Supporting Information

Green transformation of CO_2 into γ -amino alcohols with continuous stereocenters

Table of Contents

1. General experimental information	S1
2. Chemicals	S1
3. Optimization of reaction conditions	S2
4. Synthesis of the substrates	S3
5. ACA-CO ₂ trapping reactions	S3
5.1 General procedure for ACA-CO ₂ trapping tandem reactions	S3
5.2 The process of CO ₂ inflation	S3
5.3 Procedure for the ACA-CO ₂ trapping reaction in preparative (1.0 g) scale	S4
5.4 General procedure for the synthesis of racemic ACA products	S5
5.5 Specific experimental details and product characterization	S5
6. Transformation of α -carboxyl amide into chiral γ -amino alcohol	S13
7. Synthesis of the chiral γ -amino alcohol by one-pot method	S14
8. Determination of absolute configuration	S15
9. X-ray crystallographic analysis	S16
10. Mechanistic studies	S18
10.1 Study on the interaction between Me ₃ SiOTf and CO ₂	S18
10.2 Study on the function of the copper catalyst	S19
11. NMR spectra	S15
12. HPLC spectra	S37
13. References	S49

1. General experimental information

All reactions using oxygen- and/or moisture-sensitive materials were carried out with anhydrous solvents under a argon atmosphere using oven-dried glassware and standard Schlenk techniques. Flash column chromatography was performed using Merck 60 Å 230-400 mesh silica gel. Thin layer chromatography was performed using 0.25 mm E. Merck silica plates (60F-254). Components were visualized by bromocresol green and KMnO₄ staining. NMR data was collected on Varian VXR400 (¹H at 400.0 MHz; ¹³C at 100.58 MHz) equipped with a 5 mm *z*-gradient broadband probe. Chemical shifts are reported in parts per million (ppm) relative to residual solvent peak (CDCl₃, ¹H: 7.26 ppm, ¹³C: 77.16 ppm; DMSO-*d*₆, ¹H: 2.50 ppm, ¹³C: 39.52 ppm). Coupling constants are reported in Hertz. Multiplicity is reported with the usual abbreviations (s: singlet, d: doublet, t: triplet, q: quartet, m: multiplet). Exact mass spectra were recorded on a LTQ Orbitrap XL apparatus with ESI ionization. Enantiomeric ratio (er) were determined by chiral HPLC analysis of the CA product isolated from the trapping reaction mixture using a Shimadzu LC-10AD*VP* HPLC equipped with a Shimadzu SPD-M10A*VP* diode array detector. Diastereomeric ratio (dr) were determined by ¹H NMR and ¹³C NMR of pure trapping products.

2. Chemicals

Unless otherwise indicated, reagents and substrates were purchased from commercial sources and used as received. Solvents not required to be dry were purchased as technical grade and used as received. Dry solvents were freshly collected from a dry solvent purification system prior to use. Inert atmosphere experiments were performed with standard Schlenk techniques with dried (P_2O_5) Ar gas. Dried (P_2O_5) CO₂ with the purity of 99.999% was used. Grignard reagents were purchased from Sigma-Aldrich: EtMgBr, MeMgBr (3.0 M in Et₂O), *i*-BuMgBr, *n*-HexMgBr (2.0 M in Et₂O). All other Grignard reagents were prepared from the corresponding alkyl bromides and Mg activated with I₂ in methyl *tert*-butyl ether (MTBE): *i*-PentMgBr (2.0 M in MTBE), PhEtMgBr (1.4 M in MTBE), pent-4-en-1-ylMgBr (1.7 M in MTBE). Chiral ligands (R, S_{Fe})-L1 was purchased from Sigma-Aldrich. All reported compounds were characterized by ¹H, ¹³C NMR and HRMS techniques.

3. Optimization of reaction conditions

	L1 CuBrS 	(6 mol%) SMe ₂ (5 mol% A, <u>EtMgBr</u> H ₂ Cl ₂ , T, t	$\stackrel{(b)}{\longrightarrow} \left[\underbrace{\begin{array}{c} & & \\ & $	$\frac{1 \text{ atm}}{24 \text{ h}}$	0 2a	HOOC 3a	PCy₂ PPh₂ Fe ÉtOH (R,S _{Fe})-L1
Entry	T [°C]	t [h]	LA	EtMgBr	1a:2a:3a ^b	er ^c	dr ^d
1	-78	16	2.0 equiv. Me ₃ SiOTf	2.0 equiv.	12:88:0	99:1	_
2	0	2	2.0 equiv. Me ₃ SiOTf	2.0 equiv.	16:50:34	97:3	56:44
3	-40	2	2.0 equiv. Me ₃ SiOTf	2.0 equiv.	7:48:45	99:1	51:49
4 ^{<i>e</i>}	-40	2	2.0 equiv. Me ₃ SiOTf	2.0 equiv.	22:6:72	99:1	54:46
5 ^f	-40	2	2.0 equiv. Me ₃ SiOTf	2.0 equiv.	0:23:77	99:1	54:46
6 ^f	-40	2	3.0 equiv. Me ₃ SiOTf	3.0 equiv.	0:37:63	95:5	54:46
7 ^f	-40	2	4.0 equiv. Me ₃ SiOTf	4.0 equiv.	0:41:59	94:6	51:49
8 ^f	-40	2	1.5 equiv. Me ₃ SiOTf	2.0 equiv.	7:23:70	96:4	59:41
9 ^{f,g}	-40	2	2.0 equiv. Me ₃ SiOTf	2.0 equiv.	9:23:68	97:3	54:46
10	-40	2	2.0 equiv. t-BuMe ₂ SiOTf	2.0 equiv.	80:20:0	_	_
1 1 ^f	-40	2	2.0 equiv. <i>i</i> -Pr ₃ SiOTf	2.0 equiv.	22:20:58	88:12	50:50
12 ^f	-40	2	2.0 equiv. Me ₃ SiCl	2.0 equiv.	81:4:15	_	_
13 ^f	-40	2	2.0 equiv. Me ₃ SiBr	2.0 equiv.	24:6:70	97:3	50:50
14 ^f	-40	2	2.0 equiv. BF ₃ ·Et ₂ O	2.0 equiv.	1:99:0	_	_

Table S1. Optimization of the copper-catalyzed ACA/CO₂-trapping tandem reaction^a

^{*a*}Reaction conditions: 0.5 mmol **1a** in 5 mL CH₂Cl₂, 5 mol% CuBr·SMe₂, 6 mol% L**1**, 2.0~4.0 equiv. of Me₃SiOTf and 2.0~4.0 equiv. of EtMgBr was used at -78~0 °C for 2~16 h, then stirred for 24 h at RT under 1 atm CO₂ atmosphere. ^{*b*}The ratio was determined by ¹H NMR of reaction crude. ^{*c*}Enantiomeric ratio was determined by chiral HPLC analysis of the CA product isolated from the trapping reaction mixture. ^{*d*}The ratio was determined by ¹H NMR and ¹³C NMR of the trapping product. ^{*e*}10 mL CH₂Cl₂ was used for ACA reaction. ^{*f*}After the first step, 5 mL CH₂Cl₂ was added before the inflation of CO₂. ^{*g*}EtMgBr was added first, after which LA was added.

