Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2023

Supporting Information

Enantioselective Synthesis of 3-(*N*-Indolyl)quinolines Containing Axial and Central Chiralities Ken Yamanomoto,^{a,b} Kota Yamamoto,^a Satoshi Yoshida,^c Sota Sato,^{c,d} and Takahiko Akiyama^a*

^a Department of Chemistry, Faculty of Science, Gakushuin University, Mejiro, Toshima-ku, Tokyo 171-8588, Japan.

- E-mail: takahiko.akiyama@gakushuin.ac.jp
- ^b Department of Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601.

° Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo

113-8656, Japan

^d Division of Advanced Molecular Science, Institute for Molecular Science, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan

Table of contents

- 1. Screening of reaction conditions
- 2. General procedure
- 3.1 g scale reaction
- 4. Quenching experiments
- 5. Cyclic voltammetry
- 6. Radical-Trapping experiment
- 7. Minisci reaction with proline-derived redox active ester
- 8. Synthesis of 3-aryl quinolines
- 9. Chemical data of products
- 10. Crystallographic analysis
- 11. References
- 12. ¹H and ¹³C NMR spectra
- 13. HPLC chart

General information

NMR spectra were recorded using Bruker AVANCE-III (400 MHz for ¹H, 100 MHz for ¹³C) and JEOL ECZ400 (400 MHz for ¹H, 100 MHz for ¹³C) spectrometer. Chemical shifts are reported in ppm using TMS or the residual solvent peak as a reference. ESI mass analyses were performed on Bruker micrOTOF mass spectrometer. Enantiomeric excesses were determined by HPLC analysis using chiral columns [4.6 mm x 250 mm, DAICEL CHIRALPAK IA-3, CHIRALPAK IB, CHIRALPAK ID, and CHIRALPAK IF-3 with hexane, 2-propanol (IPA), and ethanol as eluent. Emission spectra were recorded on a FP-6500 (JASCO Co., Ltd.). Cyclic Voltammetry was performed on VersaSTAT 4 (AMETEL Co., Ltd.). Visible light irradiation was performed with white LEDs (7.3W). Solvents were distilled according to the usual procedures and stored over molecular sieves.

1. Screening of reaction conditions

entry	deviation from the standard conditions	yield (%)	dr	ee (%)
1	None	92	20:1	96
2	TRIP-H instead of 4-Li	42	20:1	87
3	TRIP-Li instead of 4-Li	91	20:1	90
4	TRIP-Na instead of 4-Li	<10	-	-
5	TRIP-K instead of 4-Li	trace	-	_
6	TRIP-Mg instead of 4-Li	21	12:1	20
7	TRIP-Ca instead of 4 -Li	37	12:1	34
8	TCYP-Li	30	11:1	69
9	SiPh ₃ -Li	92	8:1	21
10	Ir[(dFCF3ppy)2(dtbbby)]PF6 instead of Ir[(ppy)2(dtbbby)]PF6	88	19:1	88
11	4CzIPN instead of Ir[(ppy)2(dtbbby)]PF6	65	14:1	84
12	room temperature	<5	-	-
13	no Ir or no CPA-Li or light	0	-	-

The combination of lithium phosphate and Ir[(bpy)2(dtbbpy)]PF₆ is crucial for achieving the high chemo-, regio-, and stereoselectivities because indole moiety is sensitive to oxidation conditions and has nucleophilic C2-carbon. For instance, the crude reaction mixture was contaminated with some byproducts when Ir[(dFCF₃ppy)₂(dtbbby)]PF₆ (E_{1/2}red (*Ir(III)/Ir(II) = +1.21 V vs SCE) or 4CzIPN (E_{1/2}red (*PC/PC) = +1.43 V vs SCE) was used rather than Ir[(bpy)₂(dtbbpy)]PF₆ (E_{1/2}red (*Ir(III)/Ir(II) = +0.95 V vs SCE).¹ When TRIP-Mg and TRIP-Ca was used instead of TRIP-Li, over 95% of conversion was observed, and the crude reaction mixture was messy, which afforded the desired product in low yield and with low stereoselectivity. The regioselective Minisci-type addition reaction of heteroarenes is not always easy; mixtures of C2- and C4-substituted products were often obtained when quinoline was used as the substrate. Phipps and co-workers explored the effect of acid and solvent.^{2,3} In our investigation, C4-adduct was also detected.

