Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2023

Supporting Information

9,9'-Bis-o-carboranes: Synthesis and Property Exploration

Feijing Chen,^{a‡} Wenjing Guo,^{a‡} Yan-Na Ma,^{*a} Xuenian Chen^{*a,b}

^a College of Chemistry, Zhengzhou University, Zhengzhou, 450001, Henan (China)

^b School of Chemistry and Chemical Engineering, Henan Key Laboratory of Boron Chemistry and

Advanced Energy Materials, Henan Normal University, Xinxiang, 453007, Henan (China)

[‡] These authors contributed equally: Feijing Chen, Wenjing Guo

*Email: mayanna@zzu.edu.cn (Yan-Na Ma), xuenian_chen@zzu.edu.cn (Xuenian Chen)

Table of Contents

1. General information	s2
2. Experimental details	s2
3. Characterization data	S6
4. Tables of crystal data and structure refinements	s13
5. References	s 17
6. NMR spectra	s 18

1. General information

¹H, ¹³C, ¹¹B, ³¹P NMR spectra were recorded on Bruker advance III 400 spectrometer (400 MHz for ¹H, 101 MHz for ¹³C, 128 MHz for ¹¹B, 162 MHz for ³¹P). All chemical shifts were reported in units with references to the residual solvent resonances of the deuterated solvents for proton and carbon chemical shifts. The data contained properties such as chemical shift, multiplicity, peaks and coupling constants. High Resolution Mass Spectra (HRMS-ESI) were obtained on an Ultra-high-resolution electro-spray time-of-flight mass spectrometer. GC-MS analysis was performed on the agilent GC-MS 2010 spectrometer or GC-MS-QP2020 NX. The starting materials were purchased from J&K Chemicals, Macklin, Energy Chemical or TCI, and used as received. Starting *o*-carborane and *m*-carborane were purchased from Zhengzhou Yuanli technology. Thin-layer chromatography (TLC) was performed using 300 mesh silica gel plates visualized with short-wavelength UV light (254 nm). TLC samples for carborane-containing compounds were stained with 1 wt. % PdCl₂ in 6 M HCl and were developed with high heat using a heat gun.

2. Experimental details

General procedure for Pd(II)-catalyzed dehydrogenative coupling of o/m-carboranes

68% HNO₃ (2 mmol, 2.0 equiv) was added to the solution of carboranes **1** (1 mmol, 1.0 equiv), Pd(OAc)₂ (0.1 mmol, 10 mol%) and HOTf (6 mmol, 6.0 equiv) in HFIP (10 mL). The reaction mixture was stirred at ambient temperature for 10 minutes under air atmosphere. Then, the reaction solution was added to saturated aqueous NaHCO₃ and was extracted with EtOAc (10 mL × 3). The organic portions were combined and dried over Na₂SO₄. After removal of organic solvents under reduced pressure, the residue was subjected to flash column chromatography on silica gel (200-300 mesh) to give the product (**2a**, **2c-2k**).

CAUTION: On this scale and under these conditions no explosions occurred. Nevertheless, this does not preclude such an event when dealing with these species. Extreme precautions should be taken! Additionally, HFIP can increase the acidity of HNO₃ and HOTf, and the oxidability of HNO₃. The solution of HNO₃ or HOTf in HFIP exhibits strong acidity even for the dilute solution. So the reaction system for the hydroxylation of carboranes is strongly acidic and oxidizing. After the reaction, Pd(0) is formed, which needs to be handled carefully.

68% HNO₃ (2 mmol, 2.0 equiv) was added to the solution of carboranes **1b** (1 mmol, 1.0 equiv), Pd(OAc)₂ (0.1 mmol, 10 mol%) and HOTf (6 mmol, 6.0 equiv) in the mixture solvent of HFIP (2 mL) and DCM (1 mL). The reaction mixture was stirred at ambient temperature for 10 minutes under air atmosphere. Then, the reaction solution was added to saturated aqueous NaHCO₃ and was extracted with EtOAc (10 mL × 3). The organic portions were combined and dried over Na₂SO₄. After removal of organic solvents under reduced pressure, the residue was subjected to flash column chromatography on silica gel (200-300 mesh) to give the product **2b**.

General procedure for the synthesis of 4-7

HOTf (1.2, mmol, 6.0 equiv) was added to the solution of **2b** (0.2 mmol, 1.0 equiv) and TCCA (0.16 mmol, 0.8 equiv) or NBS (0.44 mmol, 2.2 equiv) or NIS (0.44 mmol, 2.2 equiv) in HFIP (4 mL). The reaction mixture was stirred at ambient temperature overnight. Then, the reaction solution was added to saturated aqueous NaHCO₃ and was extracted with EtOAc (10 mL \times 3). The organic portions were combined and dried over Na₂SO₄. After removal of organic solvents under reduced pressure, the residue was subjected to flash column chromatography on silica gel (200-300 mesh) to give the product **4** and **5**, or **6** or **7**.¹

Synthesis of 8

HOTf (0.8 mmol, 8.0 equiv) was added to the solution of **2b** (0.1 mmol, 1.0 equiv) and 68% HNO₃ (0.11 mmol, 1.1 equiv) in HFIP (2 mL). The reaction mixture was stirred at ambient temperature for 0.5 h. Then, the reaction solution was added to saturated aqueous NaHCO₃ and was extracted with EtOAc (10 mL \times 3). The organic portions were combined and dried over

