Supporting Information

Pd/Brønsted acid catalysed intramolecular N-allylation of indoles and pyrroles with alkynes for the synthesis of N-fused heterocycles

List of Contents

1.	General Information	S2
2.	General procedure for the synthesis of starting materials	S3
	a) General procedure for the synthesis of S2a-S2c	. S3
	b) General procedure for the synthesis of S3a-S3g	S4
	c) Procedure for the synthesis of S3h	S 5
	d) Procedure for the synthesis of S3i	S6
	e) General procedure for the synthesis of 1a-1z and 3a-3g (beside 1n)	S6
	f) Procedure for the synthesis of 1n	S7
	g) Procedure for the synthesis of S4	S7
3.	General procedure for the synthesis of 2a-2z, 4a-4g, P1 and P2	S8
4.	Optimization of reaction conditions for the synthesis of 2a	S9
5.	Scale up reaction and synthetic transformation	S12
6.	Mechanistic study	S15
7.	Analytical data of S3a-S3i	S17
8.	Analytical data of 1a-1z, 3a-3g and S4	S21
9.	Analytical data of 2a-2z, 4a-4g, P1, P2, 5, 6 and 7	S38
10.	X-ray crystal structure and data of 2a	S57
11.	References	S65
12.	NMR Spectra of starting materials	S66
12	NMR Spectra of products	S118

1. General Information:

In CDCl₃, proton (¹H) and carbon (¹³C) spectra were recorded at 297 K using a Bruker AVANCE NEO Ascend 400 MHz FT-NMR running at 400 MHz for proton nuclei, 101 MHz for carbon nuclei and 377 MHz for fluorine nuclei. The ¹H NMR results were noted as follows: chemical shift (δ) [multiplicity, coupling constant J (Hz), relative integral] and multiplicity is defined as follows: m = multiplet; q = quartet; s = singlet; d = doublet; t = triplet; dd = doublet of doublets; td = triplet of doublet or combinations of the aforementioned components. Splitting patterns that cannot be depicted, were noted as multiplet (m). For ¹³C NMR spectra, the data was mentioned as singlet peaks only with their chemical shift values. The tetramethylsilane (0 ppm) or residual CHCl₃ (δ 7.26) was used to reference the ¹H NMR spectra and the central peak (δ 77.0) of the CDCl₃ "triplet" was used as the reference signal in proton-decoupled ¹³C NMR spectra. High-resolution mass spectral analysis (HRMS) was performed on the Xevo G2-XS QTOF Quadrupole Time of Flight Mass Spectrometer Waters instrument with an ESI ion source. X-ray crystallography was performed on a Rigaku XtaLab Supernova instrument. Except for our prepared substrates and products, all the reagents and solvents were purchased commercially and used in their received forms. Anhydrous solvents were purchased or dried through the distillation using CaH₂ and stored over oven-dried 4Å molecular sieves. Above room temperature reactions were conducted on an aluminum metal block (for substrate preparation) and in silicon oil bath (for catalytic reactions). Analytical thin-layer chromatography (TLC) was performed on 0.2 mm coated silica gel (EM 60-F254) plates supplied by Merck Germany. Visualization was accomplished with UV light (254 nm) and exposure to ethanolic phosphomolybdic acid (PMA) stain followed by heating. Flash column chromatography was carried out using commercially available silica gel (Merck) with a mesh size of 100–200 (for starting materials) and 230-400 (for catalytic reactions).

2. General procedure for the synthesis of starting materials:

a) General procedure for the synthesis of S2a- S2c: N-(prop-2-yn-1-yl)aniline (S2a):¹

To a solution of aniline (1.6 g, 17.2 mmol, 2.05 equiv.) in DMF (20 mL), K_2CO_3 (22 g, 8.82 mmol, 1.05 equiv.) was added portion-wise and stirred for 5 minutes at rt. Then a solution of propargyl bromide (0.62 g, 80% solution in toluene) in DMF (5 mL) was added to the reaction mixture slowly and continued the stirring for overnight at rt. After the completion of the reaction as indicated by TLC, it was dissolved in ethyl acetate, and organic layer was washed twice with brine solution followed by 3 times with 1M HCl solution. The organic solvent was dried over Na₂SO₄, then evaporated under reduced pressure. The crude mixture was then purified by column chromatography on silica gel to afford the desired product **S2a** as yellow liquid (0.41 g, 60%). Eluent: Hexane/ethyl acetate = 95:5. Yellow liquid, yield 60%. ¹H NMR (400 MHz, CDCl₃): δ 7.18 – 7.12 (m, 2H), 6.75 (t, *J* = 8.0 Hz, 1H), 6.69 (d, *J* = 8.0 Hz, 2H), 3.88 (d, *J* = 4 Hz, 2H), 2.15 (t, *J* = 4.0 Hz, 1H). Spectral data of the compound matched with the reported data.

N-(but-2-yn-1-yl)aniline (S2b):¹

To a solution of aniline (0.465 g, 5 mmol) in acetonitrile (2.5 mL), 1-bromo-2-butyne (0.2 g, 1.5 mmol) was added and stirred for overnight at rt. After the completion of the reaction as indicated by TLC, it was dissolved in diethyl ether, and organic layer was washed twice with NH4Cl solution followed by 3 times with 1M HCl solution. The crude mixture was then purified by column chromatography on silica gel to afford the desired product **S2b** as yellow

liquid (0.15 g, 65%). Eluent: Hexane/ethyl acetate = 90:10. Yellow liquid, yield 60%. ¹H NMR (400 MHz, CDCl₃, ppm): δ 7.22 – 7.18 (m, 2H), 6.78 – 6.74 (m, 1H), 6.68 – 6.65 (m, 2H), 3.87 – 3.86 (d, *J* = 4.0 Hz, 2H), 3.83 (s, 1H), 1.81 – 1.80 (m, 3H). Spectral data of the compound matched with the reported data.

N-benzylprop-2-yn-1-amine (S2c):²

To a solution of benzyl amine (0.66 mL, 6 mmol) in toluene (1 mL), propargyl bromide (0.11 mL, 1 mmol) was added slowly and continued the stirring for 24 h at rt. After the completion of the reaction as indicated by TLC, the solvent was evaporated under reduced pressure. The crude mixture was then purified by column chromatography on silica gel to afford the desired product **S2c** as yellow liquid (1.6 g, 88%). Eluent: Hexane/ethyl acetate = 85:15. yellow liquid, yield 75%. ¹H NMR (400 MHz, CDCl₃): δ : 7.30 – 7.14 (m, 5H), 3.80 (s, 2H), 3.34 (bs, 2H), 2.18 (d, *J* = 4.0 Hz, 1H), 1.54 (br s, 1H). Spectral data of the compound matched with the reported data.

b) General procedure for the synthesis of S3a-g:³

A solution of corresponding indole-2-carboxylic acid (1.5 equiv.) in dry Et_2O (1.5 mL/mmol) was cooled to 0 °C. Thionyl chloride (2.13 equiv.) was added dropwise under Argon. After the completion of the addition, the mixture was warmed to rt. The mixture was refluxed for 6 h. The solvent was evaporated under reduced pressure. The residue was then dissolved in dry THF and a solution of corresponding propargyl amine (**S2a**) (1 equiv.), Et_3N (1.2 equiv.) in dry THF (1.5 mL/mmol) was added dropwise under Argon at rt. After the

addition was finished, the solution was stirred under reflux for overnight. After the reaction was complete as indicated by TLC, the solvent was evaporated, and the residue was dissolved in DCM and the organic phase was washed with 1% aqueous HCl solution and brine solution. The organic solvent was dried over Na₂SO₄, then evaporated under reduced pressure. The crude mixture was then purified by column chromatography on silica gel to afford the desired product.

c) Procedure for the synthesis of S3h:⁴

A solution of indole-2-carboxylic acid (1 equiv.) and DMF (catalytic amount) in dry DCM (6.5 mL/mmol) was stirred at rt. Oxalyl chloride (3 equiv.) was added dropwise under Argon. After the completion of the addition, the mixture was stirred at rt for 1 h and then refluxed for 1 h. The solvent was evaporated under reduced pressure. The residue was then dissolved in dry DCM (1.5 mL/mmol) and a solution of corresponding propargyl amine (**S2c**) (1 equiv.), Et₃N (1.2 equiv.) in dry DCM was added dropwise under Argon at rt. After the addition was finished, the solution was stirred at rt for one hour. After the reaction was complete as indicated by TLC, the solvent was evaporated, and the residue was dissolved in DCM and the organic phase was washed with 1% aqueous HCl solution and brine solution. The organic solvent was dried over Na₂SO₄, then evaporated under reduced pressure. The crude mixture was then purified by column chromatography on silica gel to afford the desired product **S3h**. Eluent: Hexane/ethyl acetate = 75:25. White solid, 270 mg, 59% yield. ¹H **NMR** (400 MHz, CDCl₃): δ 9.35 (br s, 1H), 7.63 – 7.66 (m, 1H), 7.15 – 7.45 (m, 8H), 7.09 – 7.14 (m, 1H), 5.05(s, 2H), 4.39 (s, 2H), 2.37 (1H, s). Spectral data of the compound matched with the reported data.

d) Procedure for the synthesis of S3i:⁵

A solution of pyrrole-2-carboxylic acid (1.5 equiv.) in dry toluene (3 mL/mmol) was cooled to 0 °C. Thionyl chloride (2.13 equiv.) was added dropwise under Argon. After the completion of the addition, the mixture was warmed to rt. The mixture was refluxed for 4 h. The solvent was evaporated under reduced pressure. The residue was then dissolved in dry DCM (1.5 mL/mmol) and a solution of propargyl amine (**S2a**) (1.5 equiv.), Et₃N (1 equiv.) in dry DCM was added dropwise under Argon at rt. After the addition was finished, the solution was stirred under reflux for overnight. After the reaction was complete as indicated by TLC, the solvent was evaporated, and the residue was dissolved in DCM and the organic phase was washed with 1% aqueous HCl solution and brine solution. The organic solvent was dried over Na₂SO₄, then evaporated under reduced pressure. The crude mixture was then purified by column chromatography on silica gel to afford the desired product **S3i**.

e) General procedure for the synthesis of 1a-1z and 3a-3g (beside 1n):¹

S3a-S3i (1.0 equiv), triethylamine (6 mL/mmol), R¹-I (1.2 equiv), and Pd(PPh₃)₂Cl₂ (0.01 equiv) were added under Argon atmosphere. CuI (0.01 equiv) is then added. The reaction mixture was stirred at rt for overnight. After the reaction was complete as indicated by TLC, it was dissolved in ethyl acetate, and organic layer was washed with saturated NH₄Cl solution, dried over Na₂SO₄, and evaporated under reduced pressure. The residue was further purified by column chromatography on silica gel.

f) Procedure for the synthesis of 1n:³

A solution of indole-2-carboxylic acid (1.5 equiv.) in dry Et₂O (1.5 mL/mmol) was cooled to 0 °C. Thionyl chloride (2.13 equiv.) was added dropwise under Argon. After the completion of the addition, the mixture was warmed to rt. The mixture was refluxed for 6 h. The solvent was evaporated under reduced pressure. The residue was then dissolved in dry THF and a solution of **S2b** (1 equiv.), Et₃N (1.2 equiv.) in dry THF (1.5 mL/mmol) was added dropwise under Argon at rt. After the addition was finished, the solution was stirred under reflux for overnight. After the reaction was complete as indicated by TLC, the solvent was evaporated, and the residue was dissolved in DCM and the organic phase was washed with 1% aqueous HCl solution and brine solution. The organic solvent was dried over Na₂SO₄, then evaporated under reduced pressure. The crude mixture was then purified by column chromatography on silica gel to afford the desired product.

g) Procedure for the synthesis of S4:4

To a solution of **1a** (55 mg, 0.2 mmol, 1 equiv.) in THF (2 mL), t-BuOK (57mg, 0.5 mmol, 2.5 equiv.) was added and the reaction was stirred at rt for 1 minute. After the reaction was complete as indicated by TLC, the mixture was filtered on short plug of silica gel with ethyl acetate. The solvent was evaporated under reduced pressure and was subjected to column chromatography on silica gel to afford the desired product.

3. General procedure for the synthesis of 2a-2z, 4a-4g, P1 and P2:

To a flame dried schlenk tube equipped with magnetic stirbar and sealed with septum, was charged with corresponding substrate (**1a-1z**, **3a-3g**) (0.1 mmol), $Pd(PPh_3)_4$ (0.005 mmol, 5 mol%), tris(2-furyl) phosphine (10 mol%. 0.01 mmol) and benzoic acid (0.03 mmol, 30 mol%) under Argon atmosphere. Then 0.7 mL dry toluene was added via syringe. The reaction was heated to 110 °C and stirred at same temperature for 12 h. After the completion of reaction as indicated by TLC, the mixture was diluted with ethyl acetate and filtered through a celite pad. The solvent was evaporated under reduced pressure. Resulting residue was then purified by column chromatography on silica gel to afford the desired product.

To a flame dried schlenk tube equipped with magnetic stirbar and sealed with septum, was charged with allene substrate (**S4**, 0.1 mmol), $Pd(PPh_3)_4$ (0.005 mmol, 5 mol%), tris(2-furyl) phosphine (10 mol%. 0.01 mmol) and benzoic acid (0.03 mmol, 30 mol%) under Argon atmosphere. Then 0.7 mL dry toluene was added via syringe. The reaction was heated to 110 °C and stirred at same temperature for 3 h. After the completion of reaction as indicated by TLC, the mixture was diluted with ethyl acetate and filtered through a celite pad. The solvent was evaporated under reduced pressure. Resulting residue was then purified by column chromatography on silica gel to afford the desired product.

4. **Optimization of the reaction conditions for the synthesis of 2a:** Table S1: Optimization of catalyst loading:^{*a*}

Entry	Pd(PPh ₃) ₄	Yield (%)
1	2.5 mol%	35
2	5 mol%	82
3	7.5 mol%	65

^aIsolated yields

Table S2: Additional phosphine screening:^a

Entry	Ligand	Yield 2a (%) ^b
1	-	56
2	Triphenylphosphine	56
3	Tris(o-tolyl)phosphine	70
4	Tris(p-tolyl)phosphine	53
5	DPEPhos	18
6	John phos	32
7	Tricyclohexylphosphine	33.6

8	Tris(4-fluorophenyl)phosphine	23.2
9	Tris(perfluorophenyl)phosphine	15
10	Tris(4-(trifluoromethyl)phenyl)phosphine	<5
11	SPhos	30.8
12	Tri-n-butylphosphine	53
13	Tris(2,4,6-trimethylphenyl)phosphine	57
14	Tris(2-methoxy)phenylphosphihne	62
15	Tris(4-methoxy)phenylphosphihne	44
16	Tris(2-furyl)phosphine	82

^aIsolated yields

Table S3: Structures of the ligands used during optimization study:

Table S4: Additional acid screening:^a

Entry	Acid	Yield (%)
1	benzoic acid	82
2	<i>p</i> -nitro benzoic acid	24

3	o-methyl benzoic acid	51
4	<i>p</i> -fluoro benzoic acid	60
5	<i>m</i> -chloro benzoic acid	<5
6	acetic acid	<5
7	pivalic acid	17
8	trifluoro acetic acid	<5
9	1-adamantecarboxylic acid	28
10	<i>p</i> -toluenesulfonic acid	Nil

^aIsolated yields

Table S5: Optimization of acid amount:^a

Entry	PhCOOH	Yield (%)
1	10 mol%	74
2	20 mol%	47
3	30 mol%	82
4	40 mol%	53

^aIsolated yields

Table S6: Optimization of solvent:^{*a*}

Entry	Solvent (0.7mL)	Yield (%)
1	toluene	82
2	1, 4-dioxane	46
3	dimethoxy ethane	37
4	xylene	28
5	DCE	16
6	DMF	Nil
7	THF	Nil

^aIsolated yields

5. Scale up reaction and synthetic transformation:

A. 1 mmol scale reaction:

A flame dried schlenk tube equipped with magnetic stir bar and sealed with septum, was charged with **1a** (1 mmol, 350.5 mg), $Pd(PPh_3)_4$ (0.05 mmol, 58 mg), tris(2-furyl) phosphine (0.1 mmol, 23.5 mg) and benzoic acid (0.3 mmol, 37 mg) under Argon atmosphere. Then 7 mL toluene was added via syringe. The reaction was heated to 110 °C and stirred at same temperature for 12 h. After the completion of reaction as indicated by TLC, the mixture was diluted with ethyl acetate and filtered through a celite pad. The solvent was evaporated under reduced pressure. Resulting residue was then purified by column chromatography on silica gel (Hexane/ethyl acetate = 92:8) and obtained **2a** as white coloured solid (281 mg, 80.2% yield).