2. General procedure for 4-Li-catalyzed radical addition reaction

Sequentially, 3-arylquinoline (0.05 mmol), phthalimide ester (0.06 mmol), $Ir[(ppy)_2(dtbbpy)]PF_6$ (2 mol%), 4-Li (10 mol%) and toluene (0.5 mL) were added to a 20 mL test tube containing a stirrer bar. The mixture was subjected to freezepump-thaw process (3 cycles), and back-filled with N₂. The mixture was irradiated with white LED at 60 °C for 60 h. After being exposed to air, the reaction mixture was concentrated and purified by preparative TLC on SiO₂ (hexane: benzene: ethyl acetate = 40 : 20 : 40) to give the corresponding adduct.

Racemic product was prepared by using a 1:1 mixture of (R)- and (S)-CPA (CF₃).

3.1 g scale reaction

A mixture of quinoline **1a** (1.024 g, 3.19 mmol), redox-active ester **2a** (1.05 g, 3.81 mmol), $Ir[(ppy_2)(dtbppy_3)]PF_6$ (2 mol%), and CPA-Li (5 mol%) in toluene (64 mL) was subjected to freeze-pump-thaw process, and filled back with N₂ (3 cycles). The reaction mixture was stirred at 60 °C for 4 days under white LEDs irradiation conditions (7 W x3), and concentrated under reduced pressure. The following purification by silica gel column chromatography on SiO₂ (hexane : ethyl acetate = 3 : 1 - 1 : 1, including 5% toluene) gave the corresponding adduct **3a** in 84 % yield (1.09 g, 2.68 mmol) as a white solid.

4. Quenching experiments

Stern-Volmer quenching experiments: Stern-Volmer quenching experiments were conducted on a FP-6500 (JASCO Co., Ltd.). All solutions were deaerated with N₂ bubbling prior to each measurement. The emission from Ir(ppy)₂(dtbbpy)PF₆ was recorded at 525 nm upon excitation at 420 nm.

Figure S1. Stern-Volmer quenching plots of (a) $Ir(ppy)_2(dtbbpy)PF_6$ quenched with varying concentration of **1a** (blue) and **2b** (green).

5. Cyclic voltammetry

Cyclic voltammetry: CV measurement were performed on an VersaSTAT 4 (AMETEL Co., Ltd.). The voltametric cell consisted of a Ag/AgNO₃ reference electrode, a platinum counter and working electrode. The measurements were carried out under N_2 using a sample solution of a concentration of 1.0 mM in MeCN containing tetrabutylammonium hexafluorophosphate as a supporting electrolyte (0.1 mM). The scan rate was 100 mV · s⁻¹. The obtained potentials were calibrated to the saturated calomel electrode (SCE) scale with ferrocene/ferrocenium ion couple.

Figure S2. (a) 1a (b) 1a and TRIP-Li (c) 2b (d) 2b and TRIP-Li (e) TRIP-Li

6. Radical-Trapping experiment

Sequentially, **1a** (0.05 mmol), redox-active ester (0.06 mmol), $Ir[(dF(CF_3)ppy_2)(dtbbpy)]PF_6$ (2 mol%), CPA-Li (5 mol%), TEMPO (1.5 equiv) and toluene (0.5 mL) were added to a 20 mL test tube containing a stirrer bar. The mixture was subjected to freeze-pump-thaw process (3 cycles), and back-filled with N₂. The mixture was irradiated with white LED at room temperature for 40 h. After exposing to air and the reaction mixture was concentrated. The corresponding product **3a** was not observed in the crude reaction mixture, and [**6**+H⁺] was detected by ESI-MS.

Figure S3. MS spectrum of 6.

7. Minisci reaction with proline-derived redox active ester

The reaction was conducted by following the general procedure described above. The diastereoselectivity was determined by ¹H NMR spectrum analysis, and ee was determined by HPLC using DAICEL® CHIRAL IA3 (hexane/2-propanol=95/5)

8. Synthesis of substrates

Redox-active esters were prepared according to the literature procedure⁴. 3-(*N*-indolyl)quinolines were prepared by the following procedure.

In a 20 mL two-neck flask under N₂ atmosphere, 2-arylindole (1.5 equiv), 3-bromoquinoline (1.0 equiv) K₂CO₃ (1.5 equiv) and CuI (0.2 equiv) were dissolved in *N*,*N*²-dimethylpropyleneurea (DMPU, 0.5 M), and stirred for 14 h at 140 °C. The reaction mixture was cooled to rt, filtered through a pad of celite and washed with EtOAc. To the obtained brown residue was added 5% NH₃ aq. and extracted with ethyl acetate (x3). The organic layer was washed with brine and dried over Na₂SO₄, filtrated and evaporated. The residue was purified by column chromatography on SiO₂ (hexane : ethyl acetate = 95 : 5 - 90 : 10) to afford 3-(*N*-indolyl)quinoline.

