Supporting Information

Solvent-Controlled Halohydroxylation or C3-C2 Coupling of Pyridinium Salts through an Interrupted Dearomative Reduction

Congcong Zhang, Qinhao Chen, Yunlong Qin, Zhanwei Bu, Qilin Wang*College of Chemistry and Molecular Science, Henan University, Kaifeng 475004, ChinaE-mail: wangqilin@henu.edu.cn
Table of Contents

1. General methods S2
2. Experimental data for the formation of 2-17 S2
3. Optimization of conditions S8
4. Experimental data for the formation of 18-26 S9
5. Experimental data for the formation of $\mathbf{2 9}$ and $\mathbf{3 0}$ S13
6. Methodology application S15
7. Crystal structures S16
8. NMR spectra S25

1. General methods

NMR spectra were recorded with tetramethylsilane as the internal standard. ${ }^{1} \mathrm{H}$ NMR spectra were recorded at 400 MHz , and ${ }^{13} \mathrm{C}$ NMR spectra were recorded at 100 MHz (Bruker Avance). ${ }^{1} \mathrm{H}$ NMR chemical shifts (δ) are reported in ppm relative to tetramethylsilane (TMS) with the solvent signal as the internal standard $\left(\mathrm{CDCl}_{3}\right.$ at $7.26 \mathrm{ppm},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}$ at 2.50 ppm$) .{ }^{13} \mathrm{C}$ NMR chemical shifts are reported in ppm from tetramethylsilane (TMS) with the solvent resonance as the internal standard $\left(\mathrm{CDCl}_{3}\right.$ at $77.00 \mathrm{ppm},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}$ at 39.52 ppm$)$. Data are given as: s (singlet), d (doublet), t (triplet), q (quartet), dd (double of doublet), br (broad) or m (multiplets), coupling constants (Hz) and integration. Flash column chromatography was carried out using silica gel eluting with ethyl acetate and petroleum ether. High resolution mass spectra were obtained with the Q-TOF-Premier mass spectrometer. Reactions were monitored by TLC and visualized with ultraviolet light. IR spectra were recorded on a Thermo Fisher Nicolet Avatar 360 FTIR spectrometer on a KBr beam splitter. All the solvents were used directly without any purification.

2. Experimental data for the formation of products 2-17

General procedure: To a 5.0 mL vial were successively added pyridinium or quinolinium salts (0.2 mmol), Hantzsch ester ($0.3 \mathrm{mmol}, 1.5$ equiv) and 1.0 mL of DMSO. The resulting mixture was stirred at $100^{\circ} \mathrm{C}$ until the complete consumption of pyridinium or quinolinium salts as monitored by thin layer chromatography. After cooling down to room temperature, water was added, and the reaction mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 2.0 \mathrm{~mL})$. The combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After removal of the solvent, the residue was purified by column chromatography on silica gel using petroleum ether/ethyl acetate as the eluent to produce compounds 2-14.

1-Benzyl-3-bromo-5-nitro-1,2,3,4-tetrahydropyridin-2-ol (2)
Purple solid obtained by column chromatography (petroleum ether/ethyl acetate $=4: 1$ to $3: 1$); 55.0 $\mathrm{mg}, 59 \%$ yield; $\mathrm{dr}>20: 1$; reaction time $=5 \mathrm{~min} ; \mathrm{mp} 139.6-140.4{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (400 MHz ,

DMSO- d_{6}) $\delta 8.46(\mathrm{~s}, 1 \mathrm{H}), 7.43-7.31(\mathrm{~m}, 5 \mathrm{H}), 7.17(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.80(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H})$, $4.69(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.63(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.47-4.45(\mathrm{~m}, 1 \mathrm{H}), 3.14-3.03(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO- d_{6}) $\delta 143.6,135.8,128.8,128.6,128.1,118.2,79.0,55.9,39.9,25.9$. IR $(\mathrm{KBr}) v 3270,1622,1403,1302,1204,1185,744 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{NaBr}$ $[\mathrm{M}+\mathrm{Na}]^{+}: 335.0007$, found: 335.0009.

3-Bromo-1-(3-methoxybenzyl)-5-nitro-1,2,3,4-tetrahydropyridin-2-ol (3)
Purple solid obtained by column chromatography (petroleum ether/ethyl acetate $=5: 1$ to $4: 1$); 70.0 $\mathrm{mg}, 68 \%$ yield; $\mathrm{dr}>20: 1$; reaction time $=5 \mathrm{~min} ; \mathrm{mp} 109.3-110.3^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, DMSO- d_{6}) $\delta 8.44(\mathrm{~s}, 1 \mathrm{H}), 7.30(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.17(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.00-6.97(\mathrm{~m}, 2 \mathrm{H})$, $6.90\left(\mathrm{dd}, J_{1}=8.0 \mathrm{~Hz}, J_{2}=4.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.76(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.71(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.61(\mathrm{~d}$, $J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.48-4.47(\mathrm{~m}, 1 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 3.15-3.04(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO- d_{6}) $\delta 159.4,143.6,137.3,129.6,120.9,118.3,114.2,113.6,79.0,55.8,55.1,39.9,25.8$. IR (KBr) v 3274, 1610, 1312, 1186, 1049, $741 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{NaBr}$ [M+Na] ${ }^{+}: 365.0113$, found: 365.0113

3-Bromo-5-nitro-1-(4-nitrobenzyl)-1,2,3,4-tetrahydropyridin-2-ol (4)
Yellow solid obtained by column chromatography (petroleum ether/ethyl acetate $=3: 1$ to $2: 1$); $74.0 \mathrm{mg}, 69 \%$ yield; dr $>20: 1$; reaction time $=5 \mathrm{~min} ; \mathrm{mp} 149.6-150.5{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, DMSO- d_{6}) $\delta 8.53(\mathrm{~s}, 1 \mathrm{H}), 8.24(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.70(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.17(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $1 \mathrm{H}), 4.92(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.82(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.69(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.46-4.45(\mathrm{~m}$, 1H), 3.15-3.03 (m, 2H); ${ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO- d_{6}) δ 147.2, 144.0, 143.6, 129.8, 123.6, 118.9, 79.4, 55.1, 39.9, 25.8. IR $(\mathrm{KBr}) \vee 3314,1615,1519,1309,1046,957,745 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd for $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{~N}_{3} \mathrm{O}_{5} \mathrm{NaBr}[\mathrm{M}+\mathrm{Na}]^{+}: 379.9858$, found: 379.9854.

(E)-3-(2-((3-Bromo-2-hydroxy-5-nitro-3,4-dihydropyridin-1(2H)-yl)methyl)phenyl)-1-phenylprop -2-en-1-one (5)

Grey solid obtained by column chromatography (petroleum ether/ethyl acetate $=3: 1$ to $2: 1$); 108.0 $\mathrm{mg}, 82 \%$ yield; $\mathrm{dr}>20: 1$; reaction time $=5 \mathrm{~min} ; \mathrm{mp} 154.3-155.1^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, DMSO- d_{6}) $\delta 8.34(\mathrm{~s}, 1 \mathrm{H}), 8.12(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 2 \mathrm{H}), 8.07-8.04(\mathrm{~m}, 2 \mathrm{H}), 7.80(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H})$, $7.66(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.58-7.46(\mathrm{~m}, 5 \mathrm{H}), 7.22(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.05(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H})$, $4.89(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.65(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.45(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.17-3.02(\mathrm{~m}, 2 \mathrm{H}) ;$ ${ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO- d_{6}) $\delta 189.2$, 143.0, 140.3, 137.5, 134.8, 134.5, 133.2, 130.6, 130.4, $128.9,128.8,128.6,127.8,124.8,118.8,78.9,53.2,39.9,25.9 . \operatorname{IR}(\mathrm{KBr}) \vee 3231,1609,1297$, 1217, 1042, $750 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd for $\mathrm{C}_{21} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{NaBr}[\mathrm{M}+\mathrm{Na}]^{+}$: 465.0426, found: 465.0433.