B. Synthetic transformation of product 2a:^{6,7,8}

A flame dried schlenk tube equipped with magnetic stir bar and sealed with septum, was charged with **2a** (0.1 mmol, 35.5 mg), Pd/C (0.01 mmol, 10% Pd, 30 mg) and 0.5 mL ethyl acetate, and the mixture was stirred at room temperature under hydrogen atmosphere (using a H₂ balloon) for 24 h. The reaction was monitored by TLC. After the completion of reaction, the mixture was passed through a celite pad and washed with ethyl acetate. After filtration and evaporation in vacuo, the residue was purified by flash chromatography on silica gel (Hexane/ethyl acetate = 90:10) to afford product **5** (33.0 mg, 94% yield) as white solid.

II)

A flame dried schlenk tube equipped with magnetic stir bar and sealed with septum, was charged with **2a** (0.1 mmol, 35.5 mg), NBS (0.12 mmol, 22 mg) and 0.4 mL DCM, and the mixture was stirred at room temperature for overnight. The reaction was monitored by TLC. After the completion of reaction, the solvent was evaporated and the residue was dissolved in ethyl acetate and the organic phase was washed with water 3 times. The organic part was dried over Na₂SO₄, then evaporated under reduced pressure. The crude mixture was then purified by column chromatography on silica gel to afford the desired product. (Hexane/ethyl acetate = 92:8) to afford product **6** (39.0 mg, 92% yield) as white solid.

A flame dried schlenk tube equipped with magnetic stir bar and sealed with septum, was charged with **6** (0.075 mmol, 32 mg), phenyl boronic acid (1.5 equiv, 30 mg), Pd(PPh₃)₄ (10 mol%, 8.6 mg) and Sodium carbonate (1.5 equiv., 12 mg). Then dioxane:H₂O (7:1, 3.5 mL) were added via syringe. The reaction was heated to 100 °C and stirred at same temperature for 3 h. After the completion of reaction as indicated by TLC, the solvent was evaporated. The residue was dissolved in ethyl acetate and washed with water 3 times. The organic part was dried over Na₂SO₄, then evaporated under reduced pressure. The crude mixture was then purified by column chromatography on silica gel to afford the desired product. (Hexane/ethyl acetate = 92:8) to afford product **7** (17 mg, 54% yield) as white solid.

6. Mechanistic study:

I) Control experiment

Substrate S4 was reacted under the standard reaction conditions. The N-allylated product P2 was isolated in 82% yield. This indicates that allene could be the possible intermediate in our reaction.

II) Deuterium labelling experiment

To a flame dried schlenk tube equipped with magnetic stirbar and sealed with septum, was charged with **1a** (0.1 mmol), Pd(PPh₃)₄ (0.005 mmol, 5 mol%), tris(2-furyl) phosphine (10 mol%. 0.01 mmol) and PhCOOD (0.2 mmol, 2 equiv) under Argon atmosphere. Then 0.7 mL dry toluene was added via syringe. The reaction was heated to 110 °C and stirred at same temperature for 12 h. After the completion of reaction as indicated by TLC, the mixture was diluted with ethyl acetate and filtered through a celite pad. The solvent was evaporated under reduced pressure. Resulting residue was then purified by column chromatography on silica gel to afford the desired product **2a**-*d*_n with 62% yield. The incorporation of deuterium was observed in 25%, 18% and 18% ratios respectively at α , β and γ positions of **2a**-*d*_n.

7. Analytical data of S3a-S3i:

N-phenyl-N-(prop-2-yn-1-yl)-1H-indole-2-carboxamide (S3a)

Eluent: Hexane/ethyl acetate = 90:10. Yellow solid, 250 mg, 74% yield, MP: 187-188 °C. ¹H NMR (400 MHz, CDCl₃): δ 9.42 (s, 1H), 7.49 – 7.41 (m, 3H), 7.39 – 7.33 (m, 3H), 7.32 – 7.25 (m, 1H), 7.14 (d, *J* = 7.6 Hz, 1H), 6.94 (d, *J* = 7.6 Hz, 1H), 5.21 (s, 1H), 4.61 (d, *J* = 2.4 Hz, 2H), 2.21 (t, *J* = 2.4 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃): δ 161.7, 141.9, 135.5, 129.9, 129.2, 129.0, 127.6, 124.8, 122.3, 120.3, 111.7, 107.7, 78.8, 77.4, 77.3, 77.1, 76.7, 72.5, 40.2. ESI-HRMS (m/z): calculated for C₁₈H₁₅N₂O [M+H]⁺ 275.1184, found 275.1199.

5-chloro-N-phenyl-N-(prop-2-yn-1-yl)-1H-indole-2-carboxamide (S3b)

Eluent: Hexane/ethyl acetate = 84:16. Yellow solid, 220 mg, 64% yield, MP: 193-195 °C. ¹H NMR (400 MHz, CDCl₃): δ 10.19 (s, 1H), 7.46 – 7.41 (m, 3H), 7.36 – 7.30 (m, 3H), 7.24 (d, J = 1.6 Hz, 2H), 7.09 (dd, J = 8.4, 1.6 Hz, 1H), 5.12 (s, 1H), 4.63 (d, J = 2.0 Hz, 2H), 2.22 (t, J = 2.0 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃): δ 161.6, 141.7, 134.1, 130.2, 130.0, 129.3, 128.9, 128.4, 125.8, 125.2, 121.4, 113.1, 107.1, 78.7, 72.7, 40.4. ESI-HRMS (m/z): calculated for C₁₈H₁₄N₂OCl [M+H]⁺ 309.0795, found 309.0772.

5-fluoro-N-phenyl-N-(prop-2-yn-1-yl)-1H-indole-2-carboxamide (S3c)

Eluent: Hexane/ethyl acetate = 84:16. Yellow solid, 290 mg, 78% yield, MP: 187-190 °C. ¹H NMR (400 MHz, CDCl₃): δ 9.59 (s, 1H), 7.49 – 7.43 (m, 3H), 7.38 – 7.32 (m, 2H), 7.30 – 7.23 (m, 1H), 6.95 – 6.87 (m, 2H), 5.15 (s, 1H), 4.62 (d, *J* = 2.8 Hz, 2H), 2.22 (t, *J* = 2.8 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃): δ 161.4, 156.7 (d, *J* = 236.3 Hz), 141.7, 132.2, 130.4, 130.0, 129.3, 128.9, 127.6 (d, *J* = 11.1 Hz), 113.7 (d, *J* = 27.3 Hz), 112.6 (d, *J* = 9.1 Hz), 107.4 (d, *J* = 6.1 Hz), 106.3 (d, *J* = 23.2 Hz), 78.6, 72.6, 40.3. ¹⁹F NMR (377 MHz, CDCl₃): δ - 123.50. ESI-HRMS (m/z): calculated for C₁₈H₁₄N₂OF [M+H]⁺ 293.1090, found 293.1080.

5-methyl-N-phenyl-N-(prop-2-yn-1-yl)-1H-indole-2-carboxamide (S3d)

Eluent: Hexane/ethyl acetate = 84:16. Yellow solid, 200 mg, 66% yield, MP: 182-183 °C. ¹H NMR (400 MHz, CDCl₃): δ 9.86 (s, 1H), 7.45 – 7.36 (m, 3H), 7.35 – 7.29 (m, 2H), 7.24 (d, *J* = 8.0 Hz, 1H), 7.03 (s, 1H), 6.95 (d, *J* = 8.0 Hz, 1H), 5.13 (s, 1H), 4.61 (d, *J* = 2.4 Hz, 1H), 2.27 – 2.17 (m, 4H). ¹³C NMR (101 MHz, CDCl₃): δ 162.0, 142.0, 134.2, 129.9, 129.5, 129.1, 129.0, 127.8, 126.7, 121.5, 111.6, 107.4, 78.9, 72.6, 40.3, 21.7. ESI-HRMS (m/z): calculated for C₁₉H₁₇N₂O [M+H]⁺ 289.1341, found 289.1348.

5-methoxy-N-phenyl-N-(prop-2-yn-1-yl)-1H-indole-2-carboxamide (S3e)

Eluent: Hexane/ethyl acetate = 80:20. Yellow solid, 220 mg, 70% yield, MP: 184-186 °C. ¹H NMR (400 MHz, CDCl₃): δ 9.44 (s, 1H), 7.50 – 7.41 (m, 3H), 7.38 – 7.31 (m, 2H), 7.21 (d, *J* = 8.8 Hz, 1H), 6.83 (dd, *J* = 8.8, 2.4 Hz, 1H), 6.67 (d, *J* = 1.6 Hz, 1H), 5.13 (s, 1H), 4.61 (d, *J* = 2.0 Hz, 2H), 3.67 (s, 3H), 2.21 (t, *J* = 2.0 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃): δ 161.6, 154.4, 141.9, 131.0, 129.9, 129.3, 129.1, 129.0, 127.8, 116.5, 112.6, 107.3, 102.3, 78.8, 72.5, 55.6, 40.2. **ESI-HRMS (m/z):** calculated for C₁₉H₁₇N₂O₂ [M+H]⁺ 305.1290, found 305.1280.

6-fluoro-N-phenyl-N-(prop-2-yn-1-yl)-1H-indole-2-carboxamide (S3f)

Eluent: Hexane/ethyl acetate= 84:16. Yellow solid, 164 mg, 64% yield, MP: 180-181 °C. ¹H NMR (400 MHz, CDCl₃) δ 10.18 (s, 1H), 7.47 – 7.41 (m, 3H), 7.38 – 7.33 (m, 2H), 7.21 – 7.15 (m, 1H), 7.08 (d, J = 9.0 Hz, 1H), 6.69 (t, J = 9.0 Hz, 1H), 5.17 (s, 1H), 4.64 (s, 2H), 2.24 (s, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 160.2 (d, J = 242.4 Hz), 141.9, 135.8 (d, J = 13.1 Hz), 130.0, 129.2, 128.9, 124.2, 123.3 (d, J = 10.1 Hz), 109.7 (d, J = 25.3 Hz), 107.9, 97.6 (d, J = 26.3 Hz), 78.8, 72.8, 40.4. ¹⁹F NMR (377 MHz, CDCl₃): δ -116.79. ESI-HRMS (m/z): calculated for C₁₈H₁₄FN₂O [M+H]⁺ 293.1090, found 293.1028.

7-chloro-N-phenyl-N-(prop-2-yn-1-yl)-1H-indole-2-carboxamide (S3g)

Eluent: Hexane/ethyl acetate = 96:4. Yellow solid, 210 mg, 60% yield, MP: 184-187 °C. ¹H NMR (400 MHz, CDCl₃) δ 9.51 (s, 1H), 7.60 – 7.52 (m, 4H), 7.46 – 7.41 (m, 2H), 7.23 (d, *J* = 8.5 Hz, 1H), 7.14 (s, 1H), 5.24 (s, 1H), 4.70 (d, *J* = 2.0 Hz, 2H), 2.33 (t, *J* = 2.0 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 161.3, 141. 7, 136.1, 130.0, 129.3, 128.9, 126.4, 123. 9, 123.6, 118.6, 114.5, 107.6, 78.6, 72. 7, 40.3. **ESI-HRMS (m/z):** calculated for C₁₈H₁₄ClN₂O [M+H]⁺ 309.0795, found 309.0765.

N-phenyl-N-(3-phenylprop-2-yn-1-yl)-1H-pyrrole-2-carboxamide (S3i)

Eluent: Hexane/ethyl acetate = 80:20. White solid, 250 mg, 74% yield, MP: 113-115 °C. ¹H NMR (400 MHz, CDCl₃): δ 9.51 (s, 1H), 7.44 – 7.37 (m, 3H), 7.34 – 7.28 (m, 2H), 6.79 – 6.75 (m, 1H), 5.87 – 5.81 (m, 1H), 4.86 (s, 1H), 4.54 (d, *J* = 2.5 Hz, 2H), 2.18 (t, *J* = 2.4 Hz, 1H).¹³C NMR (101 MHz, CDCl₃): δ 142.1, 129.8, 129.1, 128.9, 124.6, 121.3, 114.3, 109.9, 79.1, 72.2, 39.0. ESI-HRMS (m/z): calculated for C₁₄H₁₃N₂O [M+H]⁺ 225.1028, found 225.1039.

7. Analytical data of 1a-1z, 3a-3g and S4:

N-phenyl-N-(3-phenylprop-2-yn-1-yl)-1H-indole-2-carboxamide (1a)

Eluent: Hexane/ethyl acetate = 90:10. Yellow solid, 108 mg, 84% yield, MP: 173-175 °C. ¹H NMR (400 MHz, CDCl₃): δ 9.36 (s, 1H), 7.48 – 7.43 (m, 3H), 7.42 – 7.37 (m, 2H), 7.33 – 7.26 (m, 4H), 7.23 – 7.19 (m, 3H), 7.14 (t, *J* = 8.0 Hz, 1H), 6.93 (t, *J* = 8.0 Hz, 1H), 5.22 (s, 1H), 4.85 (s, 2H). ¹³C NMR (101 MHz, CDCl₃): δ 160.5, 140.8, 134.4, 130.7, 128.8, 128.2, 128.1, 127.3, 127.2, 126.6, 123.7, 121.7, 121.3, 119.3, 110.6, 106.6, 83.6, 83.1, 39.8. **ESI-HRMS** (m/z): calculated for C₂₄H₁₉N₂O [M+H]⁺ 351.1497, found 351.1485.

N-phenyl-N-(3-(p-tolyl) prop-2-yn-1-yl)-1H-indole-2-carboxamide (1b)

Eluent: Hexane/ethyl acetate = 90:10. Yellow solid, 98 mg, 82% yield, MP: 191-194 °C. ¹H NMR (400 MHz, CDCl₃): δ 9.53 (s, 1H), 7.48 – 7.42 (m, 3H), 7.42 – 7.36 (m, 2H), 7.33 (d, *J* = 7.8 Hz, 1H), 7.28 (d, *J* = 7.8 Hz, 1H), 7.20 (s, 1H), 7.13 (t, *J* = 8.0 Hz, 1H), 7.00 (d, *J* = 8.0 Hz, 2H), 6.92 (t, *J* = 8.2 Hz, 1H), 5.22 (s, 1H), 4.85 (s, 2H), 2.25 (s, 3H). ¹³C NMR (101 MHz, CDCl₃): δ 161.6, 141.9, 138.5, 135.5, 131.6, 129.8, 129.2, 129.2, 129.1, 129.0, 127.6, 124.7, 122.3, 120.3, 119.7, 111.7, 107.6, 84.7, 83.4, 40.9, 21.5. ESI-HRMS (m/z): calculated for C₂₅H₂₁N₂O [M+H]⁺ 365.1654, found 365.1672.

N-(3-(4-methoxyphenyl)prop-2-yn-1-yl)-N-phenyl-1H-indole-2-carboxamide (1c)

Eluent: Hexane/ethyl acetate = 80:20. Yellow solid, 95 mg, 83% yield, MP: 203-207 °C. ¹H **NMR** (400 MHz, CDCl₃): δ 9.51 (s, 1H), 7.47 – 7.43 (m, 3H), 7.41 – 7.36 (m, 2H), 7.32 (d, J = 8.0 Hz, 1H), 7.28 (d, J = 8.0 Hz, 1H), 7.25 – 7.23 (m, 1H), 7.23 – 7.21 (m, 1H), 7.16 – 7.10 (m, 1H), 6.97 – 6.89 (m, 1H), 6.78 – 6.70 (m, 2H), 5.22 (s, 1H), 4.84 (s, 2H), 3.71 (s, 3H). ¹³C **NMR** (101 MHz, CDCl₃): δ 161.6, 159.6, 141.9, 135.5, 133.0, 129.8, 129.2, 129.2, 129.1, 127.6, 124.7, 122.3, 120.3, 114.8, 113.9, 111.6, 107.6, 84.5, 82.7, 77.4, 77.2, 77.0, 76.7, 55.3, 40.9. **ESI-HRMS (m/z):** calculated for C₂₅H₂₁N₂O₂ [M+H]⁺ 381.1603, found 381.1616.

N-(3-(4-(tert-butyl)phenyl)prop-2-yn-1-yl)-N-phenyl-1H-indole-2-carboxamide (1d)

Eluent: Hexane/ethyl acetate = 90:10. Yellow solid, 100 mg, 80% yield, MP: 190-193 °C. ¹H NMR (400 MHz, CDCl₃): δ 9.53 (s, 1H), 7.48 – 7.42 (m, 3H), 7.42 – 7.36 (m, 2H), 7.33 (d, *J* = 7.7 Hz, 1H), 7.28 (d, *J* = 8.0 Hz, 1H), 7.20 (s, 1H), 7.13 (t, *J* = 8.0 Hz, 1H), 7.00 (d, *J* = 7.6 Hz, 2H), 6.92 (t, *J* = 7.6 Hz, 1H), 5.22 (s, 1H), 4.85 (s, 2H), 2.25 (s, 3H). ¹³C NMR (101 MHz, CDCl₃): δ 161.6, 141.9, 138.5, 135.5, 131.6, 129.8, 129.2, 129.2, 129.1, 129.0, 127.6, 124.7, 122.3, 120.3, 119.7, 111.7, 107.6, 84.7, 83.4, 40.8, 21.5. ESI-HRMS (m/z): calculated for C₂₈H₂₇N₂O [M+H]⁺407.2123, found 407.2105.

