Synthetic Manifestation of Trinitro-Pyrazolo-2H-1,2,3Triazoles (TNPT) as Insensitive Energetic Materials

Muntha Balaraju, ${ }^{\text {a }}$ Nagarjuna Kommu, ${ }^{\text {a }}$ Srinivas Vangara, ${ }^{\text {a }}$ Aswini K. Sahoo, ${ }^{a}$ Vikranth Thaltiri, ${ }^{\text {a }}$ and Akhila K. Sahoo*ab
${ }^{\mathrm{a}}$ Advanced Center of Research in High Energy Materials, University of Hyderabad, Hyderabad 500046, INDIA
${ }^{b}$ School of Chemistry, University of Hyderabad, Hyderabad 500046, INDIA

SUPPORTING INFORMATION

Table of Contents	Page
General Experimental	S2
Caution \& Materials	S3
Experimental Procedures, Spectral, and Analytical data	S4-S10
X-ray Crystallography Information	S11
Crystallographic data for compounds 6, 7, and $\mathbf{8}$	S12
Crystallographic data for compounds 9, 11, and 12	S13
H-bond interactions plots of compounds 6, 7, 8, 9, 11, and 12	S14-19
Hirshfeld Surface Analysis	S20-S21
Isodesmic reactions for the prediction of heat of formation	S22
Impact and Friction sensitivity test details of compounds 8, 9, 11 and 12	S26-S27
References	S28-S60
TGA-DSC and NMR data	S61-S69
HRMS	

General Experimental

All the reactions has beencarried out in an oven-dried round bottomed flask. Commercial grade solvents were distilled prior to use. Column chromatography has been performed using silica gel (100-200 Mesh) with hexanes and ethyl acetate mixture. Thin layer chromatography (TLC) has beenchecked on silica gel GF254 plates. The spots on TLC plate have been visualized with UV light (254 nm) and/or staining over I_{2} chamber.
Proton and carbon nuclear magnetic resonance spectra (${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C} \mathrm{NMR}$) are recorded on a 400 MHz $\left({ }^{13} \mathrm{C}\right.$ NMR, 101 MHz), $500 \mathrm{MHz}\left({ }^{13} \mathrm{C}\right.$ NMR, 126 MHz$)$ spectrometer (spectra are recorded with a BRUKER-DMX-NMR) and $600 \mathrm{MHz}\left({ }^{1} \mathrm{H}\right.$ NMR, $600 \mathrm{MHz} ;{ }^{13} \mathrm{C}$ NMR, $151 \mathrm{MHz} ;{ }^{15} \mathrm{~N}$ NMR, 61 MHz ; spectra are recorded with a JEOL JNM-ECZ-600R/M1) spectrometer, having solvent resonance as internal standard (${ }^{1} \mathrm{H} \mathrm{NMR}: \mathrm{CDCl}_{3}$ at $7.26 \mathrm{ppm}, ~ D M S O-\mathrm{d}_{6}$ at 2.49 ppm , Acetone- d_{6} at 2.04 ppm , $\mathrm{CD}_{3} \mathrm{CN}$ at $1.93 \mathrm{ppm} ;{ }^{13} \mathrm{C} \mathrm{NMR:} \mathrm{CDCl}_{3}$ at $77.0 \mathrm{ppm}, ~ D M S O-d_{6}$ at 39.5 ppm , Acetone- d_{6} at $29.8 \& 206.5$ $\mathrm{ppm}, \mathrm{CD}_{3} \mathrm{CN}$ at $1.3 \& 118.3 \mathrm{ppm}$). Few cases tetramethylsilane (TMS) at 0.00 ppm has been used as reference standard. The chemical shift values (ppm) are expressed relative to the chemical shift of [deuterated] solvent or to the external standard liq. NH_{3} without correction $\left({ }^{15} \mathrm{~N}\right.$ NMR). Data for ${ }^{1} \mathrm{H}$ NMR are reported as follows: chemical shift (ppm), multiplicity ($\mathrm{s}=$ singlet; $\mathrm{bs}=$ broad singlet; $\mathrm{d}=$ doublet; $\mathrm{bd}=$ broad doublet; $\mathrm{dd}=$ doublet of doublet; $\mathrm{dt}=$ doublet of triplet; $\mathrm{tt}=$ triplet of triplet; $\mathrm{t}=$ triplet; $\mathrm{bt}=$ broad triplet; $\mathrm{q}=$ quartet; pent $=$ pentet, $\mathrm{m}=$ multiplet), coupling constants J in (Hz), and integration. ${ }^{13} \mathrm{C}$ NMR is reported in terms of chemical shift (ppm). Melting points and decomposition temperatures are determined by DSC and TG-DSC measurements. IR spectra are recorded on FT/IR spectrometer and are reported in cm^{-1}. High resolution mass spectra (HRMS) are obtained in ESI mode. X-ray data are collected on a 'Bruker D8 VENTURE Photon III detector' and Rigaku Oxford Hypix3000 diffractometer using Mo-K α radiation $(0.71073 \AA$) and $\mathrm{Cu}-\mathrm{K} \alpha$ radiation ($1.54 \AA$).

Caution! All the TNPT and its derivatives are energetic materials and they tend to explode under certain conditions unpredictably. However, none of the compounds described herein has exploded or detonated in the course of this research. Caution should be exercised at all times during the synthesis, characterization, and handling of any of these materials, and mechanical actions involving scratching or scraping must be avoided. Ignoring safety precautions can lead to serious injuries.
Materials:Unless otherwise noted, all the reagents and intermediates are obtained commercially and used without purification. Pyrazole, 1,2,3-triazole, iodine, chloromethyl methyl ether, silver nitrate, $30 \% \mathrm{H}_{2} \mathrm{O}_{2}$, O-p-toluenesulfonylhydroxylamine, dimethyl sulfate, 70% perchloric acid, sodium hydride, sodium bicarbonate $\left(\mathrm{NaHCO}_{3}\right)$, tripotassium phosphate $\left(\mathrm{K}_{3} \mathrm{PO}_{4}\right)$, copper (I) oxide $\left(\mathrm{Cu}_{2} \mathrm{O}\right)$, aqueous ammonia, THF, methanol, acetonitrile, dichloromethane, and N, N^{\prime}-dimethylformamide (DMF)are commercially available and used as received. Commercially available $\mathrm{H}_{2} \mathrm{SO}_{4}$ and HNO_{3} are used for nitration reactions.

ExperimentalProcedures

General procedure for the preparation of precursors 2 and 3 (GP-1):

Physical characterization data are exactly matching with the reported values of the respective compounds 2 and 3.