4. Synthesis of the substrates

 α,β -Unsaturated amides **1a~1f** were prepared according to the literature method, and the ¹H NMR of each substrate is consistent with the literature data.¹

5. ACA-CO₂ trapping reactions

5.1 General procedure for ACA-CO₂ trapping tandem reactions

To a flame-dried Schlenk tube equipped with septum and magnetic stirring bar was added CuBr·SMe₂ (0.025 mmol, 5 mol%), ligand L1 (0.030 mmol, 6 mol%) and the substrate (0.5 mmol, 1.0 equiv., if solid). The tube was evacuated and filled with Ar for three times, after which the substrate (0.5 mmol, 1.0 equiv., if liquid) was added using a microsyringe. Dry CH₂Cl₂ (5 mL) was added, and this mixture was stirred for 20 min at RT. Then the mixture was cooled down (see the details per substrate), followed by addition of Me₃SiOTf (1.0 mmol, 2.0 equiv.). After 20 min., RMgBr (1.0 mmol, 2.0 equiv.) was added by hand in about 1 min. After stirring for 2 h, 5 mL dry CH₂Cl₂ was added again to dilute the mixture, and CO₂ (1 atm) was inflated into the reaction system. Then the reaction mixture was warmed to RT and stirred for 24 h. The resulting reaction mixture was quenched with HCl (5 mL, 1.0 M) and extracted with MTBE (20 mL \times 3). The combined organic phase was dried over MgSO₄, filtered and evaporated on a rotary evaporator. The crude was purified by flash chromatography on the silica gel (typical eluent $CH_2Cl_2:CH_3OH = 10:1$). Then the product was redissolved in MTBE (5 mL) and transferred to a separation funnel, which was extracted with saturated NaHCO3 aqueous solution (5.0 mL \times 3). The combined aqueous phase was acidified with HCl aqueous solution (5.0 mL, 12.0 M), and extracted with MTBE (20.0 mL \times 3). The combined organic phase was dried over MgSO₄, filtered and evaporated on rotary evaporator to afford the pure product.

5.2 The process of CO₂ inflation

After ACA reaction was completed, CH_2Cl_2 was added to diluted the reaction mixture. Then the terminal valve of the Shlenk line was open and blew with CO₂ for 10 minutes to replace the Ar in it, after which the valve was closed (Figure S1a). Then a needle was inserted into the septum of the Schlenk tube, which was blew with CO₂ for 10 minutes to replace the Ar in it (Figure S1b). Finally, the needle was removed and the Shlenk tube was warmed to RT. The mixture was stirred for 24 h to proceed the CO₂ trapping reaction (Figure S1c).

Figure S1. The process of CO₂ inflation.

5.3 Procedure for the ACA-CO₂ trapping reaction in preparative (1.0 g) scale

To a flame-dried two-necked flask (250 ml) equipped with septum and magnetic stirring bar was added CuBr·SMe₂ (72.79 mg, 0.355 mmol, 5 mol%) and ligand L1 (272.12 mg, 0.426 mmol, 6 mol%). The tube was evacuated and filled with Ar for three times, after which substrate 1a (1.13 mL, 7.1 mmol, 1.0 equiv.) was added. Dry CH₂Cl₂ (70 mL) was added, and this mixture was stirred for 20 min at RT. Then the mixture was cooled down to -40 °C, followed by addition of Me₃SiOTf (2.57 mL, 14.2 mmol, 2.0 equiv.). After 20 min., MeMgBr

(14.2 mmol, 3.0 M in Et₂O, 2.0 equiv.) was added with syringe pump in 20 min. After stirring the mixutre at -40 °C for 2 h, 70 mL dry CH₂Cl₂ was added again to dilute the mixture, and CO₂ (1 atm) was inflated into the reaction system. Then the reaction mixture was warmed to RT and stirred for 24 h. The resulting reaction mixture was quenched with HCl (35 mL, 1.0 M) and extracted with MTBE (140 mL × 3). The combined organic phase was dried over MgSO₄, filtered and evaporated on a rotary evaporator. The crude was purified by flash chromatography on the silica gel (SiO₂, CH₂Cl₂:CH₃OH = 10:1). Then the product was redissolved in MTBE (35 mL) and transferred to a separation funnel, which was extracted with saturated NaHCO₃ aqueous solution (35 mL × 3). The combined aqueous phase was acidified with HCl aqueous solution (35 mL, 12.0 M), and extracted with MTBE (140 mL × 3). The combined organic phase was dried or rotary evaporator to afford the pure product **3a**.

5.4 General procedure for the synthesis of racemic ACA products

To a flame-dried Schlenk tube equipped with septum and magnetic stirring bar was added CuBr·SMe₂ (0.025 mmol, 5 mol%), racemic ligand L1 (0.030 mmol, 6 mol%) and the substrate (0.5 mmol, 1.0 equiv., if solid). The tube was evacuated and filled with Ar for three times, after which the substrate (0.5 mmol, 1.0 equiv., if liquid) was added using a microsyringe. Dry tetrahydrofuran (THF, 5 mL) was added, and this mixture was stirred for 20 min at RT. Then the mixture was cooled down (see the details per substrate), followed by addition of Me₃SiOTf (1.0 mmol, 2.0 equiv.). After 20 min., RMgBr (1.0 mmol, 2.0 equiv.) was added by hand in about 1 min. After stirring for 16 h, the reaction was quenched with saturated aqueous NH₄Cl solution and extracted with MTBE (20 mL \times 3). The combined organic phase was dried over MgSO₄, filtered and evaporated on a rotary evaporator. The crude was purified by flash chromatography on the silica gel.

5.5 Specific experimental details and product characterization

(2S,3R)-N,N-Dimethyl-2-carboxyl-3-ethyl-hexanamide (3a)

The ACA reaction was performed with **1a** (0.5 mmol, 1.0 equiv.), CuBr·SMe₂ (5.14 mg, 0.025 mmol, 5 mol%), ligand (R, S_{Fe})-L1 (19.22 mg, 0.030 mmol, 6 mol%), Me₃SiOTf (0.181 mL, 1.0 mmol, 2.0 equiv.), EtMgBr (1.0 mmol, 3.0 M in Et₂O, 2.0 equiv.) in CH₂Cl₂ (5 mL) at -40 °C for 2 h, followed by trapping of CO₂. Product **3a** was obtained as a colorless oil [66% yield, er 99:1, dr 54:46].

¹H NMR (400 MHz, DMSO-*d*₆): δ 3.53 (minor) and 3.52 (major) (d, *J* = 9.1 Hz, 1H), 3.03 (s, 3H), 2.83 (minor) and 2.83 (major) (s, 3H), 2.04-1.93 (m, 1H), 1.50-1.14 (m, 6H), 0.89-0.73 (m, 6H).

¹³C NMR (100 MHz, DMSO-*d*₆): δ 170.75, 167.91 (minor) and 167.88 (major), 51.60, 38.24 (major) and 38.16 (minor), 37.20 (minor) and 37.18 (major), 35.38, 31.94 (major) and 31.85 (minor), 22.57 (major) and 22.51 (minor), 19.28 (minor) and 19.15 (major), 14.45 (major) and 14.39 (minor), 10.52 (major) and 10.31 (minor).

HRMS (ESI+, m/Z): calcd. for C₁₁H₂₂NO₃⁺ [M+H]⁺: 216.1594, found: 216.1590.

HPLC: Chiracel-OBH, *n*-hexane/*i*-PrOH 95:5, 0.5 mL/min, 40 °C, detection at 207 nm. Retention time (min): 10.0 (minor) and 10.7 (major).

(2R,3S)-N,N-Dimethyl-2-carboxyl-3-methyl-pentanamide (3b)

The reaction was performed with **1b** (0.5 mmol, 1.0 equiv.), CuBr·SMe₂ (5.14 mg, 0.025 mmol, 5 mol%), ligand (R, S_{Fe})-L1 (19.22 mg, 0.030 mmol, 6 mol%), Me₃SiOTf (0.181 mL, 1.0 mmol, 2.0 equiv.), EtMgBr (1.0 mmol, 3.0 M in Et₂O, 2.0 equiv.) in CH₂Cl₂ (5 mL) at -40 °C for 2 h, followed by trapping of CO₂. Product **3b** was obtained as a colorless oil [58% yield, er 98:2, dr 64:36].

