Supplementary Information

Fabrication of NiMn₂O₄/C hollow spheres with trilaminar shell structure as anode material for sodium-ion batteries

Tao Liu,^a Xuejie Wang,^a Yang Han,^a Yingqi Wu,^a Liuyang Zhang^{*a} and Jiaguo Yu^{*a}

a. Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, 68 Jincheng Street, Wuhan 430078, P. R. China

Experimental section

Synthesis of CHSs

70 mL of absolute ethanol was mixed with 10 mL of H_2O and 3 mL of ammonium hydroxide. The mixture was stirred for 15 min to form a homogeneous solution. Then, 3.46 mL of tetraethyl orthosilicate (TEOS) was dropwise added and stirred for another 20 min. 0.44 g of resorcinol and 0.5 mL of formaldehyde were added into the above solution and continuously stirred for 24 h. After washing with H_2O and ethanol, $SiO_2@PF$ was obtained. $SiO_2@PF$ was annealed at 800 °C for 2 h under N_2 atmosphere to prepare the $SiO_2@C$. Finally, CHSs were harvested by the etching of $SiO_2@C$ with hydrofluoric acid.

Fabrication of NiMn₂O₄@CHS

20 mg of CHSs was added into 80 mL of H_2O and treated with ultrasonic for 10 minutes to form a uniform dispersion. Then, 1.5 mmol KMnO₄ and 0.75 mmol of Ni(NO₃)₂·6H₂O were added to the mixture and continuously stirred for 5 min. The solution was transferred into a Teflon autoclave and maintained at 120 °C for 10 h in the oven. NiMn-LDH/CHS was obtained after washing with distilled water and anhydrous ethanol. Finally, NiMn-LDH/CHS was converted into NiMn₂O₄@CHS after calcination at 350 °C for 2 h under N₂ atmosphere. For comparison, pure NiMn₂O₄

without carbon spheres was prepared under the same hydrothermal conditions.

Material characterization

X-ray diffraction (XRD) patterns were collected on the Shimadzu XRD 6100 diffractometer (Cu K_{α}, λ = 0.15418 nm). The microstructure morphology was observed by field emission scanning electron microscope (FESEM, JSM-7500) and transmission electron microscopy (TEM, Titan G2). X-ray photoelectron spectroscopy (XPS) was collected on Thermo ESCALA 250. The Brunauer-Emmett-Teller (BET) specific surface area (S_{BET}) and the pore size distribution via the Barret-Joyner-Halender (BJH) method. were determined on the micromeritics nitrogen adsorption apparatus (ASAP 2020).

Electrochemical characterization

The preparation procedure of the working electrode is as follows: first, NiMn₂O₄@CHS, carbon black, and PVDF (polyvinylidene fluoride) (the weight ratio of 7:2:1) were mixed to form a uniform slurry. Then, the paste was coated on the copper foil and dried in a vacuum at 80 °C for 12h. Finally, the copper foil was cut into a disc with a diameter of 10 mm as the working electrode. The mass loading of active material was about 1.2 mg cm⁻². In half cell, sodium metal foil is used as counter and reference electrode. Glass fiber membrane (Whatman) and 1M NaClO₄ were used as separator and electrolyte, respectively. The coin cells were assembled in a glove box containing high-purity argon (H₂O and O₂ < 0.5 ppm). All the electrochemical tests of the samples were carried out in the battery test system (Neware) and electrochemical workstation (CHI 760E).

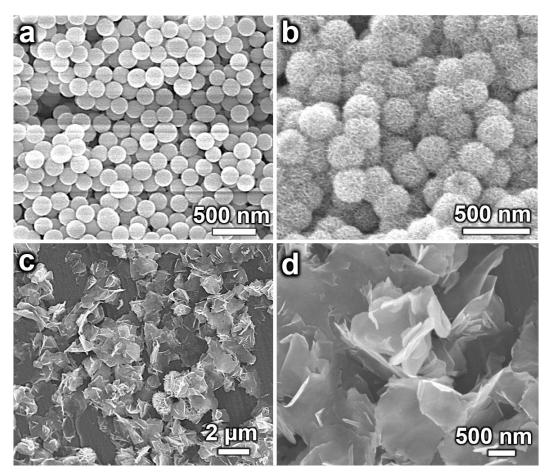
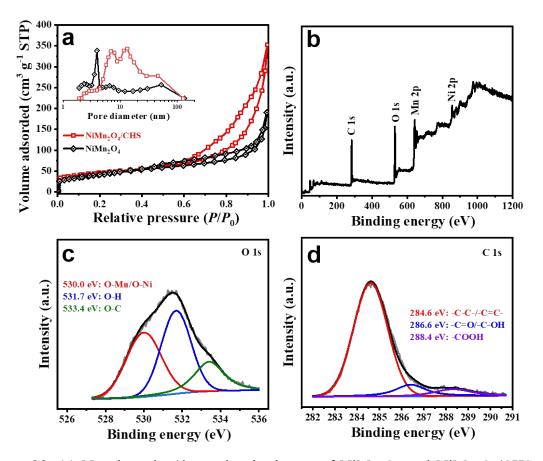



Figure S1. FESEM images of (a) CHS, (b) NiMn₂O₄/CHS, and (c, d) pure NiMn₂O₄.

Figure S2. (a) N_2 adsorption/desorption isotherms of $NiMn_2O_4$ and $NiMn_2O_4/CHS$ together with their corresponding pore size distribution. (b) XPS survey spectrum of $NiMn_2O_4/CHS$. High-resolution XPS spectra of (c) O 1s and (d) C 1s.

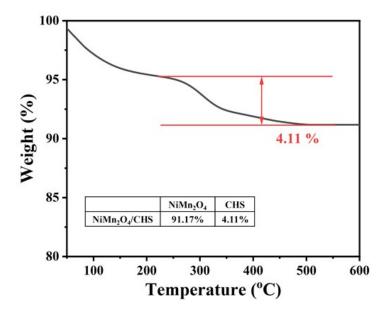


Figure S3. Thermogravimetric analysis of NiMn₂O₄/CHS composite.

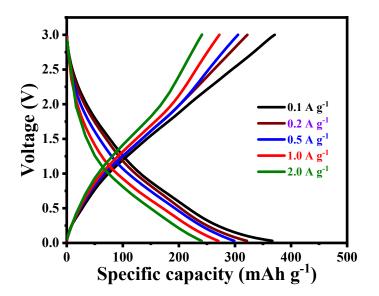
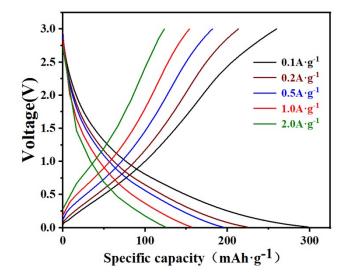



Figure S4. Voltage profiles of NiMn₂O₄/CHS at various current densities.

Figure S5. The constant current charge/discharge curves of CHS at different current densities.

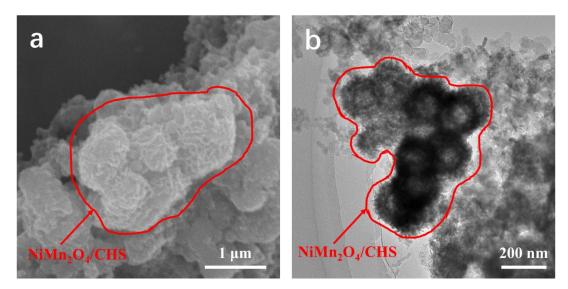


Figure S6. The (a) SEM and (b) TEM image of $NiMn_2O_4/CHS$ after cycling test.