N-(3-(4-fluorophenyl)prop-2-yn-1-yl)-N-phenyl-1H-indole-2-carboxamide (1e)

Eluent: Hexane/ethyl acetate = 90:10. Yellow solid, 95 mg, 78% yield, MP: 204-207 °C. ¹H NMR (400 MHz, CDCl₃): δ 9.43 (s, 1H), 7.48 – 7.43 (m, 3H), 7.41 – 7.36 (m, 2H), 7.32 (d, *J* = 7.6 Hz, 1H), 7.3 – 7.28 (m, 1H), 7.28 – 7.24 (m, 2H), 7.17 – 7.11 (m, 1H), 6.96 – 6.86 (m, 3H), 5.22 (s, 1H), 4.84 (s, 2H). ¹³C NMR (101 MHz, CDCl₃): δ 161.6, 161.3 (d, *J* = 250.5 Hz), 141.9, 135.4, 133.6 (d, *J* = 9.1 Hz), 129.9, 129.1, 127.6, 124.8, 122.3, 120.3, 118.8 (d, *J* = 4.0 Hz), 115.4 (d, *J* = 22.2 Hz), 111.6, 107.7, 83.9, 83.5, 40.8. ¹⁹F NMR (377 MHz, CDCl₃): δ - 110.83. ESI-HRMS (m/z): calculated for C₂₄H₁₈FN₂O [M+H]⁺ 369.1403, found 369.1417.

N-(3-(4-chlorophenyl) prop-2-yn-1-yl)-N-phenyl-1H-indole-2-carboxamide (1f)

Eluent: Hexane/ethyl acetate = 90:10. Yellow solid, 92 mg, 77% yield, MP: 192-193 °C. ¹H NMR (400 MHz, CDCl₃): δ 9.32 (s, 1H), 7.51 – 7.43 (m, 3H), 7.42 – 7.35 (m, 2H), 7.33 – 7.26 (m, 2H), 7.23 – 7.12 (m, 5H), 6.94 (t, *J* = 7.5 Hz, 1H), 5.21 (s, 1H), 4.83 (s, 2H). ¹³C NMR (101 MHz, CDCl₃): δ 161.6, 141.8, 135.4, 134.4, 132.9, 129.9, 129.3, 129.2, 129.1, 129.0, 128.6, 127.6, 125.5, 124.8, 123.3, 122.3, 121.2, 120.3, 117.9, 116.9, 111.6, 107.7, 85.2, 83.4, 40.8. **ESI-HRMS (m/z):** calculated for C₂₄H₁₈ClN₂O [M+H]⁺ 385.1108, found 385.1147.

N-phenyl-N-(3-(4-(trifluoromethyl)phenyl)prop-2-yn-1-yl)-1H-indole-2carboxamide (1g)

Eluent: Hexane/ethyl acetate = 90:10. White solid, 96 mg, 79% yield, MP: 210-211 °C. ¹H NMR (400 MHz, CDCl₃): δ 9.46 (s, 1H), 7.5 – 7.43 (m, 5H), 7.42 – 7.36 (m, 4H), 7.34 (d, *J* = 8.0 Hz, 1H), 7.29 (d, *J* = 8.0 Hz, 1H), 7.14 (t, *J* = 7.5 Hz, 1H), 6.94 (t, *J* = 7.5 Hz, 1H), 5.23 (s, 1H), 4.87 (s, 2H). ¹³C NMR (101 MHz, CDCl₃): δ 161.6, 141.8, 135.5, 132.0, 129.9, 129.2, 129.1, 128.9, 127.6, 126.5 (d, *J* = 1.1 Hz), 125.2 (d, *J* = 7.1 Hz), 124.9, 123.4 (q, *J* = 213.0 Hz), 122.3, 120.4, 111.4, 107.8, 86.8, 83.2, 40.8. ¹⁹F NMR (377 MHz CDCl₃): δ -57.81. **ESI-HRMS (m/z):** calculated for C₂₅H₁₈F₃N₂O [M+H]⁺ 419.1371, found 419.1382.

N-(3-(3,5-dimethylphenyl)prop-2-yn-1-yl)-N-phenyl-1H-indole-2-carboxamide (1h)

Eluent: Hexane/ethyl acetate = 90:10. Yellow solid, 76 mg, 77% yield, MP: 183-185 °C; ¹H NMR (400 MHz, CDCl₃): δ 9.39 (s, 1H), 7.48 – 7.42 (m, 3H), 7.41 – 7.36 (m, 2H), 7.32 – 7.27 (m, 2H), 7.14 (t, *J* = 7.6 Hz, 1H), 6.97 – 6.90 (m, 3H), 6.85 (s, 1H), 5.21 (s, 1H), 4.83 (s, 2H), 2.18 (s, 6H). ¹³C NMR (101 MHz, CDCl₃): δ 161.6, 141.9, 137.8, 135.5, 130.3, 129.8, 129.4, 129.2, 129.1, 127.6, 124.7, 122.3, 122.3, 120.3, 111.6, 107.6, 84.9, 83.4, 40.9, 22.7, 21.1. **ESI-HRMS (m/z):** calculated for C₂₆H₂₃N₂O [M+H]⁺ 379.1810, found 379.1816.

N-(3-(3,5-bis(trifluoromethyl)phenyl)prop-2-yn-1-yl)-N-phenyl-1H-indole-2 carboxamide (1i)

Eluent: Hexane/ethyl acetate = 90:10. Yellow solid, 88 mg, 78% yield, MP: 207-209 °C. ¹H NMR (400 MHz, CDCl₃): δ 9.37 (s, 1H), 7.69 (s, 3H), 7.55 – 7.45 (m, 3H), 7.41 – 7.35 (m, 2H), 7.33 – 7.25 (m, 2H), 7.15 (t, *J* = 7.7 Hz, 1H), 6.94 (t, *J* = 7.6 Hz, 1H), 5.24 (s, 1H), 4.86 (s, 2H). ¹³C NMR (101 MHz, CDCl₃): δ 161.7, 141.8, 135.5, 132.1, 131.7 (d, *J* = 3.0 Hz), 130.1, 129.3, 129.0, 128.8, 127.6, 124.9 (q, *J* = 6.1, 2.0 Hz), 124.2, 123.4 (q, *J* = 214.0 Hz), 122.4, 121.8 (d, *J* = 8.1 Hz), 120.4, 111.6, 107.9, 88.1, 40.8. ¹⁹F NMR (377 MHz, CDCl₃): δ - 63.16. ESI-HRMS (m/z): calculated for C₂₆H₁₇F₆N₂O [M+H]⁺ 487.1245, found 487.1248.

N-(3-(3,4-dimethylphenyl)prop-2-yn-1-yl)-N-phenyl-1H-indole-2-carboxamide (1j)

Eluent: Hexane/ethyl acetate = 90:10. Yellow solid, 77 mg, 78% yield, MP: 194-197 °C. ¹H NMR (400 MHz, CDCl₃): δ 9.46 (s, 1H), 7.47 – 7.36 (m, 5H), 7.33 (d, *J* = 7.6 Hz, 1H), 7.29 (d, *J* = 8.1 Hz, 1H) 7.13 (t, *J* = 7.6 Hz, 1H), 7.08 (s, 1H), 7.04 (d, *J* = 8.1 Hz, 1H), 6.89 – 6.99 (m, 2H), 5.21 (s, 1H), 4.84 (s, 2H), 2.16 (s, 3H), 2.13 (s, 3H). ¹³C NMR (101 MHz, CDCl₃): δ 160.5, 140.9, 136.2, 135.5, 134.4, 131.8, 128.8, 128.5, 128.3, 128.2, 128.1, 128.0, 126.6, 124.5, 123.7, 122.3, 121.3, 119.2, 118.9, 110.6, 106.5, 83.8, 82.1, 39.8, 21.7, 18.7, 18.5. **ESI-HRMS** (m/z): calculated for C₂₆H₂₃N₂O [M+H]⁺ 379.1810, found 379.1796.

N-(3-(2-chloro-4-fluorophenyl)prop-2-yn-1-yl)-N-phenyl-1H-indole-2-carboxamide (1k)

Eluent: Hexane/ethyl acetate = 90:10. Yellow solid, 75 mg, 76% yield, MP: 175-178 °C. ¹H NMR (400 MHz, CDCl₃): δ 9.41 (s, 1H), 7.50 – 7.39 (m, 5H), 7.35 – 7.25 (m, 3H), 7.14 (t, *J* = 7.5 Hz, 1H), 7.04 (dd, *J* = 8.4, 2.5 Hz, 1H), 6.93 (t, *J* = 7.4 Hz, 1H), 6.83 (td, *J* = 8.4, 2.5 Hz, 1H), 5.23 (s, 1H), 4.89 (s, 2H). ¹³C NMR (101 MHz, CDCl₃): δ 161.6, 160.8 (d, *J* = 253.5 Hz), 141.8, 137.1 (d, *J* = 10.1 Hz), 135.5, 134.6 (d, *J* = 9.1 Hz), 129.9, 129.2, 129.0, 127.6, 124.8, 122.3, 120.3, 119.0 (d, *J* = 4.0 Hz), 116.8 (d, *J* = 25.5 Hz), 114.0 (d, *J* = 21.2 Hz), 111.6, 107.7, 89.3, 80.3, 40.9. ¹⁹F NMR (377 MHz, CDCl₃): δ -108.88. ESI-HRMS (m/z): calculated for C₂₄H₁₇ClFN₂O [M+H]⁺ 403.1013, found 403.1027.

N-(3-(3-chloro-4-methylphenyl)prop-2-yn-1-yl)-N-phenyl-1H-indole-2-carboxamide (11)

Eluent: Hexane/ethyl acetate = 90:10. Yellow solid, 78 mg, 74% yield, MP: 185-187 °C. ¹H NMR (400 MHz, CDCl₃): δ 9.44 (d, *J* = 21.4 Hz, 1H), 7.49 – 7.42 (m, 3H), 7.41 – 7.35 (m, 2H), 7.32 (d, *J* = 8.0 Hz, 1H), 7.3 – 7.25 (m, 2H), 7.14 (t, *J* = 7.6 Hz, 1H), 7.09 (q, *J* = 8.0 Hz, 2H), 6.93 (t, *J* = 7.6 Hz, 1H), 5.22 (s, 1H), 4.84 (s, 2H), 2.27 (s, 3H). ¹³C NMR (101 MHz, CDCl₃): δ 160.55, 140.81, 135.6, 134.4, 133.1, 131.0, 129.7, 128.9, 128.1, 128.1, 128.0, 127.9, 126.6, 123.8, 121.3, 120.6, 119.3, 110.6, 106.7, 83.6, 82.2, 39.8, 19.0. ESI-HRMS (m/z): calculated for C₂₅H₂₀ClN₂O [M+H]⁺ 399.1264, found 399.1277.

N-phenyl-N-(3-(thiophen-3-yl)prop-2-yn-1-yl)-1H-indole-2-carboxamide (1m)

Eluent: Hexane/ethyl acetate = 90:10. White solid, 90 mg, 80% yield, MP: 181-183 °C. ¹H NMR (400 MHz, CDCl₃): δ 9.59 (s, 1H), 7.56 – 7.49 (m, 3H), 7.49 – 7.44 (m, 2H), 7.43 – 7.33 (m, 3H), 7.25 – 7.17 (m, 2H), 7.04 (d, *J* = 4.8 Hz, 1H), 7.01 (t, *J* = 7.6 Hz, 1H), 5.30 (s, 1H), 4.91 (s, 2H). ¹³C NMR (101 MHz, CDCl₃): δ 161.6, 141.9, 135.5, 129.9, 129.9, 129.1, 129.1, 129.0, 127.6, 125.2, 124.7, 122.3, 121.7, 120.3, 111.6, 107.6, 83.8, 79.7, 40.9. **ESI-HRMS** (m/z): calculated for C₂₂H₁₇N₂OS [M+H]⁺ 357.1062, found 357.1069.

N-(but-2-yn-1-yl)-N-phenyl-1H-indole-2-carboxamide (1n)

Eluent: Hexane/ethyl acetate = 90:10. White solid, 70 mg, 73% yield, MP: 147-150 °C. ¹H NMR (400 MHz, CDCl₃) δ 9.57 (s, 1H), 7.45 – 7.40 (m, 3H), 7.35 – 7.31 (m, 3H), 7.27 (d, *J* = 8.0 Hz, 1H), 7.12 (d, *J* = 7.5 Hz, 1H), 6.92 (t, *J* = 7.5 Hz, 1H), 5.19 (s, 1H), 4.56 (d, *J* = 2.3 Hz, 2H), 1.73 (t, *J* = 2.3 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 161.6, 142.2, 135.5, 129. 8, 129.3, 129.2, 129.0, 128.9, 128.8, 127.6, 125.5, 124.6, 123.3, 122.2, 120.2, 117.9, 116.9, 111. 7, 107.5, 80.3, 74.0, 40.7, 3.6. **ESI-HRMS (m/z):** calculated for C₁₉H₁₇N₂O [M+H]⁺289.1341, found 289.1368.

N-benzyl-N-(3-phenylprop-2-yn-1-yl)-1H-indole-2-carboxamide (10)

Eluent: Hexane/ethyl acetate = 80:20. White solid, 86 mg, 87% yield, MP: 175-178 °C. ¹H NMR (400 MHz, CDCl₃): δ 9.34 (s, 1H), 7.56 (s, 1H), 7.40 – 7.20 (m, 12H), 7.06 (t, *J* = 6.9 Hz, 1H), 4.95 (bs, 2H), 4.56 (s, 2H).¹³C NMR (101 MHz, CDCl₃): δ 135.9, 131.8, 128.9, 128.4, 127.8, 127.7, 124.8, 122.2, 120.6, 111.8, 83.9. ESI-HRMS (m/z): calculated for C₂₅H₂₁N₂O [M+H]⁺ 365.1654, found 365.1621.

5-chloro-N-phenyl-N-(3-phenylprop-2-yn-1-yl)-1H-indole-2-carboxamide (1p)

Eluent: Hexane/ethyl acetate = 88:12. White solid, 82 mg, 84% yield, MP: 165-166 °C. ¹H NMR (400 MHz, CDCl₃): δ 9.71 (s, 1H), 7.61 – 7.53 (m, 3H), 7.52 – 7.45 (m, 2H), 7.42 – 7.34 (m, 4H), 7.34 – 7.27 (m, 3H), 7.18 (d, *J* = 8.0 Hz, 1H), 5.22 (s, 1H), 4.95 (s, 2H). ¹³C NMR (101 MHz, CDCl₃): δ 161.2, 141.7, 133.7, 131.7, 130.4, 129.9, 129.3, 129.1, 128.5, 128.4, 128.3, 125.9, 125.2, 122.6, 121.5, 112.8, 106.9, 84.7, 84.0, 40.9. **ESI-HRMS (m/z):** calculated for C₂₄H₁₈ClN₂O [M+H]⁺ 385.1108, found 385.1093.

5-chloro-N-(3-(3,5-dimethylphenyl)prop-2-yn-1-yl)-N-phenyl-1H-indole-2-carboxamide (1q)

Eluent: Hexane/ethyl acetate = 88:12. White solid, 76 mg, 74% yield, MP: 191-193 °C. ¹H NMR (400 MHz, CDCl₃): δ 10.27 (s, 1H), 7.51-7.21 (m, 7H), 6.93 (m, 4H), 5.13 (s, 1H), 4.86 (s, 2H), 2.17 (s, 6H). ¹³C NMR (101 MHz, CDCl₃): δ 161.5, 141.8, 137.9, 134.08, 130.4, 129.9, 129.5, 129.2, 129.1, 128.5, 125.8, 125.2, 122.2, 121.3, 113.1, 107.0, 85.0, 83.3, 41.1, 21.1. **ESI-HRMS (m/z):** calculated for C₂₆H₂₂ClN₂O [M+H]⁺ 413.1421, found 413.1420.

N-(3-(4-(tert-butyl)phenyl)prop-2-yn-1-yl)-5-chloro-N-phenyl-1H-indole-2-carboxamide (1r)

Eluent: Hexane/ethyl acetate = 88:12. White solid, 87 mg, 83% yield, MP: 186-187 °C. ¹H NMR (400 MHz, CDCl₃): δ 9.61 (s, 1H), 7.49 – 7.42 (m, 3H), 7.40 – 7.36 (m, 2H), 7.26 (d, *J* = 7.6 Hz, 2H), 7.23 (s, 4H), 7.06 (d, *J* = 7.6 Hz, 1H), 5.11 (s, 1H), 4.85 (s, 2H), 1.22 (s, 9H). ¹³C NMR (101 MHz, CDCl₃): δ 161.2, 151.7, 141.6, 133.7, 131.5, 131.5, 130.4, 129.9, 129.9, 129.2, 129.2, 128.5, 125.9, 125.3, 125.18, 121.43, 119.61, 112.75, 106.86, 106.86, 84.82, 83.21, 40.91, 34.76, 31.15. **ESI-HRMS (m/z):** calculated for C₂₈H₂₆ClN₂O [M+H]⁺ 441.1734, found 441.1721.