 Na_2SO_4 . After removal of organic solvents under reduced pressure, the residue was subjected to flash column chromatography on silica gel (200-300 mesh) to give the product **8**.²

68% HNO₃ (0.22 mmol, 2.2 equiv) was added to the solution of **2b** (0.1 mmol, 1.0 equiv) in the mixture solvent of HFIP (1 mL) and HOTf (1 mL). The reaction mixture was stirred at ambient temperature for 0.5 h. Then, the reaction solution was added to saturated aqueous NaHCO₃ and was extracted with EtOAc (10 mL \times 3). The organic portions were combined and dried over Na₂SO₄. After removal of organic solvents under reduced pressure, the residue was subjected to flash column chromatography on silica gel (200-300 mesh) to give the product **9**.²

2b (0.5 mmol, 1.0 equiv) and KOH (2 mmol, 4.0 equiv) were dissolved in 5 mL of EtOH. Then the solution was stirred under reflux for 1 day. After cooling to room temperature, hydrochloric acid (1M) was added and the pH was adjusted to 6-7. After filtration and evaporation, the resulting white solid was dissolved in 5 mL of deionized water and dropped with an aqueous solution of Et₄NCl (0.55 mmol, 1.1 equiv). The resulting mixture was stirred overnight and filtered, and the filter cakes were washed three times with *n*-hexane and DCM. Finally, it was dried under vacuum to obtain the corresponding product **10**.³

Synthesis of 11

2b (0.5 mmol, 1.0 equiv) and KOH (4 mmol, 8.0 equiv) were dissolved in 5 mL of EtOH. Then the solution was stirred under reflux for 5 days. After cooling to room temperature, hydrochloric acid (1M) was added and the pH was adjusted to 6-7. After filtration and evaporation, the resulting white solid was dissolved in 5 mL of deionized water and dropped with an aqueous solution of Et₄NCl (1.1 mmol, 2.2 equiv). The resulting mixture was stirred overnight and filtered, and the filter cakes were washed with *n*-hexane and DCM. Finally, it was dried under vacuum to obtain the corresponding product **11**.³

General procedure for the synthesis of 12-18

Under nitrogen atmosphere, "BuLi (1 mmol, 2.5 M, 5.0 equiv) was added to the solution of **2b** (0.2 mmol, 1.0 equiv) in 10 mL THF at room temperature. Then, RX (1 mmol, 5.0 equiv) was added after the reaction mixture was stirred at room temperature for 30 min. The reaction mixture was further stirred at room temperature for 2 h. After that, the reaction was quenched with water, extracted with EtOAc (10 mL× 3), the organic phase was collected and dried over anhydrous Na₂SO₄. After removing the organic solvent under reduced pressure, the crude product is obtained, and then the pure product (**12-18**) was obtained by recrystallization with hexane/DCM.⁴

3. Characterization data

2a: White solid, Yield 48%; ¹H NMR (300 MHz, CDCl₃) δ: 1.97 (s, 6H), 1.96 (s, 6H); ¹³C{¹H}
NMR (151 MHz, CDCl₃) δ: 74.53, 71.65, 23.23, 23.19; ¹¹B{¹H} NMR (128 MHz, CDCl₃) δ: 0.75 (2B), -3.97 (2B), -7.85 (4B), -9.02 (12B).

HRMS (ESI): m/z calcd for $C_8B_{20}H_{30}$ [M + Na]⁺, 365.4251, found, 365.4251.

2b: White solid, Yield 42%; ¹**H NMR** (400 MHz, CDCl₃) δ: 3.53 (s, 2H), 3.44 (s, 2H); ¹³C{¹**H**} **NMR** (101 MHz, CDCl₃) δ: 55.70, 53.25; ¹¹B{¹**H**} **NMR** (128 MHz, CDCl₃) δ: 4.10 (2B), -1.21 (2B), -7.87 (4B), -13.05 (8B), -14.36 (4B).

HRMS (ESI): m/z calcd for C₄B₂₀H₂₂ [M + Na]⁺, 309.3622, found, 309.3620.

2c: White solid, Yield 37%; ¹H NMR (600 MHz, CDCl₃) δ: 2.21-2.15 (m, 8H), 1.13-1.10 (m, 12H); ¹³C{¹H} NMR (151 MHz, CDCl₃) δ: 81.74, 78.77, 28.48, 28.42, 14.16, 14.06; ¹¹B{¹H} NMR (193 MHz, CDCl₃) δ: 1.42 (2B), -3.61 (2B), -9.11 (5B), -10.07 (5B), -10.59 (6B).
HRMS (ESI): m/z calcd for C₁₂B₂₀H₃₈ [M + Na]⁺, 421.4879, found, 421.4878.

2d: White solid, Yield 46%; ¹**H** NMR (400 MHz, CDCl₃) δ: 2.29-2.22 (m, 4H), 1.21-1.17 (m, 24H); ¹³C{¹H} NMR (101 MHz, CDCl₃) δ: 89.54, 86.70, 30.70, 30.50, 24.52, 24.44; ¹¹B{¹H} NMR (128 MHz, CDCl₃) δ: 1.87 (2B), -3.20 (2B), -8.19 (4B), -11.39 (12B). HRMS (ESI): m/z calcd for C₁₆B₂₀H₄₆ [M + Na]⁺, 477.5507, found, 477.5505.

