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Experimental 

Synthesis of NiCu porous substrate. Nickel meshs (NMs), nickel plates (NPs) and nickel 

foams (NFs) as the substrates were cut to the size of 0.5×2.0 cm2, the substrates were cleaned 

by ultrasonication in 1.0 M HCl for 15 min and consequently washed with ultrapure water. This 

process was repeated 3 times and the pretreated substrates were stored in ethanol. A porous 

NiCu layer (denoted as NiCu/NM) was electrodeposited on NM to increase the surface 

roughness for the consequent electroless plating process in the electrolyte containing 1.0 mM 

CuSO4, 5.0 mM NiSO4, 5.0 mM H3BO3 and 3.0 M NH4Cl. The electrodeposition lasts 60 s and 

the applied current density is 2.8 A cm-2. 

Synthesis of alloy NiFeB nuclei precursor. The NiFeB nuclei layer (denoted as 

NiFeB/NiCu/NM) was achieve on NiCu/NM through an electroless plating process. 1.26 mM 

NiCl2 and 0.072 mM FeSO4 were used as Ni and Fe sources, respectively. 0.26 mM NaBH4 

reductant was then added 5 ml ethanediamine (20%) and 0.019 mM NaKC4H4O6 as complexing 

agents. The porous substrate was placed in the plating bath at 60℃ for 20 min with stirring.

Synthesis of N doped NiFe(B) (oxy)hydroxide monolithic electrode. The achieved 

NiFeB/NiCu/NM experienced a vaporization exchange process in an autoclave containing 

ammonia solution as NH3 source under the temperature from 100 ℃ to 140 ℃ for 2~8 h to 

obtain the N doped NiFe(B) (oxy)hydroxide monolithic electrode (denoted as N-

NiFeB/NiCu/NM). The synthetic scheme is also displayed in Scheme 1. 

Synthesis of blank NiFe(B) (oxy)hydroxide monolithic electrode control sample. The 

NiFeB/NiCu/NM precursor experienced a vaporization exchange process in an autoclave 

containing KOH solution with the same pH as the ammonia solution under the temperature 

from 100 ℃ to 140 ℃ for 2~8 h. The control sample is denoted as NiFe(B). 

Synthesis of S doped NiFe(B) based monolithic electrode. The achieved NiFeB alloy 

precursor on NF substrate was fabricated by the same protocol mentioned above (NiFeB/NF). 

Then the precursor electrode experienced a vaporization exchange process in an autoclave 

containing 0.6 g FeS in 2 mL H2SO4 (3 M) solution under 120 ℃ for 1 h obtain the S doped 

NiFe(B) based monolithic electrode (denoted as S-NiFeB/NF).

Physical characterization. The scanning electron microscopy (SEM, Hitachi SU8020) 

images and the elemental contributions were collected by X-ray energy dispersive spectrometry 

(EDX, Hitachi) with a 10 kV acceleration voltage. The X-ray diffraction (XRD) was measured 

by Philips X’Pert with Cu Kα radiation. The X-ray photoelectron spectroscopy (XPS) was 

carried out by Kratos AXIS ULTRA. Raman spectra were recorded on a Finder Vista 

spectrometer by using a 532 nm laser. To get rid of the effect of the nickel substrate, we applied 
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the coating process on carbon fibre paper (CFP) and the sample was dissolved in the nitrate 

acid for ICP-OES/MS (Agilent 5110, USA). By ICP-OES, the atomic ratio of Ni/Fe is 5.06, 

which is different from the initial addition in the electrolyte. This indicates that the rate of Fe 

deposition in this particular Ni/Fe electroless plating system is relatively slow, and this is also 

consistent with the previous reports.1, 2

Electrochemical characterization. The electrochemical measurements were measured 

with a CHI660D workstation (CHI) in a standard three-electrode system. The working 

electrode, the counter electrode and the reference electrode are the prepared electrode, a 

graphite rod and a saturated calomel electrode (SCE), respectively. The linear sweep 

voltammetries (LSVs) with a scan rate of 1 mV s-1 in 1.0 M KOH aqueous solution at room 

temperature were recorded until a stable cyclic voltammetries (CVs) presented and corrected 

with 95% iR-compensation. The test potential values (ESCE) were converted to the reversible 

hydrogen electrode (ERHE) using the following equation: 