¹H NMR (400 MHz, DMSO- d_6): δ 3.44 (minor) and 3.42 (major) (d, J = 9.1 Hz, 1H), 3.04 (minor) and 3.03 (major) (s, 3H), 2.83 (s, 3H), 2.07-1.95 (m, 1H), 1.54-1.41 (minor) and 1.38-1.26 (major) (m, 1H), 1.17-0.97 (m, 1H), 0.92-0.77 (m, 6H).

¹³C NMR (100 MHz, DMSO-*d*₆): δ 170.72 (minor) and 170.62 (major), 168.00 (major) and 167.97 (minor), 53.96 (major) and 53.85 (minor), 37.35 (minor) and 37.23 (major), 35.34 (major) and 35.33 (minor), 34.47 (minor) and 34.40 (major), 26.43, 16.35 (major) and 16.20 (minor), 11.34 (major) and 11.29 (minor).

HRMS (ESI+, m/Z): calcd. for C₉H₁₈NO₃⁺ [M+H]⁺: 188.1281, found: 188.1280.

HPLC: Chiracel-OBH, *n*-hexane/*i*-PrOH 90:10, 0.5 mL/min, 40 °C, detection at 207 nm. Retention time (min): 10.2 (major) and 11.5 (minor).

(2R,3S)-N,N-Diallyl-2-carboxyl-3-methyl-pentanamide (3c)

The reaction was performed with 1c (0.5 mmol, 1.0 equiv.), CuBr·SMe₂ (5.14 mg, 0.025 mmol, 5 mol%), ligand (R, S_{Fe})-L1 (19.22 mg, 0.030 mmol, 6 mol%), Me₃SiOTf (0.181 mL, 1.0 mmol, 2.0 equiv.), EtMgBr (1.0 mmol, 3.0 M in Et₂O, 2.0 equiv.) in CH₂Cl₂ (5 mL) at -20 °C for 2 h, followed by trapping of CO₂. Product **3c** was obtained as a colorless oil [62% yield, er 82:18, dr 65:35].

¹H NMR (400 MHz, DMSO-*d*₆): δ 5.89-5.76 (m, 1H), 5.76-5.63 (m, 1H), 5.22-5.04 (m, 4H), 4.17-4.05 (m, 1H), 4.04-3.94 (m, 1H), 3.93-3.84 (m, 1H), 3.80-3.70 (m, 1H), 3.33 (minor) and 3.31 (major) (d, *J* = 9.4 Hz, 1H), 2.14-2.00 (m, 1H), 1.52-1.40 (minor) and 1.40-1.29 (major) (m, 1H), 1.17-1.06 (minor) and 1.06-0.93 (major) (m, 1H), 0.92-0.75 (m, 6H).

¹³C NMR (100 MHz, DMSO-*d*₆): δ 170.60 (minor) and 170.57 (major), 167.71 (minor) and 167.69 (major), 133.77 (minor) and 133.72 (major), 133.31, 116.66 (major) and 116.62 (minor), 116.47, 54.45 (major) and 54.10 (minor), 49.29 (minor) and 49.17 (major), 47.53 (minor) and 47.46 (major), 34.51 (major) and 34.39 (minor), 26.52 (major) and 26.31 (minor), 16.23 (minor) and 16.19 (major), 11.39 (major) and 11.05 (minor).

HRMS (ESI+, m/Z): calcd. for $C_{13}H_{22}NO_3^+$ [M+H]⁺: 240.1594, found: 240.1589.

HPLC: Chiracel-ASH, *n*-hexane/*i*-PrOH 99:1, 0.5 mL/min, 40 °C, detection at 206 nm. Retention time (min): 13.0 (major) and 13.6 (minor).

(2R,3S)-3-Methyl-2-(4-morpholinylcarbonyl)-pentanoic acid (3d)

The reaction was performed with **1d** (0.5 mmol, 1.0 equiv.), CuBr·SMe₂ (5.14 mg, 0.025 mmol, 5 mol%), ligand (R, S_{Fe})-L1 (19.22 mg, 0.030 mmol, 6 mol%), Me₃SiOTf (0.181 mL, 1.0 mmol, 2.0 equiv.), EtMgBr (1.0 mmol, 3.0 M in Et₂O, 2.0 equiv.) in CH₂Cl₂ (5 mL) at -40 °C for 2 h, followed by trapping of CO₂. Product **3d** was obtained as a white solid [50% yield, er 86:14, dr 72:28].

¹H NMR (400 MHz, DMSO-*d*₆): δ 3.62-3.44 (m, 9H), 2.11-1.98 (m, 1H), 1.53-1.41 (minor)

and 1.41-1.28 (major) (m, 1H), 1.17-1.00 (m, 1H), 0.94-0.77 (m, 6H).

¹³C NMR (100 MHz, DMSO-*d*₆): δ 170.70 (minor) and 170.60 (major), 166.68, 66.22, 53.48 (major) and 53.39 (minor), 46.19 (minor) and 46.10 (major), 42.09, 34.31 (minor) and 34.18 (major), 26.47 (major) and 26.37 (minor), 16.28, 11.33.

HRMS (ESI+, m/Z): calcd. for C₁₁H₂₀NO₄⁺ [M+H]⁺: 230.1387, found: 230.1386.

HPLC: Chiracel-OBH, *n*-hexane/*i*-PrOH 95:5, 0.5 mL/min, 40 °C, detection at 207 nm. Retention time (min): 16.8 (minor) and 17.6 (major).

(2S,3R)-N,N-Diallyl-2-carboxyl-3-ethyl-hexanamide (3e)

The reaction was performed with **1e** (0.5 mmol, 1.0 equiv.), CuBr·SMe₂ (5.14 mg, 0.025 mmol, 5 mol%), ligand (R, S_{Fe})-L1 (19.22 mg, 0.030 mmol, 6 mol%), Me₃SiOTf (0.181 mL, 1.0 mmol, 2.0 equiv.), EtMgBr (1.0 mmol, 3.0 M in Et₂O, 2.0 equiv.) in CH₂Cl₂ (5 mL) at -40 °C for 2 h, followed by trapping of CO₂. Product **3e** was obtained as a colorless oil [55% yield, er 88:12, dr 57:43].

¹H NMR (400 MHz, DMSO-*d*₆): δ 5.88-5.76 (m, 1H), 5.75-5.63 (m, 1H), 5.23-5.04 (m, 4H), 4.15-4.05 (m, 1H), 4.04-3.96 (m, 1H), 3.91-3.81 (m, 1H), 3.80-3.70 (m, 1H), 3.44 (major) and 3.43 (minor) (d, *J* = 9.3 Hz, 1H), 2.13-2.02 (m, 1H), 1.51-1.10 (m, 6H), 0.88-0.74 (m, 6H).

¹³C NMR (100 MHz, DMSO-*d*₆): δ 170.73 (minor) and 170.68 (major), 167.65 (major) and 167.61 (minor), 133.71 (major) and 133.68 (minor), 133.29, 116.61 (minor) and 116.56 (major), 116.41, 52.04 (minor) and 51.93 (major), 49.23 (major) and 49.18 (minor), 47.55 (major) and 47.52 (minor), 38.43 (minor) and 38.11 (major), 31.85 (major) and 31.72 (minor), 22.73 (minor) and 22.27 (major), 19.27 (major) and 18.83 (minor), 14.39 (minor) and 14.20 (major), 10.72 (minor) and 10.00 (major).

