obtained as a yellow oil. Chiral stationary HPLC: Chiracel
AD-H; Hexane/Isopropanol 97:3; t1 =40.56 min, t2 = 43.14 min. 'H NMR (CDCl;; 400 MHz; Fig. A61,
A62): 790 (bs, 1H), 743 - 7.24 (m, 12H), 7.04 — 7.01 (dd, 1H), 6.87 — 6.82 (m, 2H), 6.78 — 6.72 (dd,
1H),6.51 -6.47 (d, 1H),5.13 -5.12 (d, 1H).
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Figure S65. HPLC trace entry 4, Table 2: Chiracel AD-H, 97:3 Hex/iPrOH, flow: 0.5 mL/min

[1,3-Diphenyl-2-propen-1-yl]-4-methyl-1H-indole 17c: The product was purified by flash column

chromatography (Hexane/EtOAc 15:1) and obtained as white solid. Chiral stationary HPLC: Chiracel
OD-H; Hexane/Isopropanol 99:1; t1 = 42.99 min, t2 = 63.53 min. 'H NMR (CDCl;, 400 MHz, 9): 8.01
(bs, 1H), 7.36 — 7.18 (m, 12H), 7.06 (t, 1H), 6.86 — 6.76 (m, 2H), 6.72 — 6.72 (d, 1H), 6.25 — 6.22 (d,

1H),5.46 —5.44 (d, 1H), 2.52 (s, 3H).
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Figure S66. HPLC trace entry 5, Table 2: Chiracel OD-H, 99:1 Hex/iPrOH, flow: 0.7 mL/min
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