ERHE = ESCE + 0.2415 + 0.059 pH (1)

Tafel curves were also derived from LSVs based on the Tafel equation: 

η = b log j + a (2)

Where j is the current density and b is the Tafel slope. The double layer capacitance (Cdl) was 

measured by cyclic voltammetry (CVs) in a non-Faradaic region with scanning rates of 10~200 

mV s-1. The electrochemical durability was obtained with chronopotentiometry (p-t) under the 

current density of 100 mA cm-2. Electrochemical impedance spectroscopies (EISs) were 

performed in 1.0 M KOH solution in the frequency range of 0.01 Hz to 100 kHz, with AC 

voltage amplitude of 5 mV. The solution resistance (Rs), charge transfer resistance (Rct) and the 

double layer capacitance values can be read and simulated by Zsimp software.
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Figures

Scheme 1. Synthetic route to achieve N-NiFeB/NiCu/NM
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Fig.S1 Photos of (a) NM, (b) porous NiCu/NM substrate, (c) NiFeB/NiCu/NM and (d) N-

NiFeB/NiCu/NM
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Fig.S2 XRD patterns of N-NiFeB/NiCu/NM.
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Fig.S3 Overall XPS survey of N-NiFeB/NiCu/NM.
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Fig.S4 HR-XPS data of N1s of N doped NiFe(B) (oxy)hydroxide on nickel plate substrate
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Fig.S5 XPS surveys (a) of N1s (b), O1s (c), B1s (d), Ni2p (e) and Fe2p (f) in the N-

NiFe(B)/NiCu/NM and NiFe(B)/NiCu/NM (Steamed in alkaline without NH3).
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Fig.S6 SEM photo of bared NM substrate.
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Fig.S7 SEM photo of porous NiCu/NM.
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Fig.S8 SEM photo of NiFeB/NiCu/NM.
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Fig.S9 SEM photo of N-NiFeB/NiCu/NM.
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Fig.S10 EDS mappings of Ni (a), Fe (b), Cu (c), N (d), O (e), B (f) on N-NiFeB/NiCu/NM.
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Fig.S11 The LSVs of N-NiFe/NiCu/NM electrodes prepared by various NH3 vaporization time.



16

Fig.S12 The LSVs of N-NiFe/NiCu/NM electrodes prepared at various NH3 vaporization 

temperatures.
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Fig.S13 The LSVs of N-NiFe/NiCu/NM electrodes prepared at various ammonia solution 

addition.
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Fig.S14 The LSVs of N-NiFe/NiCu/NM electrodes prepared at various Ni/Fe ratios in NiFeB 

nuclei.



19

Fig.S15 SEM photo of N-NiFeB/NiCu/NM after durability test.
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Fig.S16 Reused figure from the literature3. The change of Ni oxidation states and structures 

under the applied oxidation potential.
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Fig.S17 CVs of bared NM substrate at various scanning ramps during non-Faradaic zone to 

measure the electrochemical active surface area.
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Fig.S18 CVs of porous NiCu/NM substrate at various scanning ramps during non-Faradaic 

zone to measure the electrochemical active surface area.
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Fig.S19 CVs of NiFeB/NiCu/NM at various scanning ramps during non-Faradaic zone to 

measure the electrochemical active surface area.
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Fig.S20 CVs of N-NiFeB/NM without porous NiCu framework at various scanning ramps 

during non-Faradaic zone to measure the electrochemical active surface area.
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Fig.S21 Cdl values derived from Fig.2f and Fig.S16~S19.
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Fig.S22 SEM images of (a) NiFe/NiCu/NM and (b) N-NiFe/NiCu/NM without B inductor in 

galvanic-plating nuclei layer.
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Fig.S23 The SEM images of N-NiFeB/NiCu//NM with different NH3 modified time: (a) 2 

hours, (b) 4 hours, (c) 6 hours, (d) 8 hours.
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Fig.S24 ECSA normalized OER polarization curves of N-NiFeB/NiCu/NM and the control 

samples.
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Fig.S25 Surface contact angle measurement of (a) NP, (b) NiFeB/NP and (c) N-NiFeB/NP.
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Fig.S26 The SEM image of S-NiFeB/NF
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Fig.S27 The SEM image of NiFeB/NF
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Fig.S28 CVs of NiFeB/NF at various scanning ramps during non-Faradaic zone to measure the 

electrochemical active surface area.
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Fig.S29 Cdl values derived from Fig.S27.
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Fig.S30 XRD patterns of S-NiFeB/NF.
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Fig.S31 Raman shift of S-NiFeB/NF.
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Fig.S32 XPS data of S-NiFe(B)/NF: (a) overall survey; (b) S2p; (c) B1s; (d) O1s; (e) Ni2p; (f) 