3-Bromo-5-nitro-1-(prop-2-yn-1-yl)-1,2,3,4-tetrahydropyridin-2-ol (6)
Light brown solid obtained by column chromatography (petroleum ether/ethyl acetate $=5: 1$ to $4: 1) ; 40.0 \mathrm{mg}, 51 \%$ yield; $\mathrm{dr}>20: 1$; reaction time $=5 \mathrm{~min} ; \mathrm{mp} 115.8-116.7^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $(400$ $\left.\mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta 8.39(\mathrm{~s}, 1 \mathrm{H}), 7.13(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.91(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.54-4.49(\mathrm{~m}$, $2 \mathrm{H}), 3.36\left(\mathrm{dd}, J_{1}=20.0 \mathrm{~Hz}, J_{2}=4.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.52(\mathrm{~s}, 1 \mathrm{H}), 3.12-3.02(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $(100$ MHz, DMSO- d_{6}) $\delta 142.4,118.8,79.1,77.9,77.4,44.2,41.9,25.7$. IR (KBr) v 3270, 1616, 1358, 1227, 1181, 1049, $748 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd for $\mathrm{C}_{8} \mathrm{H}_{9} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{NaBr}[\mathrm{M}+\mathrm{Na}]^{+}$: 282.9694, found: 282.9688.

1-Allyl-3-bromo-5-nitro-1,2,3,4-tetrahydropyridin-2-ol (7)
Grey solid obtained by column chromatography (petroleum ether/ethyl acetate $=5: 1$ to $4: 1$); 48.0
$\mathrm{mg}, 61 \%$ yield; $\mathrm{dr}>20: 1$; reaction time $=5 \mathrm{~min} ; \mathrm{mp} 112.4-113.2{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, DMSO- d_{6}) $\delta 8.31(\mathrm{~s}, 1 \mathrm{H}), 7.07(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.91-5.81(\mathrm{~m}, 1 \mathrm{H}), 5.39\left(\mathrm{dd}, J_{I}=16.0 \mathrm{~Hz}, J_{2}=\right.$ $4.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.27\left(\mathrm{dd}, J_{1}=8.0 \mathrm{~Hz}, J_{2}=4.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.77\left(\mathrm{dd}, J_{l}=8.0 \mathrm{~Hz}, J_{2}=4.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.49$ $(\mathrm{q}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.22-4.07(\mathrm{~m}, 2 \mathrm{H}), 3.13-3.02(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO- d_{6}) δ 143.3, 133.3, 119.5, 118.1, 79.0, 55.3, 44.5, 25.8. IR (KBr) v 3425, 3301, 1614, 1287, 1213, 747 cm^{-1}. HRMS (ESI) calcd for $\mathrm{C}_{8} \mathrm{H}_{11} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{NaBr}[\mathrm{M}+\mathrm{Na}]^{+}: 284.9851$, found: 284.9847.

3-Bromo-1-(2-((methylthio)methyl)benzyl)-5-nitro-1,2,3,4-tetrahydropyridin-2-ol (8)
Light yellow solid obtained by column chromatography (petroleum ether/ethyl acetate $=5: 1$ to 4:1); $22.0 \mathrm{mg}, 17 \%$ yield; $\mathrm{dr}>20: 1$; reaction time $=5 \mathrm{~min} ; \mathrm{mp} 122.6-123.7{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta 8.29(\mathrm{~s}, 1 \mathrm{H}), 7.45-7.43(\mathrm{~m}, 1 \mathrm{H}), 7.36-7.31(\mathrm{~m}, 3 \mathrm{H}), 7.22(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H})$, $4.83(\mathrm{q}, ~ J=16.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.70(\mathrm{~s}, 1 \mathrm{H}), 4.49-4.48(\mathrm{~m}, 1 \mathrm{H}), 3.85-3.78(\mathrm{~m}, 2 \mathrm{H}), 3.17-3.04(\mathrm{~m}, 2 \mathrm{H})$, $1.99(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO- d_{6}) $\delta 143.1,136.8,133.5,130.5,130.4,128.2,127.4$, $118.5,79.3,52.9,39.9,34.5,25.9,14.6$. IR (KBr) v 3225, 1615, 1306, 1214, $1044 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd for $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{NaSBr}[\mathrm{M}+\mathrm{Na}]^{+}: 395.0041$, found: 395.0038 .

4-Bromo-2-nitro-4,4a,6,11-tetrahydro-3H-benzo[e]pyrido[2,1-b][1,3]oxazepine (9)
Grey solid obtained by column chromatography (petroleum ether/ethyl acetate $=5: 1$ to $4: 1$); 26.0 $\mathrm{mg}, 24 \%$ yield; $\mathrm{dr}>20: 1$; reaction time $=5 \mathrm{~min} ; \mathrm{mp} 187.2-187.7^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, DMSO- d_{6}) $\delta 8.35(\mathrm{~s}, 1 \mathrm{H}), 7.44(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.33-7.27(\mathrm{~m}, 3 \mathrm{H}), 5.31(\mathrm{~s}, 1 \mathrm{H}), 5.26(\mathrm{~d}, J=$ $16.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.02(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.86(\mathrm{t}, J=12.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.73(\mathrm{~s}, 1 \mathrm{H}), 3.07-2.93(\mathrm{~m}, 2 \mathrm{H}) ;$ ${ }^{13}$ C NMR (100 MHz, DMSO- d_{6}) $\delta 142.3,139.6,137.8,129.2,128.3,128.0,127.9,120.0,90.1$, $73.5,57.5,39.9,26.4$. IR (KBr) v 1626, 1427, 1308, 1209, $1047 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd for $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{NaBr}[\mathrm{M}+\mathrm{Na}]^{+}: 347.0007$, found: 347.0012.

3-Bromo-1-((E)-4-(methylthio)but-2-en-1-yl)-5-nitro-1,2,3,4-tetrahydropyridin-2-ol (10)
Light yellow solid obtained by column chromatography (petroleum ether/ethyl acetate $=4: 1$ to 3:1); $23.0 \mathrm{mg}, 21 \%$ yield; $\mathrm{dr}>20: 1$; reaction time $=5 \mathrm{~min} ; \mathrm{mp} 90.6-91.4^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, DMSO- d_{6}) $\delta 8.32(\mathrm{~s}, 1 \mathrm{H}), 7.10(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.79-5.75(\mathrm{~m}, 1 \mathrm{H}), 5.73-5.55(\mathrm{~m}, 1 \mathrm{H}), 4.76(\mathrm{~d}$, $J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.49(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.19\left(\mathrm{dd}, J_{I}=16.0 \mathrm{~Hz}, J_{2}=8.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.09\left(\mathrm{dd}, J_{I}=\right.$ $\left.16.0 \mathrm{~Hz}, J_{2}=8.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.11(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.06(\mathrm{~s}, 2 \mathrm{H}), 1.97(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta 143.2,131.4,127.1,118.0,78.9,54.2,44.6,34.4,25.8,13.9$. IR (KBr) v 3289, 1618, 1295, 1184, $1047 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd for $\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{SBr}[\mathrm{M}+\mathrm{H}]^{+}: 323.0065$, found: 323.0064.