4-Iodo pyrazole (2): ${ }^{1}$

To a solution of pyrazole ($1 ; 15.0 \mathrm{~g}, 220.58 \mathrm{mmol})$ and iodine $(27.9 \mathrm{~g}, 110.29 \mathrm{mmol})$ in water $(85.0 \mathrm{~mL})$ was added $30 \% \mathrm{H}_{2} \mathrm{O}_{2}(16.4 \mathrm{~mL}, 132.34 \mathrm{mmol})$. The reaction mixture was stirred for 12 h at room temperature. Upon reaction completion, a cold solution of 5% $\mathrm{NaHSO}_{3}(50 \mathrm{~mL})$ was added to the mixture. The compound strated precipitated providing off-white slurry. The product was filtered and washed with water to provide $2(36.5 \mathrm{~g}, 85 \%)$ as an off-white crystalline solid.
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 11.25(\mathrm{bs}, 1 \mathrm{H}), 7.65(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 138.6,56.6$ ppm.

4-Iodo-1-(methoxymethyl)- $\mathbf{1 H}$-pyrazole (3): ${ }^{2}$

 Sodium hydride ($928 \mathrm{mg}, 23.2 \mathrm{mmol}, 60 \% \mathrm{wt}$ in mineral oil) was suspended in 25 mL dry THF and stirred for 15 minutes. Then a solution of 4-iodopyrazole (2; $3.0 \mathrm{~g}, 15.54$ mmol) in 25 mL dry THF was added drop wise at $0^{\circ} \mathrm{C}$ and the resulting mixture was stirred at $40^{\circ} \mathrm{C}$ for 1 h . Chloromethyl methyl ether ($1.29 \mathrm{~mL}, 17.01 \mathrm{mmol}$) was added drop wise and the mixture was allowed to stir at $50^{\circ} \mathrm{C}$ for 4 h and then at room temperature for 8 h . The mixture was quenched with saturated solution of NaHCO_{3} and extracted with ethyl acetate. The organic fractions were washed with brine, dried over sodium sulfate, and concentrated in vacuo to afford $\mathbf{3}$ (2.82 $\mathrm{g}, 76 \%$) as pale-yellow oil.
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.62(\mathrm{~s}, 1 \mathrm{H}), 7.56(\mathrm{~s}, 1 \mathrm{H}), 5.36(\mathrm{~s}, 2 \mathrm{H}), 3.31(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (151 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 145.0,134.1,82.1,58.1,56.9 \mathrm{ppm}$.

Table S1: Optomization for synthesis of compounds 5a and 5b

entry	Catalyst(10 mol\%)	Base (2 equiv.)	solvent	$\operatorname{Temp}\left({ }^{\circ} \mathrm{C}\right)$	Yield (\%)
1	CuI	$\mathrm{Cs}_{2} \mathrm{CO}_{3}$	DMF	120	NR
2	CuCl	$\mathrm{Cs}_{2} \mathrm{CO}_{3}$	DMF	120	NR
3	CuBr	$\mathrm{Cs}_{2} \mathrm{CO}_{3}$	DMF	120	NR
4	CuOAc	$\mathrm{Cs}_{2} \mathrm{CO}_{3}$	DMF	120	NR
5	$\begin{gathered} \mathrm{Fe}(\mathrm{acac})_{3}(30 \mathrm{~mol} \%) \\ + \\ \mathrm{Cu}(\mathrm{acac})_{2}(10 \mathrm{~mol} \%) \end{gathered}$	$\mathrm{Cs}_{2} \mathrm{CO}_{3}$	DMF	120	$\begin{aligned} & 8 \%(\mathbf{5 a}), \\ & 19 \%(\mathbf{5 b}) \end{aligned}$
6	$\mathrm{Fe}(\mathrm{acac})_{3}+\mathrm{Cu}(\mathrm{acac})_{2}$	$\mathrm{K}_{3} \mathrm{PO}_{4}$	DMF	120	$\begin{aligned} & 12 \%(\mathbf{5 a}), \\ & 22 \%(\mathbf{5 b}) \end{aligned}$
7	$\mathrm{Cu}_{2} \mathrm{O}$	$\mathrm{Cs}_{2} \mathrm{CO}_{3}$	$\mathrm{CH}_{3} \mathrm{CN}$	80	NR
8	$\mathrm{Cu}_{2} \mathrm{O}$	$\mathrm{Cs}_{2} \mathrm{CO}_{3}$	DMF	80	NR
9	$\mathrm{Cu}_{2} \mathrm{O}$	$\mathrm{Cs}_{2} \mathrm{CO}_{3}$	DMF	120	$\begin{aligned} & 18 \%(\mathbf{5 a}), \\ & 32 \%(\mathbf{5 b}) \end{aligned}$
10	$\mathrm{Cu}_{2} \mathrm{O}$	$\mathrm{Cs}_{2} \mathrm{CO}_{3}$	DMSO	120	$\begin{aligned} & 10 \%(\mathbf{5 a}), \\ & 15 \%(\mathbf{5 b}) \end{aligned}$

General procedure for the preparation of compounds 5 a and 5 b (GP-2): ${ }^{3}$

A mixture of $\mathrm{Cu}_{2} \mathrm{O}(0.301 \mathrm{~g}, 2.10 \mathrm{mmol}), \mathrm{K}_{3} \mathrm{PO}_{4}(8.95 \mathrm{~g}, 42.18 \mathrm{mmol}), 1,2,3$-triazole $(4 ; 2.03 \mathrm{~g}, 29.52$ mmol), and the 4-iodo-1-(methoxymethyl)-pyrazole (3; $5.0 \mathrm{~g}, 21.09 \mathrm{mmol}$) in DMF (25 mL) was placed in a 100 mL screw capped Schlenk tube under an argon atmosphere. The resulting mixture was
stirred at $120^{\circ} \mathrm{C}$ for 12 h . The reaction mixture was diluted with EtOAc and filtered through a small plug of silica gel. The filtrate was washed with water and the aqueous layer was extracted withEtOAc. The combined organic extracts were washed with water and brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was evaporated under reduced pressure. The crude residue was purified by column chromatography on silica gel using hexane-ethyl acetate. Isolation using 10% ethyl acetate in hexane led to separation of $\mathbf{5 a}(700 \mathrm{mg}, 18 \%)$ and 70% ethyl acetate in hexane $\mathbf{5 b}(1.24 \mathrm{~g}, 32 \%)$ as pale-yellow liquids.