39% yield, white solid. ¹H NMR (400 MHz, CDCl₃) δ 8.75 (1H, s), 8.16–8.11 (2H, m), 7.82–7.72 (3H, m), 7.63–7.60 (1H, m), 7.33–7.21 (8H), 6.89 (1H, s); ¹³C NMR (100 MHz, CDCl₃) δ 150.1, 146.6, 140.8, 139.0, 133.1, 132.2, 131.8, 129.8, 129.5, 129.1, 128.6, 128.5, 127.8, 127.5, 122.9, 121.3, 120.9, 110.1, 104.7; HRMS (ESI) Calcd for C₂₃H₁₆N₂ ([M+Na]⁺) 343.121. Found 343.1223.

1a

47% yield, pale yellow solid. ¹H NMR (400 MHz, CDCl₃) δ 8.72 (1H, d, *J*= 2.3 Hz), 8.16–8.14 (2H, m), 7.83 (1H, d, *J*= 8.2 Hz), 7.77 (1H, d, *J*= 7.5 Hz), 7.71 (1H, d, 8.2 Hz), 7.61 (1H, dd, *J*= 7.2, 7.5 Hz), 7.30–7.19 (4H, m), 6.85 (1H, s), 1.23 (9H, s); ¹³C NMR (100 MHz, CDCl₃) δ 150.8, 150.4, 146.6, 140.9, 139.1, 133.1, 132.4, 129.9, 129.6, 128.9, 128.7, 127.9, 127.5, 125.6, 122.7,

121.3, 120.8, 110.1, 104.5, 34.6, 31.2; HRMS (ESI) Calcd for $C_{27}H_{24}N_2$ ([M+H]⁺) 538.2858. Found 538.2849

70% yield, white solid. ¹H NMR (400 MHz, CDCl₃) δ 8.70 (1H, s), 8.14 (1H, d, *J*= 2.2 Hz), 8.04 (1H, s), 7.77–7.68 (3H, m), 7.59–7.55 (1H, m), 7.28–7.26 (5H, m), 6.84 (1H, s); ¹³C NMR (100 MHz, CDCl₃) δ 150.0, 146.7, 139.5, 139.2, 133.9, 133.2, 132, 130.4, 130.2, 130.1, 129.6, 129.5, 128.9, 128.6, 127.9, 127.8, 127.7, 123.3, 121.6, 121.1, 110.3, 105.2, 77.5, 77.2, 76.9; HRMS (ESI) Calcd for C₂₃H₁₅ClN₂ ([M+H]⁺) 354.0924. Found 354.0927

39% yield, white solid. ¹H NMR (400 MHz, CDCl₃) δ 8.69 (1H, d, *J*= 2.2 Hz), 8.01 (1H, d, *J*= 8.4 Hz), 8.12 (1H, d, *J*= 2.2 Hz), 7.73–7.67 (2H, m), 7.54–7.51 (1H, m), 7.24–7.14 (6H, m), 6.84 (1H, dd, *J*= 2.4, 8.9 Hz), 6.77 (1H, s), 3.84 (3H, s);¹³C NMR (100 MHz, CDCl3) δ 155.4, 150.2, 146.6, 141.4, 134.4, 132.9, 132.4, 132, 129.9, 129.6, 129.2, 129.1, 128.6, 127.9, 127.9, 127.8, 127.6, 113, 111.1, 104.7, 102.6, 55.9; HRMS (ESI) Calcd for C₂₄H₁₈N₂O₁ ([M+H]⁺) 373.1497. Found 373.1481.

7% yield, white solid. ¹H NMR (400 MHz, CDCl₃) δ 8.70 (1H, d, *J*= 2.3 Hz), 8.16 (1H, d, *J*= 8.7 Hz), 8.08–8.05 (1H, m), 7.81–7.75 (2H, m), 7.68–7.65 (1H, m), 7.61 (1H, d, *J*= 7.5 Hz), 7.27–7.13 (m), 6.80 (1H, s); ¹³C NMR (100 MHz, CDCl₃) δ 149.9, 146.8, 142.2, 137.5, 133.2, 131.8, 131.4, 130.2, 129.7, 129.6, 129.1, 128.7, 128.2, 127.9, 127.8, 127.7, 126.9, 123.1, 120.3, 111.3, 104.2, 55.9; C₂₃H₁₅ClN₂; HRMS (ESI) Calcd for C₂₃H₁₅ClN₂ ([M+Na]⁺) 377.0828. Found 377.0839

