Supporting Information

Engineering defect-rich Prussian blue analogs composite for enhanced Cs⁺ removal performance

Zhenwei Wei,^a Weilian Zhao,^a Jiayin Hu,^{*a} Tianlong Deng,^a Nan Zhang^{*b}

^a Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco-utilization, College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin, China.

^{b.}Tianjin Center, China Geological Survey, Tianjin, China.

E-mail: hujiayin@tust.edu.cn; nan5460@126.com.

Contents

1. Experimental	. 2
2. Equations used in this work	. 4
3. Characterizations of NPC and Zn-PBA/NPC	. 5
4. The element analysis results measured by ICP.	. 7
5. Adsorption kinetics	. 7
6. Adsorption isotherms	. 7
7. Adsorption thermodynamic	. 8
8. The effects of eluent on the desorption efficiency.	. 9
9. Adsorption selectivity	. 9
10. Adsorption mechanism.	10
11. XPS of Zn-PBA/NPC after adsorption.	10
12. Comparison of various adsorbents for Cs ⁺ adsorption	11

1. Experimental

Reagents: Sodium chloride (NaCl), anhydrous potassium carbonate (K₂CO₃), magnesium chloride (MgCl₂) and potassium ferricyanide (K₃Fe(CN)₆) were purchased from Sinopharm Chemical Reagent Co., Ltd. Zinc chloride (ZnCl₂), calcium chloride (CaCl₂), cesium chloride (CsCl), ammonium chloride (NH₄Cl) and hydrochloric acid (HCl) were purchased from Aladdin. Potassium citrate (K₃C₆H₅O₇) and ammonium citrate ((NH₄)₃C₆H₅O₇) were supplied by Macklin.

All regents used in our experiments were of analytical grade and without further purification. For security, non-radioactivity ${}^{133}Cs^+$ (*i.e.*, CsCl) instead of radioactive ${}^{137}Cs^+$ was used for experiments.

Characterization: The nitrogen adsorption and desorption data was performed by an adsorption equipment (Micromeritics APSP2460, USA), and the specific surface area was calculated by the Brunauer-Emmett-Teller (BET) method. The scanning electron microscope (SEM) and energy dispersive spectroscopy (EDS) were proceeded through TESCAN MIRA scanning electron microscope. The FT-IR spectra was acquired with a Thermo Scientific Nicolet iS20 in the range of 4000 - 400 cm⁻¹. The thermogravimetric analysis was measured by a Rigaku TG-DTA8122 at a heating rate of 10 °C/min in the range of 30 - 800 °C. XRD patterns were obtained by powder Xray diffraction (RIKEN SmartLab-SE, Japan) using Cu-Kα rays with the diffraction range of 10° - 80°. X-ray photoelectron spectroscopy (XPS) was carried out using a K-Alpha equipped with a micro-focused monochromator X-ray source (Thermo Scientific, ESCALAB 250Xi, America). The ratio of K, Fe, Zn elements in both Zn-PBA and Zn-PBA/NPC was measured by ICP-OES: Agilent 5110 after digestion. Electron paramagnetic resonance (EPR, Billerica, MA) spectra were obtained using an EPR spectrometer.

Synthesis of NPC: NPC was prepared by the improved self-assembly method^[1-2]. First, NaCl (4.0 g), K_2CO_3 (1.3 g) and (NH₄)₃C₆H₅O₇ (3.0 g) were dissolve completely in the deionized water (140 mL). Then, the solution above was freeze-dried for 36 h. As a result, the salts were coated with $(NH_4)_3C_6H_5O_7$. Subsequently, these white particles were heated to 700 °C at 5 °C/min for 30 min at a nitrogen atmosphere. At this step, the $C_6H_5O_7^{3-}$ was carbonized into carbon and the N served by NH_4^+ doped onto this carbon material. Finally, after washing with 1 mol/L HCl (3×10 mL) and deionized water (5×10 mL) and subsequently dried at 60 °C for 12 h, the black NPCs were obtained.