2-(1-(Methoxymethyl)-1H-pyrazol-4-yl)-2H-1,2,3-triazole (5a):

Following the general procedure (GP-2), compound $\mathbf{5 a}$ (700 mg) was synthesized in 18% yield as pale-yellow liquid. ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.07(\mathrm{~s}, 1 \mathrm{H}), 8.03(\mathrm{~s}, 1 \mathrm{H}), 7.73$ $(\mathrm{s}, 2 \mathrm{H}), 5.41(\mathrm{~s}, 2 \mathrm{H}), 3.36(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 134.9,131.6,127.4$, 121.0, 82.7, 56.9 ppm; IR (Neat) $v_{\max } 3124,2998,2938,2832,1604,1518,1431,1342$, 1292, 1094, 935, 819, $750 \mathrm{~cm}^{-1}$; HRMS (ESI) $\mathrm{m} / \mathrm{z}(\mathrm{M}+\mathrm{H})^{+}$calcd for $\mathrm{C}_{7} \mathrm{H}_{10} \mathrm{~N}_{5} \mathrm{O}^{+} 180.0880$, found 180.0885.

1-(1-(Methoxymethyl)-1H-pyrazol-4-yl)-1H-1,2,3-triazole (5b):

Following the general procedure (GP-2), compound $\mathbf{5 b}(1.24 \mathrm{~g}$) was synthesized in 32% yield as pale-yellow liquid. ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.06(\mathrm{~s}, 1 \mathrm{H}), 7.87(\mathrm{~s}, 1 \mathrm{H})$, $7.85(\mathrm{~s}, 1 \mathrm{H}), 7.82(\mathrm{~s}, 1 \mathrm{H}), 5.44(\mathrm{~s}, 2 \mathrm{H}), 3.38(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 133.9,132.3,123.0,122.8,122.6,82.9,57.1 \mathrm{ppm}$; IR (Neat) $v_{\max } 3119,2937,1716$, 1662, 1467, 1388, 1227, 1098, 933, 852, $750 \mathrm{~cm}^{-1}$; HRMS (ESI) $\mathrm{m} / \mathrm{z}(\mathrm{M}-\mathrm{H})^{-}$calcd for $\mathrm{C}_{7} \mathrm{H}_{8} \mathrm{~N}_{5} \mathrm{O}^{-}$ 178.0734, found 178.0701.

General procedure for the preparation of compound 6 and 7 (GP-3):

A mixture of 98% sulphuric acid and fuming nitric acid (95\%) was independently added to compound $\mathbf{5 a}$ and $\mathbf{5 b}$ at $0^{\circ} \mathbf{C}$. Later the resulting mixture was stirred at $100^{\circ} \mathrm{C}$ for $8-12 \mathrm{~h}$. The reaction progress was motinored by TLC. Upon reaction completion, the mixture was poured into ice cold water and neutralized with saturated aqueous NaHCO_{3} solution. After neutralization, the reaction mixture was extracted with EtOAc. The organic layer was separated and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was evaporated under reduced pressure. The crude residue was purified by column chromatography on silica gel eluting with hexane: ethyl acetate to afford the desired nitration products 6 and 7. ${ }^{4}$

Sodium 3, 5-dinitro-4-(4-nitro-2H-1,2,3-triazol-2-yl)pyrazol-1-ide (6):
Following the general procedure (GP-3), compound $5 \mathbf{5}(1.00 \mathrm{~g}, 5.58 \mathrm{mmol})$ was dissolved in sulphuric acid (10 mL), and fuming nitric acid (7 mL) was added dropwise to the reaction mixture at $0^{\circ} \mathrm{C}$. The resulting mixture was stirred at $100{ }^{\circ} \mathrm{C}$ for 8 h . The reaction progress was motinored by TLC. Upon reaction completion, the mixture was poured into ice cold water and neutralized with saturated aqueous NaHCO_{3} solution. After neutralization, the reaction mixture was extracted with EtOAc. The organic layer was separated and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was evaporated under reduced pressure. The crude residue was purified by column chromatography on silica gel eluting with hexane: ethyl acetate to afford the desired product $\mathbf{6}(840 \mathrm{mg}, 56 \%)$ as yellow solid. ${ }^{4}$

DSC ($10{ }^{\circ} \mathrm{C} \mathrm{min}^{-1},{ }^{\circ} \mathrm{C}$): $290{ }^{\circ} \mathrm{C}\left(\mathrm{T}_{\mathrm{d}}\right) ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$): $\delta 9.04$ (s , $1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$): $\delta 154.2,150.2,132.8,110.0$; IR (Neat) $v_{\text {max }}$ 1621, 1523, 1447, 1359, 1325, 1074, 968, 828, $757 \mathrm{~cm}^{-1}$; HRMS (ESI) m/z (M-Na) ${ }^{-}$calcd for $\mathrm{C}_{5} \mathrm{HN}_{8} \mathrm{O}_{6}-269.0024$, found 269.0019.

1-(3-Nitro-1H-pyrazol-4-yl)-1H-1,2,3-triazole (7):

Following the general procedure (GP-3), compound $\mathbf{5 b}(0.6 \mathrm{~g}, 3.35 \mathrm{mmol})$ was dissolved in sulphuric $\operatorname{acid}(7.5 \mathrm{~mL})$, and fuming nitric acid $(2.5 \mathrm{~mL})$ was added dropwise to the reaction mixture at $0^{\circ} \mathrm{C}$. The resulting mixture was stirred at $100^{\circ} \mathrm{C}$ for 12 h . The reaction progress was motinored by TLC. Upon reaction completion, the mixture was poured into ice cold water and neutralized with saturated aqueous NaHCO_{3} solution. After neutralization, the reaction mixture was extracted with EtOAc. The organic layer was separated and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was evaporated under reduced pressure. The crude residue was purified by column chromatography on silica gel eluting with hexane: ethyl acetate to afford the desired nitration product $7(136 \mathrm{mg}, 23 \%)$ as colorless solid. ${ }^{4,5}$

DSC ($10{ }^{\circ} \mathrm{C} \mathrm{min}^{-1},{ }^{\circ} \mathrm{C}$): $135^{\circ} \mathrm{C}\left(\mathrm{T}_{\mathrm{m}}\right) \& 177{ }^{\circ} \mathrm{C}\left(\mathrm{T}_{\mathrm{d}}\right) ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$): $\delta 12.20(\mathrm{bs}, 1 \mathrm{H}), 8.18(\mathrm{~s}, 1 \mathrm{H}), 8.16(\mathrm{~d}, J=0.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.82(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}),{ }^{13} \mathrm{C}$

