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A universal strategy for green and surfactant-free synthesis of noble 

metal nanoparticles

Experimental section

Synthesis of Pt-NPs/C

3.0 mL H2PtCl6 (7.4 mg mL–1
Pt) was added into the mixed solution containing 20 mL 

ethylene glycol, 10 mL deionized water, and 51.8 mg Vulcan XC-72 carbon under 

ultrasonication for over 25 min, followed by adjusting the pH up to 10 using 0.1 M 

KOH solution. The mixture was bubbled with high-purity nitrogen for 15 min, then 

heated to 60℃ under H2 bubbling for 2.0 h. The obtained colloidal mixture was 

centrifuged and washed with deionized water for several times, and the final collected 

product was named as Pt-NPs/C.

Synthesis of Pd-NPs/C (or Rh-NPs/C) 

61.9 mg Na2PdCl4 (or 79.7 mg (NH4)3RhCl6) was added into the mixed solution 

containing 20 mL ethylene glycol, 10 mL deionized water, and 51.8 mg Vulcan XC-72 

carbon under ultrasonication for over 25 min, followed by adjusting the pH up to 10 

using 0.1 M KOH solution. The mixture was bubbled with high-purity nitrogen for 15 

min, then heated to 60℃ under H2 bubbling for 2.0 h. The obtained colloidal mixture 

was centrifuged and washed with deionized water for several times, and the final 

collected product was named as Pd-NPs/C (or Rh-NPs/C).

Electrochemical measurements

2.0 mg Pt-NPs/C was dispersed into a mixture of 0.74 mL ethanol, 0.24 mL deionized 

water, and 0.02 mL Nafion solution (5 wt%) under ultrasonication for 25 min, then 5.0 

μL of the resulting ink was dropped onto a freshly polished glassy carbon rotating disk 

electrode (RDE, 5 mm in diameter) for the subsequent electrochemical tests. The Pt 

loadings of Pt-NPs/C and Com Pt/C on the RDE surfaces are respectively 15.1 and 15.3 

μg cm–2
Pt. All electrochemical measurements were operated on an electrochemical 

workstation (Metrohm Autolab PGSTAT302N). A graphite rod and Hg/HgSO4 (with 

saturated K2SO4 solution) were used as the counter and reference electrodes, 
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respectively. CV curves were tested in nitrogen saturated 0.1 M HClO4 solution with a 

scan rate of 50 mV s–1. LSV curves of Pt-NPs/C and Com Pt/C were measured in O2 

saturated 0.1 M HClO4 solution at 1600 rpm with a scan rate of 5 mV s–1. Additionally, 

LSV curves of Pd-NCs/C and Com Pd/C were measured in O2 saturated 0.1 M 

HClO4 solution at 1600 rpm with a scan rate of 5 mV s–1. Electrochemical stability of 

samples in this work was measured using accelerated durability test (ADT) through 

continuous cycling between 0.6 and 1.1 V (vs. RHE).

Fig. S1. TEM image of Pt-NPs/C.

Fig. S2. TGA curve of Pt-NPs/C.



Fig. S3. Fourier transform ir spectrum of Pt-NPs.

Fig. S4. TGA curve of Pt-NPs/C with Pt loading of (a) 38.4% and (b) 54.7%.

Fig. S5. XRD patterns of (a) Pd-NPs/C and (b) Rh-NPs/C.



Fig. S6. (a) Pd 3d XPS spectrum of Pd-NPs/C and (b) Rh 3d XPS spectrum of Rh-
NPs/C.

Fig. S7. TGA curve of the prepared Pt-NPs/C in the absence of deionized water.

Fig. S8. TEM image of the Pt-based product by replacing ethylene glycol with ethanol.



Fig. S9. CO-stripping curves of Pt-NPs/C and Com Pt/C in 0.5 M H2SO4 electrolyte at 
a scan rate of 50 mV s-1.

Fig. S10. Tafel plots of Com Pt/C and Pt-NPs/C.

Fig. S11. (a) Disk and (b) ring current densities, as well as (c) the electron transfer 
number for Pt-NPs/C, at 1600 rpm in 0.1 M HClO4 solution.



Fig. S12. CV curves of Pt-NPs/C and Com Pt/C in H2SO4 + 0.5 M CH3OH electrolyte. 
Scan rate: 50 mV s-1.

Fig. S13. Mass activity comparison for Com Pt/C and Pt-NPs/C before and after ADTs.



Fig. S14. LSV curves of Com Pt/C before and after 10,000 cycles.

Fig. S15. (a) TEM image Pt-NPs/C after stability testing and corresponding (b) particle 
size distribution.

Fig. S16. TEM images of Pt-NPs/C heated at (a) 200°C and (b) 250°C for 1 h in nitrogen 
atmosphere.



Fig. S17. LSV curves of Com Pd/C and Pd-NPs/C.

Fig. S18. LSV curves of (a) Pd-NPs/C and (b) Com Pd/C before and after 10,000 cycles.



Table S1. The comparison of specific activity, half-wave potential, and stability 
between Pt-NPs/C and reported Pt-based nanostructures.

Catalyst Specific 
activity

(mA cm-2)

Half wave
potential 

(V)

Half wave potential 
decay after 10000 

cycles (mV)

Reference

Pt NPs/TiO2/CSCNT —— 0.871 -9 1

W@Pt/C 0.052 0.846 —— 2

Pt&Fe2O3/NC —— 0.862 —— 3

Pt@PCNFs —— 0.850 -18 4

10%-Pt-COF900 0.848 -60 5

Pt/N-CST 0.169 0.890 -9 6

PtZrNi 0.970 0.880 —— 7

PtNi nanowires 0.238 0.799 -20 8

Pt–NiO@Ni 0.263 0.896 -3 9

PtCo@PtIr 0.263 0.926 -9 10

Pt@C/C 0.255 0.887 0 11

Pt/TiO2 (OV)-C 0.095 0.862 -5 12

Pt/Zn-BDC —— 0.814 -5 13

Ru-Pt2CoNi/C 1.600 0.873 -15 14

FePt-HMCS —— 0.750 -21 15

Com Pt/C 0.265 0.855 -12 This 
work

Pt-NPs/C 0.290 0.879 -5 This 
work
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