2e: White solid, Yield 24%; ¹**H NMR** (600 MHz, CDCl₃) δ: 2.10-2.05 (m, 8H), 1.50-1.46 (m, 8H), 1.33-1.27 (m, 8H), 0.92-0.89 (m, 12H); ¹³C{¹H} NMR (151 MHz, CDCl₃) δ: 80.97, 78.02, 34.85, 34.79, 31.87, 31.8, 22.6, 22.62, 13.84, 13.83; ¹¹B{¹H} NMR (193 MHz, CDCl₃) δ: 1.43 (2B), -3.56 (2B), -9.12 (6B), -10.11 (10B).

HRMS (ESI): m/z calcd for C₂₀B₂₀H₅₄ [M - H]⁻, 510.6127, found, 510.6117.

2f: White solid, Yield 35%; ¹**H NMR** (400 MHz, CDCl₃) δ: 2.46-2.41 (m, 8H), 2.38-2.32 (m, 4H); ¹³C{¹**H**} **NMR** (101 MHz, CDCl₃) δ: 85.00,82.02, 34.84, 34.71, 31.94; ¹¹**B**{¹**H**} **NMR** (128 MHz, CDCl₃) δ: -1.00 (2B), -5.49 (2B), -6.64 (4B), -8.61 (4B), -11.18 (8B).

HRMS (ESI): m/z calcd for $C_{10}B_{20}H_{30}$ [M + Na]⁺, 389.4252; found, 389.4242.

2g: White solid, Yield 47%; ¹**H** NMR (400 MHz, CDCl₃) δ : 2.43 (s, 8H), 1.58 (d, J = 2.3 Hz, 8H); ¹³C{¹**H**} NMR (101 MHz, CDCl₃) δ : 73.23, 32.93, 19.82; ¹¹B{¹**H**} NMR (128 MHz, CDCl₃) δ : 0.35 (2B), -4.50 (2B), -7.80 (4B), -9.06 (8B), -11.21 (4B).

HRMS(ESI): m/z calcd for $C_{12}B_{20}H_{34}$ [M + NH₄]⁺, 412.5012, found, 412.5010.

2h: White solid, Yield 35%; ¹**H** NMR (400 MHz, CDCl₃) δ: 1.96 (s, 6H), 1.94 (s, 6H), 0.20 (s, 6H); ¹³C{¹**H**} NMR (101 MHz, CDCl₃) δ: 72.07, 67.83, 23.40, 22.34; ¹¹B{¹**H**} NMR (128 MHz, CDCl₃) δ: 5.32 (2B), 0.46 (2B), -8.32 (16B).

GCMS (EI): m/z calcd for $C_{10}B_{20}H_{34}$, 370, found, 370.

2i: oil, Yield 47%; ¹**H** NMR (400 MHz, CDCl₃) δ: 1.68 (s, 12H); ¹³C{¹H} NMR (101 MHz, CDCl₃) δ: 72.76, 24.54; ¹¹B{¹H} NMR (128 MHz, CDCl₃) δ: -4.90 (2B), -6.32 (4B), -8.85 (6B), -9.45 (4B), -11.54 (2B), -12.67 (2B).

HRMS (ESI): m/z calcd for $C_8B_{20}H_{30}$ [M + Na]⁺, 365.4251, found, 365.4249.

2j: oil, Yield 43%; ¹**H** NMR (400 MHz, CDCl₃) δ: 2.20-2.13 (m, 4H), 1.03 (d, *J* = 1.0 Hz, 12H), 1.01 (d, *J* = 1.0 Hz, 12H); ¹³C{¹H} NMR (101 MHz, CDCl₃) δ: 83.08, 33.91, 24.11, 24.09; ¹¹B{¹H} NMR (128 MHz, CDCl₃) δ: -6.01 (6B), -9.75 (2B), -10.86 (2B), -11.52 (6B), -14.01 (2B), -15.26 (2B).

GCMS (EI): m/z calcd for $C_{16}B_{20}H_{46}$, 454, found, 454.

2k: oil,Yield 49%; ¹H NMR (400 MHz, CDCl₃) δ: 1.91-1.86 (m, 8H), 1.36-1.28 (m, 8H), 1.26-1.18 (m, 8H), 0.88-0.84 (m, 12H); ¹³C{¹H} NMR (101 MHz, CDCl₃) δ: 37.00, 32.21, 22.55, 13.88; ¹¹B{¹H} NMR (128 MHz, CDCl₃) δ: -6.49 (5B), -10.42 (10B), -14.09 (5B).
GCMS (EI): m/z calcd for C₂₀B₂₀H₅₄, 510, found, 510.

H CI H H 4: White solid, Yield 42%; ¹**H NMR** (400 MHz, CDCl₃) δ: 3.56 (s, 1H), 3.49 (s, 1H), 3.45 (s, 1H), 3.41 (s, 1H).; ¹³C{¹H} NMR (101 MHz, CDCl₃) δ: 55.69, 54.42, 51.43, 46.26; ¹¹B{¹H} NMR (128 MHz, CDCl₃) δ: 7.93 (1B), 3.19 (2B), -1.11 (1B), -7.80 (4B), -13.20 (6B), -14.26 (4B), -15.96 (2B).