NMR (101 MHz, $\left.\mathrm{CD}_{3} \mathrm{CN}\right): \delta 134.4,130.7,128.4,115.8,79.1 \mathrm{ppm} ; \mathrm{IR}$
(Neat) $v_{\max } 3161,3118,2925,1721,1613,1528,1445,1354,1242,1121,1077,975,827,782$ $\mathrm{cm}^{-1} ;$ HRMS (ESI) $\mathrm{m} / \mathrm{z}(\mathrm{M}+\mathrm{H})^{+}$calcd for $\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}_{6} \mathrm{O}_{2}{ }^{+}$181.0469, found 181.0471.
Synthesis of compounds $8,9,10,11$, and 12 from sodium salt of TNPT derivative (6):

2-(1-Methyl-3,5-dinitro-1H-pyrazol-4-yl)-4-nitro-2H-1,2,3-triazole (8):

To a solution of compound $\mathbf{6}(520 \mathrm{mg}, 1.78 \mathrm{mmol})$ in water $(5.0 \mathrm{~mL})$ was added dimethyl sulfate ($270 \mathrm{mg}, 2.13 \mathrm{mmol}$). The reaction mixture was stirred at room temperature for 8 h . The precipitate was collected by filtration and washed with distilled water to yield $\mathbf{8}$ ($380 \mathrm{mg}, 75 \%$) as colorless solid. ${ }^{6}$

DSC-TGA $\left(10^{\circ} \mathrm{C} \mathrm{min}^{-1},{ }^{\circ} \mathrm{C}\right): 134^{\circ} \mathrm{C}\left(\mathrm{T}_{\mathrm{m}}\right) \& 230^{\circ} \mathrm{C}\left(\mathrm{T}_{\mathrm{d}}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right): \delta 8.66(\mathrm{~s}, 1 \mathrm{H})$, $4.36(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (151 MHz, $\mathrm{CD}_{3} \mathrm{CN}$): $\delta 156.5,147.1,142.4,134.3(\mathrm{~d}, J=10 \mathrm{~Hz}), 113.5,44.3(\mathrm{~d}$, $J=4.4 \mathrm{~Hz}) ;{ }^{15} \mathrm{~N}$ NMR (61 MHz , Acetone- d_{6}): $\delta-26.1,-28.2,-31.7,-32.9,-46.5,-75.0,-151.0$, -180.3 ppm ; IR (Neat) $v_{\max } 3149,1622,1539,1468,1444,1367,1332,1228,1137,1041,961,826,756$ $\mathrm{cm}^{-1} ; \mathrm{HRMS}(\mathrm{ESI}) \mathrm{m} / \mathrm{z}(\mathrm{M}+\mathrm{Na})^{+}$calcd for $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~N}_{8} \mathrm{NaO}_{6}{ }^{+}$307.0146, found 307.0148.

2-(3,5-Dinitro-1H-pyrazol-4-yl)-4-nitro-2H-1,2,3-triazole (9):

A solution of the corresponding pyrazole $\mathbf{6}(300 \mathrm{mg}, 1.0 \mathrm{mmol})$ in concentrated $\mathrm{HCl}(10 \mathrm{~mL})$ was stirred for 24 h at room temperature. The solvent was evaporated at reduced pressure and the residue was recrystallized from $\mathrm{H}_{2} \mathrm{O}$ to obtain desired product 9 ($113 \mathrm{mg}, 41 \%$) as colorless solid. ${ }^{7}$
DSC ($\left.10{ }^{\circ} \mathrm{C} \mathrm{min}^{-1},{ }^{\circ} \mathrm{C}\right): 204{ }^{\circ} \mathrm{C}\left(\mathrm{T}_{\mathrm{m}}\right) \& 261{ }^{\circ} \mathrm{C}\left(\mathrm{T}_{\mathrm{d}}\right) ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$): $\delta 9.03(\mathrm{~s}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR (151 MHz, DMSO- d_{6}): $\delta 154.2,150.2,132.8,110.1 ;{ }^{15} \mathrm{NNMR}\left(61 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right): \delta-19.5$, $-24.5,-32.4,-47.5,-141.9 \mathrm{ppm}$;IR (Neat) $v_{\max } 3641,3502,3148,1628,1542,1480,1453,1370,1225$, 1067, 960, 829, $759 \mathrm{~cm}^{-1}$; HRMS (ESI) m/z (M-H) ${ }^{-}$calcd for $\mathrm{C}_{5} \mathrm{HN}_{8} \mathrm{O}_{6}{ }^{-}$269.0024, found 269.0016.

Silver (I) 3,5-dinitro-4-(4-nitro-2H-1,2,3-triazol-2-yl)pyrazol-1-ide (10):

A solution of silver nitrate $(410 \mathrm{mg}, 2.44 \mathrm{mmol})$ in distilled water $(4.0 \mathrm{~mL})$ was added dropwise to a suspension of $\mathbf{6}(600 \mathrm{mg}, 2.2 \mathrm{mmol})$ in methanol $(4.0 \mathrm{~mL})$. The reaction mixture was stirred at room temperature for 12 h , then $10(650 \mathrm{mg}$, 78%) was collected by filtration, washed with water, and dried in vacuum. ${ }^{6}$

DSC ($10{ }^{\circ} \mathrm{C} \mathrm{min}^{-1},{ }^{\circ} \mathrm{C}$): $\mathrm{T}_{\mathrm{d}}: 302{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$): $\delta 8.58(\mathrm{~s}, 1 \mathrm{H})$;
${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$): $\delta 155.8,150.9,133.3,111.5 \mathrm{ppm}$; IR (Neat) $v_{\max } 1616,1523,1452,1364$, 1326, 1024, 975, 829, $756 \mathrm{~cm}^{-1}$; HRMS (ESI) m/z (M-Ag) ${ }^{-}$calcd for $\mathrm{C}_{5} \mathrm{HN}_{8} \mathrm{O}_{6}{ }^{-}$269.0024, found 269.0038.