HRMS (ESI+, m/Z): calcd. for C₁₅H₂₆NO₃⁺ [M+H]⁺: 268.1907, found: 268.1901.

HPLC: Chiracel-ADH, *n*-hexane/*i*-PrOH 99.2:0.8, 0.5 mL/min, 40 °C, detection at 206 nm. Retention time (min): 16.6 (major) and 18.5 (minor).

(3S,4R)-3-Carboxyl-4-ethyl-1-methylpiperidin-2-one (3f)

The reaction was performed with **1f** (0.5 mmol, 1.0 equiv.), CuBr·SMe₂ (5.14 mg, 0.025 mmol, 5 mol%), ligand (R, S_{Fe})-**L1** (19.22 mg, 0.030 mmol, 6 mol%), EtMgBr (1.0 mmol, 3.0 M in Et₂O, 2.0 equiv.) in CH₂Cl₂ (5 mL) at -50 °C for 16 h, followed by trapping of CO₂. Product **3f** was obtained as a colorless oil [45% yield, er 94:6, dr 57:43].

¹H NMR (400 MHz, DMSO-*d*₆): δ 3.31-3.25 (m, 1H), 2.92-2.79 (m, 5H), 1.93-1.85 (m, 1H), 1.51-1.31 (major) and 1.30-1.12 (minor) (m, 4H), 0.87 (t, *J* = 7.4 Hz, 3H).

¹³C NMR (100 MHz, DMSO-*d*₆): δ 172.06, 168.30, 48.29, 38.05, 34.20 (major) and 33.66 (minor), 28.08, 27.77, 21.09, 11.01.

HRMS (ESI+, m/Z): calcd. for C₉H₁₆NO₃⁺ [M+H]⁺ : 186.1125, found: 186.1119.

HPLC: Chiracel-OBH, *n*-hexane/*i*-PrOH 90:10, 0.5 mL/min, 40 °C, detection at 206 nm. Retention time (min): 35.8 (major) and 37.0 (minor).

(2R,3S)-N,N-Dimethyl-2-carboxyl-3-propyl-nonanamide (3g)

The reaction was performed with **1a** (0.5 mmol, 1.0 equiv.), CuBr·SMe₂ (5.14 mg, 0.025 mmol, 5 mol%), ligand (R, S_{Fe})-L1 (19.22 mg, 0.030 mmol, 6 mol%), Me₃SiOTf (0.181 mL, 1.0 mmol, 2.0 equiv.), *n*-HexMgBr (1.0 mmol, 2.0 M in Et₂O, 2.0 equiv.) in CH₂Cl₂ (5 mL) at -40 °C for 2 h, followed by trapping of CO₂. Product **3g** was obtained as a colorless oil [57% yield, er 97:3, dr 55:45].

¹H NMR (400 MHz, DMSO- d_6): δ 3.52 (d, J = 8.9 Hz, 1H), 3.02 (s, 3H), 2.83 (s, 3H), 2.10-2.01 (m, 1H), 1.41-1.13 (m, 14H), 0.89-0.78 (m, 6H).

¹³C NMR (100 MHz, DMSO-*d*₆): δ 170.65, 167.90, 51.90, 37.12, 37.05 (major) and 37.02 (minor), 35.30, 32.66 (minor) and 32.62 (major), 31.20, 30.13, 29.14 (minor) and 29.06 (major), 25.80 (major) and 25.66 (minor), 22.10 (major) and 22.06 (minor), 19.25 (major) and 19.11 (minor), 14.37 (major) and 14.33 (minor), 13.93.

HRMS (ESI+, m/Z): calcd. for C₁₅H₃₀NO₃⁺ [M+H]⁺: 272.2220, found: 272.2201.

HPLC: Chiracel-OBH, *n*-hexane/*i*-PrOH 90:10, 0.5 mL/min, 40 °C, detection at 207 nm. Retention time (min): 11.2 (major) and 11.6 (minor).

(2R,3S)-N,N-Dimethyl-2-carboxyl-5-methy-3-propyl-hexanamide (3h)

The reaction was performed with **1a** (0.5 mmol, 1.0 equiv.), CuBr·SMe₂ (10.28 mg, 0.050 mmol, 10 mol%), ligand (R, S_{Fe})-L1 (38.44 mg, 0.060 mmol, 12 mol%), Me₃SiOTf (0.181 mL, 1.0 mmol, 2.0 equiv.), *i*-BuMgBr (1.0 mmol, 2.0 M in Et₂O, 2.0 equiv.) in CH₂Cl₂ (5 mL) at -20 °C for 2 h, followed by trapping of CO₂. Product **3h** was obtained as a white solid [58% yield, er 94:6, dr 70:30].

¹H NMR (400 MHz, DMSO-*d*₆): δ 3.53 (d, *J* = 8.0 Hz, 1H), 3.02 (major) and 3.01 (minor) (s, 3H), 2.83 (s, 3H), 2.18-2.04 (m, 1H), 1.62-1.49 (m, 1H), 1.34-1.12 (m, 6H), 0.88-0.79 (m, 9H).

¹³C NMR (100 MHz, DMSO-*d*₆): δ 170.71, 168.04 (major) and 167.99 (minor), 51.99 (minor) and 51.97 (major), 40.36, 37.13 (minor) and 37.10 (major), 35.31 (minor) and 35.29 (major), 35.13 (major) and 35.07 (minor), 33.44 (major) and 33.02 (minor), 25.12 (major) and 24.88 (minor), 23.66 (major) and 23.56 (minor), 21.95 (minor) and 21.91 (major), 18.94 (major) and 18.72 (minor), 14.47.

HRMS (ESI+, m/Z): calcd. for C₁₃H₂₆NO₃⁺ [M+H]⁺ : 244.1907, found: 244.1900.

HPLC: Chiracel-ASH, *n*-hexane/*i*-PrOH 99:1, 0.5 mL/min, 40 °C, detection at 206 nm. Retention time (min): 14.8 (major) and 15.9 (minor).

(2R,3S)-N,N-Dimethyl-2-carboxyl-6-methy-3-propyl-heptanamide (3i)

The reaction was performed with **1a** (0.5 mmol, 1.0 equiv.), CuBr·SMe₂ (5.14 mg, 0.025 mmol, 5 mol%), ligand (R, S_{Fe})-L1 (19.22 mg, 0.030 mmol, 6 mol%), Me₃SiOTf (0.181 mL, 1.0 mmol, 2.0 equiv.), *i*-PentMgBr (1.0 mmol, 2.0 M in MTBE, 2.0 equiv.) in CH₂Cl₂ (5 mL) at -20 °C for 2 h, followed by trapping of CO₂. Product **3i** was obtained as a colorless oil

[55% yield, er 97:3, dr 50:50].

¹H NMR (400 MHz, DMSO-*d*₆): δ 3.53 (d, *J* = 8.9 Hz, 1H), 3.03 and 3.03 (s, 3H), 2.83 and 2.83 (s, 3H), 2.10-2.00 (m, 1H), 1.51-0.96 (m, 9H), 0.88-0.73 (m, 9H).

¹³C NMR (100 MHz, DMSO-*d*₆): δ 170.66 and 170.63, 167.89, 51.91 and 51.85, 37.16 and 37.14, 37.11 and 37.05, 35.33 and 35.30, 34.99 and 34.82, 32.54, 27.82 and 27.74, 27.68 and 27.65, 22.70 and 22.68, 22.30 and 22.24, 19.22 and 19.11, 14.39 and 14.35.

HRMS (ESI+, m/Z): calcd. for C₁₄H₂₈NO₃⁺ [M+H]⁺: 268.2064, found: 268.2057.