5-fluoro-N-phenyl-N-(3-phenylprop-2-yn-1-yl)-1H-indole-2-carboxamide (1s)

Eluent: Hexane/ethyl acetate = 88:12. White solid, 78 mg, 81% yield, MP: 181-183 °C. ¹H NMR (400 MHz, CDCl₃): δ 9.77 (s, 1H), 7.59 – 7.54 (m, 3H), 7.52 – 7.47 (m, 2H), 7.42 – 7.35 (m, 3H), 7.33 – 7.27 (m, 3H), 7.05 – 6.93 (m, 2H), 5.26 (s, 1H), 4.96 (s, 2H). ¹³C NMR (101 MHz, CDCl₃): δ 161.3, 156.7 (d, *J* = 237.4 Hz), 141.7, 132.2, 131.7, 130.7, 129.9, 129.2, 129.1, 128.4, 128.3, 122.7, 113.7 (d, *J* = 27.3 Hz), 112.5 (d, *J* = 10.1 Hz), 107.4 (d, *J* = 6.1 Hz), 106.3 (d, *J* = 23.2 Hz), 84.7, 84.0, 40.9. ¹⁹F NMR (377 MHz, CDCl₃) δ -123.58. ESI-HRMS (m/z): calculated for C₂₄H₁₈FN₂O [M+H]⁺ 369.1403, found 369.1367.

N-(3-(3,5-dimethylphenyl)prop-2-yn-1-yl)-5-fluoro-N-phenyl-1H-indole-2-carboxamide (1t)

Eluent: Hexane/ethyl acetate = 88:12. White solid, 78 mg, 72% yield, MP: 192-194 °C. ¹H NMR (400 MHz, CDCl₃): δ 10.14 (s, 1H), 7.52 – 7.30 (m, 6H), 6.98 – 6.78 (m, 5H), 5.17 (s, 1H), 4.85 (s, 2H), 2.16 (s, 6H). ¹³C NMR (101 MHz, CDCl₃): δ 161.5, 156.7 (d, *J* = 236.3 Hz), 141.9, 137.8, 132.4, 130.7, 130.3, 129.9, 129.4, 129.2, 129.1, 127.6 (d, *J* = 11.1 Hz), 122.3, 113.6 (d, *J* = 27.3 Hz), 112.8 (d, *J* = 10.1 Hz), 107.4 (d, *J* = 5.1 Hz), 106.1 (d, *J* = 23.2 Hz), 84.9, 83.4, 41.1, 21.1. ¹⁹F NMR (377 MHz, CDCl₃): δ -123.71.ESI-HRMS (m/z): calculated for C₂₆H₂₂FN₂O [M+H]⁺ 397.1716, found 397.1721.

5-methyl-N-phenyl-N-(3-phenylprop-2-yn-1-yl)-1H-indole-2-carboxamide (1u)

Eluent: Hexane/ethyl acetate = 88:12. White solid, 71 mg, 69% yield, MP: 211-214 °C. ¹**H NMR** (400 MHz, CDCl₃): δ 9.48 (s, 1H), 7.43 (d, *J* = 4.1 Hz, 3H), 7.41 – 7.36 (m, 2H), 7.32 – 7.27 (m, 2H), 7.25 – 7.16 (m, 4H), 7.05 (s, 1H), 6.95 (d, *J* = 8.3 Hz, 1H), 5.14 (s, 1H), 4.85 (s, 2H), 2.25 (s, 3H). ¹³**C NMR** (101 MHz, CDCl₃): δ 161.7, 142.0, 133.9, 131.7, 129.8, 129.5, 129.2, 129.1, 129.0, 128.3, 128.2, 127.9, 126.7, 122.8, 121.5, 111.3, 107.2, 84.6 84.3, 40.8, 21.3. **ESI-HRMS (m/z):** calculated for C₂₅H₂₁N₂O [M+H]⁺ 365.1654, found 365.1616.

5-methoxy-N-phenyl-N-(3-phenylprop-2-yn-1-yl)-1H-indole-2-carboxamide (1v)

Eluent: Hexane/ethyl acetate = 84:16. White solid, 82 mg, 83% yield, MP: 176-179 °C. ¹H NMR (400 MHz, CDCl₃): δ 9.32 (s, 1H), 7.49 – 7.43 (m, 3H), 7.42 – 7.37 (m, 2H), 7.32 – 7.26 (m, 2H), 7.25 – 7.19 (m, 4H), 6.81 (dd, *J* = 8.9, 2.4 Hz, 1H), 6.67 (d, *J* = 2.1 Hz, 1H), 5.14 (s, 1H), 4.85 (s, 2H), 3.67 (s, 3H). ¹³C NMR (101 MHz, CDCl₃): δ 161.5, 154.4, 141.9, 131.7, 130.8, 129.8, 129.5, 129.2, 129.1, 128.3, 128.2, 127.9, 122.8, 116.4, 112.5, 107.2, 102.3, 84.6, 84.2, 55.6, 40.8. **ESI-HRMS (m/z):** calculated for C₂₅H₂₁N₂O₂ [M+H]⁺ 381.1603, found 381.1607.

N-(3-(3,5-dimethylphenyl)prop-2-yn-1-yl)-5-methoxy-N-phenyl-1H-indole-2carboxamide (1w)

Eluent: Hexane/ethyl acetate = 84:16. White solid, 93 mg, 89% yield, MP: 140-142 °C. ¹H NMR (400 MHz, CDCl₃): δ 9.41 (s, 1H), 7.48 – 7.42 (m, 3H), 7.41 – 7.35 (m, 2H), 7.22 (d, *J* = 8.9 Hz, 1H), 6.93 (s, 2H), 6.85 (s, 1H), 6.81 (d, *J* = 8.9, 2.2 Hz, 1H), 6.67 (d, *J* = 1.9 Hz, 1H), 5.14 (s, 1H), 4.84 (s, 2H), 3.67 (s, 3H), 2.18 (s, 6H). ¹³C NMR (101 MHz, CDCl₃): δ 161.5, 154.4, 142.0, 137.8, 130.9, 130.3, 129.8, 129.6, 129.4, 129.2, 129.0, 127.9, 122.3, 116.4, 112.6, 107.2, 102.3, 84.8, 83.5, 55.6, 40.9, 21.1. ESI-HRMS (m/z): calculated for C₂₇H₂₅N₂O₂ [M+H]⁺ 409.1916, found 409.1883.

N-(3-(4-fluorophenyl)prop-2-yn-1-yl)-5-methoxy-N-phenyl-1H-indole-2-carboxamide (1x)

Eluent: Hexane/ethyl acetate = 84:16. White solid, 75 mg, 84% yield, MP: 155-156 °C. ¹H NMR (400 MHz, CDCl₃): δ 9.25 (s, 1H), 7.49 – 7.42 (m, 3H), 7.42 – 7.35 (m, 2H), 7.31 – 7.24 (m, 2H), 7.21 (s, 1H), 6.90 (t, *J* = 8.7 Hz, 2H), 6.82 (dd, *J* = 8.9, 2.4 Hz, 1H), 6.67 (d, *J* = 2.0 Hz, 1H), 5.13 (s, 1H), 4.82 (s, 2H), 3.67 (s, 3H). ¹³C NMR (101 MHz, CDCl₃): δ 161.5, 161.3 (d, *J* = 250.5 Hz), 154.4, 141.9, 133.6 (d, *J* = 8.1 Hz), 130.8, 129.8, 129.5, 129.2, 127.9, 118.8 (d, *J* = 4.0 Hz), 116.4, 115.4 (d, *J* = 22.2 Hz), 112.5, 107.2, 102.3, 83.5 (d, *J* = 46.5 Hz),

55.6, 40.8. ¹⁹F NMR (377 MHz, CDCl₃) δ -110.79. ESI-HRMS (m/z): calculated for C₂₅H₂₀FN₂O₂ [M+H]⁺ 399.1509, found 399.1490.

N-(3-(3,5-dimethylphenyl)prop-2-yn-1-yl)-6-fluoro-N-phenyl-1H-indole-2-carboxamide (1y)

Eluent: Hexane/ethyl acetate = 90:10. White solid, 78 mg, 82% yield, MP: 179-181 °C. ¹H NMR (400 MHz, CDCl₃): δ 9.50 (s, 1H), 7.47 – 7.43 (m, 3H), 7.40 – 7.36 (m, 2H), 7.24 – 7.19 (s, 1H), 6.99 (dd, *J* = 9.5, 1.7 Hz, 1H), 6.93 (s, 2H), 6.86 (s, 1H), 6.71 (td, *J* = 9.3, 2.0 Hz, 1H), 5.17 (s, 1H), 4.83 (s, 2H), 2.18 (s, 6H). ¹³C NMR (101 MHz, CDCl₃): δ 161.2, 160.2 (d, *J* = 242.4 Hz), 141.8, 137.8, 135.4 (d, *J* = 13.1 Hz), 130.3, 129.9, 129.4, 129.2, 129.1, 124.3, 123.4 (d, *J* = 10.1 Hz), 122.3, 109.7 (d, *J* = 25.3 Hz), 107.6, 97.3 (d, *J* = 26.3 Hz), 84.9, 83.3, 40.9, 21.1. ¹⁹F NMR (377 MHz, CDCl₃) δ -121.83. ESI-HRMS (m/z): calculated for C₂₆H₂₂FN₂O [M+H]⁺ 397.1716, found 397.1691.

7-chloro-N-phenyl-N-(3-phenylprop-2-yn-1-yl)-1H-indole-2-carboxamide (1z)

Eluent: Hexane/ethyl acetate = 95:5. White solid, 76 mg, 80% yield, MP: 127-130 °C. ¹H NMR (400 MHz, CDCl₃): δ 9.34 (s, 1H), 7.49 – 7.44 (m, 3H), 7.42 – 7.36 (m, 2H), 7.32 – 7.29 (m, 2H), 7.24 – 7.19 (m, 4H), 7.18 – 7.13 (m, 3H), 6.88 (t, *J* = 7.8 Hz, 2H), 5.26 (s, 2H), 4.85 (s, 4H). ¹³C NMR (101 MHz, CDCl₃): δ 160.99, 141.65, 132.87, 131.73, 129.92, 129.24, 129.15, 128.86, 128.39, 128.25, 123.85, 122.67, 121.01, 120.87, 117.03, 108.16, 84.69, 83.94, 40.86.

ESI-HRMS (m/z): calculated for C₂₄H₁₈ClN₂O [M+H]⁺ 385.1108, found 385.1078.

N-phenyl-N-(3-phenylprop-2-yn-1-yl)-1H-pyrrole-2-carboxamide (3a)

Eluent: Hexane/ethyl acetate = 90:10. White solid, 78 mg, 81% yield, MP: 125-127 °C. ¹H NMR (400 MHz, CDCl₃): δ 9.51 (s, 1H), 7.51 (s, 2H), 7.46 (d, *J* = 6.9 Hz, 2H), 7.38 (d, *J* = 6.9 Hz, 2H), 7.29 (d, *J* = 7.8 Hz, 4H), 6.86 (s, 1H), 5.94 (s, 1H), 4.96 (s, 1H), 4.88 (s, 2H). ¹³C NMR (101 MHz, CDCl₃): δ 160.8, 142.0, 131.7, 129.7, 129.4, 128.9, 128.2, 128.2, 124.8, 122.9, 121.1, 114.1, 109.9, 84.6, 84.3, 40.3. **ESI-HRMS (m/z):** calculated for C₂₀H₁₇N₂O [M+H]⁺ 301.1341, found 301.1363.

N-phenyl-N-(3-(p-tolyl)prop-2-yn-1-yl)-1H-pyrrole-2-carboxamide (3b)

Eluent: Hexane/ethyl acetate = 90:10. White solid, 68 mg, 73% yield, MP: 147-150 °C. ¹H NMR (400 MHz, CDCl₃): δ 10.05 (s, 1H), 7.40 – 7.30 (s, 5H), 7.17 (d, *J* = 8.3 Hz, 1H), 6.97 (d, *J* = 8.3 Hz, 1H), 6.77 (m, 1H), 5.82 (m, 1H), 4.87 (s, 1H), 4.77 (s, 2H), 2.22 (s, 3H). ¹³C NMR (101 MHz, CDCl₃): δ 161.0, 142.2, 138.4, 131.6, 129.7, 129.4, 129.0, 128.8, 124.7, 121.6, 119.8, 114.33, 109.7, 84.4, 84.0, 53.5, 40.4, 21.5. **ESI-HRMS (m/z):** calculated for C₂₁H₁₉N₂O [M+H]⁺ 315.1497, found 315.1451. N-(3-(4-(tert-butyl)phenyl)prop-2-yn-1-yl)-N-phenyl-1H-pyrrole-2-carboxamide (3c)

Eluent: Hexane/ethyl acetate = 90:10. White solid, 82 mg, 78% yield, MP: 157-160 °C. ¹H **NMR** (400 MHz, CDCl₃): δ 9.49 (s, 1H), 7.43 – 7.31 (m, 5H), 7.24 – 7.16 (m, 4H), 6.76 (s, 1H), 5.84 (s, 1H), 4.86 (s, 1H), 4.78 (s, 2H), 1.22 (s, 9H). ¹³C **NMR** (101 MHz, CDCl₃): δ 160.8, 151.5, 142.0, 131.4, 129.7, 129.4, 128.8, 125.2, 124.8, 121.1, 119.8, 114.1, 109.9, 84.4, 83.8, 77.3, 77.0, 76.7, 40.3, 34.7, 31.2. **ESI-HRMS** (m/z): calculated for C₂₄H₂₅N₂O [M+H]⁺ 357.1967, found 357.1986.

N-(3-(4-chlorophenyl)prop-2-yn-1-yl)-N-phenyl-1H-pyrrole-2-carboxamide (3d)

Eluent: Hexane/ethyl acetate = 90:10. White solid, 66 mg, 72% yield, MP: 152-155 °C. ¹H NMR (400 MHz, CDCl₃): δ 9.80 (bs, 1H), 7.44 – 7.37 (m, 3H), 7.36 – 7.29 (m, 2H), 7.17 (q, J = 16.0, 8.8Hz, 4H), 6.81 - 6.72 (s, 1H), 5.88 - 5.78 (m, 1H), 4.91 - 4.83 (m, 2H). ¹³C NMR (101 MHz, CDCl₃): δ 160.8, 142.0, 131.7, 129.7, 129.4, 128.9, 128.2, 128.2, 124.8, 122.9, 121.1, 114.1, 109.9, 84.6, 84.3, 40.3. **ESI-HRMS (m/z):** calculated for C₂₀H₁₆N₂OCl [M+H]⁺ 335.0951, found 335.0954.

N-(3-(3,5-dimethylphenyl)prop-2-yn-1-yl)-N-phenyl-1H-pyrrole-2-carboxamide (3e)

Eluent: Hexane/ethyl acetate = 90:10. White solid, 78 mg, 84% yield, MP: 133-135 °C. ¹H NMR (400 MHz, CDCl₃): δ 9.66 (s, 1H), 7.45 – 7.38 (m, 3H), 7.37 – 7.32 (m, 2H), 6.92 (s, 2H), 6.85 (s, 1H), 6.79 – 6.77 (m, 1H), 5.87 – 5.84 (m, 1H), 4.88 – 4.85 (m, 1H), 4.76 (s, 2H), 2.18 (s, 6H). ¹³C NMR (101 MHz, CDCl₃): δ 160.9, 142.1, 137.8, 130.2, 129.7, 129.4, 129.4, 128.8, 124.8, 122.5, 121.3, 114.2, 109.8, 84.5, 83.8, 40.4, 21.1. ESI-HRMS (m/z): calculated for C₂₂H₂₁N₂O [M+H]⁺ 329.1654 , found 329.1627.