Ammonium 3,5-dinitro-4-(4-nitro-2H-1,2,3-triazol-2-yl)pyrazol-1-ide(11):

A solution of $10(500 \mathrm{mg}, 1.71 \mathrm{mmol})$ in methanol (8.0 mL) was addedammonium chloride ($100 \mathrm{mg}, 1.88 \mathrm{mmol}$). The reaction mixture was stirred at room temperature for 12 h . The suspension was filtered, washed with water, and dried in vacuum to yield $\mathbf{1 1}$ ($370 \mathrm{mg}, \mathbf{7 5 \%}$) as yellow solid. ${ }^{6,8}$

DSC ($10{ }^{\circ} \mathrm{C} \mathrm{min}^{-1},{ }^{\circ} \mathrm{C}$): $\mathrm{T}_{\mathrm{d}}: 268{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$): $\delta 8.55(\mathrm{~s}, 1 \mathrm{H}), 6.47(\mathrm{bs}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (151 MHz, $\mathrm{CD}_{3} \mathrm{CN}$): $\delta 155.6,151.4,133.1,111.1 ;{ }^{15} \mathrm{NNMR}\left(61 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right): \delta-19.1,-24.4$, $-32.5,-47.7,-51.5,-141.6,-352.4 \mathrm{ppm}$; IR (Neat) $v_{\max } 3289,3247,3161,2795,1614,1523,1441$, $1408,1354,1324,1231,1155,1071,966,836,757 \mathrm{~cm}^{-1} ;$ HRMS (ESI) m/z (M+H) ${ }^{+}$calcd for $\mathrm{C}_{5} \mathrm{H}_{6} \mathrm{~N}_{9} \mathrm{O}_{6}{ }^{+}$ 288.0436, found 288.0432.

3,5-Dinitro-4-(4-nitro-2H-1,2,3-triazol-2-yl)-1H-pyrazol-1-amine (12):

To a freshly prepared pulverized ethyl O-p-tolylsulphonylacetohydroximate (1.34 $\mathrm{g}, 5.22 \mathrm{mmol})$ was added 70% perchloric acid $(12.5 \mathrm{~mL})$ at room temperature and stirred at ambient conditions for 2 h . The tosylhydroxylamine suspension was poured into 80 mL of ice/water slurry.The mixture was extracted with dichloromethane $(3 \times 20 \mathrm{~mL})$. The combined dichloromethane extracts were dried over sodium sulfate and filtered. Next, a solution of $\mathbf{1 1}(1.0 \mathrm{~g}, 3.48 \mathrm{mmol})$ in acetonitrile (50 mL) was added dropwise to the freshly prepraredtosylhydroxylamine in dichloromethane. The resulting mixture was stirred overnight under ambient conditions, evaporated to dryness, and resuspended in ethyl acetate.

The suspension was filtered and evaporated, and purified by silica gel chromatography eluting with hexane-ethyl acetate ($70: 30$)to afford $\mathbf{1 2}$ ($655 \mathrm{mg}, 67 \%$) as pink solid. ${ }^{9}$

DSC $\left(10^{\circ} \mathrm{C} \mathrm{min}^{-1},{ }^{\circ} \mathrm{C}\right): 185{ }^{\circ} \mathrm{C}\left(\mathrm{T}_{\mathrm{m}}\right) \& 280^{\circ} \mathrm{C}\left(\mathrm{T}_{\mathrm{d}}\right),{ }^{1} \mathrm{H}$ NMR (600 MHz , Acetone- $\left.\mathrm{d}_{6}\right): \delta 8.88(\mathrm{~s}, 1 \mathrm{H})$, $7.91(\mathrm{~s}, 2 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR (151 MHz , Acetone- d_{6}): $\delta 156.2,143.0,137.9,134.1,111.8 ;{ }^{15} \mathrm{~N}$ NMR (61 MHz , $\mathrm{CD}_{3} \mathrm{CN}$): $\delta-30.4,-32.9,-36.4,-37.9,-51.1,-88.8,-155.9,-168.6,-286.9 \mathrm{ppm} ; \mathrm{IR}$ (Neat) $v_{\max } 3363$, 3277 , 1620, 1484, 1370, 1334, 1311, 1233, 1128, 1059, 968, 827, $758 \mathrm{~cm}^{-1} ;$ HRMS (ESI) m/z (M+Na) ${ }^{+}$ calcd for $\mathrm{C}_{5} \mathrm{H}_{3} \mathrm{~N}_{9} \mathrm{NaO}_{6}{ }^{+}$308.0099, found 308.0078.

X-ray crystallography: ${ }^{10}$

Single crystal X-ray data for the compounds $\mathbf{6 , 7 , 9}, \mathbf{1 1}$, were collected using 'Bruker D8 VENTURE Photon III detector' system [6, 7, 11 using $\lambda(\mathrm{Mo}-\mathrm{K} \alpha)=0.71073 \AA ; 9$ using $\lambda(\mathrm{Cu}-\mathrm{K} \alpha)=1.54 \AA$] at 108 K, $104 \mathrm{~K}, 296 \mathrm{~K}, 107 \mathrm{~K}$, and 8, 12 were collected using Rigaku Oxford Hypix-3000 system [6, 7 using $\lambda(\mathrm{Mo}-\mathrm{K} \alpha)=0.71073 \AA \AA$; at $298 \mathrm{~K}, 298 \mathrm{~K}$, graphite monochromator with a ω scan. Data reduction was performed using Bruker SAINT ${ }^{2}$ software. Intensities for absorption were corrected using SADABS 2014/5. Structure solution and refinement were carried out using Bruker SHELXTL/ Olex2 1.3 version. All non-hydrogen atoms were refined anisotropically. Thermal ellipsoid plots of all the compounds $\mathbf{6}, \mathbf{7}, \mathbf{8}, \mathbf{9}, \mathbf{1 1}$ and $\mathbf{1 2}$ with 50% probability and hydrogen atoms are unlabelled for clarity shown (Manuscript Figure 3).

CCDC-2241660 (6), CCDC-2241851 (7), CCDC-2289671 (8), CCDC-2241662 (9), CCDC-2241663 (11), and CCDC-2289806 (12) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

Table S2 Crystallographic data for compounds 6, 7, and $\mathbf{8}$

Compound	6	7	8
CCDC	2241660	2241851	2289671
Formula	C5 H3 N8 Na O7	$\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}_{6} \mathrm{O}_{2}$	$\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~N}_{8} \mathrm{O}_{6}$
$\mathbf{M w}_{\mathbf{w}}$	310.14	180.14	284.17
Crystal system	Monoclinic	Monoclinic	Monoclinic
Space group	C2/c	P21	P21/n
T [K]	108 K	104 K	298 K
a [\AA]	11.4210 (11)	6.6812 (10)	9.1552(5)
b [\AA]	9.3158 (10)	7.0171 (11)	8.1515(4)
c [\AA]	21.599 (2)	7.8472 (12)	15.7139(7)
$\alpha\left[{ }^{\circ}\right]$	90	90	90
$\left.\boldsymbol{\beta}{ }^{\circ}{ }^{\circ}\right]$	96.498 (4)	104.571 (5)	106.884(5)
$\gamma\left[{ }^{\circ}\right]$	90	90	90
Z	8	2	4
$\mathrm{V}\left[\AA^{\mathbf{3}}\right]$	2283.3 (4)	356.07 (9)	1122.16(10)
D calc $^{\text {[g/cc] }}$	1.804	1.68	1.682
$\mu\left[\mathrm{mm}^{-1}\right]$	0.196	0.136	0.151
Total reflns	2838	2082	-
Unique reflns	2829	1941	2347
Observed reflns	2553	1924	1974
$R_{1}[I>2 \sigma(I)]$	0.0290	0.0303	0.0427
$w R_{2}$ [all]	0.0789	0.0804	0.1329
GOF	1.060	1.064	1.065
Diffractometer	Bruker D8 VENTURE Photon III detector	Bruker D8 VENTURE Photon III detector	Rigaku Oxford Hypix-3000 detector