HRMS (ESI): m/z calcd for $C_4B_{20}H_{21}Cl [M + H]^+$, 322.3386, found, 322.3382.

5: White solid, Yield 43%; ¹**H** NMR (400 MHz, CDCl₃) δ: 3.50 (s, 2H), 3.44 (s, 2H); ¹³C{¹H} NMR (101 MHz, CDCl₃) δ: 52.62, 46.43; ¹¹B{¹H} NMR (128 MHz, CDCl₃) δ: 8.01 (2B), 2.38 (2B), -7.63 (4B), -13.26 (5B), -14.06 (4B), -15.82 (3B).

HRMS (ESI): m/z calcd for $C_4B_{20}H_{20}Cl_2$ [M + Na]⁺, 378.2823, found, 378.2824.

6: White solid, Yield 61%; ¹H NMR (400 MHz, CDCl₃) δ: 3.61 (s, 2H), 3.56 (s, 2H); ¹³C{¹H} NMR (101 MHz, CDCl₃) δ: 53.94, 48.71; ¹¹B{¹H} NMR (128 MHz, CDCl₃) δ: 2.22 (2B), 1.09 (2B), -7.33 (4B), -13.58 (8B), -15.53 (4B).

HRMS (ESI): m/z calcd for $C_4B_{20}H_{20}Br_2 [M + Na]^+$, 467.1808, found, 467.1810.

7: White solid, Yield 70%; ¹H NMR (400 MHz, DMSO) δ: 5.21 (s, 2H), 4.97 (s, 2H); ¹³C{¹H}
NMR (101 MHz, DMSO) δ: 57.75, 54.18; ¹¹B{¹H} NMR (128 MHz, DMSO) δ: 1.99 (2B), -6.63 (4B), -12.08 (8B), -14.45 (6B).

HRMS (ESI): m/z calcd for $C_4B_{20}H_{20}I_2$ [M + Na]⁺, 561.1555, found, 561.1554.

8: White solid, Yield 76%; ¹H NMR (400 MHz, CDCl₃) δ: 3.59 (s, 1H), 3.51 (s, 1H), 3.25 (s, 2H);
¹³C{¹H} NMR (101 MHz, CDCl₃) δ: 55.95, 54.26, 48.27, 39.00; ¹¹B{¹H} NMR (128 MHz, CDCl₃)

δ: 15.15 (1B), 2.34 (2B), -1.38 (1B), -8.01 (2B), -8.77 (2B), -12.09 (5B), -14.16 (2B), -14.75 (2B), -15.86 (2B), -17.27 (1B).

HRMS (ESI): m/z calcd for $C_4B_{20}H_{21}OH [M + H]^+$, 303.3752, found, 303.3752.

9: White solid, Yield 67%; ¹H NMR (400 MHz, CD₃CN) δ: 4.24 (s, 2H), 3.67 (s, 4H); ¹³C{¹H}
NMR (101 MHz, CD₃CN) δ: 49.94, 39.80; ¹¹B{¹H} NMR (128 MHz, CD₃CN) δ: 14.83 (2B), 0.92 (2B), -9.27 (4B), -15.03 (4B), -16.15 (4B), -17.04 (4B).

HRMS (ESI): m/z calcd for C₄B₂₀H₂₀(OH)₂ [M + H]⁺, 319.3701, found, 319.3699.

10: White solid, Yield 50%; ¹**H NMR** (400 MHz, CD₃CN) δ: 3.78 (s, 1H), 3.71 (s, 1H), 3.17 (q, *J* = 7.3 Hz, 8H), 1.77 (s, 1H), 1.66 (s, 1H), 1.24-1.19 (m, 12H); ¹³C{¹H} NMR (101 MHz, CD₃CN) δ: 57.04, 53.12, 53.09, 53.06, 52.91, 7.68; ¹¹B{¹H} NMR (128 MHz, CD₃CN) δ: 8.37 (1B), -1.90 (1B), -8.24 (2B), -9.33 (1B), -10.48 (1B), -12.86 (2B), -13.93 (2B), -14.79 (4B), -17.36 (1B), -20.77 (1B), -21.80 (1B), -31.19 (1B), -35.86 (1B).

11: White solid, Yield 95%; ¹H NMR (400 MHz, CD₃CN) δ : 3.18 (q, J = 7.3 Hz, 16H), 1.63 (s, 2H), 1.49 (s, 2H), 1.24-1.20 (m, 24H); ¹³C{¹H} NMR (101 MHz, CD₃CN) δ : 53.13, 53.10, 53.07, 7.69; ¹¹B{¹H} NMR (128 MHz, CD₃CN) δ : -8.45 (4B), -11.66 (2B), -15.64 (2B), -17.91 (2B), -20.80 (2B), -21.91 (2B), -30.74 (2B), -35.50 (2B).

12: White solid, Yield 64%; ¹H NMR (400 MHz, CDCl₃) δ: 7.33-7.31 (m, 12H), 7.20-7.15 (m, 8H), 3.58 (s, 4H), 3.55 (s, 4H); ¹³C{¹H} NMR (101 MHz, CDCl₃) δ: 135.54, 135.38, 130.56, 128.63, 128.60, 128.01, 127.97, 80.53, 68.26, 41.41; ¹¹B{¹H} NMR (128 MHz, CDCl₃) δ: 1.20 (2B), -3.70 (2B), -9.34 (16B).