N-(3-(3-chloro-4-methylphenyl)prop-2-yn-1-yl)-N-phenyl-1H-pyrrole-2-carboxamide (3f)

Eluent: Hexane/ethyl acetate = 90:10. White solid, 78 mg, 72% yield, MP: 138-141 °C. ¹H NMR (400 MHz, CDCl₃): δ 9.72 (s, 1H), 7.47 – 7.22 (m, 6H), 7.05 (s, 2H), 6.77 (s, 1H), 5.83 (s, 1H), 4.87 (s, 1H), 4.76 (s, 2H), 2.26 (s, 3H). ¹³C NMR (101 MHz, CDCl₃): δ 160.9, 142.0, 136.6, 134.1, 132.0, 130.7, 129.9, 129.7, 129.3, 128.9, 124.7, 121.8, 121.3, 114.2, 109.9, 85.1, 82.9, 40.3, 20.0. **ESI-HRMS (m/z):** calculated for C₂₁H₁₈N₂OCl [M+H]⁺ 349.1108, found 349.1062.
N-phenyl-N-(3-(thiophen-3-yl)prop-2-yn-1-yl)-1H-pyrrole-2-carboxamide (3g)

Eluent: Hexane/ethyl acetate = 90:10. White solid, 78 mg, 70% yield, MP: 181-184 °C. ¹H NMR (400 MHz, CDCl₃): δ 9.82 (s, 1H), 7.43 – 7.37 (m, 2H), 7.36 – 7.30 (m, 1H), 7.28 (d, *J* = 2.4 Hz, 1H), 7.16 – 7.10 (m, 1H), 6.96 (d, *J* = 4.0 Hz, 1H), 6.77 (m, 1H), 5.83 (m, 1H), 4.87 (s, 1H), 4.76 (s, 2H). ¹³C NMR (101 MHz, CDCl₃): δ 161.0, 142.1, 129.9, 129.7, 129.3, 128.9, 128.8, 125.2, 124.7, 121.9, 121.4, 114.3, 110.1, 109.8, 84.2, 79.4, 40.4. ESI-HRMS (m/z): calculated for C₁₈H₁₅N₂OS [M+H]⁺ 307.0905, found 307.0854.

N-phenyl-N-(propa-1,2-dien-1-yl)-1H-indole-2-carboxamide(S4)

Eluent: Hexane/ethyl acetate = 96:4. White solid, 44 mg, 78% yield, MP: 146-147 °C. ¹H NMR (400 MHz, CDCl₃): δ 9.67 (s, 1H), 7.83 (t, *J* = 6.3 Hz, 1H), 7.47 – 7.37 (m, 3H), 7.34 – 7.22 (m, 4H), 7.19 – 7.11 (m, 1H), 6.93 (t, *J* = 7.5 Hz, 1H), 5.16 (s, 1H), 5.03 (d, *J* = 6.4 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃): δ 203.21, 159.86, 139.54, 135.72, 129.58, 129.34, 129.19, 128.95, 127.60, 124.98, 122.39, 120.39, 111.69, 107.96, 102.33, 87.07. ESI-HRMS (m/z): calculated for C₁₈H₁₄N₂ONa [M+Na]⁺ 297.1004, found 297.1015.

8. Analytical data of products 2a-2z, 4a-4g, P1, P2, 5, 6 and 7:

(E)-2-phenyl-3-styryl-2,3-dihydro-1H-imidazo[1,5-a]indol-1-one (2a)

Eluent: Hexane/ethyl acetate = 92:8. White solid, 28.8 mg, 82% yield, MP: 178-182 °C. ¹**H NMR** (400 MHz, CDCl₃): δ 7.71 (d, *J* = 8.0 Hz, 1H), 7.48 (d, *J* = 8.0 Hz, 2H), 7.34 (t, *J* = 7.8 Hz, 2H), 7.31 – 7.21 (m, 6H), 7.19 – 7.09 (m, 3H), 7.04 – 6.97 (m, 2H), 6.50 (d, *J* = 8.6 Hz, 1H), 5.97 (dd, *J* = 15.8, 8.6 Hz, 1H). ¹³**C NMR** (101 MHz, CDCl₃): δ 159.5, 138.5, 135.9, 134.6, 133.0, 132.0, 131.1, 129.3, 128.8, 127.2, 126.5, 124.3, 124.0, 123.8, 123.7, 121.3, 110.5, 99.0, 74.7. **ESI-HRMS (m/z):** calculated for C₂₄H₁₉N₂O [M+H]⁺ 351.1497, found 351.1485

(*E*)-3-(4-methylstyryl)-2-phenyl-2,3-dihydro-1H-imidazo[1,5-a]indol-1-one (2b)

Eluent: Hexane/ethyl acetate = 92:8. White solid, 24.5 mg, 67% yield, MP: 211-213 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.71 (d, *J* = 7.9 Hz, 1H), 7.48 (d, *J* = 7.9 Hz, 2H), 7.40 – 7.26 (m, 3H), 7.21 – 7.7 (m, 3H), 7.16 – 7.09 (m, 2H), 7.05 (d, *J* = 8.0 Hz, 2H), 6.99 (d, *J* = 15.8 Hz, 2H), 6.49 (d, *J* = 8.6 Hz, 1H), 5.91 (dd, *J* = 15.8, 8.6 Hz, 1H), 2.25 (s, 3H).¹³C NMR (101 MHz, CDCl₃): δ 159.5, 139.5, 138.5, 135.9, 133.0, 132.0, 131.8, 131.1, 129.5, 129.2, 127.1, 126.4, 124.3, 124.1, 123.6, 122.7, 121.2, 110.5, 98.9, 74.9, 21.3. ESI-HRMS (m/z): calculated for C₂₅H₂₁N₂O [M+H]⁺ 365.1654, found 365.1629.

(E)-3-(4-methoxystyryl)-2-phenyl-2,3-dihydro-1H-imidazo[1,5-a]indol-1-one (2c)

Eluent: Hexane/ethyl acetate = 85:15. Brown solid, 26.7 mg, 70% yield, MP: 189-191 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.72 (d, *J* = 7.8 Hz, 1H), 7.49 (d, *J* = 7.8 Hz, 2H), 7.39 – 7.29 (m, 3H), 7.26 – 7.19 (m, 3H), 7.17 – 7.08 (m, 2H), 6.99 (s, 2H), 7.02 – 6.90 (m, 2H), 6.77 (d, *J* = 8.3 Hz, 2H), 6.50 (d, *J* = 8.6 Hz, 1H), 5.83 (dd, *J* = 15.5, 8.6 Hz, 1H), 3.71 (s, 3H). ¹³C NMR (101 MHz, CDCl₃): δ 160.5, 138.0, 135.9, 132.0, 129.2, 128.6, 127.3, 126.4, 124.2, 124.1, 123.6, 121.3, 121.2, 114.2, 110.5, 98.9, 75.0, 55.4. ESI-HRMS (m/z): calculated for C₂₅H₂₁N₂O₂ [M+H]⁺ 381.1603, found 381.1573.

(E)-3-(4-(tert-butyl)styryl)-2-phenyl-2,3-dihydro-1H-imidazo[1,5-a]indol-1-one (2d)

Eluent: Hexane/ethyl acetate = 92:8. White solid, 26.1 mg, 64% yield, MP: 224-227°C. ¹H **NMR** (400 MHz, CDCl₃): δ 7.70 (d, *J* = 7.6Hz, 1H), 7.47 (d, *J* = 8.0 Hz, 1H), 7.29 (m, 7H), 7.16 (m, 3H), 7.00 (t, *J* = 9.2 Hz, 2H), 6.52 (d, *J* = 9.2 Hz, 1H), 5.97 (dd, *J* = 16.0, 8.0 Hz, 1H), 1.22 (s, 9H). ¹³C **NMR** (101 MHz, CDCl₃): δ 159.5, 152.7, 138.4, 135.9, 133.0, 132.0, 131.9, 131.1, 129.3, 127.0, 126.4, 125.8, 124.3, 124.1, 123.6, 122.9, 121.2, 110.6, 98.9, 74.9, 34.8, 31.2. **ESI-HRMS (m/z):** calculated for C₂₈H₂₇N₂O [M+H]⁺ 407.2123, found 407.2095.

(E)-3-(4-fluorostyryl)-2-phenyl-2,3-dihydro-1H-imidazo[1,5-a]indol-1-one (2e)

Eluent: Hexane/ethyl acetate = 90:10. White solid, 25.1 mg, 68% yield, MP: 176-180 °C. ¹**H NMR** (400 MHz, CDCl₃): δ 7.72 (d, *J* = 8.0 Hz, 1H), 7.49 (d, *J* = 7.7 Hz, 2H), 7.36 (t, *J* = 7.9 Hz, 2H), 7.31 – 7.24 (m, 3H), 7.21 (d, *J* = 7.7 Hz, 1H), 7.19 – 7.10 (m, 2H), 7.02 – 6.89 (m, 4H), 6.51 (d, *J* = 8.5 Hz, 1H), 5.90 (dd, *J* = 15.8, 8.5 Hz, 1H). ¹³**C NMR** (101 MHz, CDCl₃): δ 162.00 (d, *J* = 248.0 Hz), 159.4, 137.2, 135.8, 133.0, 132.0, 131.1, 130.7 (d, *J* = 3.2 Hz), 129.3, 128.8 (d, *J* = 8.3 Hz), 126.5, 124.4, 124.0, 123.7, 123.5, 121.3, 115.7 (d, *J* = 21.8 Hz), 110.4, 99.1, 74.5. ¹⁹**F NMR** (377 MHz, CDCl₃): δ -111.35. **ESI-HRMS (m/z):** calculated for C₂₄H₁₈FN₂O [M+H]⁺ 369.1403, found 369.1376

(E)-3-(4-chlorostyryl)-2-phenyl-2,3-dihydro-1H-imidazo[1,5-a]indol-1-one (2f)

Eluent: Hexane/ethyl acetate = 92:8. White solid, 30.0 mg, 55% yield, MP: 190-193 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.73 (d, *J* = 7.9 Hz, 1H), 7.49 (d, *J* = 7.9 Hz, 2H), 7.36 (t, *J* = 8.0 Hz, 2H), 7.28 (d, *J* = 8.0 Hz, 1H), 7.21 (s, 5H), 7.18 – 7.10 (m, 2H), 7.04 – 6.91 (m, 2H), 6.52 (d, *J* = 8.4 Hz, 1H), 5.96 (dd, *J* = 15.7, 8.4 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃): δ 159.4, 137.1, 135.8, 135.2, 133.0, 132.0, 131.0, 129.3, 129.0, 128.4, 126.5, 124.4, 124.0, 123.8, 121.3, 110.4, 99.2, 74.5. **ESI-HRMS (m/z):** calculated for C₂₄H₁₈ClN₂O [M+H]⁺ 385.1108, found 385.1072.

(*E*)-2-phenyl-3-(4-(trifluoromethyl)styryl)-2,3-dihydro-1H-imidazo[1,5-a]indol-1-one (2g)

Eluent: Hexane/ethyl acetate = 92:8. White solid, 21.8 mg, 52% yield, MP: 140-143 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.74 (t, J = 8.0 Hz, 1H), 7.52 – 7.46 (m, 4H), 7.42 – 7.33 (m, 4H), 7.28 (d, J = 8.2 Hz, 1H), 7.21 (m, 1H), 7.15 (m, 2H), 7.07 – 6.98 (m, 2H), 6.55 (d, J = 8.4 Hz, 1H), 6.09 (dd, J = 15.8, 8.4 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃): δ 159.4, 137.9, 136.8, 135.7, 133.0, 132.1, 131.0, 129.4, 127.4, 126.6, 126.5, 125.8 (d, J = 8.3 Hz), 124.5, 124.0, 121.4 (q, J = 243.4 Hz), 110.3, 99.4, 74.2. ¹⁹F NMR (377 MHz, CDCl₃): δ -62.83. ESI-HRMS (m/z): calculated for C₂₅H₁₈F₃N₂O [M+H]⁺ 419.1371, found 419.1351.

(E)-3-(3,5-dimethylstyryl)-2-phenyl-2,3-dihydro-1H-imidazo[1,5-a]indol-1-one (2h)

Eluent: Hexane/ethyl acetate = 92:8. White solid, 29.2 mg, 77% yield, MP: 207-209 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.72 (d, *J* = 7.8 Hz, 1H), 7.49 (d, *J* = 7.8 Hz, 2H), 7.39 – 7.29 (m, 3H), 7.28 – 7.19 (m, 1H) 7.17 – 7.09 (m, 2H), 7.02 – 6.91 (m, 4H), 6.87 (s, 1H), 6.50 (d, *J* = 8.6 Hz, 1H), 5.95 (dd, *J* = 15.7, 8.6 Hz, 1H), 2.20 (s, 6H). ¹³C NMR (101 MHz, CDCl₃): δ 159.5, 138.8, 138.4, 135.9, 134.4, 133.0, 132.0, 131.1, 131.0, 129.3, 126.4, 125.0, 124.3, 124.0, 123.6, 123.3, 121.2, 110.5, 99.0, 74.9, 21.1. ESI-HRMS (m/z): calculated for C₂₆H₂₃N₂O [M+H]⁺ 379.1810, found 379.1779.

(*E*)-3-(3,5-bis(trifluoromethyl)styryl)-2-phenyl-2,3-dihydro-1H-imidazo[1,5-a]indol-1one (2i)

Eluent: Hexane/ethyl acetate = 92:8. White solid, 29.2 mg, 60% yield, MP: 178-180 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.77 – 7.71 (m, 1H), 7.70 (s, 2H), 7.50 (d, *J* = 7.6 Hz, 1H), 7.39 (t, *J* = 7.6 Hz, 1H), 7.27 – 7.20 (m, 1H), 7.17 – 7.14 (m, 1H), 7.08 – 7.01 (m, 1H), 6.59 (d, *J* = 8.3 Hz, 1H), 6.19 (dd, *J* = 15.9, 8.3 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃): δ 159.2, 135.2 (d, *J* = 33.0 Hz), 129.5, 128.0, 126.7, 124.0 (d, *J* = 243.0 Hz), 123.9, 121.5, 121.0, 120.1, 110.1, 99.6, 73.7, 53.4. ¹⁹F NMR (377 MHz, CDCl₃) δ -63.06. ESI-HRMS (m/z): calculated for C₂₆H₁₇F₆N₂O [M+H]⁺ 487.1245, found 487.1233.

(E)-3-(3,4-dimethylstyryl)-2-phenyl-2,3-dihydro-1H-imidazo[1,5-a]indol-1-one (2j)

Eluent: Hexane/ethyl acetate = 92:8. White solid, 25.8 mg, 68% yield, MP: 190-192 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.72 (d, *J* = 7.9 Hz, 1H), 7.49 (d, *J* = 7.9 Hz, 2H), 7.37 – 7.29 (m, 4H), 7.09 (d, *J* = 8.0 Hz, 2H), 7.06 – 7.01 (m, 2H), 6.99 (d, *J* = 8.0 Hz, 2H), 6.94 (s, 1H), 6.51 (d, *J* = 8.6 Hz, 1H), 5.93 (dd, *J* = 15.7, 8.6 Hz, 1H), 2.17 (s, 3H), 2.15 (s, 3H). ¹³C NMR (101 MHz, CDCl₃): δ 159.4, 135.8, 134.0, 133.0, 132.1, 131.0, 129.3, 128.7, 128.7, 126.6, 126.4, 124.5, 123.8, 123.7, 121.4, 117.3, 117.0, 114.8, 114.6, 110.3, 99.3, 74.3. ESI-HRMS (m/z): calculated for C₂₆H₂₃N₂O [M+H]⁺ 379.1810, found 379.1836.

(*E*)-3-(2-chloro-4-fluorostyryl)-2-phenyl-2,3-dihydro-1H-imidazo[1,5-a]indol-1-one (2k)

Eluent: Hexane/ethyl acetate = 92:8. White solid, 24.9 mg, 62% yield, MP: 172-174 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.73 (d, *J* = 8.0 Hz, 1H), 7.52 (d, *J* = 8.0 Hz, 2H), 7.42 – 7.33 (m, 4H), 7.28 – 7.19 (m, 3H), 7.18 – 7.13 (m, 1H), 7.06 (dd, *J* = 8.4, 2.5 Hz, 1H), 7.01 (s, 1H), 6.82 (td, *J* = 8.4, 2.5 Hz, 1H), 6.58 (d, *J* = 8.6 Hz, 1H), 5.85 (dd, *J* = 15.8, 8.6 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃): δ 161.4 (d, *J* = 253.5 Hz), 159.4, 135.8, 134.3 (d, *J* = 10.1 Hz), 134.0, 133.0, 132.1, 131.0, 129.3, 128.7 (d, *J* = 9.1 Hz, 2H), 126.7 (d, *J* = 2.02 Hz), 126.4, 124.5, 123.8, 123.7, 121.4, 117.0 (d, *J* = 24.5 Hz), 114.6 (d, *J* = 21.2 Hz), 110.3, 99.3, 74.37. ¹⁹F NMR (377 MHz, CDCl₃): δ -109.67. **ESI-HRMS (m/z):** calculated for C₂₄H₁₇ClFN₂O [M+H]⁺ 403.1013, found 403.0981.