1-Benzyl-5-bromo-6-hydroxy-1,4,5,6-tetrahydropyridine-3-carbonitrile (11)
Yellow solid obtained by column chromatography (petroleum ether/ethyl acetate $=8: 1$ to $7: 1$); $34.1 \mathrm{mg}, 39 \%$ yield; dr $>20: 1$; reaction time $=10 \mathrm{~min} ; \mathrm{mp} 110.8-111.5{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, DMSO- d_{6}) $\delta 7.56(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.38-7.30(\mathrm{~m}, 6 \mathrm{H}), 4.71(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.45(\mathrm{~d}, J=$ $16.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.36(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.96(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H})$, the hydrogen for OH was missing; ${ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO- d_{6}) $\delta 145.3,136.4,128.7,128.5,127.9,127.8,120.8,82.5$, 72.4, 63.6, 55.3. IR (KBr) v 3263, 2198, 1625, 1425, 1196, $752 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd for $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{ONaBr}[\mathrm{M}+\mathrm{Na}]^{+}: 315.0109$, found: 315.0112.

1-Benzyl- N-tosyl-1,4,5,6-tetrahydropyridine-3-carboxamide (12)
Yellow oil obtained by column chromatography (petroleum ether/ethyl acetate $=3: 1$ to $2: 1$); 13.2 $\mathrm{mg}, 14 \%$ yield; reaction time $=7 \mathrm{~h} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.31(\mathrm{br}, 1 \mathrm{H}), 7.98(\mathrm{~d}, J=8.0$
$\mathrm{Hz}, 2 \mathrm{H}), 7.60(\mathrm{~s}, 1 \mathrm{H}), 7.30-7.27(\mathrm{~m}, 5 \mathrm{H}), 7.15-7.13(\mathrm{~m}, 2 \mathrm{H}), 4.24(\mathrm{~s}, 2 \mathrm{H}), 2.99(\mathrm{~s}, 1 \mathrm{H}), 2.96(\mathrm{t}, J=$ $8.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H}), 2.18(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.79-1.73(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 164.6,147.0,144.0,136.9,136.1,129.3,128.8,128.3,127.9,127.5,60.1,45.1,42.6,21.6,20.8$, 19.6. IR (KBr) v 2930, $1610,1139,1058 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{NaS}[\mathrm{M}+\mathrm{Na}]^{+}$: 393.2249, found: 393.1252.

1-Benzyl-1,2,3,6-tetrahydropyridine-4-carbonitrile (13)
Yellow oil obtained by column chromatography (petroleum ether/ethyl acetate $=25: 1$ to $20: 1$); $16.3 \mathrm{mg}, 27 \%$ yield; reaction time $=1 \mathrm{~h} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.35-7.28(\mathrm{~m}, 5 \mathrm{H}), 6.55(\mathrm{~s}$, $1 \mathrm{H}), 3.61(\mathrm{~s}, 2 \mathrm{H}), 3.13-3.11(\mathrm{~m}, 2 \mathrm{H}), 2.62(\mathrm{t}, J=5.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.37-2.36(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 142.3,137.4,129.0,128.4,127.4,118.8,110.8,62.2,52.4,48.3,27.6$. $\mathrm{IR}(\mathrm{KBr}) v$ 2924, 2810, 1725, 1448, $742 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{~N}_{2}[\mathrm{M}+\mathrm{H}]^{+}$: 199.1235, found: 199.1239.

1-Benzyl-6-bromo-1,2,3,4-tetrahydroquinoline (14)
Colorless oil obtained by column chromatography (petroleum ether/ethyl acetate $=150: 1$ to $120: 1$); $67.9 \mathrm{mg}, 75 \%$ yield; reaction time $=30 \mathrm{~min} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.46(\mathrm{q}, J=8.0 \mathrm{~Hz}$, $2 \mathrm{H}), 7.39(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 3 \mathrm{H}), 7.22-7.21(\mathrm{~m}, 1 \mathrm{H}), 7.18-7.15(\mathrm{~m}, 1 \mathrm{H}), 6.50-6.47(\mathrm{~m}, 1 \mathrm{H}), 4.58(\mathrm{~s}$, 2H), $3.49(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.91(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.12(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 144.3,138.1,131.1,129.5,128.5,126.8,126.3,124.2,112.3,107.2,54.9,49.6$, 27.9, 21.9. IR (KBr) v 3455, 1592, 1500, 1294, $791 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{NBr}$ $[\mathrm{M}+\mathrm{H}]^{+}: 302.0544$, found: 302.0543 .

1-Benzyl-5-nitro-1,2,3,4-tetrahydropyridin-2-ol (15)

Light yellow solid obtained by column chromatography (petroleum ether/ethyl acetate $=4: 1$ to 3:1); $27.0 \mathrm{mg}, 38 \%$ yield; reaction time $=48 \mathrm{~h} ; \mathrm{mp} 99.4-99.9{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}) $\delta 8.36(\mathrm{~s}, 1 \mathrm{H}), 7.39-7.31(\mathrm{~m}, 5 \mathrm{H}), 6.53(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.76-4.64(\mathrm{~m}, 3 \mathrm{H}), 2.70(\mathrm{~d}, J=12.0$ $\mathrm{Hz}, 1 \mathrm{H}), 2.51-2.42(\mathrm{~m}, 1 \mathrm{H}), 1.91(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.53-1.52(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO- d_{6}) $\delta 145.0,136.8,128.8,127.9,127.8,120.7,75.7,55.5,27.2,16.2$. IR (KBr) v 3439, 3286, $1618,1318,1205 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 257.0902$, found: 257.0899.

3-Iodo-1-methyl-5-nitro-1,2,3,4-tetrahydropyridin-2-ol (16)
Red solid obtained by column chromatography (petroleum ether/ethyl acetate $=10: 1$ to 9:1); 43.0 $\mathrm{mg}, 51 \%$ yield; $\mathrm{dr}>20: 1$; reaction time $=3.5 \mathrm{~h}$; mp 119.2-120.3 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}) $\delta 8.03(\mathrm{~s}, 1 \mathrm{H}), 6.04(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.27-5.25(\mathrm{~m}, 1 \mathrm{H}), 3.29(\mathrm{~s}, 2 \mathrm{H}), 3.15(\mathrm{~s}, 3 \mathrm{H})$, the hydrogen was missing for O-H; ${ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO- d_{6}) $\delta 142.5,128.8,119.9,110.0$, 40.9, 23.5. IR (KBr) v 3450, 1672, 1293, $1204 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd for $\mathrm{C}_{6} \mathrm{H}_{9} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{NaI}$ $[\mathrm{M}+\mathrm{Na}]^{+}: 306.9556$, found: 306.9558 .

1-Ethyl-3-iodo-5-nitro-1,2,3,4-tetrahydropyridin-2-ol (17)
Red solid obtained by column chromatography (petroleum ether/ethyl acetate $=15: 1$ to $10: 1$); 47.0 $\mathrm{mg}, 53 \%$ yield; $\mathrm{dr}>20: 1$; reaction time $=3.5 \mathrm{~h} ; \mathrm{mp} 78.4-79.2^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right)$ $\delta 8.08(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.16-6.13(\mathrm{~m}, 1 \mathrm{H}), 5.30-5.26(\mathrm{~m}, 1 \mathrm{H}), 3.45(\mathrm{q}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.32$ $\left(\mathrm{dd}, J_{I}=8.0 \mathrm{~Hz}, J_{2}=4.0 \mathrm{~Hz}, 2 \mathrm{H}\right), 1.16(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, the hydrogen was missing for $\mathrm{O}-\mathrm{H} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 141.4,127.4,120.0,110.2,48.7,23.8,14.9$. IR (KBr) v 3454, 1673, 1593, 1255, $1186 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd for $\mathrm{C}_{7} \mathrm{H}_{11} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{NaI}[\mathrm{M}+\mathrm{Na}]^{+}: 320.9712$, found: 320.9710.