58% yield, white solid. ¹H NMR (400 MHz, CDCl₃) δ 8.68 (1H, d, *J*= 2.3 Hz), 8.14 (1H, d, *J*= 8.4 Hz), 8.06 (1H, m), 7.82–7.74 (3H, m), 7.60 (1H, dd, *J*= 7.0, 7.4 Hz), 7.27–7.11 (7H, m), 6.79 (1H, s); ¹³C NMR (100 MHz, CDCl₃) δ 149.8, 146.7, 142, 137.7, 133.1, 131.7, 131.3, 130.2, 130.1, 129.5 (2C), 129.1 (2C), 128.6, 128.1, 127.8, 127.7, 127.7, 125.6, 123.3, 114.4, 111.6, 103.9; HRMS (ESI) Calcd for C₂₃H₁₅BrN₂ ([M+H]⁺) 399.0497. Found 399.0490

38 % yield, white solid. ¹H NMR (400 MHz, CDCl₃) δ 8.69 (1H, d, *J*= 2.3 Hz), 8.16 (1H, d, *J*= 8.7 Hz), 8.08 (1H, d, *J*= 2.3 Hz), 7.84–7.78 (3H, m), 7.66–7.62 (1H, m); ¹³C NMR (100 MHz, CDCl₃) δ 150.0, 146.7, 139.5, 139.2, 133.9, 133.2, 132.0, 130.4, 130.2, 130.1, 129.6, 128.9, 128.6, 127.9, 127.8, 127.7, 123.3, 121.6, 121.1, 110.3, 105.2; C₂₃H₁₅BrClN₂ 432.0029. Found 432.00.30

68% yield. white solid. ¹H NMR (400 MHz, CDCl₃) δ 8.93 (1H, d, J= 2.4 Hz), 8.23 (1H, d, J= 8.4 Hz), 8.17, (1H, d, J= 2.2 Hz), 7.89 (1H, d, J= 8.0 Hz), 7.82 (1H, dd, J= 8.4, 8.3 Hz), 7.66 (1H, dd, J= 7.1, 7.0 Hz), 7.60 (1H, d, J= 7.0 Hz), 7.11 (1H, d, J= 4.6 Hz), 7.17–7.11 (3H, m), 6.49 (1H, s), 2.36 (3H, s); ¹³C NMR (100 MHz, CDCl₃) δ 150.1, 147.1, 138.3, 137, 133.7, 131.5, 130.1, 129.5, 128.5, 127.9, 127.8, 127.6, 121.6, 120.6, 119.9, 109.6, 102.5, 13.4; HRMS (ESI) Calcd for C₁₈H₁₄N₂ ([M+Na]⁺) 281.1055. Found 281.1019.

9. Chemical data of products

3a: 92% yield, white solid. ¹H NMR (400 MHz, CDCl₃) major diastereomer δ 8.38 (1H, s), 8.11 (1H, d, *J*= 8.2 Hz), 7.91 (1H, d, *J*= 8.2 Hz), 7.91 (1H, d, *J*= 7.3 Hz), 7.82 (1H, m), 7.20–7.13 (5H, m), 6.79 (1H, d, *J*= 8.2 Hz), 6.89 (1H, s), 6.85 (1H, *J*= 6.4 Hz), 4.81 (1H, m), 1.83 (3H, s), 0.91 (3H, d, *J*= 8.4 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 168.5, 160.1, 146.8, 141, 139.6, 137.2, 134.2, 131.7, 130.6, 129.8, 129, 128.9, 128.5, 128.2, 127.7, 127.6, 127.4, 127.3, 123.5, 122.7, 121, 121, 109.9, 104.4; HRMS (ESI) Calcd for C₂₇H₂₃N₃O ([M+H]⁺) 406.5059. Found 406.5059. [α]_D²³ 394.5 (c 2.4, CHCl₃) dr=20:1; HPLC ID, hexane/IPA = 95:5, flow rate = 1.0 mL/min, λ = 254 nm, 79.2 min (major enantiomer), 97.6 min (minor enantiomer).

3b: 84 % yield, white solid. ¹H NMR (400 MHz, CDCl₃) major diastereomer δ 8.26 (1H, s), 7.99 (1H, d, *J*= 8.4 Hz), 7.84 (1H, d, *J*= 8.4 Hz), 7.84 (1H, d, *J*= 8.1 Hz), 7.74 (1H, d, *J*= 7.5, 7.4 Hz), 7.59 (1H, d, *J*= 7.6, 7.5 Hz), 7.16–7.14 (2H, m), 7.08–7.04 (4H, m), 6.87 (1H, dd, *J*= 7.9, 7.8 Hz), 6.77–6.73 (3H, m), 6.56 (1H, dd, *J*= 8.8, 2.4 Hz), 6.36 (1H, d, *J*= 7.2 Hz), 6.32 (1H, d, *J*= 8.8 Hz), 6.07 (1H, d, *J*= 7.6 Hz), 4.91–4.86 (1H, m), 2.59 (3H, s), 2.80, (1H, dd, *J*= 13.0, 8.2 Hz), 2.58 (1H, dd, *J*= 13.0, 5.3 Hz), 1.64 (3H, s); ¹³C NMR (100 MHz, CDCl₃) δ 168.2, 158.3, 154.9, 146.7, 141.3, 136.5, 136.2, 134.8, 131.9, 131.0, 130.4, 129.6, 129.3, 129.0, 128.9, 128.8, 128.7, 128.5, 128.2, 127.8, 127.7, 127.4, 127.4, 127.2; HRMS (ESI) Calcd for C₃₅H₃₀N₃O₃ ([M+H]⁺) 540.2287. Found 540.2250. [α]_D²³ 378.8 (c 2.0, CHCl₃), dr=15:1; HPLC IF-3, hexane/IPA = 9:1, flow rate = 1.0 mL/min, λ = 254 nm, 36.2 min (major enantiomer of major diastereomer), 43.9 min (minor enantiomer of major diastereomer).