(E)-3-(3-chloro-4-methylstyryl)-2-phenyl-2,3-dihydro-1H-imidazo[1,5-a]indol-1-one (2l)

Eluent: Hexane/ethyl acetate = 92:8. White solid, 20.3 mg, 51% yield. MP: 173-176 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.72 (d, *J* =7.8 Hz, 1H), 7.49 (d, *J* = 7.6 Hz, 2H), 7.36 (t, *J* = 7.6 Hz, 2H), 7.31 – 7.22 (m, 3H), 7.13 – 7.05 (m, 4H), 7.01 (s, 1H), 6.92 (d, *J* = 15.3 Hz, 1H), 6.52 (d, *J* = 8.3 Hz, 1H), 5.95 (dd, *J* = 15.3, 8.3 Hz, 1H), 2.27 (s, 3H). ¹³C NMR (101 MHz, CDCl₃): δ 159.5, 139.3, 139.3, 137.3, 137.0, 135.9, 134.9, 133.9, 131.2, 131.0, 129.3, 127.6, 126.5, 125.2, 124.4, 124.2, 124.0, 123.7, 121.3, 114.1, 110.4, 99.2, 74.5. ESI-HRMS (m/z): calculated for C₂₅H₂₀ClN₂O [M+H]⁺ 399.1264, found 399.1245.

(E)-2-phenyl-3-(2-(thiophen-3-yl)vinyl)-2,3-dihydro-1H-imidazo[1,5-a]indol-1-one (2m)

Eluent: Hexane/ethyl acetate = 90:10. White solid, 23.6 mg, 66% yield, MP: 191-192 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.70 (d, *J* = 8.1 Hz, 1H), 7.47 (d, *J* = 8.1 Hz, 2H), 7.35 (t, *J* = 7.9 Hz, 2H), 7.28 (d, *J* = 8.2 Hz, 1H), 7.23 – 7.21 (m, 1H), 7.20 – 7.16 (m, 3H), 7.15 – 7.10 (m, 3H), 6.45 (d, *J* = 8.6 Hz, 1H), 5.80 (dd, *J* = 15.7, 8.6 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃): δ 159.5, 137.3, 135.9, 133.0, 132.3, 132.0, 131.1, 129.3, 126.8, 126.4, 125.2, 125.1, 124.3, 124.0, 123.7, 123.3, 121.3, 110.5, 99.0, 74.7. ESI-HRMS (m/z): calculated for C₂₂H₁₇N₂OS [M+H]⁺ 357.1062, found 357.1069.

(E)-2-benzyl-3-styryl-2,3-dihydro-1H-imidazo[1,5-a]indol-1-one (20)

Eluent: Hexane/ethyl acetate = 88:12. White solid, 23.7 mg, 65% yield. MP: 193-195 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.67 (d, J = 7.3 Hz, 1H), 7.39 – 7.21 (m, 10H), 7.17 – 7.03 (m, 3H), 6.95 – 6.85 (m, 2H), 5.88 (dd, J = 15.4, 8.7 Hz, 1H), 5.77 (d, J = 8.7 Hz, 1H), 5.24 (d, J = 15.2 Hz, 1H), 4.14 (d, J = 15.2 Hz, 1H).¹³C NMR (101 MHz, CDCl₃): δ 160.4, 138.9, 136.4, 134.6, 133.1, 131.9, 131.2, 129.4, 129.0, 128.9, 128.4, 128.0, 127.2, 124.0, 123.6, 123.6, 121.0, 110.2, 98.3, 72.9, 43.8. ESI-HRMS (m/z): calculated for C₂₅H₂₁N₂O [M+H]⁺ 365.1654, found 365.1676.

(E)-7-chloro-2-phenyl-3-styryl-2,3-dihydro-1H-imidazo[1,5-a]indol-1-one (2p)

Eluent: Hexane/ethyl acetate = 92:8. White solid, 33.1 mg, 86% yield. MP: 189-192 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.69 (d, *J* = 1.6 Hz, 1H), 7.62 – 7.51 (m, 1H), 7.47 (d, *J* = 7.7 Hz, 2H), 7.35 (t, *J* = 7.9 Hz, 2H), 7.31 – 7.27 (m, 2H), 7.26 – 7.22 (m, 3H), 7.21 (s, 1H), 7.17 – 7.12 (m, 1H), 6.98 (d, *J* = 15.8 Hz, 1H), 6.93 (s, 1H), 6.50 (d, *J* = 8.6 Hz, 1H), 5.97 (dd, *J* = 15.8, 8.6 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃): δ 159.0, 138.9, 135.6, 134.4, 132.9, 132.3, 131.3, 129.5, 129.4, 128.9, 127.2, 127.1, 126.7, 124.9, 124.1, 123.3, 122.9, 111.4, 98.5, 74.8 ESI-HRMS (m/z): calculated for C₂₄H₁₈ClN₂O [M+H]⁺ 385.1108, found 385.1079.

(*E*)-7-chloro-3-(3,5-dimethylstyryl)-2-phenyl-2,3-dihydro-1H-imidazo[1,5-a]indol-1-one (2q)

Eluent: Hexane/ethyl acetate = 92:8. White solid, 32.6 mg, 79% yield. MP: 184-187 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.76 (d, *J* = 1.8 Hz, 1H), 7.58 – 7.51 (m, 2H), 7.42 (t, *J* = 7.9 Hz, 2H), 7.28 (t, *J* = 5.8 Hz, 1H), 7.26 – 7.23 (m, 1H), 7.20 (dd, *J* = 8.8, 1.9 Hz, 1H), 7.05 – 6.93 (m, 5H), 6.56 (d, *J* = 8.7 Hz, 1H), 6.00 (dd, *J* = 15.7, 8.7 Hz, 1H), 2.28 (s, 6H). ¹³C NMR (101 MHz, CDCl₃): δ 159.0, 139.2, 138.5, 135.7, 134.3, 132.9, 132.3, 131.3, 131.2, 129.3, 127.0, 126.1, 125.1, 124.8, 124.1, 122.8, 111.5, 98.4, 75.0, 21.1. ESI-HRMS (m/z): calculated for C₂₆H₂₂ClN₂O [M+H]⁺ 413.1421, found 413.1391.

(*E*)-3-(4-(tert-butyl)styryl)-7-chloro-2-phenyl-2,3-dihydro-1H-imidazo[1,5-a]indol-1-one (2r)

Eluent: Hexane/ethyl acetate = 92:8. White solid, 26.2 mg, 66% yield. MP: 217-219 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.69 (s, 1H), 7.47 (d, J = 8.0 Hz, 2H), 7.35 (t, J = 8.0 Hz, 2H), 7.31 – 7.20 (m, 5H), 7.18 (s, 1H), 7.14 (t, J = 8.4 Hz, 1H), 6.99 (d, J = 15.7 Hz, 1H), 6.93 (s, 1H), 6.51 (d, J = 8.6 Hz, 1H), 5.93 (dd, J = 15.7, 8.6 Hz, 1H), 1.22 (s, 9H). ¹³C NMR (101 MHz, CDCl₃): δ 159.1, 152.9, 138.7, 135.6, 132.9, 132.4, 131.6, 131.3, 129.3, 127.0, 126.7, 125.8, 124.8, 124.2, 122.8, 122.4, 111.5, 98.40, 75.0, 34.8, 31.2. ESI-HRMS (m/z): calculated for C₂₈H₂₆ClN₂O [M+H]⁺ 441.1734, found 441.1714.

(*E*)-7-fluoro-2-phenyl-3-styryl-2,3-dihydro-1H-imidazo[1,5-a]indol-1-one (2s)

Eluent: Hexane/ethyl acetate = 92:8. White solid, 26.2 mg, 71% yield. MP: 181-183 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.48 (d, J = 7.8 Hz, 2H), 7.40 – 7.33 (m, 3H), 7.32 – 7.20 (m, 7H), 7.04 – 6.91 (m, 3H), 6.51 (d, J = 8.6 Hz, 1H), 5.97 (dd, J = 15.8, 8.6 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃): δ 159.6, 159.1, 138.8, 135.7, 134.4, 132.6, 129.7, 129.4, 129.3, 128.9, 127.2, 126.6, 124.1, 123.5, 113.3 (d, J = 27.3 Hz), 111.2 (d, J = 9.9 Hz), 108.2 (d, J = 17.2 Hz), 98.9 (d, J = 5.1 Hz), 74.8. ¹⁹F NMR (377 MHz, CDCl₃): δ -121.79. ESI-HRMS (m/z): calculated for C₂₄H₁₈FN₂O [M+H]⁺ 369.1403, found 369.1396.

(*E*)-3-(3,5-dimethylstyryl)-7-fluoro-2-phenyl-2,3-dihydro-1H-imidazo[1,5-a]indol-1-one (2t)

Eluent: Hexane/ethyl acetate = 92:8. White solid, 25.4 mg, 64% yield. MP: 190-195 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.47 (d, *J* = 7.9 Hz, 2H), 7.34 (d, *J* = 7.3 Hz, 3H), 7.26 – 7.11 (m, 2H), 6.98 – 6.83 (m, 6H), 6.47 (d, *J* = 8.6 Hz, 1H), 5.93 (dd, *J* = 15.7, 8.7 Hz, 1H), 2.20 (s, 6H). ¹³C NMR (101 MHz, CDCl₃): δ 159.1, 157.2 (d, *J* = 238.4 Hz), 139.1, 138.5, 135.8, 134.3, 132.6, 132.3 (d, *J* = 10.1 Hz), 131.1, 129.7, 129.3, 126.5, 125.1, 124.0, 123.0, 113.2 (d, *J* = 27.3 Hz), 111.3 (d, *J* = 10.1 Hz), 107.9 (d, *J* = 23.2 Hz), 98.8 (d, *J* = 5.1 Hz), 74.9, 21.2. ¹⁹F NMR (377 MHz, CDCl₃): δ -121.83. ESI-HRMS (m/z): calculated for C₂₆H₂₂FN₂O [M+H]⁺ 397.1716, found 397.1731.

(E)-7-methyl-2-phenyl-3-styryl-2,3-dihydro-1H-imidazo[1,5-a]indol-1-one (2u)

Eluent: Hexane/ethyl acetate = 90:10. White solid, 23.7 mg, 65% yield. MP: 199-201 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.49 (d, J = 7.6 Hz, 3H), 7.34 (t, J = 7.9 Hz, 2H), 7.30 – 7.21 (m, 5H), 7.20 – 7.13 (m, 2H), 7.04 – 6.95 (m, 2H), 6.91 (s, 1H), 6.47 (d, J = 8.5 Hz, 1H), 5.96 (dd, J = 15.8, 8.5 Hz, 1H), 2.37 (s, 3H). ¹³C NMR (101 MHz, CDCl₃): δ 159.6, 159.1, 138.4, 136.0, 134.6, 132.3, 131.5, 131.1, 130.7, 129.3, 129.2, 128.8, 127.2, 126.4, 126.2, 123.9, 123.0, 110.1, 98.5 74.6, 21.5. **ESI-HRMS (m/z):** calculated for C₂₅H₂₁N₂O [M+H]⁺ 365.1654, found 365.1619.

(E)-7-methoxy-2-phenyl-3-styryl-2,3-dihydro-1H-imidazo[1,5-a]indol-1-one (2v)

Eluent: Hexane/ethyl acetate = 85:15. White solid, 30.8 mg, 81% yield. MP: 206-208 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.55 (d, *J* =7.6 Hz, 2H), 7.42 (t, *J* = 7.6 Hz, 2H), 7.38 – 7.29 (m, 5H), 7.28 – 7.23 (m, 2H), 7.19 (s, 1H), 7.05 (d, *J* = 15.7 Hz, 1H), 7.00 (s, 1H), 6.94 (d, *J* = 8.7 Hz, 1H), 6.54 (d, *J* = 8.3 Hz, 1H), 6.03 (dd, *J* = 15.6, 8.5 Hz, 1H), 3.86 (s, 3H). ¹³C NMR (101 MHz, CDCl₃): δ 159.5, 155.1, 138.4, 135.9, 134.6, 132.6, 131.5, 129.3, 128.8, 128.4, 127.2, 126.4, 124.0, 123.9, 115.8, 111.3, 103.9, 98.6, 74.7, 55.7. ESI-HRMS (m/z): calculated for C₂₅H₂₁N₂O₂ [M+H]⁺ 381.1603, found 381.1598.

(*E*)-3-(3,5-dimethylstyryl)-7-methoxy-2-phenyl-2,3-dihydro-1H-imidazo[1,5-a]indol-1one (2w)

Eluent: Hexane/ethyl acetate = 85:15. White solid, 24.5 mg, 60% yield. MP: 184-187 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.48 (d, *J* = 7.6 Hz, 2H), 7.34 (t, *J* = 7.9 Hz, 2H), 7.20 – 7.15 (m, 2H), 7.12 (d, *J* = 2.4 Hz, 1H), 6.97 – 6.89 (m, 4H), 6.89 – 6.81 (m, 2H), 6.45 (d, *J* = 8.6 Hz, 1H), 5.93 (dd, *J* = 15.8, 8.6 Hz, 1H), 3.78 (s, 3H), 2.20 (s, 6H). ¹³C NMR (101 MHz, CDCl₃): δ 159.5, 155.0, 138.7, 138.4, 136.0, 134.5, 132.5, 131.5, 131.0, 129.2, 128.4, 126.3, 125.0, 123.9, 123.4, 115.8, 111.3, 103.8, 98.5, 74.9, 55.7, 21.1. **ESI-HRMS (m/z):** calculated for C₂₇H₂₅N₂O₂ [M+H]⁺ 409.1916, found 409.1903.

(*E*)-3-(4-fluorostyryl)-7-methoxy-2-phenyl-2,3-dihydro-1H-imidazo[1,5-a]indol-1-one (2x)

Eluent: Hexane/ethyl acetate = 85:15. White solid, 29.0 mg, 73% yield. MP: 193-195 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.47 (d, J = 7.9 Hz, 2H), 7.35 (t, J = 7.9 Hz, 2H), 7.26 (dd, J = 8.5, 5.4 Hz, 1H), 7.18 – 7.10 (m, 3H), 6.98 – 6.83 (m, 5H), 6.46 (d, J = 8.5 Hz, 1H), 5.88 (dd, J = 15.8, 8.5 Hz, 1H), 3.79 (s, 3H). ¹³C NMR (101 MHz, CDCl₃): δ 159.5 (d, J = 256.5 Hz), 155.1, 137.1, 135.9, 132.6, 131.5, 129.3, 128.8 (d, J = 9.1 Hz), 128.4, 126.4, 123.6 (d, J = 2.02 Hz), 116.0, 115.8 (d, J = 9.1 Hz), 111.2, 103.9, 98.7, 74.6, 55.7. ¹⁹F NMR (377 MHz, CDCl₃): δ -111.36. **ESI-HRMS (m/z):** calculated for C₂₅H₁₉FN₂O₂Na [M+Na]⁺ 421.1328, found 421.1291.

(*E*)-3-(3,5-dimethylstyryl)-6-fluoro-2-phenyl-2,3-dihydro-1H-imidazo[1,5-a]indol-1-one (2y)

Eluent: Hexane/ethyl acetate = 90:10. White solid, 23 mg, 58% yield. MP: 202-203 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.66 – 7.56 (m, 1H), 7.47 (d, J = 7.4 Hz, 2H), 7.34 (t, J = 7.4 Hz, 2H), 7.17 – 7.13 (m, 1H), 7.00-6.86 (m, 7H), 6.46 (d, J = 8.0 Hz, 1H), 5.93 (dd, J = 16.0, 8.0 Hz, 1H), 2.20 (s, 6H). ¹³C NMR (101 MHz, CDCl₃): δ 159.5 (d, J = 243.4 Hz), 159.2, 139.2, 138.5, 135.8, 134.3, 132.7 (d, J = 12.1 Hz), 131.1 (d, J = 4.0 Hz), 129.3, 129.2, 128.5, 126.5, 125.1, 124.7 (d, J = 10.1 Hz), 124.1, 122.7, 120.2, 110.5 (d, J = 25.3 Hz), 99.2, 96.7 (d, J =

27.3 Hz), 74.9, 21.2. ¹⁹F NMR (377 MHz, CDCl₃): δ -115.71. ESI-HRMS (m/z): calculated for C₂₆H₂₂FN₂O [M+H]⁺ 397.1716, found 397.1688.

(E)-5-chloro-2-phenyl-3-styryl-2,3-dihydro-1H-imidazo[1,5-a]indol-1-one (2z)

Eluent: Hexane/ethyl acetate = 95:5. White solid, 30 mg, 78% yield. MP: 132-135 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.60 (d, J = 8.0 Hz, 1H), 7.55 (d, J = 8.0 Hz, 2H), 7.36 (t, J = 8.0 Hz, 2H), 7.21 – 7.15 (m, 7H), 7.07 – 7.00 (m, 2H), 6.90 (d, J = 7.4 Hz, 1H), 6.67 (d, J = 15.8 Hz, 1H), 6.02 (dd, J = 15.8, 7.4 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃): δ 158.7, 137.4, 135.9, 135.0, 134.2, 132.9, 130.6, 129.4, 129.2, 128.9, 128. 7, 127.0, 126.6, 124.8, 124.6, 123.9, 122.1, 116.9, 100.0, 75.4. **ESI-HRMS (m/z):** calculated for C₂₄H₁₈N₂OCl [M+H]⁺ 385.1108, found 385.1121.