HRMS (ESI): m/z calcd for $C_{32}B_{20}H_{46}$ [M + NH₄]⁺, 665.5931, found, 665.5952.

13: White solid, Yield 65%; ¹H NMR (400 MHz, CDCl₃) δ: 7.22-7.19 (m, 4H), 7.05-7.03 (m, 4H),
3.68 (s, 4H), 3.66 (s, 4H); ¹³C{¹H} NMR (101 MHz, CDCl₃) δ: 129.64, 129.50, 128.81, 128.79,
127.54, 127.53, 72.40, 69.61, 37.66; ¹¹B{¹H} NMR (128 MHz, CDCl₃) δ: 0.86 (2B), -3.95 (2B),
-8.18 (16B).

14: White solid, Yield 58%; ¹H NMR (400 MHz, CDCl₃) δ: 5.82-5.70 (m, 4H), 5.16-5.04 (m, 8H),
2.93-2.89 (m, 8H); ¹³C{¹H} NMR (101 MHz, CDCl₃) δ: 133.27, 133.08, 119.19, 119.05, 78.73,
75.86, 39.32, 39.25; ¹¹B{¹H} NMR (128 MHz, CDCl₃) δ: 1.93 (2B), -3.24 (2B), -8.84 (6B), -9.88 (10B).

GCMS (EI): m/z calcd for $C_{16}B_{20}H_{38}$, 446, found, 446 .

15: White solid, Yield 75%; ¹**H** NMR (400 MHz, CDCl₃) δ : 5.62 (s, 4H), 2.95 (d, J = 4.9 Hz, 8H); ¹³C{¹**H**} NMR (101 MHz, CDCl₃) δ : 120.22, 120.05, 71.18, 68.40, 33.22, 33.20; ¹¹B{¹**H**} NMR (128 MHz, CDCl₃) δ : 0.41 (2B), -4.39 (2B), -7.63 (4B), -9.15 (8B), -11.04 (4B).

GCMS (EI): m/z calcd for $C_{12}B_{20}H_{30}$, 390, found, 390.

16: White solid, Yield 37%; ¹**H NMR** (400 MHz, CDCl₃) δ: 3.89 (s, 4H), 3.87 (s, 4H), 3.37 (s, 6H), 3.36 (s, 6H); ¹³C{¹**H**} **NMR** (101 MHz, CDCl₃) δ: 77.63, 74.72, 73.02, 59.70; ¹¹**B**{¹**H**} **NMR** (128 MHz, CDCl₃) δ: 3.00 (2B), -2.13 (2B), -9.94 (16B).

HRMS (ESI): m/z calcd for $C_{12}B_{20}H_{38}O_4$ [M + H]⁺, 463.4857, found, 463.4857.

17: White solid, Yield 62%; ¹H NMR (400 MHz, CDCl₃) δ: 0.29 (s, 18H), 0.28 (s, 18H); ¹³C{¹H}
NMR (101 MHz, CDCl₃) δ: 75.61, 72.80, 1.78, 1.67; ¹¹B{¹H} NMR (128 MHz, CDCl₃) δ: 9.08 (2B), 2.88 (2B), -4.42 (4B), -8.34 (8B), -10.58 (4B).

18: White solid, Yield 44%; ¹**H NMR** (400 MHz, THF- d_8) δ : 7.88-7.82 (m, 16H), 7.43-7.35 (m, 24H); ¹³C{¹**H**} **NMR** (101 MHz, THF- d_8) δ : 136.70-136.34 (m), 134.73-134.36 (m), 131.21 (d, J = 2.9 Hz), 129.06-128.91 (m); ¹¹B{¹**H**} **NMR** (128 MHz, THF- d_8) δ : 6.44, 0.42, -6.56, -9.63; ³¹**P NMR** (162 MHz, THF- d_8) δ : 6.07, 5.98.

HRMS (ESI): m/z calcd for $C_{52}B_{20}H_{58}P_4$ [M + H]⁺, 1024.5568, found, 1024.5569.