3c: 92% yield, white solid. ¹H NMR (400 MHz, CDCl₃) major diastereomer δ 8.36 (s, 1H), 8.06 (1H, d, *J*= 8.4 Hz),7.92 (1H, d, *J*= 8.0 Hz),7.81 (1H, m), 7.68 (2H, dd, *J*= 8.3, 8.1 Hz), 7.25–7.22 (3H, m), 7.26–7.19 (5H, m), 7.05–6.90 (3H, m),

6.54 (1H, d, J= 8.1 Hz), 6.42 (2H, d, J= 7.1 Hz), 6.17 (1H, d, J= 7.6 Hz), 4.98 (1H, dd, J= 7.6, 5.1 Hz), 2.84 (1H, dd, J= 13.0, 6.1 Hz), 2.64 (1H, dd, J= 13.0, 7.6 Hz), 1.70 (3H, s); ¹³C NMR (100 MHz, CDCl₃) δ 168.2, 158.3, 146.8, 140.8, 139.4, 136.5, 136.4, 131.9, 130.8, 130.5, 129.6, 129.3, 129.1, 129.0, 128.4, 128.2, 127.8, 127.5, 127.3, 126.1, 122.9, 121.1, 120.9, 120.7, 110.1, 104.6, 77.4, 77.3, 77.1, 76.7, 51.4, 41.6, 23.4; HRMS (ESI) Calcd for C₃₃H₂₈N₃O ([M+H]+) 482.2232. Found 482.2221. [α]_D²³ 336.1 (c 2.4, CHCl₃), dr=13:1; HPLC ID, hexane/IPA = 9:1, flow rate = 1.0 mL/min, λ = 254 nm, 15.0 min (major enantiomer), 17.2 min (minor enantiomer).

3d: 83% yield, white solid. ¹H NMR (400 MHz, CDCl₃) major diastereomer δ 8.35 (1H, s), 8.11 (1H, d, *J*= 8.7 Hz), 7.92 (1H, d, *J*= 7.8 Hz), 7.85–7.80 (H, m), 7.66 (H, dd, *J*= 8.2, 7.8 Hz), 7.24–7.21 (H, m), 7.15–7.12 (H, m), 6.87–6.80 (2H, m), 6.83 (1H, s), 4.77 (1H, m), 1.83 (3H, s), 0.91 (3H, d, *J*= 6.4 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 168.4, 159.9, 147.0, 142.3, 138.3, 137.2, 131.2, 130.9, 130.2, 129.4, 129.1, 129.0, 128.7, 128.4, 128.1, 127.8, 127.6, 127.4, 127.3, 125.5, 123.5, 114.3, 112, 111.5, 103.8, 46.3, 23.4; HRMS (ESI) Calcd for C₃₃H₂₆N₃ONa ([M+Na]⁺) 506.0844. Found 586.0849. [α]_D²³ 338.8 (c 1.1, CHCl₃), dr=13:1; HPLC IB, hexane/IPA = 9:1, flow rate = 1.0 mL/min, λ = 254 nm, 11.2 min (minor enantiomer of major diastereomer), 12.3 min (minor enantiomer of minor diastereomer). 14.0 min (major enantiomer of major diastereomer), 15.5 min (major enantiomer of minor diastereomer).