Table S3 Crystallographic data for compounds 9,11 , and $\mathbf{1 2}$

Compound	9	11	12
CCDC	2241662	2241663	2289806
Formula	$\mathrm{C}_{5} \mathrm{H}_{2} \mathrm{~N}_{8} \mathrm{O}_{6}$	$\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}_{9} \mathrm{O}_{6}$	$\mathrm{C}_{5} \mathrm{H}_{3} \mathrm{~N}_{9} \mathrm{O}_{6}$
$\mathbf{M w}_{\mathbf{w}}$	270.15	287.18	285.16
Crystal system	Monoclinic	Triclinic	Monoclinic
Space group	P21/c	$P-1$	$P 21 / n$
T [K]	296 K	107 K	298 K
a [\AA]	11.9516 (2)	5.1838 (8)	8.8502(4)
b [\AA]	8.6036 (2)	9.1275 (12)	7.3093(4)
c [\AA]	10.7241 (2)	12.3907 (18)	16.7588(7)
$\alpha\left[{ }^{\circ}\right]$	90	107.311 (4)	90
$\boldsymbol{\beta}{ }^{\circ}{ }^{\circ}$	104.501 (1)	99.537 (5)	98.440(4)
$\gamma\left[{ }^{\circ}\right]$	90	102.736 (4)	90
Z	4	2	4
$\mathrm{V}\left[\AA^{\mathbf{3}}\right]$	1067.6 (4)	528.83 (13)	1072.37(9)
$D_{\text {calc }}[\mathrm{g} / \mathrm{cc}]$	1.68	1.804	1.766
$\mu\left[\mathrm{mm}^{-1}\right]$	1.371	0.163	0.161
Total reflns	-	4021	-
Unique reflns	1926	3999	2204
Observed reflns	1779	3603	1129
$R_{1}[I>2 \sigma(I)]$	0.0352	0.0328	0.0686
$w R_{2}$ [all]	0.0993	0.0904	0.2247
GOF	1.057	1.051	1.011
Diffractometer	Bruker D8 VENTURE Photon III detector	Bruker D8 VENTURE Photon III detector	Rigaku Oxford Нуріх-3000 detector

Figure S1: Ball and stick packing diagram of compound 6 viewed down the b axis. Dashed lines indicate hydrogen bonding.

Figure S2: Ball and stick packing diagram of compound 7 viewed down the C axis. Dashed lines indicate hydrogen bonding.

Figure S3: Ball and stick packing diagram of compound $\mathbf{8}$ viewed down the b axis. Dashed lines indicate hydrogen bonding.

Figure S4: Ball and stick packing diagram of compound 9 viewed down the a axis. Dashed lines indicate hydrogen bonding.

Figure S5: Ball and stick packing diagram of compound $\mathbf{1 1}$ viewed down the a axis. Dashed lines indicate hydrogen bonding.

Figure S6: Ball and stick packing diagram of compound $\mathbf{1 2}$ viewed down the b axis. Dashed lines indicate hydrogen bonding.

In most cases, the X-Ray crystallography data of the energetic compounds are collected at low temperature. The strong intermolecular interactions in the crystal unit cell affect the X-ray diffraction [see Effect of Strong Intermolecular Interaction in 2D Inorganic Molecular Crystals, Xin Feng, Xingliang Peng, Baixin Peng, Zexin Li, Wentao Huang, Sijie Yang, Ke Pei, Zongdong Sun, Fuqiang Huang, Huiqiao Li, Zhigang Shuai, and Tianyou Zhai, Journal of the American Chemical Society 2021, 143 (48), 2019220201]. Thus, most of the X-ray crystal data are collected in different temperature; we report the best diffraction results. Whereas X-ray data for compound $\mathbf{8}$ and $\mathbf{1 2}$ are collected at 298 K .
The Hirschfield surfaces analysis of compound $\mathbf{1 2}$ was independently examined at low temperature and room temperature as shown in Table 1. We did not see significant variation of atomic interactions (listed in the table) in the crystal packing. We therefore believe that the thermal expansion is not greatly affected with respect to temperature.
Table 1:

S. No	2D fingerprint plots of compound 12 at low temperature			2D fingerprint plots of compound 12 at room temperature
	Atomic interactions	Percentage (\%)	Atomic interactions	Percentage (\%)
	$\mathrm{O} \ldots \mathrm{H} / \mathrm{H} \ldots \mathrm{O}$	27.2	$\mathrm{O} \ldots \mathrm{H} / \mathrm{H} \ldots \mathrm{O}$	25.9
2	$\mathrm{~N} \ldots \mathrm{H} / \mathrm{H} \ldots \mathrm{N}$	9.7	$\mathrm{~N} \ldots \mathrm{H} / \mathrm{H} \ldots \mathrm{N}$	6.7
3	$\mathrm{~N} \ldots \mathrm{O} / \mathrm{O} \ldots \mathrm{N}$	22.7	$\mathrm{~N} \ldots \mathrm{O} / \mathrm{O} \ldots \mathrm{N}$	23.3
4	$\mathrm{C} \ldots \mathrm{O} / \mathrm{O} \ldots \mathrm{C}$	11.7	$\mathrm{C} \ldots \mathrm{O} / \mathrm{O} \ldots \mathrm{C}$	11.6
5	$\mathrm{C} \ldots \mathrm{N} / \mathrm{N} \ldots \mathrm{C}$	4.6	$\mathrm{C} \ldots \mathrm{N} / \mathrm{N} \ldots \mathrm{C}$	4.6
6	$\mathrm{O} \ldots \mathrm{O}$	17.7	$\mathrm{O} \ldots \mathrm{O}$	19.4

Hirshfeld Surface Analysis ${ }^{11}$

The Hirshfeld surface image shown in Figure4 (in the manuscript body), the red spots signify the high contact populations, while blue and white spots are for low contact populations. This suggests that the negative (red) or positive value (blue and white) of $\mathrm{d}_{\text {norm }}$ depends on the intermolecular contacts being shorter (red) or longer (blue and white) than the Vander Waals separations. For each point on the Hirshfeld surface, the normalized contact distance ($\mathrm{d}_{\text {norm }}$) was determined by the equation shown below.