Fe2p.
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As S modifies the surface, the micro-morphology roughened obviously (Fig.S26~S27), 

displaying a coral-like structure (Fig.S26) of S-NiFeB/NF, leading to the increase of the ECSA 

consequently (Fig.3d~3e and Fig.S28~S29). The XRD patterns (Fig.S30) prove the existance 

of Fe(OH)3 and Ni3-xS2. The Raman shifts (Fig.S31) at 189 and 217 cm-1 are assigned to Ni-S 

bonds, corresponding to the vibrational peaks of Ni3S2.4 The characteristic peak at 242 cm-1 can 

be ascribed to the Fe-O bond of 𝛼-FeOOH.5 The signal at 435 cm-1 can be attributed to Ni-O.6 

There is a peak at 470 cm-1 can be identified as either Ni3S2 or Ni-OH of Ni(OH)2.7 Then, XPS 

data display more information on electronic structure. The XPS spectra of S-NiFeB/NF 

confirms the Ni, Fe, B, S, and O contents (Fig.S32). The S2p region (Fig.S32b) shows three 

peaks at 161.9, 163 and 168.9 eV corresponding to the S-Ni signals in Ni3S2 and S-O, 

respectively.8-10 Similarly, the XPS spectra of the B1s region for S-NiFeB/NF shows two 

characteristic peaks located at 191.4 eV and 188.3 eV which can be assigned to the oxidised 

borate species and zero-valent boron (Fig.S32c).11 In Fig.S32d, the O1s peak of S-NiFe(B)/NF 

sample also presents a typical (oxy)hydroxide structure and metal oxide species. In the Ni2p 

spectra (Fig.S32e), the peaks are divided into two spin-orbit doublets, which are indexed to 

Ni2p3/2 and Ni2p1/2 of Ni2+ and Ni3+ states, respectively.12 The two satellite sub-peaks are 

located at 861.9 eV and 880.1 eV. the peak at 854.1 eV corresponds to metallic Ni.13 The Fe 2p 

shows two main peaks, 710.5 eV for Fe 2p3/2 and 723.0 eV for Fe2p1/2, matching well with the 

characteristics of Fe3+ in S-NiFe(B)/NF (Fig.S32f).14 
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Tables

Table S1 Electrocatalytic performance of N-NiFeB/NiCu/NM and other reported 

electrocatalysts in basic electrolytes for water splitting recently.

Catalysts
J

(mA cm-2)

η

(mV)

Tafel slop

(mV dec-1)
Refs.

N-NiFeB/NiCu/NM 10 223 39 This work

NiFeB@NiFeBi 10 237 58 15

NiFeLDH@CNT 10 290 31 16

NiFeS2 10 286 56.3 17

CoB@CoBi 10 291 50.73 18

NiFe/N-TiO2 10 235 48.9 19

Hcp-NiFe@NC 10 226 41 20

N2-NiFe-PBA/NCF 50 270 70 21

NiFe-LH/Co,N-CNF 10 312 60 22

NiFeB/rGO 15 230 50 23

Cox-FeB 10 298 62.6 24

NixB/NF 20 280 - 25

NiB0.45/Cu 10 296 58 26
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Table S2. Summary of EIS fitted parameters for NM, NiCu/NM, NiFeB/NiCu/NM, N-

NiFeB/NM, N-NiFeB/NiCu/NM, RuO2/NM for OER in 1 M KOH.

Electrodes Rs (ohm) Rct (ohm) Cdl (mF cm-2)

NM 1.62 77.92 0.67

N-NiFeB/NiCu/NM 1.66 1.36 43

NiFeB/NiCu/NM 1.49 2.22 9.6

NiCu/NM 1.51 9.00 1.52

RuO2/NM 1.85 4.19 0.73
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