4. Tables of crystal data and structure refinements

	2a	2b
CCDC number	2268196	2268197
Empirical formula	$C_8H_{30}B_{20}$	$C_4H_{22}B_{20}$
Formula weight	342.52	286.41
Temperature/K	293(2)	149.99(10)
Crystal system	orthorhombic	monoclinic
Space group	Pnnm	$P2_1/n$
a/Å	9.5876(5)	6.9432(3)
b/Å	11.2736(5)	10.0433(5)
c/Å	10.0616(5)	12.6587(6)
$\alpha/^{\circ}$	90	90
β/°	90	97.066(4)
$\gamma/^{\circ}$	90	90
Volume/Å ³	1087.53(9)	876.02(7)
Z	2	2
$\rho_{calc}g/cm^3$	1.046	1.086
μ/mm^{-1}	0.289	0.275
F(000)	356.0	292.0
Crystal size/mm ³	$0.15 \times 0.12 \times 0.1$	$0.01 \times 0.01 \times 0.01$
Radiation	Cu Kα (λ = 1.54184)	Cu Ka ($\lambda = 1.54184$)
2Θ range for data collection/°	11.79 to 134.088	11.28 to 142.922
Index ranges	$-11 \le h \le 7, -13 \le k \le 13, -12 \le 1$	-8 \leq h \leq 8, -11 \leq k \leq 12, -9 \leq l \leq
Index ranges	≤11	15
Reflections collected	3815	5428
Independent reflections	1033 [Rint = 0.0250, Rsigma = 0.0188]	$1685 [R_{int} = 0.0605, R_{sigma} = 0.0463]$
Data/restraints/parameters	1033/2/75	1685/0/145
Goodness-of-fit on F ²	1.042	1.084
Final R indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0603, wR_2 = 0.1750$	$R_1 = 0.0659, wR_2 = 0.1841$
Final R indexes [all data]	$R_1 = 0.0669, wR_2 = 0.1858$	$R_1 = 0.0716$, $wR_2 = 0.1896$
Largest diff. peak/hole / e Å ⁻³	0.31/-0.29	0.28/-0.25

	5	9
CCDC number	2268198	2268199
Empirical formula	$C_{4.5}H_{20}B_{20}Cl_3$	$C_4H_{22}B_{20}O_2$
Formula weight	396.75	318.41
Temperature/K	293(2)	293(2)
Crystal system	tetragonal	monoclinic
Space group	I-4c2	$P2_1/c$
a/Å	17.7977(2)	12.3573(3)
b/Å	17.7977(2)	12.9050(3)
c/Å	13.4194(2)	13.1240(3)
α/°	90	90
β/°	90	112.213(3)
$\gamma/^{\circ}$	90	90
Volume/Å ³	4250.70(11)	1937.57(8)
Ζ	8	4
$\rho_{calc}g/cm^3$	1.240	1.092
μ/mm^{-1}	3.758	0.374
F(000)	1584.0	648.0
Crystal size/mm ³	$0.19 \times 0.09 \times 0.07$	$0.18 \times 0.12 \times 0.1$
Radiation	Cu Ka ($\lambda = 1.54184$)	Cu Ka ($\lambda = 1.54184$)
2Θ range for data collection/°	7.024 to 134.16	7.728 to 134.14
Inday ranges	-19 \leq h \leq 21, -20 \leq k \leq 21, -16 \leq	-14 \leq h \leq 14, -15 \leq k \leq 13, -15 \leq
Index ranges	$l \leq 11$	$l \leq 10$
Reflections collected	8435	7051
Independent reflections	1908 [$R_{int} = 0.0382$, $R_{sigma} = 0.0268$]	$3457 [R_{int} = 0.0278, R_{sigma} = 0.0420]$
Data/restraints/parameters	1908/6/133	3457/1/240
Goodness-of-fit on F ²	1.079	1.035
Final R indexes [I>=2 σ (I)]	$R_1 = 0.0595, wR_2 = 0.1638$	$R_1 = 0.0675, \mathrm{wR}_2 = 0.1854$
Final R indexes [all data]	$R_1 = 0.0633, wR_2 = 0.1689$	$R_1 = 0.0800, wR_2 = 0.2037$
Largest diff. peak/hole / e Å ⁻³	0.37/-0.25	0.40/-0.33

	10	11
CCDC number	2268200	2271213
Empirical formula	$C_{12}H_{42}B_{19}N$	$C_{20}H_{62}B_{18}N_2$
Formula weight	811.71	525.29
Temperature/K	169.99(10)	297
Crystal system	triclinic	triclinic
Space group	P-1	P-1
a/Å	10.7318(3)	11.2612(5)
b/Å	13.0844(4)	17.2885(10)
c/Å	18.4673(5)	18.0579(11)
α/°	89.977(2)	85.761(5)
β/°	78.418(2)	87.210(4)
$\gamma/^{\circ}$	88.417(2)	82.019(4)
Volume/Å ³	2539.36(13)	3469.5(3)
Ζ	4	4
$\rho_{calc}g/cm^3$	1.062	1.006
μ/mm^{-1}	0.326	0.338
F(000)	864.0	1144.0
Crystal size/mm ³	$0.15 \times 0.1 \times 0.05$	$0.01 \times 0.01 \times 0.01$
Radiation	Cu Kα (λ = 1.54184)	Cu Ka ($\lambda = 1.54184$)
2Θ range for data collection/°	8.322 to 142.62	6.888 to 140.828
Inday ranges	-10 \leq h \leq 13, -15 \leq k \leq 16, -22 \leq	$-13 \le h \le 8, -21 \le k \le 20, -20 \le 1$
Index ranges	$l \leq 16$	≤ 22
Reflections collected	18413	25502
Independent reflections	9630 [$R_{int} = 0.0404$, $R_{sigma} = 0.0575$]	12998 [$R_{int} = 0.0257, R_{sigma} = 0.0419$]
Data/restraints/parameters	9630/49/647	12998/69/903
Goodness-of-fit on F ²	1.041	1.033
Final R indexes [I>=2 σ (I)]	$R_1 = 0.0628, wR_2 = 0.1740$	$R_1 = 0.0877, wR_2 = 0.2596$
Final R indexes [all data]	$R_1 = 0.0771, wR_2 = 0.1828$	$R_1 = 0.1235, wR_2 = 0.3027$
Largest diff. peak/hole / e Å ⁻³	0.49/-0.42	0.37/-0.54