HPLC: Chiracel-ODH, *n*-hexane/*i*-PrOH 98:2, 0.5 mL/min, 40 °C, detection at 205 nm. Retention time (min): 10.8 (major) and 11.2 (minor).

(2R,3S)-N,N-Dimethyl-2-carboxyl-3-phenylethyl-hexanamide (3j)

The reaction was performed with **1a** (0.5 mmol, 1.0 equiv.), CuBr·SMe₂ (5.14 mg, 0.025 mmol, 5 mol%), ligand (R, S_{Fe})-L1 (19.22 mg, 0.030 mmol, 6 mol%), Me₃SiOTf (0.181 mL, 1.0 mmol, 2.0 equiv.), PhEtMgBr (1.0 mmol, 1.4 M in MTBE, 2.0 equiv.) in CH₂Cl₂ (5 mL) at -20 °C for 2 h, followed by trapping of CO₂. Product **3j** was obtained as a white solid [59% yield, er 97:3, dr 53:47].

¹H NMR (400 MHz, DMSO-*d*₆): δ 7.30-7.22 (m, 2H), 7.19-7.11 (m, 3H), 3.63 (minor) and 3.62 (major) (d, *J* = 8.7 Hz, 1H), 3.02 (major) and 3.01 (minor) (s, 3H), 2.84 (major) and 2.83 (minor) (s, 3H), 2.68-2.51 (m, 2H), 2.18-2.06 (m, 1H), 1.77-1.20 (m, 6H), 0.90-0.80 (m, 3H).

¹³C NMR (100 MHz, DMSO-*d*₆): δ 170.65, 167.86 (minor) and 167.83 (major), 142.38 (minor) and 142.31 (major), 128.26, 128.12 (minor) and 128.09 (major), 125.61, 51.78 (major) and 51.75 (minor), 37.13 (major) and 37.08 (minor), 36.92 (major) and 36.80 (minor), 35.33 (major) and 35.31 (minor), 32.65 (minor) and 32.54 (major), 32.43, 32.32 (major) and 32.13 (minor), 19.24 (minor) and 19.07 (major), 14.36 (major) and 14.31 (minor).

HRMS (ESI+, m/Z): calcd. for C₁₇H₂₆NO₃⁺ [M+H]⁺ : 292.1907, found: 292.1898.

HPLC: Chiracel-ASH, *n*-hexane/*i*-PrOH 99:1, 0.5 mL/min, 40 °C, detection at 205 nm. Retention time (min): 32.0 (major) and 37.6 (minor).

(2R,3S)-N,N-Dimethyl-2-carboxyl-3-propyl-oct-7-enamide (3k)

The reaction was performed with **1a** (0.5 mmol, 1.0 equiv.), CuBr·SMe₂ (5.14 mg, 0.025 mmol, 5 mol%), ligand (R, S_{Fe})-L1 (19.22 mg, 0.030 mmol, 6 mol%), Me₃SiOTf (0.181 mL, 1.0 mmol, 2.0 equiv.), pent-4-en-1-ylMgBr (1.0 mmol, 1.7 M in MTBE, 2.0 equiv.) in CH₂Cl₂ (5 mL) at -20 °C for 2 h, followed by trapping of CO₂. Product **3k** was obtained as a colorless oil [56% yield, er 97:3, dr 57:43].

¹H NMR (400 MHz, DMSO-*d*₆): δ 5.84-5.70 (m, 1H), 5.03-4.88 (m, 2H), 3.53 (d, *J* = 8.8 Hz, 1H), 3.02 (s, 3H), 2.83 (major) and 2.83 (minor) (s, 3H), 2.12-2.02 (m, 1H), 2.02-1.91 (m, 2H), 1.43-1.14 (m, 8H), 0.87-0.77 (m, 3H).

¹³C NMR (100 MHz, DMSO-*d*₆): δ 170.67 (major) and 170.65 (minor), 167.90, 138.66, 114.75 (major) and 114.72 (minor), 51.89, 37.15, 37.04 (major) and 36.99 (minor), 35.33, 33.63 (minor) and 33.54 (major), 32.68, 29.76 (minor) and 29.74 (major), 25.31 (major) and 25.11 (minor), 19.26 (major) and 19.15 (minor), 14.38 (minor) and 14.34 (major).

HRMS (ESI+, m/Z): calcd. for C₁₄H₂₆NO₃⁺ [M+H]⁺: 256.1907, found: 256.1902.

HPLC: Chiracel-ASH, *n*-hexane/*i*-PrOH 99:1, 0.5 mL/min, 40 °C, detection at 205 nm. Retention time (min): 17.1 (minor) and 17.9 (major).

(2S,3R)-N,N-Dimethyl-2-carboxyl-3-methyl-hexanamide (3l)

The reaction was performed with **1a** (0.5 mmol, 1.0 equiv.), CuBr·SMe₂ (5.14 mg, 0.025 mmol, 5 mol%), ligand (R, S_{Fe})-L1 (19.22 mg, 0.030 mmol, 6 mol%), Me₃SiOTf (0.181 mL, 1.0 mmol, 2.0 equiv.), MeMgBr (1.0 mmol, 3.0 M in Et₂O, 2.0 equiv.) in CH₂Cl₂ (5 mL) at -40 °C for 2 h, followed by trapping of CO₂. Product **3l** was obtained as a white solid [56% yield, er 99:1, dr 62:38].

¹H NMR (400 MHz, DMSO-*d*₆): δ 3.43 (minor) and 3.41 (major) (d, *J* = 9.0 Hz, 1H), 3.04 (minor) and 3.03 (major) (s, 3H), 2.84 (s, 3H), 2.16-2.04 (m, 1H), 1.44-0.99 (m, 4H), 0.92-0.77 (m, 6H).

¹³C NMR (100 MHz, DMSO-*d*₆): δ 170.62 (minor) and 170.55 (major), 167.96 (major) and 167.95 (minor), 54.25 (major) and 54.12 (minor), 37.29 (minor) and 37.18 (major), 36.01, 35.30 (major) and 35.28 (minor), 32.70 (minor) and 32.59 (major), 19.63 (major) and 19.57 (minor), 16.77 (major) and 16.71 (minor), 14.16 (minor) and 14.10 (major).

HRMS (ESI+, m/Z): calcd. for $C_{10}H_{20}NO_3^+$ [M+H]⁺ : 202.1438, found: 202.1434.

HPLC: Chiracel-OBH, *n*-hexane/*i*-PrOH 90:10, 0.5 mL/min, 40 °C, detection at 207 nm. Retention time (min): 8.8 (minor) and 9.6 (major).

6. Transformation of α-carboxyl amide into chiral γ-amino alcohol

(2S,3R)-N,N-dimethyl-2-hydroxymethyl-3-methyl-1-hexanamine (41)

To a flame-dried Schlenk tube equipped with septum and magnetic stirring bar was added **31** (100.64 mg, 0.5 mmol). The tube was evacuated and filled Ar for three times, after which dry THF (5 mL) was added. This mixture was stirred for 20 min at RT, followed by addition of BH₃·THF (1.0 M in THF, 2.0 mmol, 4.0 equiv.). After stirring for 16 h at RT, the solvent was evaporated on rotary evaporator. The crude was purified by flash chromatography on the silica gel (SiO₂, CH₂Cl₂:CH₃OH = 5:1). The product **41** was obtained as a colorless oil. [68% yield, er 99:1, dr 62:38].

¹H NMR (400 MHz, DMSO-*d*₆): δ 3.49-3.41 (m, 1H), 3.38-3.31 (dd, *J* = 10.5, 6.6 Hz, 1H), 2.33-2.07 (m, 8H), 1.67-1.52 (m, 2H), 1.38-1.03 (m, 4H), 0.86 (t, *J* = 7.0 Hz, 3H), 0.78 (major) and 0.77 (minor) (d, *J* = 6.7 Hz, 3H).