3. Optimization of conditions

Table S1 Optimization of reaction conditions for the formation of $\mathbf{2}^{\text {a }}$

${ }^{a}$ Unless otherwise noted, the reactions were performed using pyridinium salt $\mathbf{1}(0.2 \mathrm{mmol})$ and Hantzsch ester $(0.3 \mathrm{mmol})$ in DMSO $(1.0 \mathrm{~mL})$ at $100{ }^{\circ} \mathrm{C}$ for $5 \mathrm{~min} .{ }^{\mathrm{b}}$ Isolated yield obtained by silica gel column chromatography.

Table S2 Optimization of conditions for the formation of $\mathbf{1 8}^{a}$

entry	solvent	temperature	time	Yield (\%) b
1	toluene	100	10 min	14
2	CHCl_{3}	70	5 min	40
3	$i-\mathrm{PrOH}$	80	5 min	37
4	$\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{Et}$	70	5 min	19
5	THF	80	10 min	46
6	$\mathrm{Et}_{2} \mathrm{O}$	25	36 h	74

[^0]
4. Experimental data for the formation of products 18-26

General procedure: To a 5.0 mL vial were successively added pyridinium salts (0.3 mmol), Hantzsch ester $(0.45 \mathrm{mmol})$ and 1.0 mL of $\mathrm{Et}_{2} \mathrm{O}$. The resulting mixture was stirred at room temperature until the complete consumption of the pyridinium salts as monitored by thin layer chromatography. After removal of the solvent, the residue was purified by column chromatography on silica gel using petroleum ether/ethyl acetate as the eluent to produce compounds 18-26.

1,1'-Dibenzyl-5,5'-dinitro-1,1',2,3,4,4'-hexahydro-2,3'-bipyridine (18)
Yellow solid obtained by column chromatography (petroleum ether/ethyl acetate $=3: 1$ to $2: 1$); $47.0 \mathrm{mg}, 74 \%$ yield; reaction time $=36 \mathrm{~h} ; \mathrm{mp} 182.8-183.5{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right) \delta$ $8.52(\mathrm{~s}, 1 \mathrm{H}), 8.25(\mathrm{~s}, 1 \mathrm{H}), 7.38-7.31(\mathrm{~m}, 8 \mathrm{H}), 7.26(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.96(\mathrm{~s}, 1 \mathrm{H}), 4.74-4.65(\mathrm{~m}$, $3 \mathrm{H}), 4.37(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.82(\mathrm{~s}, 1 \mathrm{H}), 3.18(\mathrm{q}, J=20.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.64(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 2 \mathrm{H})$, 2.15-2.02 (m, 2H), 1.57-1.51 (m, 1H); ${ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO- d_{6}) $\delta 146.5,140.7,136.8$, $136.1,128.8,128.8,128.1,128.0,128.0,127.5,124.9,121.3,119.7,118.2,57.2,56.9,56.5,24.3$, 21.8, 17.7. IR (KBr) v 3426, 1609, 1281, 1191, $1087 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd for $\mathrm{C}_{24} \mathrm{H}_{24} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{Na}$ $[\mathrm{M}+\mathrm{Na}]^{+}: 455.1695$, found: 455.1692 .

1, 1'-Bis(3-methoxybenzyl)-5,5'-dinitro-1, 1',2,3,4,4'-hexahydro-2,3'-bipyridine (19)
Red solid obtained by column chromatography (petroleum ether/ethyl acetate $=3: 1$ to $2: 1$); 38.0 $\mathrm{mg}, 59 \%$ yield; reaction time $=57 \mathrm{~h} ; \mathrm{mp} 152.2-153.3{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right) \delta 8.52$ $(\mathrm{s}, 1 \mathrm{H}), 8.23(\mathrm{~s}, 1 \mathrm{H}), 7.30-7.25(\mathrm{~m}, 2 \mathrm{H}), 6.91-6.82(\mathrm{~m}, 6 \mathrm{H}), 5.98(\mathrm{~s}, 1 \mathrm{H}), 4.71-4.64(\mathrm{~m}, 3 \mathrm{H}), 4.35$ $(\mathrm{d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.85(\mathrm{~s}, 1 \mathrm{H}), 3.74(\mathrm{~s}, 6 \mathrm{H}), 3.19(\mathrm{q}, J=20.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.66(\mathrm{~d}, J=16.0 \mathrm{~Hz}$,
$1 \mathrm{H}), 2.15-1.98(\mathrm{~m}, 2 \mathrm{H}), 1.57-1.51(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO- d_{6}) δ 159.6, 159.6, 146.5, $140.7,138.4,137.7,130.0,129.9,124.9,121.4,120.1,119.7,119.5,118.2,113.7,113.5,113.4$, $113.1,57.2,56.9,56.5,55.1,55.1,24.4,21.8,17.7 . \operatorname{IR}(\mathrm{KBr}) \vee 3068,1608,1299,1190,1090 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd for $\mathrm{C}_{26} \mathrm{H}_{28} \mathrm{~N}_{4} \mathrm{O}_{6} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 515.1907$, found: 515.1912.

5,5'-Dinitro-1,1'-bis(4-nitrobenzyl)-1,1',2,3,4,4'-hexahydro-2,3'-bipyridine (20)
Red solid obtained by column chromatography (petroleum ether/ethyl acetate $=2: 1$ to $1: 1$); 23.0 $\mathrm{mg}, 29 \%$ yield; reaction time $=41 \mathrm{~h} ; \mathrm{mp} 230.7-231.4^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right) \delta 8.55$ $(\mathrm{s}, 1 \mathrm{H}), 8.29(\mathrm{~s}, 1 \mathrm{H}), 8.22(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 8.18(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.58(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 2 \mathrm{H})$, $7.56(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.94(\mathrm{~s}, 1 \mathrm{H}), 4.90-4.79(\mathrm{~m}, 3 \mathrm{H}), 4.57(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.82(\mathrm{~s}, 1 \mathrm{H})$, $3.20(\mathrm{q}, J=20.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.66-2.62(\mathrm{~m}, 1 \mathrm{H}), 2.16-2.05(\mathrm{~m}, 2 \mathrm{H}), 1.63-1.57(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO- d_{6}) $\delta 147.1,146.7,144.7,144.3,140.7,129.0,128.6,124.7,124.0,123.9$, $123.7,121.8,120.2,118.2,57.0,56.4,55.6,24.2,21.7,17.7$. IR (KBr) v 3079, 1612, 1521, 1297, $1184 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd for $\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{~N}_{6} \mathrm{O}_{8} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 545.1397$, found: 545.1401.

5-Nitro-1-(4-nitrobenzyl)-1,2,3,4-tetrahydropyridin-2-ol (21)
Light yellow solid obtained by column chromatography (petroleum ether/ethyl acetate $=3: 1$ to 2:1); $11.0 \mathrm{mg}, 13 \%$ yield; reaction time $=41 \mathrm{~h} ; \mathrm{mp} 159.5-160.6{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}) $\delta 8.41(\mathrm{~s}, 1 \mathrm{H}), 8.23(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.59(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.54(\mathrm{~s}, 1 \mathrm{H}), 4.86(\mathrm{~s}$, $2 \mathrm{H}), 4.71(\mathrm{~s}, 1 \mathrm{H}), 2.74-2.68(\mathrm{~m}, 1 \mathrm{H}), 2.53-2.43(\mathrm{~m}, 1 \mathrm{H}), 1.98-1.90(\mathrm{~m}, 1 \mathrm{H}), 1.66-1.57(\mathrm{~m}, 1 \mathrm{H}) ;$ ${ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO- d_{6}) $\delta 147.0,145.0,129.0,128.9,123.8,121.3,76.2,54.8,27.2,16.2$. IR (KBr) v 3317, 1617, 1518, 1299, $1207 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{~N}_{3} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]^{+}$: 280.0933, found: 280.0935 .