3e: 79% yield, white solid. ¹H NMR (400 MHz, CDCl₃) major diastereomer δ 8.31 (1H, s), 8.11 (1H, d, *J*= 8.2 Hz), 7.92 (1H, d, *J*= 12.3 Hz), 7.87–7.83 (1H, m), 7.79 (1H, s), 7.70–7.66 (m, 2H), 7.22–7.12 (4H, m), 7.01–6.93 (2H, m), 6.82–6.78 (1H, m), 6.42 (1H, d, *J*= 7.3 Hz), 6.23 (d, *J*= 8.6 Hz), 6.07 (1H, d, *J*= 7.8 Hz), 4.90–4.84 (1H, m), 2.86 (1H, dd, *J*= 12.8, 8.6 Hz), 2.74 (1H, dd, *J*= 12.8, 4.5 Hz), 1.69 (3H, s); ¹³C NMR (100 MHz, CDCl₃) δ 168.3, 158.2, 147, 142, 138.1, 136.4, 136.2, 131.3, 130.7, 130.5, 129.8, 129.1, 129, 128.3, 127.9, 127.8, 127.7, 127.2, 126.3, 125.7, 122.9, 113.9, 111.4, 103.7, 51.6, 41.9, 23.4; HRMS (ESI) Calcd for C₃₃H₂₆BrN₃O ([M+H]⁺) 560.1388. Found 560.1410. [α]_D²³ 344.9 (c 1.5, CHCl₃), dr=14:1; HPLC IA-3, hexane/ethanol = 9:1, flow rate = 1.0 mL/min, λ = 254 nm, 11.2 min (minor enantiomer of major diastereomer), 14.0 min (major enantiomer of major diastereomer) 15.5 min (major enantiomer of minor diastereomer), 20.6 min (minor enantiomer of minor diastereomer).

3f: 83% yield, white solid. ¹H NMR (400 MHz, CDCl₃) major diastereomer δ 8.26 (1H, s), 7.99, (1H, d, *J*= 8.4 Hz), 7.84 (1H, d, *J*= 8.1 Hz), 7.74 (1H, m), 7.58 (1H, t, *J*= 7.5 Hz), 7.60–7.04 (5H, m), 6.87, (1H, m), 6.75, (1H, m), 6.56 (1H, dd, *J*= 8.8, 2.4 Hz), 6.36, (1H, d, *J*= 7.2 Hz), 6.32, (1H, d, *J*= 8.8 Hz), 6.07, (1H, d, *J*= 7.6 Hz), 4.88 (1H, dd, *J*= 8.2, 5.5 Hz), 3.82 (3H, s), 2.79 (1H, dd, *J*= 12.9, 8.4 Hz), 2.57 (1H, dd, *J*= 12.9, 7.7 Hz), 1.63 (3H, s); ¹³C NMR (100 MHz, CDCl₃) δ 154.8, 146.7, 141.3, 136.4, 136.2, 134.7, 131.9, 131, 130.4, 129.6 (2C), 129.3, 129.0, 128.9, 128.8, 128.7, 128.5, 128.2, 127.7, 127.6, 127.4, 127.3, 127.2, 126.1, 113, 110.8, 104.3, 102.1, 55.9, 51.4, 41.5, 23.3. HRMS(ESI) Calcd for C₃₄H₃₀N₃O₂Na ([M+Na]⁺) 512.2338. Found 512.2350. [α]_D²³ 369.1 (c 3.0, CHCl₃), dr=>20:1; HPLC IA-3, hexane/IPA = 95:5, flow rate = 1.0 mL/min, λ = 254 nm, 28.1 min (major enantiomer of major diastereomer), 35.2 min (minor enantiomer of major diastereomer).

3g: 81% yield, white solid. ¹H NMR (400 MHz, CDCl₃) major diastereomer δ 8.30 (1H, s), 8.12 (1H, d, *J*= 8.4 Hz), 7.93 (1H, d, *J*= 8.2 Hz), 7.84–7.80 (1H, m), 7.74 (d, 1H, *J*= 7.8 Hz), 7.67–7.63 (1H, m), 7.23–7.13 (5H, m), 6.97 (1H, d, *J*=

7.8 Hz), 6.91–6.89 (1H, m), 6.84 (1H, d, J= 8.2 Hz), 4.86–4.79 (1H, m), 1.84 (3H, s), 0.92 (3H, d, J= 6.4 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 168.2, 158.2, 147.0, 142.1, 137.8, 136.4, 136.2, 131.4, 130.7, 130.5, 129.2, 129.1, 129,0 128.3, 127.9, 127.8, 127.7, 127.2, 126.3, 126.3, 123.1, 119.8, 111,0 103.8, 51.6, 41.9, 23.4; HRMS (ESI) Calcd for C27₂ClN₃O ([M+H]⁺) 439.1451. Found 139.1479. [α]_D²³ 391.2 (c 3.8, CHCl₃), dr=18:1; HPLC IA-3, hexane/ethanol = 9:1, flow rate = 1.0 mL/min, λ = 254 nm, 10.9 min (major enantiomer of major diastereomer), 12.2 min (minor enantiomer of major diastereomer).