¹³C NMR (100 MHz, DMSO-*d*₆): δ 62.65 (minor) and 61.57 (major), 60.44 (major) and 59.03 (minor), 45.59 (minor) and 45.51 (major), 41.64 (major) and 41.56 (minor), 36.00, 31.54 (major) and 31.15 (minor), 20.32 (major) and 20.29 (minor), 15.89 (major) and 15.57 (minor), 14.27 (major) and 14.23 (minor).

HRMS (ESI+, m/Z): calcd. for $C_{10}H_{24}NO^+$ [M+H]⁺ : 174.1852, found: 174.1841.

7. Synthesis of the chiral *y*-amino alcohol by one-pot method

(2R,3S)-N,N-dimethyl-2-hydroxymethyl-5-methyl-3-propyl-1-hexanamine (4h)

To a flame-dried Schlenk tube equipped with septum and magnetic stirring bar was added CuBr SMe₂ (10.28 mg, 0.050 mmol, 10 mol%) and ligand (*R*,*S*_{Fe})-L1 (38.44 mg, 0.060 mmol, 12 mol%). The tube was evacuated and filled Ar for three times, after which substrate 1a (0.5 mmol, 1.0 equiv.) was added using a microsyringe. Dry CH₂Cl₂ (5 mL) was added and this mixture was stirred for 20 min at RT. Then the mixture was cooled down to -20 °C, followed by addition of Me₃SiOTf (0.181 mL, 1.0 mmol, 2.0 equiv.). After 20 min., *i*-BuMgBr (1.0 mmol, 2.0 M in Et₂O, 2.0 equiv.) was added by hand in about 1 min. After stirring the mixutre at -20 °C for 2 h, 5 mL dry CH₂Cl₂ was added again to dilute the mixture, and CO₂ (1 atm) was inflated into the reaction system. Then the reaction mixture was warmed to RT and stirred for 24 h. After completion, CO₂ was replaced by Ar again, and BH₃·THF (1.0 M in THF, 2.0 mmol, 4.0 equiv.) was added. After stirring for 16 h at RT, the reaction was quenched with saturated aqueous NaHCO₃ (5 mL) and stirred for 10 min. Then the mixture was extracted with MTBE (20 mL \times 3). The combined organic phases were dried over MgSO₄, filtered and evaporated on a rotary evaporator. The crude was purified by flash chromatography on the silica gel (SiO₂, CH₂Cl₂ : MeOH=5:1). Then the product was redissolved in MTBE (5 mL) and transferred to a separation funnel, which was extracted with HCl solution (2.0 mL \times 3, 1.0 M). The combined aqueous phase was acidified with saturated aqueous $NaHCO_3$ (10 mL), and extracted with MTBE (20.0 mL \times 3). The combined organic phase was dried over MgSO₄, filtered and evaporated on rotary evaporator to afford the pure product 4h as a colorless oil. [34% yield, er 94:6, dr 70:30].

¹H NMR (400 MHz, DMSO-*d*₆): δ 3.42-3.31 (m, 2H), 2.25-1.93 (m, 8H), 1.72-1.49 (m, 3H), 1.31-1.18 (m, 4H), 1.12-1.03 (m, 8H), 0.88-0.80 (m, 9H).

¹³C NMR (100 MHz, DMSO-*d*₆): δ 62.19 (minor) and 62.14 (major), 59.95 (minor) and 59.61 (major), 45.69 (minor) and 45.65 (major), 40.04, 33.95 (minor) and 33.92 (major), 32.86 (major) and 32.84 (minor), 25.35, 22.98 (minor) and 22.92 (major), 22.71 (major) and 22.68 (minor), 20.54 (major) and 20.42 (minor), 14.32 (major) and 14.28 (minor).

HRMS (ESI+, m/Z): calcd. for C₁₀H₂₄NO⁺ [M+H]⁺: 216.2322, found: 216.2317.

8. Determination of absolute configuration

The absolute configuration of **31** was determined by X-ray single crystallography of the major diastereomer **31a** separated by a Waters Prep SFC 80 preparative system equiped with a Chirapak-IG/SFC column (see Figure S2). The absolute configurations of other compounds were assigned by analogy. As the er of **31** is 99:1, we omitted the two minor isomers of 1% and only collected the two major isomers of 99% (**31a** and **31b**). For the NMR spectra of **31a** and **31b**, as well as the comparision of them with **31**, see Figures S16~S18.

Prep SFC: Chiralpak-IG/SFC, CO₂/MeOH (0.1% V/V of 7M NH₃ in MeOH was added) = 85:15, 70 mL/min., 40 °C, detection at 207 nm.

Major diastereomer: (2S,3R)-N,N-dimethyl-2-carboxyl-3-methyl-hexanamide

¹H NMR (400 MHz, DMSO-*d*₆): δ 3.42 (d, *J* = 9.0 Hz, 1H), 3.03 (s, 3H), 2.84 (s, 3H), 2.16-2.04 (m, 1H), 1.40-1.11 (m, 3H), 1.09-0.99 (m, 1H), 0.89 (d, *J* = 6.7 Hz, 3H), 0.82 (t, *J* = 7.1 Hz, 3H).

¹³C NMR (100 MHz, DMSO-*d*₆): δ 170.50, 167.93, 54.21, 37.14, 35.98, 35.27, 32.55, 19.59, 16.74, 14.07.

Minor diastereomer: (2R,3R)-N,N-dimethyl-2-carboxyl-3-methyl-hexanamide

¹H NMR (400 MHz, DMSO-*d*₆): δ 3.43 (d, J = 9.3 Hz, 1H), 3.04 (s, 3H), 2.84 (s, 3H), 2.16-2.04 (m, 1H), 1.44-1.31 (m, 2H), 1.26-1.04 (m, 2H), 0.85 (t, J = 6.9 Hz, 3H), 0.80 (d, J = 6.7 Hz, 3H).

¹³C NMR (100 MHz, DMSO-*d*₆): δ 170.57, 167.91, 54.09, 37.25, 35.97, 35.24, 32.67, 19.53, 16.68, 14.12.

9. X-ray crystallographic analysis

3la was dissolved in THF and the resulting solution was filtered. The filtrate was left for slow evaporation at room temperature in air. Colorless needleshaped crystals was formed when the solvent was completely evaporated.

A single crystal of compound **3la** was mounted on top of a cryoloop and transferred into the cold nitrogen stream (100 K) of a Bruker-AXS D8 Venture diffractometer. Data collection and reduction was done using the Bruker software suite APEX3.² The final unit cell was obtained from the xyz centroids of 6259 reflections after integration. A multiscan absorption correction was applied, based on the intensities of symmetry-related reflections measured at different angular settings (SADABS). The structures were solved by direct methods using SHELXT³ and refinement of the structure was performed using SHLELXL.⁴ The hydrogen atoms were generated by geometrical considerations, constrained to idealized geometries and allowed to ride on their carrier atoms with an isotropic displacement parameter related to the equivalent displacement parameter of their carrier atoms. The absolute configuration of the model was chosen based on anomalous dispersion. Refinement of the Flack x parameter converged -0.020(16).

Figure S2. Molecular structure of compound **3la**, showing 50% probability ellipsoids. Hydrogen atoms are omitted for clarity.