(E)-2-phenyl-3-styryl-2,3-dihydro-1H-pyrrolo[1,2-c]imidazol-1-one (4a)

Eluent: Hexane/ethyl acetate = 88:12. White solid, 19.5 mg, 65% yield, MP: 147-148 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.44 (d, *J* = 7.9 Hz, 1H), 7.35 – 7.21 (m, 4H), 7.11 (t, *J* = 7.4 Hz, 1H), 6.92 – 6.81 (m, 1H), 6.67 (d, *J* = 3.5 Hz, 1H), 6.45 – 6.37 (m, 1H), 6.29 (d, *J* = 8.4 Hz, 1H), 5.96 (dd, *J* = 15.8, 8.4 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃): δ 159.0, 138.0, 136.3, 134.6, 129.3, 129.2, 129.1, 128.8, 127.1, 126.5, 125.8, 124.2, 123.5, 120.0, 117.4, 115.2, 106.2, 74.8. ESI-HRMS (m/z): calculated for C₂₀H₁₇N₂O [M+H]⁺ 301.1341, found 301.1353.

(*E*)-3-(4-methylstyryl)-2-phenyl-2,3-dihydro-1H-pyrrolo[1,2-c]imidazol-1-one (4b)

Eluent: Hexane/ethyl acetate = 90:10. White solid, 18.2 mg, 58% yield, MP: 147-150 °C. ¹**H NMR** (400 MHz, CDCl₃): δ 7.46 – 7.38 (m, 4H), 7.30 (t, *J* = 7.2 Hz, 2H), 7.11 (t, *J* = 7.4 Hz, 1H), 7.07 – 7.03 (m, 2H), 6.88 (d, *J* = 2.4 Hz, 1H), 6.84 (d, *J* = 16.0 Hz, 1H), 6.67 (d, *J* = 3.6 Hz, 1H), 6.41 (s, 1H), 6.26 (d, *J* = 8.4 Hz, 1H), 5.91 (dd, *J* = 16.0, 8.4 Hz, 1H), 2.26 (s, 3H). ¹³**C NMR** (101 MHz, CDCl₃): δ 170.9, 159.1, 139.5, 138.0, 136.3, 133.7, 131.8, 130.2, 129.5, 129.33, 129.2, 128.5, 127.1, 126.5, 125.8, 123.6, 123.1, 117.4, 115.1, 106.2, 75.0, 21.3. **ESI-HRMS (m/z):** calculated for C₂₁H₁₉N₂O [M+H]⁺ 315.1497, found 315.1464.

(*E*)-3-(4-(tert-butyl)styryl)-2-phenyl-2,3-dihydro-1H-pyrrolo[1,2-c]imidazol-1-one (4c)

Eluent: Hexane/ethyl acetate = 90:10. White solid, 21.4 mg, 60% yield, MP: 187-190 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.42 (t, *J* = 7.4 Hz, 2H), 7.33 – 7.26 (m, 4H), 7.26 – 7.21 (m, 2H), 7.11 (t, *J* = 7.4 Hz, 1H), 6.90 – 6.80 (m, 2H), 6.67 (d, *J* = 3.5 Hz, 1H), 6.43 – 6.38 (m, 1H), 6.28 (d, *J* = 8.5 Hz, 1H), 5.93 (dd, *J* = 15.8, 8.5 Hz, 1H), 1.22 (s, 9H). ¹³C NMR (101 MHz, CDCl₃): δ 159.0, 152.7, 137.9, 136.3, 131.8, 129.2, 126.9, 125.8, 125.8, 123.5, 123.4, 117.4, 115.1, 106.1, 75.0, 34.8, 31.2. **ESI-HRMS (m/z):** calculated for C₂₄H₂₅N₂O [M+H]⁺ 357.1967, found 357.1986.

(E)-3-(4-chlorostyryl)-2-phenyl-2,3-dihydro-1H-pyrrolo[1,2-c]imidazol-1-one (4d)

Eluent: Hexane/ethyl acetate = 85:15. White solid, 17 mg, 51% yield, MP: 131-134 °C. ¹H NMR (400 MHz, CDCl₃): δ 8.11 (d, *J* = 7.3 Hz, 1H), 7.51 – 7.46 (m, 2H), 7.38 (t, *J* = 7.9 Hz, 2H), 7.28 (s, 4H), 7.20 (t, *J* = 7.4 Hz, 1H), 6.95 (d, *J* = 2.0 Hz, 1H), 6.85 (d, *J* = 15.8 Hz, 1H), 6.74 (d, *J* = 3.3 Hz, 1H), 6.48 (m, 1H), 6.35 (d, *J* = 8.4 Hz, 1H), 6.00 (dd, *J* = 15.8, 8.4 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃): δ 158.4, 136.7, 136.2, 135.1, 133.6, 133.0, 130.2, 129.2, 129.0, 128.5, 128.3, 126.4, 125.9, 124.8, 123.5, 117.4, 115.3, 106.4, 74.6. ESI-HRMS (m/z): calculated for C₂₀H₁₆ClN₂O [M+H]⁺ 335.0951, found 335.0965.

(E)-3-(3,5-dimethylstyryl)-2-phenyl-2,3-dihydro-1H-pyrrolo[1,2-c]imidazol-1-one (4e)

Eluent: Hexane/ethyl acetate = 88:12. White solid, 24.4 mg, 74% yield, MP: 195-198 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.42 (d, *J* = 7.6 Hz, 2H), 7.29 (t, *J* = 7.6 Hz, 2H), 7.09 (t, *J* = 7.4 Hz, 1H), 6.90 (s, 2H), 6.86 (s, 2H), 6.77 (s, 1H), 6.65 (d, *J* = 3.6 Hz, 1H), 6.39 (m, 1H), 6.25 (d, *J* = 8.5 Hz, 1H), 5.91 (dd, *J* = 15.8, 8.5 Hz, 1H), 2.20 (s, 6H).¹³C NMR (101 MHz, CDCl₃): δ 159.0, 138.4, 138.3, 136.4, 134.5, 131.0, 129.2, 126.5, 125.8, 125.0, 123.8, 123.4, 117.4, 115.1, 106.1, 75.0, 21.2. **ESI-HRMS (m/z):** calculated for C₂₂H₂₁N₂O [M+H]⁺ 329.1654, found 329.1627.

(*E*)-3-(3-chloro-4-methylstyryl)-2-phenyl-2,3-dihydro-1H-pyrrolo[1,2-c]imidazol-1-one (4f)

Eluent: Hexane/ethyl acetate = 85:15. White solid, 18.1 mg, 52% yield, MP: 140-143 °C. ¹**H NMR** (400 MHz, CDCl₃): δ 7.53 (d, *J* = 7.8 Hz, 1H), 7.42 (d, *J* = 7.8 Hz, 1H), 7.32 (d, *J* = 7.6 Hz, 1H), 7.30 – 7.27 (m, 1H), 7.26 (s, 1H), 7.15 – 7.10 (m, 1H), 7.06 (dd, *J* = 14.8, 7.1 Hz, 2H), 6.92 – 6.86 (m, 1H), 6.75 (d, *J* = 15.8 Hz, 1H), 6.69 – 6.64 (m, 1H), 6.46 – 6.35 (m, 1H), 6.29 – 6.21 (m, 1H), 5.92 (dd, *J* = 15.8, 8.4 Hz, 1H), 2.27 (s, 3H). ¹³C NMR (101 MHz, CDCl₃): δ 158.9, 137.2, 136.6, 134.9, 133.9, 131.2, 129.2, 129.1, 127.5, 125.9, 125.2, 124.6, 124.2, 120.0, 117.4, 115.2, 110.2, 109.5, 106.3, 74.6, 19.9. **ESI-HRMS (m/z):** calculated for C₂₁H₁₈ClN₂O [M+H]⁺ 349.1108, found 349.1125.

(*E*)-2-phenyl-3-(2-(thiophen-3-yl)vinyl)-2,3-dihydro-1H-pyrrolo[1,2-c]imidazol-1-one (4g)

Eluent: Hexane/ethyl acetate = 85:15. White solid, 16.8 mg, 55% yield, MP: 168-170 °C. ¹H **NMR** (400 MHz, CDCl₃): δ 7.51 – 7.47 (m, 2H), 7.40 – 7.36 (m, 2H), 7.28 (s, 4H), 7.20 (t, *J* = 7.6Hz, 1H), 6.95 (d, *J* = 2.0 Hz, 1H), 6.88 – 6.84 (m, 1H), 6.74 (d, *J* = 3.6 Hz, 1H), 6.50 – 6.46 (m, 1H), 6.35 (d, *J* = 8.4 Hz, 1H), 6.00 (dd, *J* = 16.0, 8.4 Hz, 1H). ¹³C **NMR** (101 MHz, CDCl₃): δ 158.9, 137.4, 136.3, 131.9, 129.2, 126.8, 126.5, 125.8, 125.2, 125.0, 123.9, 123.5, 117.4, 115.1, 106.2, 74.9. **ESI-HRMS (m/z):** calculated for C₁₈H₁₅N₂OS [M+H]⁺ 307.0905, found 307.0903.

(E)-N-(buta-1,3-dien-1-yl)-N-phenyl-1H-indole-2-carboxamide (P1)

Eluent: Hexane/ethyl acetate = 94:6. White solid, 15 mg, 52% yield, MP: 179-180 °C. ¹H NMR (400 MHz, CDCl₃) δ 9.68 (s, 1H), 7.88 (d, *J* = 14.0 Hz, 1H), 7.57 – 7.44 (m, 3H), 7.35 – 7.21 (m, 4H), 7.14 (d, *J* = 7.5 Hz, 1H), 6.92 (t, *J* = 7.2 Hz, 1H), 6.45 – 6.29 (m, 1H), 5.30 – 5.15 (m, 1H), 5.04 (s, 1H), 4.97 – 4.82 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 160.0, 138.8, 135.8, 134.9, 132.6, 130.3, 129. 8, 129.6, 128.8, 127.7, 125.2, 122.5, 120.5, 116.1, 115.3, 111.7, 108.3. **ESI-HRMS (m/z):** calculated for C₁₉H₁₆N₂ONa [M+Na]⁺ 311.1160, found 311.1166.

2-phenyl-3-vinyl-2,3-dihydro-1H-imidazo[1,5-a]indol-1-one (P2)

Eluent: Hexane/ethyl acetate = 94:6. White solid, 22 mg, 82% yield, MP: 174-177 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.71 (d, *J* = 7.8 Hz, 1H), 7.45 (d, *J* = 7.8 Hz, 2H), 7.36 (t, *J* = 7.6 Hz, 2H), 7.30 – 7.11 (m, 5H), 7.30 – 7.10 (m, 5H), 6.96 (s, 1H), 6.31 (d, *J* = 7.6 Hz, 1H), 5.81 – 5.48 (m, 3H). ¹³C NMR (101 MHz, CDCl₃): δ 159.4, 135.8, 133.3, 133.0, 132.0, 131.1, 129.2, 126.4, 124.3, 124.1, 123.9, 123.7, 121.3, 110.4, 99.0, 74.6. **ESI-HRMS (m/z):** calculated for C₁₈H₁₅N₂O [M+H]⁺ 275.1184, found 275.1201.

3-phenethyl-2-phenyl-2,3-dihydro-1H-imidazo[1,5-a]indol-1-one (5)

Eluent: Hexane/ethyl acetate = 90:10. White solid, 33 mg, 94% yield, MP: 122-123 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.75 (d, *J* = 8.1 Hz, 1H), 7.49 – 7.35 (m, 5H), 7.32 – 7.21 (m, 2H), 7.18 (t, *J* = 7.5 Hz, 1H), 7.08 – 6.96 (m, 4H), 6.70 (d, *J* = 6.7 Hz, 2H), 6.36 (s, 1H), 2.59 – 2.48 (m, 1H), 2.40 – 2.21 (m, 2H), 1.89 – 1.79 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 159. 7, 139.7, 135.5, 132.6, 132.2, 132.0, 129.6, 128.4, 128.1, 126.6, 126.1, 124.4, 123.9, 123.8, 121.3, 110.0, 98.8, 71.9, 33.2, 26.7. **ESI-HRMS (m/z):** calculated for C₂₄H₂₁N₂O [M+H]⁺ 353.1654, found 353.1618.

(E)-9-bromo-2-phenyl-3-styryl-2,3-dihydro-1H-imidazo[1,5-a]indol-1-one (6)

Eluent: Hexane/ethyl acetate = 92:8. White solid, 39 mg, 92% yield, MP: 151-153 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.67 (d, *J* = 7.7 Hz, 1H), 7.49 (d, *J* = 7.7 Hz, 2H), 7.37 – 7.32 (m, 2H), 7.25 (m, 730 – 7.21Hz, 8H), 7.16 (d, *J* = 7.4 Hz, 1H), 7.02 (d, *J* = 15.7 Hz, 1H), 6.49 (d, *J* = 8.6 Hz, 1H), 5.95 (dd, *J* = 15.7, 8.6 Hz, 1H).¹³C NMR (101 MHz, CDCl₃) δ 138.9, 129.4, 129.3, 128.9, 127.2, 126.5, 125.4, 123.8, 123.3, 121.9, 121.8, 110.7, 74.6. ESI-HRMS (m/z): calculated for C₂₄H₁₈BrN₂O [M+H]⁺ 429.0603, found 429.0607.

(E)-2,9-diphenyl-3-styryl-2,3-dihydro-1H-imidazo[1,5-a]indol-1-one (7)

Eluent: Hexane/ethyl acetate = 92:8. White solid, 20 mg, 52% yield, MP: 169-171 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.01 (d, *J* = 6.3 Hz, 1H), 7.92 (d, *J* = 3.7 Hz, 2H), 7.56 – 7.41 (m, 5H), 7.38 – 7.21 (m, 11H), 7.06 (d, *J* = 15.6 Hz, 1H), 6.60 (d, *J* = 7.5 Hz, 1H), 6.03 (dd, *J* = 15.6, 7.6 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 159.4, 138.6, 136.0, 134.6, 133.04, 132.3, 130.4, 129.5, 129.3, 129.2, 128.8, 128.6, 127.2, 126.3, 124.8, 123.8, 122.8, 121.6, 116.7, 110.6, 74.25. **ESI-HRMS (m/z):** calculated for C₃₀H₂₃N₂O [M+H]⁺ 427.1810, found 427.1827.

9. X-ray crystal structure and data of 2a (CCDC 2259848):

X-ray crystal structure of 2a (CCDC 2259848):

Using the slow evaporation method, the solid was recrystallized in toluene at room temperature to produce crystal (**2a**), appropriate for X-ray crystallography.

Figure: ORTEP view 2a with thermal ellipsoids drawn as 50% probability level

X-ray crystallography data of 2a (CCDC 2259848):

Table S7 Crystal data and structure refinement for New SJP-SG_auto.

Identification code	New SJP-SG_auto
Empirical formula	$C_{24}H_{18}N_2O$
Formula weight	350.40
Temperature/K	101(1)
Crystal system	triclinic
Space group	P-1
a/Å	6.3722(5)
b/Å	13.4572(11)
c/Å	14.9777(14)
α/°	66.406(8)
β/°	89.765(7)
$\gamma/^{\circ}$	84.766(6)
Volume/Å ³	1171.36(19)
Z	2
$\rho_{calc}g/cm^3$	0.993
μ/mm^{-1}	0.061
F(000)	368.0
Crystal size/mm ³	0.21 imes 0.2 imes 0.18
Radiation	Mo Ka ($\lambda = 0.71073$)
20 range for data collection/°	6.938 to 62.056
Index ranges	$-8 \le h \le 8, -17 \le k \le 19, -21 \le l \le 21$
Reflections collected	17739
Independent reflections	5903 [$R_{int} = 0.0382$, $R_{sigma} = 0.0435$]
Data/restraints/parameters	5903/0/244
Goodness-of-fit on F ²	1.074
Final R indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0492, wR_2 = 0.1481$
Final R indexes [all data]	$R_1 = 0.0617, wR_2 = 0.1556$
Largest diff. peak/hole / e Å ⁻³	0.30/-0.28

Table S8 Fractional Atomic Coordinates (×10 ⁴) and Equivalent Isotropic Displacement
Parameters (Å ² ×10 ³) for New SJP-SG_auto. U _{eq} is defined as 1/3 of the trace of the
orthogonalised UIJ tensor.

Atom	x	у	Z.	U(eq)
N2	1154.5(17)	5126.8(9)	2260.4(8)	18.9(2)
01	4623.2(14)	4579.5(8)	2037.9(7)	22.2(2)
C15	-798(2)	4155.5(11)	3706.2(10)	23.0(3)
C18	-3396(2)	6854.3(10)	2182.6(9)	18.6(3)
C10	1061(2)	4587.0(10)	3291.7(9)	19.0(3)
C20	-3201(2)	8663.2(11)	2283.6(10)	22.7(3)
C22	-6034(2)	9413.6(12)	2969.1(10)	26.8(3)
C19	-4273(2)	7753.6(10)	2432.6(9)	18.7(3)
C7	2787(2)	5945.2(11)	-250.3(10)	20.3(3)
N1	92.1(17)	6050.0(9)	689.7(8)	19.1(2)
C24	-6264(2)	7698.2(11)	2844.5(9)	21.4(3)
C16	-752(2)	5749.0(10)	1655.6(9)	17.3(3)
C23	-7138(2)	8521.4(12)	3109.0(10)	25.5(3)
C2	1015(2)	6552.3(11)	-864.2(10)	20.1(3)
C6	-2659(2)	7134.8(11)	-623.8(10)	23.1(3)
C1	-680(2)	6602.5(10)	-252.0(9)	18.8(3)
C11	2794(2)	4497.5(11)	3893.3(10)	23.6(3)
C3	670(2)	7065.1(12)	-1880.8(10)	25.3(3)
C17	-1482(2)	6725.3(11)	1865.3(9)	19.3(3)
C5	-2947(2)	7612.8(12)	-1627.4(11)	26.7(3)
C12	2667(2)	3980.6(13)	4899.2(10)	28.7(3)
C9	2879(2)	5054.2(10)	1710.7(9)	17.8(3)
C14	-901(2)	3644.9(12)	4713.2(10)	27.7(3)
C8	2166(2)	5657.0(10)	688.0(10)	18.8(3)
C21	-4064(2)	9485.3(12)	2552.7(11)	27.1(3)
C4	-1298(3)	7581.5(12)	-2249.2(10)	28.6(3)
C13	823(2)	3553.6(13)	5315.8(11)	29.4(3)

Table S9 Anisotropic Displacement Parameters (Å²×10³) for New SJP-SG_auto. The Anisotropic displacement factor exponent takes the form: - $2\pi^2[h^2a^{*2}U_{11}+2hka^*b^*U_{12}+...]$.

Atom	U 11	U22	U33	U23	U 13	U12
N2	17.0(5)	21.4(5)	17.5(5)	-7.4(4)	2.7(4)	-0.6(4)
01	16.6(5)	26.8(5)	23.9(5)	-11.4(4)	1.0(4)	0.3(4)
C15	20.4(7)	25.6(7)	22.1(7)	-8.6(6)	2.0(5)	-2.5(5)
C18	20.0(6)	18.6(6)	16.2(6)	-5.7(5)	2.5(5)	-2.1(5)
C10	22.4(7)	17.4(6)	16.8(6)	-6.5(5)	4.2(5)	-1.1(5)
C20	21.7(7)	22.9(6)	22.4(6)	-8.4(5)	1.4(5)	-1.1(5)
C22	38.4(8)	23.1(7)	18.9(6)	-10.0(6)	1.0(6)	5.1(6)
C19	20.4(6)	19.3(6)	15.1(6)	-6.0(5)	1.0(5)	0.7(5)
C7	18.6(6)	23.0(6)	21.3(6)	-11.0(5)	4.5(5)	-2.4(5)
N1	16.8(5)	21.9(5)	18.1(5)	-8.1(4)	3.5(4)	0.1(4)
C24	22.2(7)	20.9(6)	18.1(6)	-5.2(5)	3.8(5)	-0.5(5)
C16	15.2(6)	19.7(6)	15.9(6)	-6.3(5)	2.9(4)	-0.8(5)
C23	26.6(7)	27.9(7)	18.7(6)	-7.2(6)	6.3(5)	3.7(6)
C2	23.0(7)	19.0(6)	21.1(6)	-10.3(5)	4.2(5)	-5.3(5)
C6	21.4(7)	22.5(6)	25.8(7)	-10.1(6)	1.9(5)	-2.4(5)
C1	22.1(6)	16.5(6)	18.4(6)	-7.3(5)	2.5(5)	-3.3(5)
C11	22.1(7)	25.4(7)	22.2(6)	-7.9(6)	3.2(5)	-4.1(5)
C3	30.8(8)	25.4(7)	20.8(6)	-10.1(6)	5.6(5)	-4.7(6)
C17	18.7(6)	19.8(6)	20.2(6)	-8.3(5)	2.2(5)	-3.7(5)
C5	26.6(7)	24.9(7)	26.9(7)	-9.2(6)	-4.3(6)	0.0(6)
C12	27.2(7)	35.1(8)	21.1(7)	-8.9(6)	-1.3(5)	-1.0(6)
C9	16.0(6)	18.9(6)	21.3(6)	-10.7(5)	4.3(5)	-4.1(5)
C14	25.4(7)	30.8(7)	22.5(7)	-5.9(6)	6.4(5)	-4.7(6)
C8	15.3(6)	19.0(6)	23.5(7)	-10.0(5)	2.7(5)	-1.1(5)
C21	35.4(8)	21.7(7)	25.4(7)	-10.9(6)	-1.1(6)	-2.1(6)
C4	37.1(8)	27.1(7)	19.7(7)	-7.5(6)	-2.2(6)	-2.8(6)
C13	31.4(8)	33.1(8)	17.8(6)	-4.4(6)	3.1(6)	-1.6(6)

Table S10 Bond Lengths for New SJP-SG_auto.

Atom	Atom	Length/Å	Atom	Atom	Length/Å
N2	C10	1.4235(16)	N1	C16	1.4529(16)
N2	C16	1.4879(16)	N1	C1	1.3723(17)
N2	C9	1.3902(16)	N1	C8	1.3785(17)
01	C9	1.2278(16)	C24	C23	1.3898(19)
C15	C10	1.3984(19)	C16	C17	1.5028(18)
C15	C14	1.389(2)	C2	C1	1.4281(18)
C18	C19	1.4680(18)	C2	C3	1.4060(19)
C18	C17	1.3294(18)	C6	C1	1.3913(19)
C10	C11	1.3944(19)	C6	C5	1.383(2)
C20	C19	1.3955(19)	C11	C12	1.389(2)
C20	C21	1.390(2)	C3	C4	1.378(2)
C22	C23	1.390(2)	C5	C4	1.410(2)
C22	C21	1.394(2)	C12	C13	1.390(2)
C19	C24	1.4031(18)	C9	C8	1.4679(18)
C7	C2	1.4237(19)	C14	C13	1.390(2)
C7	C8	1.3671(18)			

Table S11 Bond Angles for New SJP-SG_auto.

Atom	1 Atom	n Atom	Angle/°	Aton	Aton	Atom	Angle/°
C10	N2	C16	120.82(10)	C7	C2	C1	107.72(11)
C9	N2	C10	125.62(11)	C3	C2	C7	133.61(12)
C9	N2	C16	113.27(10)	C3	C2	C1	118.67(12)
C14	C15	C10	119.71(13)	C5	C6	C1	117.11(13)
C17	C18	C19	127.19(12)	N1	C1	C2	106.27(11)
C15	C10	N2	119.70(12)	N1	C1	C6	131.25(12)
C11	C10	N2	120.62(12)	C6	C1	C2	122.48(12)
C11	C10	C15	119.67(12)	C12	C11	C10	119.89(13)
C21	C20	C19	120.91(13)	C4	C3	C2	118.85(13)
C23	C22	C21	119.81(13)	C18	C17	C16	122.05(12)
C20	C19	C18	122.67(12)	C6	C5	C4	121.59(13)
C20	C19	C24	118.36(12)	C11	C12	C13	120.72(14)
C24	C19	C18	118.97(12)	N2	C9	C8	105.78(10)
C8	C7	C2	106.56(11)	01	C9	N2	125.71(12)
C1	N1	C16	136.07(11)	01	C9	C8	128.51(11)
C1	N1	C8	109.65(11)	C15	C14	C13	120.82(14)
C8	N1	C16	114.21(11)	C7	C8	N1	109.80(12)
C23	C24	C19	120.93(13)	C7	C8	C9	143.20(12)
N2	C16	C17	111.74(11)	N1	C8	C9	106.98(11)
N1	C16	N2	99.74(9)	C20	C21	C22	120.04(14)
N1	C16	C17	112.38(11)	C3	C4	C5	121.28(13)
C24	C23	C22	119.94(13)	C12	C13	C14	119.18(13)

Table S12 Torsion Angles for New SJP-SG_auto.

Α	B	С	D	Angle/°		Α	B	C	D	Angle/°
N2	C10)C11	l C12	179.15(12)	C2	C7	C8	N1	0.28(15)
N2	C16	5C17	7 C18	-120.67(13)	C2	C7	C8	C9	178.18(17)
N2	C9	C8	C7	-177.74(18)	C2	C3	C4	C5	0.7(2)
N2	C9	C8	N1	0.19(14)	C6	C5	C4	C3	0.5(2)
01	C9	C8	C7	2.5	5(3)	C1	N1	C16	5N2	178.05(14)
01	C9	C8	N1	-179.54(13)	C1	N1	C16	5C17	-63.45(19)
C15	C10)C11	l C12	0.0)(2)	C1	N1	C8	C7	0.08(15)
C15	C14	IC13	3C12	0.0)(2)	C1	N1	C8	C9	-178.60(10)
C18	C19	9C24	4C23	178.81(12)	C1	C2	C3	C4	-1.1(2)
C10	N2	C16	5N1	-175.47(11)	C1	C6	C5	C4	-1.2(2)
C10	N2	C16	5C17	65.56(15)	C11	C12	2C13	3C14	0.3(2)
C10	N2	C9	01	-5.7	(2)	C3	C2	C1	N1	-179.55(12)
C10	N2	C9	C8	174.59(12)	C3	C2	C1	C6	0.3(2)
C10	C15	5C14	4C13	-0.2	2(2)	C17	C18	8C19	9C20	5.5(2)
C10	C11	C12	2C13	-0.3	8(2)	C17	C18	8C19	9C24	-174.01(13)
C20	C19	9C24	4C23	-0.77(19)	C5	C6	C1	N1	-179.36(13)
C19	C18	8C17	7C16	178.54(12)	C5	C6	C1	C2	0.8(2)
C19	C20)C21	l C22	-0.6	5(2)	C9	N2	C10)C15	-141.12(13)
C19	C24	IC23	3C22	-0.2	2(2)	C9	N2	C10)C11	39.77(19)
C7	C2	C1	N1	0.57(14)	C9	N2	C16	5N1	-1.30(13)
C7	C2	C1	C6	-179.57(12)	C9	N2	C16	5C17	-120.27(12)
C7	C2	C3	C4	178.79(14)	C14	C15	5C10)N2	-178.92(12)
N1	C16	5C17	7C18	128.15(13)	C14	C15	5C10)C11	0.2(2)
C16	N2	C1()C15	32.29(18)	C8	C7	C2	C1	-0.52(15)
C16	N2	C1()C11	-146.81(13)	C8	C7	C2	C3	179.63(15)
C16	N2	C9	01	-179.52(12)	C8	N1	C16	5N2	1.43(14)
C16	N2	C9	C8	0.74(14)	C8	N1	C16	5C17	119.93(12)
C16	N1	C1	C2	-177.13(14)	C8	N1	C1	C2	-0.40(14)
C16	N1	C1	C6	3.0)(3)	C8	N1	C1	C6	179.75(14)
C16	N1	C8	C7	177.59(11)	C21	C20)C19	OC18	-178.38(13)
C16	N1	C8	C9	-1.09(15)	C21	C20)C19	9C24	1.2(2)
C23	C22	2C21	l C20	-0.4	(2)	C21	C22	2C23	3C24	0.8(2)

Table S13 Hydrogen Atom Coordinates ($Å \times 10^4$) and Isotropic Displacement
Parameters (Å ² ×10 ³) for New SJP-SG_auto.

Atom	x	у	Z.	U(eq)
H15	-1983.84	4211.46	3300.86	28
H18	-4296.79	6303.55	2255.62	22
H20	-1863.62	8721.44	1994.18	27
H22	-6620.57	9972.92	3156.87	32
H7	4136.5	5773.85	-452.94	24
H24	-7024.53	7089.42	2943.88	26
H16	-1912.54	5267.85	1747.82	21
H23	-8489.47	8474.33	3385.23	31
H6	-3764.76	7168.71	-206.48	28
H11	4060.81	4789.38	3615.97	28
H3	1774.08	7055.86	-2306.3	30
H17	-545.44	7267.13	1768.07	23
H5	-4288.32	7970.61	-1904.54	32
H12	3853.75	3918.44	5306.61	34
H14	-2166.7	3354.48	4993.55	33
H21	-3309.41	10096.37	2452.74	32
H4	-1547.71	7923.07	-2935.26	34
H13	741.26	3203.52	6004.04	35

10. References:

- 1. A. Mathuri, M. Pramanik, P. Mal, J. Org. Chem., 2022, 87, 6812–6823.
- H. Mizoguchi, R. Watanabe, S. Minami, H. Oikawa, H. Oguri, *Org. Biomol. Chem.*, 2015, 13, 5955–5963.
- T. Szabó, M. Papp, D. R. Németh, D. András, B. Volk, M. Milen, J. Org. Chem., 2021, 86, 128–145.
- 4. E. M. Beccalli, A. Bernasconi, E. Borsini, G. Broggini, M. Rigamonti, G. J. Zecchi, *Org. Chem.*, 2010, **75**, 6923.
- E. M. Beccalli, G. Broggini, M. Martinelli, G. Paladino, *Tetrahedron*, 2005, 61, 1077-1082.
- 6. P. Zheng, C. Wang, Y. Chen, G. Dong, ACS Catal., 2019, 9, 5515–5521.
- M. Giardinetti, X. Moreau, V. Coeffard, C. Greck, *Adv. Synth. Catal.*, 2015, 357, 3501-35.
- Y. A. Cheng, W. Z. Yu, Y.-Y. Yeung, Angew. Chem., Int. Ed., 2015, 54, 12102-12106.

11. NMR spectra of starting materials

 1 H and 13 C spectra of **S3b**

 ^1H and ^{13}C spectra of S3c

¹⁹F spectra of **S3c**

 1 H and 13 C spectra of **S3d**

 1 H and 13 C spectra of **S3e**

$^{19}\mathrm{F}$ spectra of $\mathbf{S3f}$

90 80 f1 (ppm) -10 , 30 ò

¹H and ¹³C spectra of **1a**

 1 H and 13 C spectra of **1**c

-9.32 -9.32 -7.47 -7.47 -7.73 -6.99

¹⁹F spectra of **1ae**

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

S82

S83

¹⁹F spectra of **1ag**

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

 1 H and 13 C spectra of **1i**

¹⁹F spectra of **1i**

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -110 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

¹⁹F spectra of **1k**

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

¹H and ¹³C spectra of **1p**

S96

¹⁹F spectra of **1s**

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

---123.58

¹⁹F spectra of **1t**

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

¹⁹F spectra of **1**x

10	0	-10	-20	-30	-40	-50	-60	-70	-80	-90	-100	-110	-120	-130	-140	-150	-160	-170	-180	-190	-200	-210
											f1 (ppm)										

90 80 f1 (ppm) ò

-10

¹⁹F spectra of **1y**

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

-9.34 -7.45 -7.75

¹H and ¹³C spectra of **3b**

¹H and ¹³C spectra of 3c

 ^1H and ^{13}C spectra of 3f

12. NMR spectral data of products

100 90 f1 (ppm) . 160 . 150 , 140 , 40

.

¹⁹F spectra of **2e**

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

 19 F spectra of 2g

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

S127

¹⁹F spectra of **2i**

•

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

¹H and ¹³C spectra of 2k

¹⁹F spectra of **2l**

:0 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm) ^1H and ^{13}C spectra of 2l

5.84 5.82 5.78 5.78

2m

 1 H and 13 C spectra of **20**

¹H and ¹³C spectra of **2p**

^1H and ^{13}C spectra of 2r

7,169 7,786 7,737 7,737 7,738 7,738 7,738 7,738 7,738 7,738 7,738 7,738 7,738 7,738 6,597 6,552 6,552 5.96 5.94 5.92

¹H and ¹³C spectra of **2s**

 19 F spectra of **2s**

10	0	-10	-20	-30	-40	-50	-60	-70	-80	-90	-100	-110	-120	-130	-140	-150	-160	-170	-180	-190	-200	-210
											f1 (ppm)										

----121.79

¹⁹F spectra of **2t**

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm) ¹H and ¹³C spectra of **2u**

¹⁹F spectra of 2x

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm) 1 H and 13 C spectra of **2**y

 $^{19}\mathrm{F}$ spectra of 2y

10	0	-10	-20	-30	-40	-50	-60	-70	-80	-90	-100	-110	-120	-130	-140	-150	-160	-170	-180	-190	-200	-210
											f1 (ppm)										

¹H and ¹³C spectra of **4a**

¹H and ¹³C spectra of 4g

 1 H and 13 C spectra of P2

 1 H and 13 C spectra of **6**