3h: 87% yield, white solid. ¹H NMR (400 MHz, CDCl₃) major diastereomer δ 8.24, (1H, s), 8.06 (1H, d, *J*= 8.7 Hz), 7.85 (1H, d, *J*= 8.2 Hz), 7.78 (1H, m) 7.71 (1H, d, *J*= 7.3 Hz), 7.60 (1H, m), 7.37 (1H, d, *J*= 8.7 Hz), 7.19–7.11 (5H, m), 7.04–7.00 (2H, m), 6.92 (1H, s), 6.86 (1H, d, *J*= 7.8 Hz), 6.63 (1H, d, 7.8 Hz), 6.10 (1H, d, *J*= 8.2 Hz), 5.13 (1H, dd, *J*= 8.2, 5.5 Hz), 2.88 (1H, dd, *J*= 8.2, 7.3 Hz), 2.71 (1H, dd, *J*= 8.2, 7.3 Hz), 1.63, (3H, s), 1.18 (9H, s); ¹³C NMR (100 MHz, CDCl₃) δ 168.4, 158.5, 150.7, 140.9, 137.9, 137.2, 131.2, 130.4, 129.6, 129.3, 129.2, 128.5, 128.4, 128.1, 127.8, 127.7, 127.3, 126.1, 125.9, 125.6, 122.7, 121.2, 120.7, 110.6, 104.3, 50.8, 39.2, 34.5, 31.2, 23.0; HRMS (ESI) Calcd for C₃₇H₃₅N₃O ([M+H]⁺) 482.2232. Found 482.2258. [α]_D²³ 316.5 (c 2.4, CHCl₃), dr=14:1; HPLC IF-3, hexane/IPA = 95:5, flow rate = 1.0 mL/min, λ = 254 nm, 24.8 min (minor enantiomer of major diastereomer), 27.8 min (minor enantiomer of major diastereomer).

3i: 76 % yield, pale brown solid. ¹H NMR (400 MHz, CDCl₃) major diastereomer δ 8.35 (1H, s), 8.14 (1H, d, *J*= 8.3 Hz), 7.92 (1H, d, *J*= 8.3 Hz), 7.90–7.82 (2H, m) 7.71–7.64 (1H, m), 7.62 (1H, m), 7.22–7.09 (4H, m), 7.91–6.77 (3H, m), 4.76 (1H, m), 1.87, (3H, s), 0.92 (3H, d, *J*= 6.1 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 168.4, 159.8, 147.1, 141.0, 138.3, 137.0, 134.1, 131.0 (2C), 130.3 (2C), 130.0, 129.7, 129.0, 128.6, 127.7 (2C), 127.2, 125.8, 123.6, 114.4, 111.5, 104.0, 46.0, 23.4, 22.7; HRMS (ESI) Calcd for C₃₃H₂₆N₃OClBr ([M+H]⁺) 594.0948. Found 594.0928. [α]_D²³=421.1 (c=1.4,CHCl₃), dr=>20:1; HPLC IF-3 hexane/IPA = 95:5, flow rate = 1.0 mL/min, λ = 254 nm, 18.4 min (major enantiomer of major diastereomer), 22.2 min (minor enantiomer of major diastereomer).

3j: 84% yield, white solid. ¹H NMR (400 MHz, CDCl₃) major diastereomer δ 8.37, (1H, s), 8.12 (1H, d, *J*= 8.7 Hz), 7.92 (1H, d, *J*= 8.2 Hz), 7.85–7.81 (1H, m) 7.71 (1H, d, *J*= 7.3 Hz), 7.6–7.60 (1H, m), 7.25–7.09 (5H, m), 6.97 (1H, d, *J*= 7.8 Hz), 6.92 (1H, s), 6.85 (1H, d, *J*= 7.8 Hz), 6.63 (1H, d, 7.8 Hz), 6.10 (1H, d, *J*= 8.2 Hz), 5.13 (1H, dd, *J*= 8.2, 5.5 Hz), 2.88 (1H, dd, *J*= 8.2, 7.3 Hz), 2.71 (1H, dd, *J*= 8.2, 6.4 Hz), 1.63 (3H, s), 1.18 (3H, d, *J*= 6.1 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 168.5, 160.1, 147, 139.8, 139.7, 137.2, 133.8, 130.8, 130.3, 129.6, 129, 128.5, 128.5, 127.8, 127.6, 127.4, 123, 121.3, 121.2, 110, 104.8, 46.2, 29.8, 23.5, 22.6; HRMS (ESI) Calcd for C₃₃H₂₆N₃OCl ([M+H]⁺) 516.1843. Found 516.18478. [α]_D²³=361.3 (c=2.9, dr=>20:1); HPLC IA-3, hexane/IPA = 95:5, flow rate = 1.0 mL/min, λ = 254 nm, 26.3 min (minor enantiomer of major diastereomer), 30.2 min (major enantiomer of major diastereomer).