Chem. formula	C ₁₀ H ₁₉ NO ₃
Mr	201.26
Cryst syst.	Monoclinic
Color, habit	colorless, needle
Size (mm)	$0.12\times0.10\times0.09$
Space group	P 1 21 1
a (Å)	5.4153(5)
b (Å)	11.2753(12)
c (Å)	9.4479(10)
α, deg	90
β, deg	98.633(7)
γ, deg	90
V (Å ³)	570.34(10)
Ζ	2
$\rho_{calc}, g \cdot cm^{-3}$	1.172
μ (Mo K α), cm ⁻¹	0.700
F(000)	220
Temp (K)	193.00
θ range (deg)	6.152 - 79.660
Data collected (h,k,l)	-6:6, -14:13, -11:11
No. of rflns collected	9916
No. of indpndt reflns	2324
Observed reflns	2124 ($F_o \ge 2(F_o)$)
R(F) (%)	4.53
$wR(F^2)$ (%)	12.39
GooF	1.065
Weighting a,b	0.0701, 0.0614
Params refined	132
Restraints	1
Min, max resid dens	-0.158, 0.218
Flack x	-0.02(16)

Table S2. Crystallographic data for compound 3la

10. Mechanistic studies

10.1 Study on the interaction between Me₃SiOTf and CO₂

To a flame-dried Schlenk tube equipped with septum and magnetic stirring bar was added CH_2Cl_2 (2 mL) and Me₃SiOTf (0.036 mL, 0.2 mmol) under CO₂ atmosphere. After stirring for 2 h, the mixture was transferred into a NMR tube under Ar protection. 0.2 mL CDCl₃ was added to the NMR tube and ¹H NMR was measure immediately. For comparision, the same solution under Ar atmosphere was also prepared for the ¹H NMR measurement.

As shown in Figure S3, we initially assumed that CO_2 can be activated by Me₃SiOTf through coordination with the Me₃Si⁺ to form a silyl complex, resulting in the shift of the ¹H NMR peak of trimethyl silyl. However, no shift of the peak was observed, indicating that activation of CO₂ by Me₃SiOTf can be excluded.

Figure S3. ¹H NMR study on the interaction between Me₃SiOTf and CO₂.

10.2 Study on the function of the copper catalyst

^	0 N 1a	Catalyst (5 mol%) TMSOTf, EtMgBr T, CH ₂ Cl ₂ , 2 h	SiMe	B CO ₂ , 1 atm RT, 24 h	2a O V V V	+ HOOC 3a	o ↓ ↓
Entry	T [°C]	Catalyst	Me ₃ SiOTf	EtMgBr	1a:2a:3a ^b	er ^c	$\mathrm{d}\mathbf{r}^d$
1	-40	L1/CuBr	2.0 equiv.	2.0 equiv.	0:23:77	99:1	56:44
2	-20	_	3.0 equiv.	3.0 equiv.	74:26:0	50:50	_
3	-40	rac. L1/CuBr	2.0 equiv.	2.0 equiv.	0:23:77	50:50	56:44

Table S3. Comparision of the ACA-CO₂ trapping reactions with different copper catalyst^a

^{*a*}Reaction conditions: 0.5 mmol **1a** in 5 mL CH₂Cl₂, 5 mol% catalyst, 2.0~3.0 equiv. of Me₃SiOTf and 2.0~3.0 equiv. of EtMgBr was used at -40~-20 °C for 2 h, then 5 mL CH₂Cl₂ was added and stirred for 24 h at RT under 1 atm CO₂ atmosphere. ^{*b*}The ratio was determined by ¹H NMR of reaction crude. ^{*c*}Enantiomeric ratio was determined by chiral HPLC analysis of the CA product isolated from the trapping reaction mixture. ^{*d*}The ratio was determined by ¹H NMR and ¹³C NMR of the trapping product.

11. NMR spectra

Figure S4. NMR spectra of (2S,3R)-N,N-dimethyl-2-carboxyl-3-ethyl-hexanamide (3a)

Figure S5. NMR spectra of (2R,3S)-N,N-dimethyl-2-carboxyl-3-methyl-pentanamide (3b)

Figure S6. NMR spectra of (2*R*,3*S*)-*N*,*N*-diallyl-2-carboxyl-3-methyl-pentanamide (3c)

Figure S7. NMR spectra of (2R,3S)-3-methyl-2-(4-morpholinylcarbonyl)-pentanoic acid (3d)

Figure S8. NMR spectra of (2S,3R)-N,N-diallyl-2-carboxyl-3-ethyl-hexanamide (3e)

Figure S9. NMR spectra of (3S,4R)-3-carboxyl-4-ethyl-1-methylpiperidin-2-one (3f)

Figure S10. NMR spectra of (2R,3S)-N,N-dimethyl-2-carboxyl-3-propyl-nonanamide (3g)

Figure S11. NMR spectra of (2R,3S)-N,N-dimethyl-2-carboxyl-5-methy-3-propyl-hexanamide (3h)

Figure S12. NMR spectra of (2R,3S)-N,N-dimethyl-2-carboxyl-6-methy-3-propyl-heptanamide (3i)

Figure S13. NMR spectra of (2*R*,3*S*)-*N*,*N*-dimethyl-2-carboxyl-3-phenylethyl-hexanamide (3j)

Figure S14. NMR spectra of (2*R*,3*S*)-*N*,*N*-dimethyl-2-carboxyl-3-propyl-oct-7-enamide (3k)

Figure S15. NMR spectra of (2S,3R)-N,N-dimethyl-2-carboxyl-3-methyl-hexanamide (3l)

Figure S16. NMR spectra of (2S,3R)-N,N-dimethyl-2-carboxyl-3-methyl-hexanamide (3la)

Figure S17. NMR spectra of (2R,3R)-N,N-dimethyl-2-carboxyl-3-methyl-hexanamide (3lb)

3.6 3.5 3.4 3.3 3.2 3.1 3.0 2.9 2.8 2.7 2.6 2.5 2.4 2.3 2.2 2.1 2.0 1.9 1.8 1.7 1.6 1.5 1.4 1.3 1.2 1.1 1.0 0.9 0.8 0.7 0.€ fl(ppm)

Figure S18. Comparison of the ¹H NMR spectra of 31 with 31a and 31b

hexanamine (41)

Figure S20. NMR spectra of (2*R*,3*S*)-*N*,*N*-dimethyl-2-hydroxymethyl-5-methyl-3-propyl-1-hexanamine (**4h**)

12. HPLC spectra

Peak#	Ret. Time	Area	Height	Height %	Area %
1	9.908	6016509	447199	53.460	49.993
2	10.689	6018203	389305	46.540	50.007
Total		12034712	836504	100.000	100.000

Figure S21. HPLC spectra of (2S,3R)-N,N-dimethyl-2-carboxyl-3-ethyl-hexanamide (3a)

		Pe	akTable		
PDA Ch1 207nm 4nm					
Peak#	Ret. Time	Area	Height	Height %	Area %
1	10.187	17953569	1280892	98.339	98.492
2	11.468	274874	21639	1.661	1.508
Total	8 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	18228443	1302531	100.000	100.000

Peak#	Ret. Time	Area	Height	Height %	Area %
1	10.120	11170863	884444	52.402	49.427
2	11.331	11429993	803378	47.598	50.573
Total		22600856	1687822	100.000	100.000

Figure S22. HPLC spectra of (2R,3S)-N,N-dimethyl-2-carboxyl-3-methyl-pentanamide (3b)

		Pe	akTable		
PDA Ch1 206nm 4nm					
Peak#	Ret. Time	Area	Height	Height %	Area %
1	13.252	7148295	331832	82.743	82.436
2	13.922	1523019	69206	17.257	17.564
Total		8671314	401038	100.000	100.000

		1.	un ruore		
PDA Ch120	06nm 4nm				
Peak#	Ret. Time	Area	Height	Height %	Area %
1	13.946	9205609	428088	50.776	49.691
2	14.660	9320097	415006	49.224	50.309
Total	donin a done	18525706	843093	100.000	100.000