$$
\left[\mathrm{d}_{\text {norm }}=\left(\mathrm{d}_{\mathrm{i}}-\mathrm{d}_{\mathrm{i}}^{\mathrm{vdW}}\right) / \mathrm{r}_{\mathrm{i}}^{\mathrm{vdW}}+\left(\mathrm{d}_{\mathrm{e}}-\mathrm{d}_{\mathrm{e}}^{\mathrm{vdW}} / \mathrm{r}_{\mathrm{e}}^{\mathrm{vdW}}\right]\right.
$$

In which, d_{i} is measured from the surface to the nearest atom interior to the surface interior, while d_{e} is measured from the surface to the nearest atom exterior to the surface interior, where $\mathrm{r}_{\mathrm{i}}{ }^{\mathrm{vdW}}$ andre $_{\mathrm{e}}{ }^{\mathrm{vdW}}$ are the Van der Waals radii of the atoms. Hirshfeld surface graphs and two-dimensional fingerprint plots of $\mathbf{8}, \mathbf{9}, \mathbf{1 1}$, and $\mathbf{1 2}$ were analyzed using Crystalexplorer17.5 softwareand Hirshfeld surface calculation of 11as shown in Figure S12 (Hirshfeldplots of 8, 9, and 12are shown inFigure 4, manuscript body).

Figure S7: Hirshfeld surface calculation of 11 as well as two-dimensional finger print plot in the crystal structure. Hirshfeld surface graph (centre of pie graph) with proximity of close contacts around 11 molecules (white, $\mathrm{d}=$ Van der Waals (vdW) distance; blue, $\mathrm{d}>\mathrm{vdW}$ distance; red, $\mathrm{d}<\mathrm{vdW}$ distance). The pie graph (b) for $\mathbf{1 1}$ and show percentage contributions of the individual atomic contacts to the Hirshfeld surface.

Hirschfield surface and the related 2D fingerprint plots mainly reveals the intermolecular interactions [such as hydrogen bonding (HB), and π-stacking] of the energetic crystals; these interactions generally determine the packing structure and further the properties and performances of an energetic compound. In general, the large population of $\mathrm{O} . . \mathrm{H} / \mathrm{H} . . . \mathrm{O}$ and $\mathrm{N} . . \mathrm{H} / \mathrm{H} . . . \mathrm{N}$ interactions makes the molecule more stable and therefore is less sensitive. Accordingly, compound $\mathbf{8}$ (N -methyl trinitro-pyrazolo-triazole; IS: 40 J) and $\mathbf{1 2}$ (N -amino trinitro-pyrazolo-triazole; IS: 35 J) are relatively less sensitive than trinitro-pyrazolo-triazole (TNPT) (IS: 35 J) due to more O...H/H...O and N...H/H...N interactions in the crystal packing \{see: Hirshfeld Surface Method and Its Application in Energetic Crystals, Shijie Li, Rupeng Bu, Rui-jun Gou, and Chaoyang Zhang, Crystal Growth \& Design, 2021, 21 (12), 6619-6634].

Isodesmic reactions for the prediction of heat of formation: ${ }^{12}$

Impact Sensitivity Test Results

Table S4

Weight	Height	IS	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	Result
5 kg	100 cm	50 J	Negative	Positive	Positive				2 Out of 3
	90 cm	45 J	Negative	Negative	Negative	Positive	Negative	Positive	1 Out of 6
	80 cm	40 J	Negative	Negative	Negative	Negative	Negative	Negative	0 Out of 6

Final Result: Impact Sensitivity of 2-(1-Methyl-3,5-dinitro-1H-pyrazol-4-yl)-4-nitro-2H-1,2,3-

$$
\text { triazole }=40 \mathrm{~J}
$$

Table S5

Weight	Height	IS	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	Result
5 kg	100 cm	50 J	Negative	Positive	Negative	Positive			2 Out of 4
	80 cm	40 J	Positive	Negative	Negative	Negative	Positive		1 Out of 4
	70 cm	35 J	Negative	Negative	Negative	Negative	Negative	Negative	0 Out of 6

Final Result: Impact Sensitivity of 2-(3,5-Dinitro-1H-pyrazol-4-yl)-4-nitro-2H-1,2,3-triazole= 35 J

Table S6

Weight	Height	IS	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	Result
5 kg	100 cm	50 J	Positive	Positive					2 Out of 2
	80 cm	40 J	Negative	Positive	Negative	Negative	Positive		2 Out of 5
	70 cm	35 J	Negative	Negative	Negative	Negative	Negative	Positive	1 Out of 6
	60 cm	30 J	Negative	Negative	Negative	Negative	Negative	Negative	0 Out of 6

Final Result: Impact Sensitivity of Ammonium 3,5-dinitro-4-(4-nitro-2H-1,2,3-triazol-2-yl)pyrazol-1-ide= 30 J

12
Table S7

Weight	Height	IS	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	Result
5 kg	100 cm	50 J	Negative	Positive	Positive				2 Out of 3
	80 cm	40 J	Positive	Negative	Negative	Negative	Positive		2 Out of 5
	70 cm	35 J	Negative	Negative	Negative	Negative	Negative	Negative	0 Out of 6

Final Result: Impact Sensitivity of 3,5-Dinitro-4-(4-nitro-2H-1,2,3-triazol-2-yl)-1H-pyrazol-1-amine = 35 J

Friction Sensitivity Results

Table S8

Load	Notch No.	FS	1	2	3	4	5	6	Result
B9	6	360 N	Negative	Negative	Negative	Negative	Negative	Negative	0 Out of 6

Final Result: Friction Sensitivity of 2-(1-Methyl-3,5-dinitro-1H-pyrazol-4-yl)-4-nitro-2H-1,2,3-triazole = 360 N

Table S9

Load	Notch No.	FS	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	Result
B9	5	324 N	Negative	Positive	Positive				2 Out of 3
B9	4	288 N	Negative	Negative	Positive	Negative	Positive		2 Out of 5
B9	3	252 N	Negative	Negative	Negative	Negative	Positive		1 Out of 5
B9	2	216 N	Negative	Negative	Negative	Negative	Negative	Negative	0 out of 6

Final Result: Friction Sensitivity of 2-(3,5-Dinitro-1H-pyrazol-4-yl)-4-nitro-2H-1,2,3-triazole= 216 N