Synthesis of Zn-PBA/NPC: The obtained NPC (0.11 g) was poured into $K_3Fe(CN)_6$ solution (4 mmol, 100 mL) to form a black suspension, which was recorded as solution A. Solution B was composed of ZnCl₂ (0.82 g, 6 mmol), $K_3C_6H_5O_7$ (0.97 g, 3 mmol) and 100 mL deionized water. $C_6H_5O_7^{3-}$ could coordinate with Zn²⁺, leading to the controlled nucleation and crystal growth of Zn-PBA. Then, slowly added solution A into solution B with continuous stirring for 6 h. The gray Zn-PBA/NPC was obtaining by aging, centrifuging, washing and drying. For comparison, the Zn-PBA powder without support was also prepared with the similar method.

Adsorption experiment: Typical adsorption experiment proceeded in a 250 mL beaker containing 50 mg adsorbent and 100 mL solution containing Cs^+ with known concentration. After stirring for certain time at certain temperature, the supernatant was filtered out through a 0.22 μ m syringe filter. Then, the concentration of Cs^+ was measured by ICP-OES. In order to improve the measurement precision, every experiment proceeded three times and took the average.

Adsorption selectivity experiment: In order to investigate the adsorption selectivity of Zn-PBA/NPC, a series of binary solutions containing 20 mg/L Cs⁺ and Na⁺/ K⁺/ Ca²⁺/ Mg²⁺ (50 - 200 mg/L) were respectively prepared. The experiments proceeded using 50 mg Zn-PBA/NPC and 100 mL above binary solution under 298.15 K with a pH of 7.

Recyclability: After adsorption using 100 mg/L Cs⁺ and 50 mg Zn-PBA/NPC under 298.15 K with a pH of 7, the Cs-laden Zn-PBA/NPC was eluted using 0.4 mol/L NH₄Cl solution. After washing with distilled water (3×10 mL), this regenerated Zn-

PBA/NPC was directly used for the next adsorption-desorption process.

2. Equations used in this work

The adsorption capacity (q_t , mg/g), adsorption efficiency (E,%) and distribution coefficient (K_d , mL/g) were calculated by the following Eqs. S1-S3.

$$q_t = \frac{(C_0 - C_e)V}{m} \tag{1}$$

$$E(\%) = \frac{C_0 - C_e}{C_0}$$
(2)

$$K_d = \frac{C_0 - C_e}{C_e} \times \frac{V}{m} = \frac{q_e}{C_e}$$
(3)

Where C_0 , C_t and C_e (mg/L) are the concentrations of Cs⁺ at initial, time t and equilibrium, respectively. V(L) is the volume of the solution used for adsorption and m (g) is the weight of the adsorbent.

The thermodynamic parameters including enthalpy (ΔH^0 , kJ·mol⁻¹), entropy (ΔS^0 , J·mol⁻¹·K⁻¹) and Gibbs free energy (ΔG^0 , kJ·mol⁻¹) could be calculated by Eqs. S4-S5 as followings:

$$\ln K_d = \frac{\Delta S^0}{R} - \frac{\Delta H^0}{R} \cdot \frac{1}{T}$$
(4)

$$\Delta G^0 = \Delta H^0 - T \Delta S^0 \tag{5}$$

where K_d is the equilibrium distribution coefficient, T(K) is the temperature, R (8.314 J·mol⁻¹·K⁻¹) is the ideal gas constant, respectively.

Langmuir, Freundlich and Dubinin–Radushkevich isothermal adsorption equations and the equations of their parameters:

$$q_e = \frac{K_L q_m C_e}{1 + K_L C_e} \tag{6}$$

$$R_{L} = \frac{1}{1 + K_{L}C_{0,\max}}$$
(7)

$$q_e = k C_e^{\ln} \tag{8}$$

$$\ln q_e = \ln q_{\rm max} - \beta \varepsilon^2 \tag{9}$$

$$\varepsilon = RT * \ln(1 + 1/C_e) \tag{10}$$

$$E = (2\beta)^{-1/2}$$
(11)

Where q_e (mg/g) is the equilibrium adsorption capacity, q_m (mg/g) is the maximum adsorption capacity, $C_{0,max}$ (mg/L) is the maximum initial Cs⁺ concentrations, C_e (mg/L) is the equilibrium concentrations of Cs⁺, K_L is Langmuir constant, and the R_L (L/mg) is separation factor. k and 1/n are constants representing the adsorption capacity and intensity, respectively. ε corresponds to the Polanyi potential, β corresponds to the activity coefficient that associated to the mean free energy E (kJ·mol⁻¹). If the magnitude of E is below 8 kJ·mol⁻¹, physisorption is envisaged.