1,1'-Diallyl-5,5'-dinitro-1,1',2,3,4,4'-hexahydro-2,3'-bipyridine (22)
Red solid obtained by column chromatography (petroleum ether/ethyl acetate $=3: 1$ to $2: 1$); 42.0 $\mathrm{mg}, 84 \%$ yield; reaction time $=41 \mathrm{~h} ; \mathrm{mp} 157.1-157.9^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right) \delta 8.35$ $(\mathrm{s}, 1 \mathrm{H}), 8.07(\mathrm{~s}, 1 \mathrm{H}), 5.88(\mathrm{~s}, 2 \mathrm{H}), 5.81(\mathrm{~s}, 1 \mathrm{H}), 5.24(\mathrm{q}, J=16.0 \mathrm{~Hz}, 4 \mathrm{H}), 4.11(\mathrm{~s}, 3 \mathrm{H}), 3.91(\mathrm{~s}$, $2 \mathrm{H}), 3.25(\mathrm{q}, J=20.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.69(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.17-2.10(\mathrm{~m}, 2 \mathrm{H}), 1.65(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO- $\left.d_{6}\right) \delta 146.2,140.8,133.8,133.3,124.6,121.0,119.4,119.1,118.3,117.8$, 56.9, 56.4, 55.5, 24.5, 21.5, 17.6. IR (KBr) v 3458, 1610, 1283, $1193 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 355.1382$, found: 355.1386 .

1,1'-Bis((E)-4-bromobut-2-en-1-yl)-5,5'-dinitro-1,1',2,3,4,4'-hexahydro-2,3'-bipyridine (23)
Yellow solid obtained by column chromatography (petroleum ether/ethyl acetate $=2: 1$ to $1: 1$); $41.0 \mathrm{mg}, 53 \%$ yield; reaction time $=49 \mathrm{~h} ; \mathrm{mp} 153.4-154.7^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right) \delta$ $8.36(\mathrm{~s}, 1 \mathrm{H}), 8.08(\mathrm{~s}, 1 \mathrm{H}), 6.02-5.88(\mathrm{~m}, 4 \mathrm{H}), 5.77(\mathrm{~s}, 1 \mathrm{H}), 4.14-4.10(\mathrm{~m}, 7 \mathrm{H}), 3.96-3.88(\mathrm{~m}, 2 H)$, $3.24(\mathrm{q}, J=20.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.70(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.20-2.08(\mathrm{~m}, 2 \mathrm{H}), 1.66-1.59(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO- d_{6}) $\delta 146.0,140.6,131.0,130.3,130.0,129.9,124.4,121.1,119.6,118.5$, $56.9,54.9,53.9,32.8,32.6,24.5,21.4,17.6$. IR (KBr) v 3077, 1683, 1279, 1190, $973 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{NaBr}_{2}[\mathrm{M}+\mathrm{Na}]^{+}: 538.9906$, found: 538.9902.

1, 1^{\prime}-Bis(4-bromobutyl)-5,5'-dinitro-1, $1^{\prime}, 2,3,4,4$ '-hexahydro-2,3'-bipyridine (24)
Yellow solid obtained by column chromatography (petroleum ether/ethyl acetate $=3: 1$ to $2: 1$);
$38.0 \mathrm{mg}, 49 \%$ yield; reaction time $=44 \mathrm{~h} ; \mathrm{mp} 123.8-124.2{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right) \delta$ $8.38(\mathrm{~s}, 1 \mathrm{H}), 8.11(\mathrm{~s}, 1 \mathrm{H}), 5.89(\mathrm{~s}, 1 \mathrm{H}), 4.02(\mathrm{~s}, 1 \mathrm{H}), 3.57-3.48(\mathrm{~m}, 7 \mathrm{H}), 3.24(\mathrm{~s}, 2 \mathrm{H}), 2.68(\mathrm{~d}, J=$ 16.0 Hz, 1H), 2.20-2.10 (m, 2H), 1.79-1.63 (m, 10H); ${ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO- d_{6}) δ 146.6, $140.8,124.2,120.6,119.1,118.5,56.8,53.3,52.7,34.5,34.3,29.3,28.8,28.0,27.2,24.4,21.6$, 17.7. IR (KBr) v $3456,1611,1276,1178 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd for $\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{NaBr}_{2}[\mathrm{M}+\mathrm{Na}]^{+}$: 543.0219, found: 543.0218.

1,1'-Dimethyl-5,5'-dinitro-1,1',2,3,4,4'-hexahydro-2,3'-bipyridine (25)
Red solid obtained by column chromatography (petroleum ether/ethyl acetate $=3: 1$ to $2: 1$); 38.0 $\mathrm{mg}, 90 \%$ yield; reaction time $=34 \mathrm{~h} ; \mathrm{mp} 146.9-147.7^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 8.38$ $(\mathrm{s}, 1 \mathrm{H}), 8.07(\mathrm{~s}, 1 \mathrm{H}), 5.86(\mathrm{~s}, 1 \mathrm{H}), 3.92(\mathrm{~s}, 1 \mathrm{H}), 3.21(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.20(\mathrm{~s}, 3 \mathrm{H}), 3.16(\mathrm{~s}, 3 \mathrm{H})$, 2.69-2.65 (m, 1H), 2.22-2.14 (m, 1H), 2.10-2.05 (m, 1H), 1.74-1.65 (m, 1H); ${ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO- d_{6}) $\delta 147.5,141.6,125.3,120.2,118.7,118.1,58.9,39.9,39.7,24.3,21.4,17.4 . \operatorname{IR}(\mathrm{KBr})$ v 3443, 1617, 1281, $1192 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 303.1069$, found: 303.1068 .

1,1'-Diethyl-5,5'-dinitro-1,1',2,3,4,4'-hexahydro-2,3'-bipyridine (26)
Red solid obtained by column chromatography (petroleum ether/ethyl acetate $=2: 1$ to $1: 1$); 20.0 $\mathrm{mg}, 43 \%$ yield; reaction time $=34 \mathrm{~h} ; \mathrm{mp} 191.9-192.4^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right) \delta 8.38$ $(\mathrm{s}, 1 \mathrm{H}), 8.10(\mathrm{~s}, 1 \mathrm{H}), 5.92(\mathrm{~s}, 1 \mathrm{H}), 4.05(\mathrm{~s}, 1 \mathrm{H}), 3.57-3.43(\mathrm{~m}, 3 \mathrm{H}), 3.29(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.24(\mathrm{~s}$, $2 \mathrm{H}), 2.71-2.67(\mathrm{~m}, 1 \mathrm{H}), 2.20-2.09(\mathrm{~m}, 2 \mathrm{H}), 1.67-1.58(\mathrm{~m}, 1 \mathrm{H}), 1.18(\mathrm{t}, J=8.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.11(\mathrm{t}, J=$ $8.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO- d_{6}) $\delta 146.3,140.6,124.0,120.4,119.0,118.9,56.6$, $49.2,48.9,24.5,21.7,17.7,15.1,14.2 . \mathrm{IR}(\mathrm{KBr})$ v 3453, 1617, 1302, 1244, $1186 \mathrm{~cm}^{-1} . \mathrm{HRMS}$ (ESI) calcd for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 331.1382$, found: 331.1386.
5. Experimental data for the formation of 29 and 30

General procedure: To a 5.0 mL vial were successively added pyridinium salts (0.2 mmol), Hantzsch ester ($0.3 \mathrm{mmol}, 1.5$ equiv) and 1.0 mL of DMSO. The resulting mixture was stirred at room temperature for 15 min . Then, water was added, and the reaction mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 2.0 \mathrm{~mL})$. The combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After removal of the solvent, the residue was purified by column chromatography on silica gel using petroleum ether/ethyl acetate as the eluent to produce compounds $\mathbf{2 9}$ and $\mathbf{3 0}$.