3k: 71% yield, white solid. ¹H NMR (400 MHz, CDCl₃) major diastereomer δ 8.37 (1H, s), 8.12 (1H, d, *J*= 8.7 Hz), 7.92 (1H, d, *J*= 8.2 Hz), 7.85–7.81 (1H, m) 7.71 (1H, d, *J*= 7.3 Hz), 7.6–7.60 (1H, m), 7.25–7.09 (5H, m), 6.97 (1H, d, *J*= 7.8 Hz), 6.92 (1H, s), 6.85 (1H, d, *J*= 7.8 Hz), 6.63 (1H, d, 7.8 Hz), 6.10 (1H, d, *J*= 8.2 Hz), 5.13 (1H, dd, *J*= 8.2, 5.5 Hz), 2.88 (1H, dd, *J*= 8.2, 7.3 Hz), 2.71 (1H, dd, *J*= 8.2, 6.4 Hz), 1.63, (3H, s), 1.18 (3H, d, *J*= 6.1 Hz); ¹³C NMR (100 MHz,

CDCl₃) δ 168.0, 158.9, 146.2, 137.9, 136.9, 136.2, 135.8, 129.6, 128.8, 128.6, 128.3, 128.0, 127.7, 127.1, 127.0, 126.7, 126.5, 126.3, 125.3, 120.5, 119.3, 119.0, 108.5, 101.4, 50.0, 40.8, 22.3, 11.9; HRMS (ESI) Calcd for C₂₈H₂₆N₃O ([M+H]⁺) 420.2027. Found 420.20218, [α]_D²³=193.3 (c=1.0, single diastereomer); HPLC IA-3, hexane/IPA = 95:5, flow rate = 1.0 mL/min, λ = 254 nm, 19.1 min (major enantiomer), 25.6 min (minor enantiomer).

10. X-ray Crystallographic analysis

Single crystal of **3a** for X-ray diffraction was obtained by vapor diffusion (dichloromethane/hexane). Data collection was performed on BL-17A beamline in KEK PF.

Formula	$C_{55}H_{48}N_6O_{12}Cl_2$
Formula wight	895.89
Temperature	95.15 K
Radiation	Synchrotron ($\lambda = 0.9000$ Å)
Crystal system	Orthorhombic
Space group	P21212
Cell length (Å)	a = 17.0150(13), b = 17.560(2), c = 7.712(2)
Cell angles	$\alpha = 90^\circ, \beta = 90^\circ, \gamma = 90^\circ$
Cell Volume (Å ³)	2304.2(7)
Ζ	2
Density (calculated) (Mg/m ³)	1.291 g·cm ⁻³
Absorption coefficient (mm ⁻¹)	0.354
<i>F</i> (000)	940
Crystal size (mm ³)	$0.1\ \times 0.02 \times 0.02$
Theta range for data collection (°)	2.110 to 32.822
Index ranges	-20<=h<=20, -21<=k<=21, -9<=l<=9
Reflections collected	29161
Independent reflections	4204 [R(int) = 0.0418]
Completeness to theta = 32.684° (%)	99.6
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	1.000 and 0.459
Refinement method	Full-matrix least-squares on F^2
Data / restraints / parameters	4204 / 0 / 299
Goodness-of-fit on F ²	1.067
Final <i>R</i> indices [<i>I</i> >2sigma(<i>I</i>)]	$R_1 = 0.0347, wR_2 = 0.0925$
R indices (all data)	$R_1 = 0.0360, wR_2 = 0.0936$
Absolute structure parameter	-0.011(11)
Extinction coefficient	n/a
Largest diff. peak and hole (e.Å ⁻³)	0.139 and -0.389

Table S1. Crystal data for **3a**.

11. References

- 1. Y. Sakakibara and K. Murakami, ACS Catal., 2022, 12, 1857.
- 2. R. S. J. Proctor, H. J. Davis and R. J. Phipps, Science, 2018, 360, 419.
- 3. R. J. Phipps and B. W. Hadrys, *Synlett*, 2021, **32**, 179.
- 4. N. G. Connelly and W. E. Geiger, *Chem. Rev.*, 1996, 96, 877.

12. ¹H and ¹³C NMR spectra

3h

3i

13. HPLC chart

1**_3a** 300 250 200 Internity (will) 150 106 50 n. iù. Time (airi) RT area % 79.2 59372480 97.935

1251683

2.065

97.6

rac-3b

RT	area		%
	11.2	1150301.2	3.838
	12.3	494722.9	1.651
	14	24015875.9	80.139
	15.5	4307038.8	14.372

rac-**3f**

6**_3f**

rac-**3h**

8_**3h**