	13	17
CCDC number	2268201	2268202
Empirical formula	$C_{20}H_{34}B_{20}$	$C_{16}H_{54}B_{20}Si_4$
Formula weight	490.67	575.15
Temperature/K	293(2)	293(2)
Crystal system	monoclinic	monoclinic
Space group	P2/c	$P2_1/n$
a/Å	20.2379(7)	9.2397(4)
b/Å	7.7225(2)	17.1741(7)
c/Å	18.3961(6)	12.2399(5)
$\alpha / ^{\circ}$	90	90
β/°	96.014(3)	109.520(5)
$\gamma/^{\circ}$	90	90
Volume/Å ³	2859.23(16)	1830.63(15)
Ζ	4	2
$\rho_{calc}g/cm^3$	1.140	1.043
µ/mm ⁻¹	0.371	1.550
F(000)	1016.0	612.0
Crystal size/mm ³	$0.16 \times 0.1 \times 0.08$	$0.14 \times 0.12 \times 0.1$
Radiation	Cu Kα (λ = 1.54184)	Cu Ka ($\lambda = 1.54184$)
2Θ range for data collection/°	8.788 to 134.12	9.234 to 134.158
Inday ranges	-24 \leq h \leq 24, -9 \leq k \leq 9, -17 \leq l	$\text{-}11 \le h \le 11, \text{-}19 \le k \le 20, \text{-}9 \le 1$
Index failges	≤21	≤ 14
Reflections collected	5083	6630
Independent reflections	5083 [Rint = 0.0432, Rsigma = 0.0585]	$3267 [R_{int} = 0.0309, R_{sigma} = 0.0426]$
Data/restraints/parameters	5083/0/362	3267/0/187
Goodness-of-fit on F ²	1.066	1.053
Final R indexes [I>= 2σ (I)]	R1 = 0.0988, wR2 = 0.2969	$R_1 = 0.0491, wR_2 = 0.1294$
Final R indexes [all data]	R1 = 0.1137, wR2 = 0.3124	$R_1 = 0.0587, wR_2 = 0.1406$
Largest diff. peak/hole / e Å ⁻³	0.38/-0.50	0.25/-0.37

5. References

- (a) W. Guo, C. Guo, Y. -N. Ma, X.-N. Chen, *Inorg. Chem.* 2022, **61**, 5326-5334. (b) W. Lu, Y. Wu, Y. -N. Ma, F. Chen, X. Chen, *Inorg. Chem.*, 2023, **62**, 885-892.
- 2. Y.-N. Ma, H. Ren, Y. Wu, N. Li, F. Chen, X. Chen, J. Am. Chem. Soc., 2023, 145, 7331-7342.
- 3. R. A. Wiesboeck, M. F. Hawthorne, J. Am. Chem. Soc., 1964, 86, 1642-1643.
- (a) T. L. Heying, J. W. Ager Jr, S. L. Clark, R. P. Alexander, S. Papetti, J. A. Reid, S. I. Trotz, *Inorg. Chem.*, 1963, 2, 1097-1105. (b) M. Bai, G. Tao, Z. Liu, L. Wang, Z. Duan, *Chin. Chem. Lett.*, 2022, 33, 201-204.

-23.23 .65 Me Me Me Me **2a**, ¹³C NMR (151 MHz, CDCb) f1 (ppm) -10

		77.48 77.16 76.84	~53.25	
	H H 2b , ¹³ C NMR (101 MHz, CDCl ₃)			
ĸĸĸĸŢŔĸĹŎŗĸĸĸĸĸĸŎŎŎŎŎŎŎŎŎŎŎŎŎŎŎŎŎŎŎŎŎŎŎŎŎŎŎŎŎ				

6.95 -81.74 -78.77 Et ۶Et Et Et **2c**, ¹³C NMR (151 MHz, CDCb) f1 (ppm) -10

-1.91 -2.57 -3.70 -3.70 -3.70 -3.71 -3.71 -10.86 -11.72 'P 'Pr Pr **2d**, ¹¹B NMR (128 MHz, CDCb) 40 35 25 15 0 f1 (ppm) -25 -30 30 20 10 -5 -10 -15 -20 -35 -40 -45 5

77.48 77.16 76.84 73.23 -32.93-19.82 **2g**, ¹³C NMR (101 MHz, CDCh) f1 (ppm) -10

											√77.48 √77.16	72.76							
				2i , ¹³ 0	Me C NMF	ne R (101	Me MHz, (e CDCb)											
												I							
910	 100	100	170		·	·····	· · · ·	· · ·	••••••	 	•••••	••••••••••••••••••••••••••••••••••••••	••••••••••••••••••••••••••••••••••••••	<u></u>	 	.	********** · · · · · ·	 ·	

-7.26

2j, ¹H NMR (400 MHz, CDCb)

2j, ¹¹B NMR (128 MHz, CDCb)

2j, ¹¹B{¹H} NMR (128 MHz, CDC_b)

			' I	·	'	· 1	'	· '								·		·	- I - I	· 1	· 1		
210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-10)
	fl (ppm)																						