1-Benzyl-3-nitro-1,4-dihydropyridine (29)
Red solid obtained by column chromatography (petroleum ether/ethyl acetate $=12: 1$ to $10: 1$); 48.0 $\mathrm{mg}, 74 \%$ yield; reaction time $=15 \mathrm{~min} ; \mathrm{mp} 56.4-57.6^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right) \delta 8.26$ $(\mathrm{s}, 1 \mathrm{H}), 7.39-7.33(\mathrm{~m}, 5 \mathrm{H}), 6.10(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.24(\mathrm{t}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.64(\mathrm{~s}, 2 \mathrm{H}), 3.32(\mathrm{~s}$, 2H); ${ }^{13} \mathrm{C}$ NMR (125 MHz, DMSO- d_{6}) $\delta 141.6,136.6,128.8,128.0,127.8,127.7,120.7,110.0$, 56.5, 23.6. IR (KBr) v 1673, 1591, 1282, $1215 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd for $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Na}$ $[\mathrm{M}+\mathrm{Na}]^{+}: 239.0796$, found: 239.0799.

3-Nitro-1-(4-nitrobenzyl)-1,4-dihydropyridine (30)
Yellow solid obtained by column chromatography (petroleum ether/ethyl acetate $=4: 1$ to $3: 1$); $43.0 \mathrm{mg}, 55 \%$ yield; reaction time $=15 \mathrm{~min} ; \mathrm{mp} 153.1-154.4{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right)$ $\delta 8.29(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.25(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.62(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.11\left(\mathrm{dd}, J_{I}=10.0\right.$ $\left.\mathrm{Hz}, J_{2}=5.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.28-5.25(\mathrm{~m}, 1 \mathrm{H}), 4.81(\mathrm{~s}, 2 \mathrm{H}), 3.33-3.32(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz , DMSO- d_{6}) $\delta 147.2,144.5,141.6,128.7,127.7,123.9,121.3,110.1,55.6,23.5$. IR (KBr) $\vee 1672$, 1599, 1522, 1332, $1216 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd for $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{~N}_{3} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}: 262.0828$, found: 262.0829.

6. Methodology application

6.1 Scalable preparation of 2

General procedure for scalable preparation of 2: To a solution of 3-nitropyridinium salt $\mathbf{1}$ $(1.18 \mathrm{~g}, 4.0 \mathrm{mmol})$ in DMSO $(13 \mathrm{~mL})$ was added Hantzsch ester $(1.52 \mathrm{~g}, 6.0 \mathrm{mmol})$ successively. The reaction went completion within 10 min with stirring at $100^{\circ} \mathrm{C}$. After cooling down to room temperature, water was added, and the reaction mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After removal of the solvent, the residue was purified by column chromatography on silica gel using petroleum ether/ethyl acetate (4:1 to $3: 1$) as the eluent to produce compound 2 in 57% yield $(0.71 \mathrm{~g})$.

6.2 Derivation of 2

General procedure for the preparation of 27: To a 5.0 mL vial were successively added $\mathbf{2}$ $(62.6 \mathrm{mg}, 0.2 \mathrm{mmol}), \mathrm{PCC}(64.7 \mathrm{mg}, 0.3 \mathrm{mmol})$ and 1.0 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. Then, the resulting mixture was stirred at room temperature until complete consumption of 2 as monitored by thin layer chromatography. After 12 h , the reaction mixture was directly subjected to flash column chromatography on silica gel (petroleum ether/ ethyl acetate) to afford the corresponding product 27 in 46\% yield.

1-Benzyl-5-nitropyridin-2(1H)-one (27)
White solid obtained by column chromatography (petroleum ether/ethyl acetate $=12: 1$ to $10: 1$); $21.0 \mathrm{mg}, 46 \%$ yield; reaction time $=12 \mathrm{~h} ; \mathrm{mp} 104.2-104.5^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.59$ $(\mathrm{d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.04\left(\mathrm{dd}, J_{l}=12.0 \mathrm{~Hz}, J_{2}=4.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.40-7.32(\mathrm{~m}, 5 \mathrm{H}), 6.57(\mathrm{~d}, J=8.0$
$\mathrm{Hz}, 1 \mathrm{H}), 5.17(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 161.4,139.0,134.3,133.0,130.8,129.2$, 128.8, 128.4, 119.6, 53.1. IR (KBr) v 3117, 1671, 1341, $1089 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd for $\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{~N}_{2} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 231.0770$, found: 231.0770.

General procedure for the preparation of 28: To a 5.0 mL vial were successively added $\mathbf{2}$ ($62.6 \mathrm{mg}, 0.2 \mathrm{mmol}$), TFA $(29.7 \mu \mathrm{~L}, 0.4 \mathrm{mmol})$ and 1.0 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The resulting mixture was stirred at room temperature until complete consumption of 2 as monitored by thin layer chromatography. After 4 h , the reaction mixture was directly subjected to flash column chromatography on silica gel (petroleum ether/ ethyl acetate) to afford the corresponding product 28 in 61\% yield.

1-Benzyl-3-bromo-5-nitro-1,4-dihydropyridine (28)
Yellow solid obtained by column chromatography (petroleum ether/ethyl acetate $=15: 1$ to $12: 1$); $36.0 \mathrm{mg}, 61 \%$ yield; reaction time $=4 \mathrm{~h} ; \mathrm{mp} 98.7-99.5^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.81(\mathrm{~d}$, $J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.34-7.27(\mathrm{~m}, 3 \mathrm{H}), 7.14(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.09(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.38(\mathrm{~s}, 2 \mathrm{H})$, $3.68(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 138.6,134.4,129.3,128.9,127.5,127.3$, 121.9, 107.0, 58.4, 33.2. IR (KBr) v 3024, 1667, 1600, 1303, 1191, $1095 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd for $\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{NaBr}[\mathrm{M}+\mathrm{Na}]^{+}: 316.9902$, found: 316.9903.

7. Crystal structures

7.1 Crystal structure of 3

Preparation of the single crystals of $\mathbf{3}: 15.0 \mathrm{mg}$ of pure compound $\mathbf{3}$ was dissolved in the combined solvents of dichloromethane and methanol $(2 \mathrm{~mL}, \mathrm{v} / \mathrm{v}=1: 1)$ at room temperature. The bottle was sealed by a piece of plastic film with several tiny holes, thus allowing slow evaporation of the solvents at room temperature. After about five days, several small particles were observed at the bottom of the bottle. The crystals were chosen and subjected to the single crystal X-ray diffraction analysis for the determination of the structure and relative configuration of $\mathbf{3}$. The data
were collected by SuperNova, Dual, Cu at zero, AtlasS2 diffractometer at 220.00(10) K.