Figure S23. HPLC spectra of (2*R*,3*S*)-*N*,*N*-diallyl-2-carboxyl-3-methyl-pentanamide (3c)

1 PDA Multi 1/207nm 4nm

PeakTable PDA Ch1 207nm 4nm					
Peak#	Ret. Time	Area	Height	Height %	Area %
1	16.803	2170625	116850	15.072	13.559
2	17.563	13837803	658440	84.928	86.441
Total		16008428	775290	100.000	100.000

		P	PeakTable		
PDA Ch120	7nm 4nm				
Peak#	Ret. Time	Area	Height	Height %	Area %
1	16.625	23051306	1132426	52.062	49.513
2	17.465	23504968	1042710	47.938	50.487
Total		46556274	2175136	100.000	100.000

Figure S24. HPLC spectra of (2*R*,3*S*)-3-methyl-2-(4-morpholinylcarbonyl)-pentanoic acid (3d)

1	PDA Multi	1/206nm 4	nm

PDA Ch1 20	PDA Ch1 206nm 4nm							
Peak#	Ret. Time	Area	Height	Height %	Area %			
1	16.636	6730485	139391	86.836	88.028			
2	18.453	915379	21132	13.164	11.972			
Total		7645864	160523	100.000	100.000			

		Pe	akiable			
PDA Ch1 205nm 4nm						
Peak#	Ret. Time	Area	Height	Height %	Area %	
1	17.996	7925367	156973	47.254	50.157	
2	19.962	7875605	175220	52.746	49.843	
Total		15800972	332193	100.000	100.000	

Figure S25. HPLC spectra of (2*S*,3*R*)-*N*,*N*-diallyl-2-carboxyl-3-ethyl-hexanamide (3e)

1 PDA Multi 1/206nm 4nm

PDA Ch1 20	PeakTable PDA Ch1 206nm 4nm							
Peak#	Ret. Time	Area	Height	Height %	Area %			
1	35.758	2250655	58046	94.900	94.458			
2	37.010	132045	3119	5.100	5.542			
Total		2382700	61165	100.000	100.000			

		Pe	akTable				
PDA Ch1 206nm 4nm							
Peak#	Ret. Time	Area	Height	Height %	Area %		
1	35.683	1834997	48286	53.103	51.864		
2	36.925	1703078	42643	46.897	48.136		
Total		3538075	90929	100.000	100.000		

Figure S26. HPLC spectra of (3S,4R)-3-carboxyl-4-ethyl-1-methylpiperidin-2-one (3f)

PDA Ch1 20	PeakTable PDA Ch1 207nm 4nm							
Peak#	Ret. Time	Area	Height	Height %	Area %			
1	11.181	11521076	853234	96.872	96.801			
2	11.626	380763	27551	3.128	3.199			
Total		11901838	880784	100.000	100.000			

PDA Ch1 20	7nm 4nm	0.50.5			
Peak#	Ret. Time	Area	Height	Height %	Area %
1	11.233	18614784	1225288	50.016	50.000
2	11.700	18614890	1224522	49.984	50.000
Total	100000	37229673	2449810	100.000	100.000

Figure S27. HPLC spectra of (2R,3S)-N,N-dimethyl-2-carboxyl-3-propyl-nonanamide (3g)

		Pe	akTable				
DA Ch1 206nm 4nm							
Peak#	Ret. Time	Area	Height	Height %	Area %		
1	14.757	23917620	967621	93.061	93.518		
2	15.862	1657813	72153	6.939	6.482		
Total		25575433	1039774	100.000	100.000		

		Pe	akTable				
PDA Ch1 204nm 4nm							
Peak#	Ret. Time	Area	Height	Height %	Area %		
1	14.159	8291240	357121	50.879	49.727		
2	15.106	8382276	344778	49.121	50.273		
Total		16673515	701899	100.000	100.000		

Figure S28. HPLC spectra of (2R,3S)-N,N-dimethyl-2-carboxyl-5-methy-3-propyl-hexanamide (3h)

PeakTable								
Peak#	Ret. Time	Area	Height	Height %	Area %			
1	10.846	6896962	519093	96.608	97.351			
2	11.207	187693	18224	3.392	2.649			
Total		7084654	537317	100.000	100.000			

		Pe	ak lable		
PDA Ch120	06nm 4nm				
Peak#	Ret. Time	Area	Height	Height %	Area %
1	10.929	19175675	1309814	50.299	49.374
2	11.339	19661746	1294259	49.701	50.626
Total		38837421	2604072	100.000	100.000

Figure S29. HPLC spectra of (2R,3S)-*N*,*N*-dimethyl-2-carboxyl-6-methy-3-propyl-heptanamide (**3i**)

PDA Ch1 20	PDA Ch1 205nm 4nm						
Peak#	Ret. Time	Area	Height	Height %	Area %		
1	31.996	126485591	1559038	95.039	97.495		
2	37.596	3249410	81389	4.961	2.505		
Total		129735001	1640427	100.000	100.000		

PeakTable PDA Ch1 205nm 4nm							
Peak#	Ret. Time	Area	Height	Height %	Area %		
1	32.389	94527511	1449206	52.713	49.376		
2	36.595	96918326	1300012	47.287	50.624		
Total		191445837	2749218	100.000	100.000		

Figure S30. HPLC spectra of (2*R*,3*S*)-*N*,*N*-dimethyl-2-carboxyl-3-phenylethyl-hexanamide (3j)

1 PDA Multi 1/205nm 4nm

PDA Ch1 205nm 4nm							
Peak#	Ret. Time	Area	Height	Height %	Area %		
1	17.149	1407882	71834	5.284	2.926		
2	17.853	46715042	1287555	94.716	97.074		
Total		48122924	1359389	100.000	100.000		

DA Ch1 205nm 4nm							
Peak#	Ret. Time	Area	Height	Height %	Area %		
1	18.212	37810860	1175720	56.475	48.995		
2	19.532	39362643	906131	43.525	51.005		
Total		77173503	2081851	100.000	100.000		

Figure S31. HPLC spectra of (2*R*,3*S*)-*N*,*N*-dimethyl-2-carboxyl-3-propyl-oct-7-enamide (3**k**)

PeakTable PDA Ch1 207nm 4nm							
Peak#	Ret. Time	Area	Height	Height %	Area %		
1	8.758	81233	8164	0.775	0.608		
2	9.614	13272680	1045681	99.225	99.392		
Total		13353913	1053845	100.000	100.000		

		Pe	aklable				
DA Ch1 207nm 4nm							
Peak#	Ret. Time	Area	Height	Height %	Area %		
1	8.698	13767417	1189845	52.204	49.753		
2	9.551	13903908	1089396	47.796	50.247		
Total		27671325	2279241	100.000	100.000		

Figure S32. HPLC spectra of (2S,3R)-N,N-dimethyl-2-carboxyl-3-methyl-hexanamide (3l)

13. References

- M. Rodríguez-Fernandez, X. Yan, J. F. Collados, P. B. White and S. R. Harutyunyan, Lewis Acid Enabled Copper-Catalyzed Asymmetric Synthesis of Chiral β-Substituted Amides. J. Am. Chem. Soc., 2017, 139, 14224–14231.
- 2 Bruker, (2016). APEX3 (v2016.1-0), SAINT (Version 8.18C) and SADABS (Version 2012/1). Bruker AXS Inc., Madison, Wisconsin, USA.
- 3 G. M. Sheldrick, Crystal Structure Refinement with SHELXL. *Acta Cryst. C*, 2015, **71**, 3–8.
- 4 G. M. Sheldrick, A Short History of SHELX. Acta Cryst. A, 2008, 64, 112–122.