3. Characterizations of NPC and Zn-PBA/NPC.

Figure S1. The SEM-EDS image of NPC, (a-b) the SEM image of NPC at different magnifications, (c-e) EDS of NPC.

Figure S2. (a) Nitrogen adsorption and desorption curve and pore size distribution of NPC, (b) XPS spectra of N 1s, (c) XRD.

Table S1 BET parameters of NPC.					
	BET Surface Area (m ² /g)	BJH Adsorption cumulative volume of pores (cm ³ /g)	BJH Adsorption average pore diameter (nm)		
NPC	556.05	0.15	3.72		

Figure S3. XPS spectra of Zn-PBA/NPC, (a) full spectra, (b) C 1s, (c) N 1s, (d) K 2p, (e) Fe2p, (f) Zn 2p.

Figure S4. EPR spectra of NPC, Zn-PBA and Zn-PBA/NPC.

4. The element analysis results measured by ICP.

According to the reported method^[3], we calculated the molecular formula of Zn-PBA in the Zn-PBA/NPC and Zn-PBA.

Table S2 The element analysis results measured by ICP and TG.				
	Κ	Fe	Zn	H ₂ O
Zn-PBA/NPC	2.01	2.25	3.53	6.49
Zn-PBA	1.12	3.63	5.28	2.79

5. Adsorption kinetics.

Figure S5. (a) Kinetics curves of Cs⁺ adsorption onto Zn-PBA and Zn-PBA/NPC, (b) Intraparticle diffusion model.

Table S3 Pseudo-first-order and Pseudo-second-order model kinetic param	leters.
---	---------

Туре	a(avn)	pseudo-first-order model		Pseudo-second-order model			
	$q_{e}(\exp)$ - $(\operatorname{mg} \cdot \operatorname{g}^{-1})$	$q_{ m e} \ (m mg \cdot g^{-1})$	K_1 (s ⁻¹)	R^2	$q_{ m e} \ (m mg\cdot g^{-1})$	K_2 (s ⁻¹)	R^2
Zn-PBA/NPC	339.2	329.4	0.266	0.9887	342.1	1.62×10^{-3}	0.9991
Zn-PBA	275.2	269.7	0.023	0.9933	282.9	1.64×10^{-4}	0.9980

6. Adsorption isotherms.

Figure S6. (a) Langmuir and Freundlich isothermal adsorption model fitting of Zn-PBA/NPC, (b) D-R model fitting. ($C_0 = 20 - 1000 \text{ mg/L}$, pH = 7, m/V = 0.5 g/L, T = 298.15 K, 60 s)

	Langmuir	$q_{max} (\mathrm{mg/g})$	379.78
		K_L (L/mg)	0.5807
		R ²	0.9817
Туре	Freundlich	$K_F\left((\mathrm{mg/g})\cdot(\mathrm{L/mg})^{1/n} ight)$	169.86
		1/ <i>n</i>	0.1369
		R ²	0.8163
	D-R	$q_{max} (\mathrm{mg/g})$	373.14
		β (mol ² /kJ ²)	0.00429
		\mathbb{R}^2	0.965
		E (kJ/mol)	10.80

Table S4 Fitting parameters of four isothermal adsorption models

7. Adsorption thermodynamic.

Figure S7 (a) Effect of temperature on Cs⁺ equilibrium adsorption capacity, (b) Thermodynamic fitting curve of $\ln K_d$ as a function of 1000/*T*. ($C_0 = 220 \text{ mg/L}$, pH = 7, m/V = 0.5 g/L, T = 298.15 -328.15 K, 60 s)

Table S5 Thermodynamic parameters of Zn-PBA/NPC adsorption				
	Т	ΔG^{0}	ΔH^0	ΔS^0
	(K)	(kJ·mol⁻¹)	(kJ·mol⁻¹)	$(J \cdot mol^{-1} \cdot K^{-1})$
	298.15	-3.97		
Zn-PBA/NPC	308.15	-4.18	2 40	21 38
	318.15	-4.40	2.40	21.50
	328.15	-4.61		

8. The effects of eluent on the desorption efficiency.

Figure S8. The effects of eluent on the desorption efficiency (a) NaCl, (b) NaNO3, and (c) NH4Cl