Table S10

Load	Notch No.	FS	1	2	3	4	5	6	Result
B9	5	324 N	Negative	Positive	Negative	Negative	Negative	Negative	1 Out of 6
B9	4	288 N	Negative	Negative	Negative	Negative	Negative	Negative	0 Out of 6

Final Result: Friction Sensitivity of Ammonium 3,5-dinitro-4-(4-nitro-2H-1,2,3-triazol-2-yl) pyrazol-1-ide= 288 N

Table S11

Load	Notch No.	FS	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	Result
B9	5	324 N	Positive	Positive					2 Out of 2
B9	4	288 N	Negative	Positive	Negative	Positive			2 Out of 4
B9	3	252 N	Negative	Negative	Positive	Negative	Negative	Negative	1 Out of6
B9	2	216 N	Negative	Negative	Negative	Negative	Negative	Positive	1 out of 6
B9	1	180 N	Negative	Negative	Negative	Negative	Negative	Negative	0 out of 6

Final Result: Friction Sensitivity of 3,5-Dinitro-4-(4-nitro-2H-1,2,3-triazol-2-yl)-1H-pyrazol-1-amine= 180 N

References:

1. M. M. Kim, R. T. Ruck, D. Zhao and M. A. Huffman, Tetrahedron Lett., 2008, 49, 4026-4028.
2. S. T. Heller and S. R. Natarajan, Org. Lett., 2007, 9, 4947-4950.
3. N. Kommu, A. S. Kumar, J. Raveendra, V. D. Ghule and A. K. Sahoo, Asian J. Org. Chem., 2016, 5, 138.
4. D. Fischer, J. L. Gottfried, T. M. Klapötke, K. Karaghiosoff, J. Stierstorfer, and T. G. Witkowski, Angew. Chem. Int. Ed., 2016, 55, 16132-16135.
5. K. V. Domasevitch, I. Gospodinov, H. Krautscheid, T. M. Klapötke, and J. Stierstorfer, New J. Chem., 2019, 43, 1305-1312.
6. P. Yin, C. He, and J. M. Shreeve, J. Mater. Chem. A, 2016, 4, 1514-1519.
7. I. L. Dalinger, I. A. Vatsadze, T. K. Shkineva, G. P. Popova, and S. A. Shevelev, Russian Chemical Bulletin, International Edition, 2012, 61, 2, 464-466.
8. P. Yin and J. M. Shreeve, Angew. Chem. Int. Ed., 2015, 54, 14513-14517.
9. P. Yin, J. Zhang, C. He, D. A. Parrish, J. M. Shreeve, J. Mater. Chem. A, 2014, 2, 3200-3208. 10. (a) SAINT, version $6.45 / 8 / 6 / 03$ and version 8.34A, Bruker Apex-III, 2003, 2014. (b) G. M. Sheldrick, SHELXS-97, University of Gottingen, Germany, 1997. (c) G. M. Sheldrick, SADABS and SADABS2014/5, Program for Empirical Absorption Correction of Area Detector Data, University of Göttingen, Germany, 1997, 2014. (d) SMART (version5.625), SHELX-TL (version6.12), Bruker AXS Inc. Madison, WI, 2000.
10. (a) M. A.Spackman, J.J.McKinnon, CrystEngComm., 2002, 4, 378-392; (b) M. A. Spackman, D. Jayatilake, CrystEngComm., 2009, 11, 19-32; (c) C.Zhang, X.Xue, Y.Cao, Y.Zhou, H. Li, J.Zhou, T.Gao, CrystEngComm., 2013, 15, 6837-6844; (d) M.J.Turner, J.J.McKinnon, S.K.Wolff, D.J.Grimwood, P.R.Spackman, D.Jayatilaka, M.A. Spackman, Crystal Explorer 17; University of Western Australia: Pert, Australia, 2017.
11. Gaussian 09, Revision C.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalma-ni, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fuku-da, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Ren-dell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V.

Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian, Inc., Wallingford CT, 2009.

DSC

気	MBR-5-110-15N-R_TVK-PC-34-DNP-3S-15N_TVK-NA-TRNPY-1S 1_single_pulse_dec-1-2.jdf 		```= MBR-5-110-15N-R_TV = delta = single pulse_dec.j = MBR-5-110-15 = DMSO-D6 = 9-JAN-2021 17:46: = 6-JAN-2023 10:09: = single pulse decou = 1D REAL = 52429 = Nitrogen15 = Nitrogen15 = [ppm] = X = ACRHEM_UOH = JNM-ECZ = 14.09636928[T] = 0.85983232[s] = Nitrogen15 = 60.81520929[MHz] = 214.12266[ppm] = 32768 = 4 = 1.45377182[Hz] = 38.1097561[kHz] = 30.48780488[kHz] = Proton = 600.1723046[MHz] = 5[ppm] = 5[us] = TRUE = 10000 = 10000 = 15[s] = 56 = 19.4[dC] = 24.21[us] = 0.68786586[s] = 30[deg] = 9.9[dB] = 8.07[us] = 33.452[dB] = 33.452[dB] = 33.452[dB] = 7.23684211[kHz] = 12.05794078[ppm] = 600.1723046[MHz] = 2.2 = TRUE = FALSE = WALTZ = 5 [ppm] = 76[us] = 76[us] = 76[us] = FAISE = 0```

XEVO-G2XSQTOF\#YEA1155

17012019_22 -ve 16 (0.194) AM2 (Ar,22000.0,554.26,0.00,LS 10); Cm (16:23-114:161)
(100
270.0032

Display Report

Analysis Info
Analysis Name
Method
Sample Name MBR-1-141 +VE
Comment

MBR-1-141 +VE.d

UNIVERSITY OF HYDERABAD

$12072022 _05-V E ~$	$39(0.450)$
100	AM2 (Ar,22000.0,554.26,0.00,LS 10); Cm (39:48-73:89)
269.0016	1:TOF MS ES-
$6.33 e 7$	

Display Report

Analysis Info
Analysis Name
Method TL-P.m
Sample Name MPG-112
Comment

Acquisition Parameter

Acquisition Parameter				
Source Type	ESI	Ion Polarity	Positive	Set Nebulizer
Focus	Not active	Set Capillary	4000 V	0.3 Bar
Scan Begin	$100 \mathrm{~m} / \mathrm{z}$	Set End Plate Offset	-500 V	Set Dry Heater
Scan End	$2000 \mathrm{~m} / \mathrm{z}$	Set Charging Voltage	0 V	Set Dry Gas
		Set Corona	0 nA	Set Divert Valve
			Set APCI Heater	$0^{\circ} \mathrm{C}$

MPG-112.d