--5.80 --10.07 --13.50

77.48 77.16 76.84

-7.94 -3.22 -3.22 -1.67 -1.67 -1.67 -1.67 -13.69 -14.98 -16.64 CI **4**, ¹¹B NMR (128 MHz, CDCb) IV 40 20 0 f1 (ppm) 45 35 30 25 15 -5 -10 -15 -25 -30 -35 -45 10 -20 -40 5

							77.48	¹ 76.84	5 12	-72.02 -46.43						
		H H CI 5, ¹³ C NMR (1	CI H H H H H H H H J O I MHz, C	DCb)												
	404-110-1990-11-10-1999-1-1-14	(••••••••••••••••••			an a fa rta ar 1			an a	haran da ana	ugt finling		~~~~	na tingga ganga da		
210 200 1	90 180 170	160 150	140 130	120	110 100	90	80	70	60	50	40	30	20	10	0	-10

 $\begin{array}{c} -2.27 \\ -2.27 \\ -0.81 \\ -1.96 \\ -1.96 \\ -9.39 \\ -12.31 \\ -13.58 \\ -15.34 \\ -15.34 \\ -15.34 \\ -15.34 \\ -15.34 \\ -15.34 \\ -17.99 \end{array}$ -15.17

$$S_{1} = \frac{1}{12} + \frac$$

	-118.30		-49.94	39.80	$\int_{\Gamma}^{1.94} 1.73$	-1.32 -1.11 -0.91
H H HO H HO H H HO H H H H H H H H H H						
210 200 190 180 170 160 150 140 130	120 110 100 9 f1 (ppm)	0 80 70	60 50	40 30	20 10	0 -10

7.5

MM MM 30 -20 f1 (ppm) 15 25 20 -5 -15-25 -30 -35 -40 -45 -55 10 5 0 -10 -50 -60 -65

---30.74 ---35.50 --8.45 --11.66 -15.64 -17.91 -20.80 $(CH_3CH_2)_4N^+\Big]_2^{\bullet}$ **11**, ¹¹B{¹H} NMR (128 MHz, CD₃CN) 2.00-1 $2.03 \pm$ $.84_{\mathrm{U}}$ 1.971.972.16821 92-] 3 30 -15 -20 f1 (ppm) -25 -35 25 20 15 10 -5 -30 -40 -45 -60 -65 5 5 0 -10 -50 -55

f 135.54 135.38 130.56 128.60 128.01 127.97	$ \begin{array}{c} 80.53 \\ 77.48 \\ 77.16 \\ 68.26 \\ 68.26 \\ -41.41 \end{array} $
Bn Bn Bn Bn Bn Bn Bn Bn Bn Bn Bn Bn Bn B	
210 200 190 180 170 160 150 140 130 120 110	100 90 80 70 60 50 40 30 20 10 0 -10 1 (ppm)

13, ¹H NMR (400 MHz, CDCb)

--2.58 --3.65 --8.31 --9.39 -1.68 **14**, ¹¹B NMR (128 MHz, CDCb) Μ 35 30 25 15 10 0 f1 (ppm) 40 20 -45 5 -5 -25 -35 -10 -15 -20 -30 -40

<pre>{133.27 {133.27 {133.08 {133.08 {119.19 {119.05</pre>	$\begin{cases} 78.73 \\ 77.48 \\ 77.16 \\ 75.86 \\ 39.25 \\ 39.25 \end{cases}$
14, ¹⁴ C NMR (101 MHz, CDC ₃)	
1	LL
210 200 190 180 170 160 150 140 130 120 11	10 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

	$\begin{bmatrix} 77.63 \\ 77.48 \\ 77.16 \\ 74.72 \\ 73.02 \\ -59.70 \end{bmatrix}$
المحمد المحم المحمد المحمد ا	
210 200 190 180 170 160 150 140 130 120 110 100 f1 (p)	ртрания и простории и прост О 90 80 70 60 50 40 30 20 10 0 -10 ртр. ртр.

~3.47 ~2.33 ~-3.84 ~4.97 ~-4.97 ~-8.80 ~-8.80 -9.29 TMS TMS TMS TMS **17**, ¹¹B NMR (128 MHz, CDCb) Μ 45 0 f1 (ppm) 25 15 -15 -25 -35 -45 40 35 30 20 10 -5 -10 -20 -30 -40 5

7.87 7.86 7.84 7.82 7.82 7.43 7.38 39

18, ¹H{¹¹B} NMR (400 MHz, THF-*d*₈)

--6.44 --0.42 --6.56 --9.62

18, ¹¹B{¹H} NMR (128 MHz, THF-*d*₈)

136.70 136.51 136.54 136.54 136.54 136.54 136.54 136.54 136.54 136.54 136.54 136.54 136.54 136.54 136.54 136.54 136.54 136.54 136.54 136.54 136.54 137.35 131.19 129.01 129.05 128.99 128.94 128.94 128.94 128.94 128.94 128.94 128.91 67.65	67.21 67.21 66.99 66.77 66.99 25.53 25.33 24.73 24.73
Ph ₂ P Ph ₂ P Ph ₂ P PPh ₂ 18 , ¹³ C NMR (101 MHz, THF- d_8)	
l. 11	
210 200 190 180 170 160 150 140 130 120 110 100 90 80 f1 (ppm)	70 60 50 40 30 20 10 0 -10