9. Adsorption selectivity.

Figure S9. Adsorption selectivity of Zn-PBA/NPC in the presence of competing cations (a) adsorption efficiency E (%), (b) distribution coefficients K_d (mL/g). (20 mg/L Cs⁺, pH = 7, m/V = 0.5 g/L, T = 298.15 K, 60 s)

10. Adsorption mechanism.

Figure S10. The changes of Cs⁺ and K⁺ with time. (a) 0.38 mmol/L Cs⁺, (b) 0.82 mmol/L Cs⁺, (c) 1.21 mmol/L Cs⁺, (d) 1.69 mmol/L Cs⁺. (pH = 7, m/V = 0.5 g/L, T = 298.15 K and 300 s)

Figure S11. XPS spectra of Zn-PBA/NPC after adsorption, (a) Cs 3d, (b) N 1s, (c) Fe 2p, (d) Zn

2p.

Table S6 The absorption performance of Cs^+ by various absorbents.						
Entry	Adsorbents	Equilibrium time (min)	$q_{max} ({ m mg/g})$	Ref.		
1	ZnHCF-ZDC	45	204.9	[4]		
2	VMT/ZnHCF	300	378.8	[5]		
3	PB/AC	30	207.2	[6]		
4	PB/NHPC	120	125.3	[7]		
5	3D RGO/PBAs	1440	204.9	[8]		
6	NiHCF/RGO	4	320.0	[9]		
7	CuHCF/chitosan fiber	90	70.3	[10]		
8	PVA-SA-KCuHCF	90	113.6	[11]		
9	PB@PAAm	60	374.0	[12]		
10	PBA-CFs	30	175.6	[13]		
11	NiFe-AH	90	117.7	[14]		
12	PAN/PB	1	152.7	[15]		
13	Zn-PBA/NPC	1	379.8	This work		

12. Comparison of various adsorbents for Cs⁺ adsorption.

References

[1] Y. Mao, Y. Chen, J. Qin, C. Shi, E. Liu, N. Zhao, Nano Energy, 2019, 58, 192.

[2] M. Hou, S. Gong, L. Ji, J. Huang, M. Xu, Z. Chen, Chem. Eng. J., 2021, 419, 129575.

[3] M. Huang, J. Meng, Z. Huang, X. Wang, L. Mai, J. Mater. Chem. A., 2020, 8, 6631.

[4] H. Kim, H.H. Eom, Y. Kim, D. Harbottle, J.W. Lee, Chem. Eng. J., 2022, 450, 138029.

[5] T. Dai, J. Feng, J.-Y. Hwang, Y. Bao, C. Gao, Z. Wang, W. Mo, X. Su, H. Lin, *J. Environ. Chem. Eng.*, 2023, **11**, 109575.

[6] S. Feng, X. Cao, W. Zheng, X. Yue, X. Li, S. Li, X. Wang, S. J. Environ. Chem. Eng., 2022, 10, 107972.

[7] J. Li, Y. Zan, Z. Zhang, M. Dou, F. Wang, J. Hazard. Mater., 2020, 385, 121568.

[8] J. Huo, G. Yu, J. Wang, Sci. Total Environ., 2021, 761, 143286.

[9] X. Jin, L. Huang, S. Yu, M. Ye, J. Yuan, J. Shen, K. Fang, X. Weng, *Sep. Purif. Technol.*, 2019, **209**, 65.

[10] S. Zhuang, K. Zhu, J. Hu, J. Wang, Sci. Total Environ., 2022, 835, 155575.

[11] Y. Kim, H.H. Eom, D. Kim, D. Harbottle, J.W. Lee, Sep. Purif. Technol., 2021, 255, 117745.

[12] Y. Jung, U.S. Choi, Y.G. Ko, J. Hazard. Mater., 2021, 420, 126654.

[13] L. Peng, L. Guo, J. Li, W. Zhang, B. Shi, X. Liao, Sep. Purif. Technol., 2023, 307, 122858.

[14] S. Eun, Y.-S. Han, H. Kim, M. Kim, J. Ryu, J.-H. Park, J.-M. Lim, S. Kim, *Sep. Purif. Technol.*, 2023, **312**, 123376.

[15] X.-B. Yang, W. Li, Z.-Z. Lin, J.-Q. Liu, H.-X. Jiang, H. Jia, W.-L. Jin, X.-L. Hou, B.-X. Du, L.-N. Zhu, D.-M. Kong, Chen, *Chem. Eng. J.*, 2023, **464**, 142723.