Table S2. Crystal data and structure refinement for 3.
Identification code 3

Empirical formula	$\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{BrN}_{2} \mathrm{O}_{4}$
Formula weight	343.18
Temperature/K	$220.00(10)$
Crystal system	monoclinic

Space group $\quad \mathrm{C} 2 / \mathrm{c}$

a / \AA	$19.5005(19)$
b / \AA	$7.9603(6)$
c / \AA	$18.992(2)$
$\alpha^{\circ} \AA^{\circ}$	90

$\beta /{ }^{\circ} \quad 110.951(13)$
$\gamma /{ }^{\circ} 90$
Volume $/ \AA^{3} \quad 2753.2(5)$
Z 8
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3} \quad 1.656$
$\mu / \mathrm{mm}^{-1} \quad 3.001$
$\mathrm{F}(000) \quad 1392.0$
$\begin{array}{ll}\text { Crystal size } / \mathrm{mm}^{3} & 0.14 \times 0.12 \times 0.1 \\ \text { Radiation } & \text { Mo K } \alpha(\lambda=0.71073)\end{array}$
2Θ range for data collection $/{ }^{\circ} 4.474$ to 49.994
Index ranges
$-17 \leq h \leq 23,-9 \leq k \leq 7,-22 \leq 1 \leq 22$

Reflections collected
5471

Independent reflections $2432\left[\mathrm{R}_{\mathrm{int}}=0.0267, \mathrm{R}_{\text {sigma }}=0.0390\right]$
Data/restraints/parameters 2432/0/183
Goodness-of-fit on $\mathrm{F}^{2} \quad 1.069$
Final R indexes $[\mathrm{I}>=2 \sigma(\mathrm{I})] \quad \mathrm{R}_{1}=0.0365, \mathrm{wR}_{2}=0.0771$
Final R indexes [all data] $\quad \mathrm{R}_{1}=0.0543, \mathrm{wR}_{2}=0.0853$
Largest diff. peak/hole / e $\AA^{-3} 0.65 /-0.25$

7.2 Crystal structure of 9

Preparation of the single crystals of 9: 28.0 mg of pure compound 9 was dissolved in the combined solvents of dichloromethane and methanol $(2.0 \mathrm{~mL}, \mathrm{v} / \mathrm{v}=1: 1)$ at room temperature. The bottle was sealed by a piece of plastic film with several tiny holes, thus allowing slow evaporation of the solvents at room temperature. After one day, several small particles were observed at the bottom of the bottle. The crystals were chosen and subjected to the single crystal X-ray diffraction analysis for the determination of the structure and relative configuration of 9 . The data were collected on a SuperNova, Dual, Cu at zero, AtlasS2 diffractometer. The crystal was kept at 150.00(10) K during data collection.

Table S3. Crystal data and structure refinement for 9.
Identification code 9

Empirical formula	$\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{BrN}_{2} \mathrm{O}_{3}$
Formula weight	325.16
Temperature/K	$150.00(10)$
Crystal system	monoclinic
Space group	$\mathrm{P}_{1} / \mathrm{c}$
a/A	$10.5757(3)$

b / \AA	$12.8565(3)$
c / \AA	$10.0965(3)$
$\alpha /{ }^{\circ}$	90
$\beta /{ }^{\circ}$	$111.417(3)$
$\gamma /{ }^{\circ}$	90
Volume $/ \AA^{3}$	$1277.99(7)$
Z	4
$\rho_{\text {calcg }} / \mathrm{cm}^{3}$	1.690
μ / mm^{-1}	4.455
$\mathrm{~F}(000)$	656.0
Crystal size $/ \mathrm{mm}^{3}$	$0.14 \times 0.12 \times 0.11$
Radiation	$\mathrm{Cu} \mathrm{K} \alpha(\lambda=1.54184)$

2Θ range for data collection $/{ }^{\circ} 8.982$ to 147.142
Index ranges $\quad-8 \leq h \leq 12,-14 \leq k \leq 15,-12 \leq 1 \leq 9$
Reflections collected 4547
Independent reflections $2498\left[\mathrm{R}_{\text {int }}=0.0497, \mathrm{R}_{\text {sigma }}=0.0461\right]$
Data/restraints/parameters 2498/0/172
Goodness-of-fit on $\mathrm{F}^{2} \quad 1.038$
Final R indexes [I>=2 $\sigma(\mathrm{I})] \quad \mathrm{R}_{1}=0.0681, \mathrm{wR}_{2}=0.2046$
Final R indexes [all data] $\quad \mathrm{R}_{1}=0.0706, \mathrm{wR}_{2}=0.2098$
Largest diff. peak/hole / e \AA^{-3} 1.34/-1.96

7.3 Crystal structure of 10

Preparation of the single crystals of $\mathbf{1 0}: 15.0 \mathrm{mg}$ of pure compound $\mathbf{1 0}$ was dissolved in the combined solvents of dichloromethane and methanol $(1.5 \mathrm{~mL}, \mathrm{v} / \mathrm{v}=2: 1)$ at room temperature. The bottle was sealed by a piece of plastic film with several tiny holes, thus allowing slow evaporation of the solvents at room temperature. After two days, several small particles were observed at the bottom of the bottle. The crystals were chosen and subjected to the single crystal X-ray diffraction analysis for the determination of the structure and relative configuration of $\mathbf{1 0}$. The data were
collected on a SuperNova, Dual, Cu at zero, AtlasS2 diffractometer. The crystal was kept at 200.00 (10) K during data collection.

Table S4. Crystal data and structure refinement for 10.

Identification code	10
Empirical formula	$\mathrm{C}_{10} \mathrm{H}_{15} \mathrm{BrN}_{2} \mathrm{O}_{3} \mathrm{~S}$
Formula weight	323.21
Temperature/K	200.00(10)
Crystal system	monoclinic
Space group	$\mathrm{P} 21 / \mathrm{c}$
a / \AA	7.8851(8)
b/Å	16.802(2)
c/Å	10.6416(9)
$\alpha /{ }^{\circ}$	90
$\beta /{ }^{\circ}$	111.647(11)
$\gamma{ }^{\circ}$	90
Volume/A ${ }^{3}$	1310.4(3)
Z	4
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$	1.638
μ / mm^{-1}	3.295
$\mathrm{F}(000)$	656.0
Crystal size/ $/ \mathrm{mm}^{3}$	$0.14 \times 0.13 \times 0.1$
Radiation	Mo K $\alpha(\lambda=0.71073)$
2Θ range for data collection/ ${ }^{\circ} 4.778$ to 49.998	
Index ranges	$-9 \leq h \leq 9,-19 \leq k \leq 17$

Reflections collected
6558

Independent reflections
Data/restraints/parameters 2256/20/166
Goodness-of-fit on F^{2} 1.024

Final R indexes $[\mathrm{I}>=2 \sigma(\mathrm{I})] \quad \mathrm{R}_{1}=0.0342, \mathrm{wR}_{2}=0.0705$
Final R indexes [all data] $\quad \mathrm{R}_{1}=0.0505, \mathrm{wR}_{2}=0.0762$
Largest diff. peak/hole / e $\AA^{-3} 0.56 /-0.30$

7.4 Crystal structure of 18

Preparation of the single crystals of $\mathbf{1 8}: 28.0 \mathrm{mg}$ of pure compound $\mathbf{1 8}$ was dissolved in the combined solvents of dichloromethane and methanol $(2.0 \mathrm{~mL}, \mathrm{v} / \mathrm{v}=1: 1)$ at room temperature. The bottle was sealed by a piece of plastic film with several tiny holes, thus allowing slow evaporation of the solvents at room temperature. After about half a day, several small particles were observed at the bottom of the bottle. The crystals were chosen and subjected to the single crystal X-ray diffraction analysis for the determination of the structure and relative configuration of $\mathbf{1 8}$. The data were collected by a Bruker D8 VENTURE PHOTON II CCD diffractometer at 149.99(10) K.

Table S5. Crystal data and structure refinement for 18.
Identification code 18

Empirical formula	$\mathrm{C}_{24} \mathrm{H}_{24} \mathrm{~N}_{4} \mathrm{O}_{4}$
Formula weight	432.47
Temperature/K	$149.99(10)$
Crystal system	monoclinic
Space group	P 21
a/A	$8.7417(2)$
b/A	$13.7590(2)$

c/Å	9.4773(2)
$\alpha /{ }^{\circ}$	90
$\beta /{ }^{\circ}$	112.031(2)
$\gamma /{ }^{\circ}$	90
Volume/ \AA^{3}	1056.67(4)
Z	2
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$	1.359
μ / mm^{-1}	0.772
$F(000)$	456.0
Crystal size/mm ${ }^{3}$	$0.14 \times 0.12 \times 0.1$
Radiation	$\mathrm{Cu} \mathrm{K} \alpha(\lambda=1.54184)$
2Θ range for data collection	¹0.068 to 147.04
Index ranges	$-10 \leq \mathrm{h} \leq 10,-12 \leq \mathrm{k} \leq 16,-10 \leq 1 \leq 11$
Reflections collected	4080
Independent reflections	$2982\left[\mathrm{R}_{\mathrm{int}}=0.0195, \mathrm{R}_{\text {sigma }}=0.0279\right]$
Data/restraints/parameters	2982/1/298
Goodness-of-fit on F^{2}	1.054
Final R indexes [$\mathrm{I}>=2 \sigma(\mathrm{I})$]	$\mathrm{R}_{1}=0.0315, \mathrm{wR}_{2}=0.0833$
Final R indexes [all data]	$\mathrm{R}_{1}=0.0320, \mathrm{wR}_{2}=0.0838$
Largest diff. peak/hole / e \AA	${ }^{3} 0.18 /-0.18$
Flack parameter	0.58(15)

7.5 Crystal structure of 27

Preparation of the single crystals of 27: 21.0 mg of pure compound $\mathbf{2 7}$ was dissolved in the combined solvents of chloroform and methanol $(1.5 \mathrm{~mL}, \mathrm{v} / \mathrm{v}=2: 1)$ at room temperature. The bottle was sealed by a piece of plastic film with several tiny holes, thus allowing slow evaporation of the solvents at room temperature. After about two days, several small particles were observed at the bottom of the bottle. The crystals were chosen and subjected to the single crystal X-ray diffraction analysis for the determination of the structure of 27 . The data were collected by
a XtaLAB AFC12 (RINC): Kappa single diffractometer at 100.00(10) K.

Table S6. Crystal data and structure refinement for 27.
Identification code 27

Empirical formula	$\mathrm{C}_{24} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}_{6}$
Formula weight	460.44
Temperature/K	$100.00(10)$

Crystal system	monoclinic
Space group	$\mathrm{P} 21 / \mathrm{c}$
a / \AA	$12.1802(2)$
b / \AA	$11.8247(2)$
c / \AA	$14.6931(3)$
$\alpha /{ }^{\circ}$	90

$\beta /{ }^{\circ}$	$90.067(2)$
$\gamma /{ }^{\circ}$	90
Volume $/ \AA^{3}$	$2116.21(7)$
Z	4

$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3} \quad 1.445$
$\mu / \mathrm{mm}^{-1} \quad 0.886$
$F(000) \quad 960.0$
$\begin{array}{ll}\text { Crystal size } / \mathrm{mm}^{3} & 0.14 \times 0.12 \times 0.11 \\ \text { Radiation } & \mathrm{Cu} \mathrm{K} \alpha(\lambda=1.54184)\end{array}$
2Θ range for data collection $/{ }^{\circ} 7.258$ to 143.812
Index ranges $\quad-14 \leq h \leq 14,-14 \leq k \leq 14,-17 \leq 1 \leq 12$
Reflections collected 18367

Independent reflections $\quad 4023\left[\mathrm{R}_{\text {int }}=0.0535, \mathrm{R}_{\text {sigma }}=0.0464\right]$
Data/restraints/parameters 4023/0/307
Goodness-of-fit on $\mathrm{F}^{2} \quad 1.053$
Final R indexes $[\mathrm{I}>=2 \sigma(\mathrm{I})] \quad \mathrm{R}_{1}=0.0410, \mathrm{wR}_{2}=0.1063$
Final R indexes [all data] $\quad \mathrm{R}_{1}=0.0482, \mathrm{wR}_{2}=0.1115$
Largest diff. peak/hole / e $\AA^{-3} 0.19 /-0.25$

8. NMR spectra

${ }^{13} \mathrm{C}$ NMR spectrum of $2\left(100 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right)$
$2 \mathrm{CC}-4$

\qquad

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{4}\left(100 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of $5\left(400 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $5\left(100 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right)$
$2 \mathrm{CC}-40$

$\stackrel{\square}{6}$	
$\stackrel{\square}{\infty}$	
-	

${ }^{13} \mathrm{C}$ NMR spectrum of $6\left(100 \mathrm{MHz}\right.$ ，DMSO－$\left.d_{6}\right)$ 2023－02－23
$\begin{array}{ll}\infty \\ \underset{\sim}{\tilde{j}} & \stackrel{\bar{\infty}}{\infty} \\ \Gamma\end{array}$
 ベト

$\stackrel{\bar{\infty}}{\stackrel{\infty}{\infty}}$

${ }^{13} \mathrm{C}$ NMR spectrum of $7\left(100 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right)$
2CC-22-2

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{8}\left(100 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right)$
2CC-37-2

${ }^{13} \mathrm{C}$ NMR spectrum of $9\left(100 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right)$
$2 \mathrm{CC}-37-1$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 0}\left(400 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{1 0}\left(100 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 1}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{1 1}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
ZCC-119-1

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 2}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

ZCC-164
${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{1 2}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 3}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{1 3}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
ZCC-163-C-500M

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 4}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{1 4}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 5}\left(400 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{1 5}\left(100 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right)$
zCC-48-2

$\underset{\sim}{\approx}$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 6}\left(400 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right)$
zCC-35

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{1 6}\left(100 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right)$
zCC-35

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 7}\left(400 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{1 7}\left(100 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right)$
zCC-36

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{1 8}\left(100 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right)$
2CC-11-2

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{1 9}\left(100 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right)$
zCC-52

\qquad
${ }^{1} \mathrm{H}$ NMR spectrum of $20\left(400 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right)$
$\underbrace{\infty} \infty$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{2 0}\left(100 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right)$
zCC-55

${ }^{1} \mathrm{H}$ NMR spectrum of 21 (400 MHz, DMSO- d_{6})
zCC-47

${ }^{13} \mathrm{C}$ NMR spectrum of $2 \mathbf{2 1}\left(100 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right)$
$2 \mathrm{CC}-47$

$\overline{-}$
$\stackrel{1}{1}$

${ }^{1} \mathrm{H}$ NMR spectrum of $22\left(400 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right)$
$2 c \mathrm{C}-51$

 $\iiint \rho$

${ }^{13} \mathrm{C}$ NMR spectrum of $22\left(100 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right)$
2CC-51
Nomnioñont
¢im cim

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{2 3}$ (400 MHz , DMSO- d_{6})
ZCC-57

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{2 3}\left(100 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right)$
2CC-57

 ©i

${ }^{1} \mathrm{H}$ NMR spectrum of $24\left(400 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $24\left(100 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right)$
2CC-63

${ }^{1} \mathrm{H}$ NMR spectrum of $25\left(400 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{2 5}\left(100 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right)$
2CC-58

${ }^{1} \mathrm{H}$ NMR spectrum of $26\left(400 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{2 6}\left(100 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right)$
2CC-59

${ }^{1} \mathrm{H}$ NMR spectrum of $27\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
ZCC-68-SD

$\stackrel{\stackrel{i}{i}}{i}$

 \square

${ }^{13} \mathrm{C}$ NMR spectrum of $27\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of $28\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
2CC-69

L.alu

$\stackrel{\text { ®. }}{\text { ®. }}$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{2 8}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
ZCC-69
-

${ }^{1} \mathrm{H}$ NMR spectrum of $29\left(500 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{2 9}$ (125 MHz , DMSO- d_{6})

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 0}$ (500 MHz , DMSO- d_{6})

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3 0}\left(125 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right)$

[^1]
[^0]: ${ }^{a}$ Unless otherwise noted, the reactions were performed using pyridinium salt $\mathbf{1}(0.2 \mathrm{mmol})$, and Hantzsch ester $(0.3 \mathrm{mmol})$ in solvent $(1.0 \mathrm{~mL}) .{ }^{b}$ Isolated yield obtained by silica gel column chromatography.

[^1]:

