Electronic Supplementary Material (ESI) for Chemical Communications. This journal is © The Royal Society of Chemistry 2023

Rh(III)-Catalyzed Selective Mono- and Dual Functionalization/Cyclization of 1-aryl-5-aminopyrazoles with

Iodonium Ylides

Longkun Chen,^a Mingshuai Zhang,^a Meichen Liu,^a Zhuoyuan Liu,^a Yuetong Qiu,^a Zhilai Zhang,^a Fuchao Yu^{*a} and Jiuzhong Huang^{*b}

^aFaculty of Life Science and Technology, Kunming, University of Science and Technology, Kunming, 650500, P. R. of China. E-mail: <u>yufc@kust.edu.cn</u>; <u>yufuchao05@126.com</u>; ^bSchool of Pharmacy and Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou, 341000, P. R. China. E-mail: <u>huangjz@gmu.edu.cn</u>;

Table of Contents

1. General information.	2
2. Optimization of reaction conditions.	3
3. General procedure.	4
4. Spectroscopic data	9
5. X-ray Structure and Data ³ of 3j (CCDC 2292416) and 4r (CCDC 2292417)	34
6. ¹ H NMR and ¹³ C NMR spectra for spectroscopic data	
7. References and notes	149

1. General information.

All compounds were fully characterized by spectroscopic data. The NMR spectra were recorded on a DRX600 (¹H: 600 MHz, ¹³C: 150 MHz) and DRX500 (¹H: 500 MHz, ¹³C: 125 MHz), chemical shifts (δ) are expressed in ppm, and *J* values are given in Hz, and deuterated CDCl₃ and DMSO-*d*₆ were used as solvent. The reactions were monitored by thin layer chromatography (TLC) using silica gel GF₂₅₄. The melting points were determined on XT-4A melting point apparatus and are uncorrected. HRMS were performed on an Agilent LC/MS TOF instrument.

All chemicals and solvents were used as received without further purification unless otherwise stated. Column chromatography was performed on silica gel (200–300 mesh).

1-Aryl-5-aminopyrazoles 1 were prepared according to the literature¹, iodonium ylides 2 were prepared according to the literature². Other reagents were purchased from Energy Chemical and Adamas-beta \mathbb{R} .

Figure S1. Representative bioactive polycyclic molecules.

2. Optimization of reaction conditions.

ſ	Vie		Me		
	N _N _{NH2}			N	
		Ph cata	alyst, additive	N_N_N	NH N
	+ Me	~ <u></u> 0	solvent, T		Me
	1a	2a			Ja Me
entrya	catalyst	additive	solvent	T (°C)	yield (%)
1	[Cp*RhCl ₂] ₂	AgSbF ₆	TFE	60	48
2	[Cp*IrCl ₂] ₂	AgSbF ₆	TFE	60	trace
3	RhI ₃	AgSbF ₆	TFE	60	trace
4	$[RhCl(cod)]_2$	$AgSbF_6$	TFE	60	0
5	[Cp*RhCl ₂] ₂	-	TFE	60	36
6	[Cp*RhCl ₂] ₂	AgF	TFE	60	40
7	[Cp*RhCl ₂] ₂	AgTFA	TFE	60	65
8	[Cp*RhCl ₂] ₂	AgNO ₃	TFE	60	32
9	[Cp*RhCl ₂] ₂	Ag ₂ CO ₃	TFE	60	trace
10	[Cp*RhCl ₂] ₂	AgOAc	TFE	60	36
11	[Cp*RhCl ₂] ₂	AgCl	TFE	60	20
12	[Cp*RhCl ₂] ₂	AgTFA	^t BuOH	60	38
13	[Cp*RhCl ₂] ₂	AgTFA	EtOH	60	63
14	[Cp*RhCl ₂] ₂	AgTFA	DCE	60	40
15	[Cp*RhCl ₂] ₂	AgTFA	DMSO	60	48
16	[Cp*RhCl ₂] ₂	AgTFA	HFIP	60	76
17^{c}	[Cp*RhCl ₂] ₂	AgTFA	HFIP	60	64
18^{d}	[Cp*RhCl ₂] ₂	AgTFA	HFIP	60	76
19 ^e	[Cp*RhCl ₂] ₂	AgTFA	HFIP	60	75
20 ^f	[Cp*RhCl ₂] ₂	AgTFA	HFIP	60	70
21	[Cp*RhCl ₂] ₂	AgTFA	HFIP	40	66
22	[Cp*RhCl ₂] ₂	AgTFA	HFIP	80	89
23	[Cp*RhCl ₂] ₂	AgTFA	HFIP	100	78
24 ^g	[Cp*RhCl ₂] ₂	AgTFA	HFIP	80	63
25^{h}	[Cp*RhCl ₂] ₂	AgTFA	HFIP	80	89

Table S1. Optimization of the mono-C-H functionalization/cyclization reaction conditions.^{a,b}

^{*a*}**1a** (0.3 mmol), **2a** (0.36 mmol, 1.2 equiv), catalyst (2.5 mol%), additive (0.5 equiv), solvent (1.5 mL), at 80 °C for 12 h under air atmosphere; ^{*b*}isolated yield; ^{*c*}**2a** (1.0 equiv); ^{*d*}**2a** (1.5 equiv); ^{*e*}O₂ atmosphere; ^{*f*}N₂ atmosphere; ^{*g*}Catalyst (1.5 mol%); ^{*h*}Catalyst (3.5 mol%).

3. General procedure.

3.1 Synthesis of benzo[f]pyrazolo[1,5-a][1,3]diazepines 3.

1-Aryl-5-aminopyrazoles 1 (0.3 mmol), iodonium ylides 2 (0.36 mmol), $[Cp^*RhCl_2]_2$ (2.5 mol%), AgTFA (0.15 mmol) and HFIP (1.5 mL) were charged into a 10 mL Ace Glass pressure tubes, and the mixture was stirred at 80 °C for 12.0 h until 1 were completely consumed. The mixture was cooled to room temperature, and then EtOAc (15 mL × 2) were added. The organic phase was washed with water (10 mL), dried over Na₂SO₄, concentrated and purified by flash column chromatography to afford 3.

3.2 Synthesis of 4-substituted benzo[f]pyrazolo[1,5-a][1,3]diazepines 4.

1-Aryl-5-aminopyrazoles 1 (0.4 mmol), iodonium ylides 2 (1.2 mmol), $[Cp^*RhCl_2]_2$ (5 mol%), AgTFA (0.2 mmol) and HFIP (2 mL) were charged into a 10 mL Ace Glass pressure tubes, and the mixture was stirred at 80 °C for 12.0 h until 1 were completely consumed. The mixture was cooled to room temperature, and then EtOAc (15 mL × 2) were added. The organic phase was washed with water (10 mL), dried over Na₂SO₄, concentrated and purified by flash column chromatography to afford 4.

3.3 Gram-scale synthesis of benzo[f]pyrazolo[1,5-a][1,3]diazepine 4a.

1-Aryl-5-aminopyrazole **1a** (4 mmol), iodonium ylide **2a** (12 mmol), [Cp*RhCl₂]₂ (5 mol%), AgTFA (2 mmol) and HFIP (15 mL) were charged into a 100 mL Ace Glass

pressure tubes, and the mixture was stirred at 80 °C for 12.0 h until **1** were completely consumed. The mixture was cooled to room temperature, and then EtOAc (30 mL \times 2) were added. The organic phase was washed with water (20 mL), dried over Na₂SO₄, concentrated and purified by flash column chromatography to afford **4a** in 68% yield (1.17 g).

3.4 Further transformation of benzo[*f*]pyrazolo[1,5-*a*][1,3]diazepine 3a.

3a (0.25 mmol), hydrohydrate hydrochloride (1.5 mmol), and pyridine (2 mL) were charged into a 10 mL Ace Glass pressure tubes, and the mixture was stirred at 60 °C for 5.0 h until **3a** were completely consumed. The mixture was cooled to room temperature, and then EtOAc (15 mL \times 2) were added. The organic phase was washed with water (10 mL), dried over Na₂SO₄, concentrated and purified by flash column chromatography to afford **5** in 92% yield.

3a (0.25 mmol), ethyl bromoacetate (0.37 mmol), K₂CO₃ (0.25 mmol) and MeCN (2 mL) were charged into a 10 mL Ace Glass pressure tubes, and the mixture was stirred at 60 °C for 6.0 h until **3a** were completely consumed. The mixture was cooled to room temperature, and then EtOAc (15 mL \times 2) were added. The organic phase was washed with water (10 mL), dried over Na₂SO₄, concentrated and purified by flash column chromatography to afford **6** in 83% yield.

3a (0.25 mmol), benzyl bromide (0.37 mmol), K_2CO_3 (0.75 mmol) and DMF (2 mL) under nitrogen atmosphere were charged into a 10 mL Ace Glass pressure tubes, and the mixture was stirred at 80 °C for 4.0 h until **3a** were completely consumed. The mixture was cooled to room temperature, and then EtOAc (15 mL × 2) were added. The organic phase was washed with water (10 mL), dried over Na₂SO₄, concentrated and purified by flash column chromatography to afford **7** in 70% yield.

3.5 Control experiment.

1-Phenylpyrazole **8a** or 1-phenylindazole **8b** (0.5 mmol), iodonium ylides **2** (0.6 mmol), $[Cp^*RhCl_2]_2$ (2.5 mol%), AgTFA (0.25 mmol) and HFIP (3 mL) were charged into a 10 mL Ace Glass pressure tubes, and the mixture was stirred at 80 °C for 12.0 h until **8a** or **8b** were completely consumed. The mixture was cooled to room temperature, and then EtOAc (15 mL × 2) were added. The organic phase was washed with water (10 mL), dried over Na₂SO₄, concentrated and purified by flash column chromatography to afford **9**.

3.6 H/D Exchange experiment.

1a (0.3 mmol), $[Cp^*RuCl_2]_2$ (2.5 mol%), AgTFA (0.15 mmol), HFIP (1.5 mL) and MeOD (1.5 mmol) were charged into a 10 mL Ace Glass pressure tubes, and the mixture was stirred at 80 °C for 6.0 h. The mixture was cooled to room temperature, and then EtOAc (15 mL × 2) were added. The organic phase was washed with water (10 mL), dried over Na₂SO₄, concentrated and purified by flash column chromatography to afford *d*-1a.

3m (0.3 mmol), $[Cp^*RuCl_2]_2$ (2.5 mol%), AgTFA (0.15 mmol), HFIP (1.5 mL) and MeOD (1.5 mmol) were charged into a 10 mL Ace Glass pressure tubes, and the mixture was stirred at 80 °C for 6.0 h. The mixture was cooled to room temperature, and then EtOAc (15 mL × 2) were added. The organic phase was washed with water (10 mL), dried over Na₂SO₄, concentrated and purified by flash column chromatography to afford *d*-**3m**.

4. Spectroscopic data.

7,11,11- Timethyl-11,12-dihydro-9*H*-dibenzo[*d*,*f*]pyrazolo[1,5-*a*][1,3]diazepin-13 (10*H*)-one (3a)

V_{Petroleum ether}/V_{Ethyl acetate} = 5:1, R_f = 0.25; Yellow solid: 78 mg (89%); mp = 296–298 °C; ¹H NMR (600 MHz, DMSO-*d*₆): δ = 8.83 (s, 1H. NH), 7.50–7.45 (m, 1H, ArH), 7.22–7.18 (m, 1H, ArH), 7.15–7.12 (m, 2H, ArH), 5.60 (s, 1H, C=CH), 2.45 (s, 2H, CH₂), 2.28 (s, 3H, CH₃), 2.12 (s, 2H, CH₂), 1.03 (s, 3H, CH₃), 1.02 (s, 3H, CH₃); ¹³C NMR (150 MHz, DMSO-*d*₆): δ = 195.4, 164.7, 150.9, 148.9, 139.0, 132.2, 127.5, 126.7, 125.5, 122.3, 114.6, 95.9, 50.8, 44.0, 30.3, 27.8, 27.8, 14.2; HRMS (TOF ES+): m/z calcd for C₁₈H₂₀N₃O [(M+H)⁺], 294.1605, found, 294.1594.

2,7,11,11-Tetramethyl-11,12-dihydro-9*H*-dibenzo[*d*,*f*]pyrazolo[1,5-*a*][1,3]diazepi n-13(10*H*)-one (3b)

V_{Petroleum ether}/V_{Ethyl acetate} = 5:1, R_f = 0.25; Yellow solid: 85 mg (92%); mp = 272–274 °C; ¹H NMR (600 MHz, DMSO- d_6): δ = 8.76 (s, 1H, NH), 7.37 (d, *J* = 8.2 Hz, 1H, ArH), 7.01 (d, *J* = 8.1 Hz, 1H, ArH), 6.96 (s, 1H, ArH), 5.57 (s, 1H, C=CH), 2.44 (s, 2H, CH₂), 2.27 (s, 2H, CH₂), 2.24 (s, 3H, ArCH₃), 2.12 (s, 3H, CH₃), 1.03 (s, 6H, 2CH₃); ¹³C NMR (150 MHz, DMSO- d_6): δ = 195.3, 164.6, 150.5, 148.6, 136.7, 134.4, 132.4, 128.1, 126.5, 122.2, 114.7, 95.7, 50.9, 44.1, 30.3, 27.9, 27.9, 20.9, 14.2; HRMS (TOF ES+): m/z calcd for C₁₉H₂₂N₃O [(M+H)⁺], 308.1757, found, 308.1758.

2-Methoxy-7,11,11-trimethyl-11,12-dihydro-9*H*-dibenzo[*d*,*f*]pyrazolo[1,5-*a*][1,3]d iazepin-13(10*H*)-one (3c)

V_{Petroleum ether}/V_{Ethyl acetate} = 4:1, R_f = 0.25; Yellow solid: 91 mg (94%); mp = 285–287 °C; ¹H NMR (600 MHz, DMSO-*d*₆): δ = 8.81 (s, 1H, NH), 7.40 (d, *J* = 8.9 Hz, 1H, ArH), 6.83–6.81 (m, 1H, ArH), 6.71 (d, *J* = 2.6 Hz, 1H, ArH), 5.76 (s, 1H, C=CH), 3.71 (t, *J* = 3.2 Hz, 3H, ArOCH₃), 2.45 (s, 2H, CH₂), 2.28 (s, 2H, CH₂), 2.12 (s, 3H, CH₃), 1.02 (s, 6H, 2CH₃); ¹³C NMR (150 MHz, DMSO-*d*₆): δ = 195.3, 164.9, 156.8, 150.2, 148.1, 132.4, 127.9, 123.3, 117.3, 114.4, 112.9, 95.5, 55.7, 50.9, 44.2, 30.2, 27.8, 27.8, 14.2; HRMS (TOF ES+): m/z calcd for C₁₉H₂₂N₃O₂ [(M+H)⁺], 324.1707, found, 324.1705.

2-Fluoro-7,11,11-trimethyl-11,12-dihydro-9*H*-dibenzo[*d*,*f*]pyrazolo[1,5-*a*][1,3]dia zepin-13(10*H*)-one (3d)

V_{Petroleum ether}/V_{Ethyl acetate} = 3:1, R_f = 0.25; Yellow solid: 78 mg (84%); mp = 275–277 °C; ¹H NMR (600 MHz, DMSO- d_6): δ = 8.98 (s, 1H, NH), 7.51–7.48 (m, 1H, ArH), 7.09–7.06 (m, 1H, ArH), 6.99–6.97 (m, 1H, ArH), 5.61 (s, 1H, C=CH), 2.47 (s, 2H, CH₂), 2.29 (s, 2H, CH₂), 2.13 (s, 3H, CH₃), 1.02 (s, 6H, 2CH₃); ¹³C NMR (150 MHz, DMSO- d_6): δ = 195.1, 165.4, 159.7 (d, *J* = 240.9 Hz), 151.0, 148.4, 135.4 (d, *J* = 2.5 Hz), 128.7 (d, *J* = 9.0 Hz), 123.9 (d, *J* = 8.7 Hz), 118.2 (d, *J* = 24.1 Hz), 114.4 (d, *J* = 22.6 Hz), 113.4, 96.1, 50.7, 44.2, 30.3, 27.8, 27.8, 14.2; HRMS (TOF ES+): m/z calcd for C₁₈H₁₉FN₃O [(M+H)⁺], 312.1507, found, 312.1509.

2-Bromo-7,11,11-trimethyl-11,12-dihydro-9*H*-dibenzo[*d*,*f*]pyrazolo[1,5-*a*][1,3]dia zepin-13(10*H*)-one (3e)

V_{Petroleum ether}/V_{Ethyl acetate} = 5:1, R_f = 0.25; Yellow solid: 100 mg (90%); mp = 323–325 °C; ¹H NMR (600 MHz, DMSO-*d*₆): δ = 9.04 (s, 1H, NH), 7.43 (t, *J* = 6.4 Hz, 1H, ArH), 7.39 (d, *J* = 6.3 Hz, 1H, ArH), 7.33–7.29 (m, 1H, ArH), 5.62 (s, 1H, C=CH), 2.46 (s, 2H, CH₂), 2.29 (s, 2H, CH₂), 2.12 (s, 3H CH₃), 1.02 (s, 6H, 2CH₃); ¹³C NMR (150 MHz, DMSO-*d*₆): δ = 195.1, 165.5, 151.5, 148.7, 138.3, 134.3, 130.2, 128.5, 124.2, 118.0, 113.1, 96.5, 50.6, 44.1, 30.3, 27.8, 27.8, 14.2; HRMS (TOF ES+): m/z calcd for C₁₈H₁₉BrN₃O [(M+H)⁺], 372.0706, found, 372.0708.

7,11,11-Trimethyl-13-oxo-10,11,12,13-tetrahydro-9*H*-dibenzo[*d*,*f*]pyrazolo[1,5-*a*][1,3]diazepine-2-carbonitrile (3f)

V_{Petroleum ether}/V_{Ethyl acetate} = 2:1, R_f = 0.25; Yellow solid: 89 mg (94%); mp = 299–301 °C; ¹H NMR (600 MHz, DMSO-*d*₆): δ = 7.67 (d, *J* = 8.4 Hz, 1H, ArH), 7.63 (d, *J* = 8.5 Hz, 1H, ArH), 7.58 (s, 1H, ArH), 5.67 (s, 1H, C=CH), 2.48 (s, 2H, CH₂), 2.31 (s, 2H, CH₂), 2.14 (s, 3H, CH₃), 1.03 (s, 6H, 2CH₃); ¹³C NMR (150 MHz, DMSO-*d*₆): δ = 195.0, 165.3, 152.7, 149.2, 142.8, 136.4, 131.0, 127.0, 123.1, 119.1, 112.4, 107.9, 97.2, 50.5, 44.1, 30.3, 27.9, 27.9, 14.2; HRMS (TOF ES+): m/z calcd for C₁₉H₁₉N₄O [(M+H)⁺], 319.1553, found, 319.1551.

2-Bromo-7,11,11-trimethyl-11,12-dihydro-9*H*-dibenzo[*d*,*f*]pyrazolo[1,5-*a*][1,3]dia zepin-13(10*H*)-one (3g)

V_{Petroleum ether}/V_{Ethyl acetate} = 3:1, R_f = 0.25; Yellow solid: 94 mg (87%); mp = 267–269 °C; ¹H NMR (600 MHz, DMSO-*d*₆): δ = 9.12 (s, 1H, NH), 7.70 (d, *J* = 8.5 Hz, 1H, ArH), 7.55 (d, *J* = 8.5 Hz, 1H, ArH), 7.48 (s, 1H, ArH), 5.66 (s, 1H, C=CH), 2.48 (s, 2H, CH₂), 2.31 (s, 2H, CH₂), 2.14 (s, 3H, CH₃), 1.03 (s, 6H, 2CH₃); ¹³C NMR (150 MHz, DMSO-*d*₆): δ = 195.2, 165.4, 152.3, 149.2, 142.2, 129.0 (*J*_C-*F* = 3.5 Hz), 126.9, 125.7 (*J*_C-*F* = 31.5 Hz), 124.6 (*J*_C-*F* = 270.0 Hz), 124.3 (*J*_C-*F* = 3.3 Hz), 123.0, 112.9, 96.9, 50.6, 44.1, 30.3, 27.8, 27.8, 14.2; HRMS (TOF ES+): m/z calcd for C₁₉H₁₉F₃N₃O [(M+H)⁺], 362.1475, found, 362.1475.

7,11,11-Trimethyl-2-(trifluoromethoxy)-11,12-dihydro-9*H*-dibenzo[*d*,*f*]pyrazolo [1,5-*a*][1,3]diazepin-13(10*H*)-one (3h)

V_{Petroleum ether}/V_{Ethyl acetate} = 3:1, R_f = 0.25; Yellow solid: 99 mg (88%); mp = 240–242 °C; ¹H NMR (600 MHz, DMSO-*d*₆): δ = 9.07 (s, 1H, NH), 7.59 (d, *J* = 9.0 Hz, 1H, ArH), 7.22 (d, *J* = 8.7 Hz, 1H, ArH), 7.14 (s, 1H, ArH), 5.64 (s, 1H, C=CH), 2.48 (s, 2H, CH₂), 2.30 (s, 2H, CH₂), 2.14 (s, 3H, CH₃), 1.02 (s, 6H, 2CH₃); ¹³C NMR (150 MHz, DMSO-*d*₆): δ = 195.1, 165.5, 151.6, 148.7, 145.6, 138.0, 128.3, 124.4, 123.8, 120.6 (*J* = 253.5 Hz), 120.1, 112.9, 96.5, 50.6, 44.2, 30.3, 27.8, 27.8, 14.2; HRMS (TOF ES+): m/z calcd for C₁₉H₁₉F₃N₃O₂ [(M+H)⁺], 378.1424, found, 378.1427.

8,12,12-Trimethyl-12,13-dihydro-10*H*-benzo[*d*]naphtho[2,3-*f*]pyrazolo[1,5-*a*][1,3] diazepin-14(11*H*)-one (3i)

V_{Petroleum ether}/V_{Ethyl acetate} = 2:1, R_f = 0.25; Yellow solid: 97 mg (95%); mp = 285–287 °C; ¹H NMR (600 MHz, DMSO-*d*₆): δ = 9.07 (s, 1H, NH), 8.01 (s, 1H, ArH), 7.87 (d, *J* = 7.9 Hz, 1H, ArH), 7.81 (d, *J* = 7.9 Hz, 1H, ArH), 7.73 (s, 1H, ArH), 7.45–7.40 (m, 2H, ArH), 5.70 (s, 1H, C=CH), 2.50 (s, 2H, CH₂), 2.35 (s, 2H, CH₂), 2.19 (s, 3H, CH₃), 1.08 (s, 6H, 2CH₃); ¹³C NMR (150 MHz, DMSO-*d*₆): δ = 195.5, 163.1, 151.0, 148.8, 137.6, 132.2, 131.3, 131.2, 128.1, 127.7, 127.0, 126.2, 124.9, 119.5, 114.3, 96.1, 50.9, 44.1, 30.3, 27.9, 27.9, 14.3; HRMS (TOF ES+): m/z calcd for C₂₂H₂₂N₃O [(M+H)⁺], 344.1757, found, 344.1760.

7,11,11-Trimethyl-8-phenyl-11,12-dihydro-9*H*-dibenzo[*d*,*f*]pyrazolo[1,5*a*][1,3]diazepin-13(10*H*)-one (3j)

V_{Petroleum ether}/V_{Ethyl acetate} = 3:1, R_f = 0.25; Yellow solid: 90 mg (82%); mp = 242–244 °C; ¹H NMR (600 MHz, CDCl₃) δ = 7.74–7.69 (m, 1H, ArH), 7.52–7.46 (m, 2H, ArH), 7.37 (d, *J* = 16.0 Hz, 2H, ArH), 7.30 (d, *J* = 6.8 Hz, 1H, ArH), 7.24 (s, 3H, ArH), 5.44 (s, 1H, NH), 2.40 (s, 2H, CH₂), 2.34 (s, 2H, CH₂), 2.28 (s, 3H, CH₃), 1.11 (s, 6H, 2CH₃); ¹³C NMR (150 MHz, CDCl₃) δ = 195.8, 161.3, 149.2, 143.9, 138.6, 131.8, 131.3, 129.4, 129.4, 129.1, 129.1, 128.1, 127.4, 125.7, 125.5, 122.6, 117.6, 109.6, 50.9, 45.4, 30.6, 27.9, 27.9, 12.9; HRMS (TOF ES+): m/z calcd for C₂₄H₂₄N₃O [(M+H)⁺], 370.1914, found, 370.1914.

7,11,11-Trimethyl-8-(*p*-tolyl)-11,12-dihydro-9*H*-dibenzo[*d*,*f*]pyrazolo[1,5-*a*][1,3]d iazepin-13(10*H*)-one (3k)

V_{Petroleum ether}/V_{Ethyl acetate} = 5:1, R_f = 0.25; Yellow solid: 86 mg (75%); mp = 289–291 °C; ¹H NMR (600 MHz, CDCl₃) δ = 7.73–7.70 (m, 1H, ArH), 7.38–7.35 (m, 1H, ArH), 7.31–7.27 (m, 3H, ArH), 7.24–7.20 (m, 1H, ArH), 7.14 (d, *J* = 7.8 Hz, 2H, ArH), 5.42 (s, 1H, NH), 2.42 (s, 3H, ArCH₃), 2.39 (s, 2H, CH₂), 2.33 (s, 2H, CH₂), 2.26 (s, 3H, CH₃), 1.11 (s, 6H, 2CH₃); ¹³C NMR (150 MHz, CDCl₃) δ = 195.7, 161.3, 149.2, 143.8, 138.6, 137.2, 131.7, 130.1, 130.1, 128.9, 128.9, 128.2, 127.9, 125.6, 125.4, 122.5, 117.4, 109.5, 50.9, 45.3, 30.5, 27.9, 27.9, 21.2, 12.9; HRMS (TOF ES+): m/z calcd for C₂₅H₂₆N₃O [(M+H)⁺], 384.2070, found, 384.2071.

7,11,11-Trimethyl-8-(*m*-tolyl)-11,12-dihydro-9*H*-dibenzo[*d*,*f*]pyrazolo[1,5-*a*][1,3] diazepin-13(10*H*)-one (3l)

V_{Petroleum ether}/V_{Ethyl acetate} = 6:1, R_f = 0.25; White solid: 62 mg (54%); mp = 265–267 °C; ¹H NMR (600 MHz, CDCl₃) δ = 7.72 (d, *J* = 7.8 Hz, 1H, ArH), 7.40–7.36 (m, 2H, ArH), 7.31–7.28 (m, 1H, ArH), 7.22 (d, *J* = 7.3 Hz, 1H, ArH), 7.19 (d, *J* = 7.4 Hz, 1H, ArH), 7.08–7.04 (m, 2H, ArH), 5.42 (s, 1H, NH), 2.43 (s, 3H, ArCH₃), 2.41 (s, 2H, CH₂), 2.34 (s, 2H, CH₂), 2.27 (s, 3H, CH₃), 1.12 (s, 6H, 2CH₃); ¹³C NMR (150 MHz,

CDCl₃) δ = 195.7, 161.2, 149.1, 143.9, 139.1, 138.6, 131.8, 131.2, 129.8, 129.3, 128.1, 128.0, 125.9, 125.6, 125.4, 122.5, 117.5, 109.7, 50.9, 45.4, 30.6, 27.9, 27.9, 21.6, 12.9; HRMS (TOF ES+): m/z calcd for C₂₅H₂₆N₃O [(M+H)⁺], 384.2070, found, 384.2071.

7,11,11-Trimethyl-8-(*p*-tolylthio)-11,12-dihydro-9*H*-dibenzo[*d*,*f*]pyrazolo[1,5-*a*][1, 3]diazepin-13(10*H*)-one (3m)

V_{Petroleum ether}/V_{Ethyl acetate} = 5:1, R_f = 0.25; Yellow solid: 95 mg (76%); mp = 165–167 °C; ¹H NMR (600 MHz, CDCl₃) δ = 7.71 (d, *J* = 7.9 Hz, 1H, ArH), 7.35 (d, *J* = 7.6 Hz, 1H, ArH), 7.30 (t, *J* = 8.6 Hz, 1H, ArH), 7.27–7.24 (m, 1H, ArH), 7.08 (d, *J* = 7.7 Hz, 2H, ArH), 6.97 (d, *J* = 7.8 Hz, 2H, ArH), 5.68 (s, 1H, NH), 2.34 (s, 2H, CH₂), 2.30 (s, 3H, ArCH₃), 2.25 (s, 3H, CH₃), 2.18 (s, 2H, CH₂), 1.05 (s, 6H, 2CH₃); ¹³C NMR (150 MHz, CDCl₃) δ = 195.7, 161.3, 154.3, 150.0, 138.4, 135.7, 133.5, 132.0, 130.0, 130.0, 128.2, 126.0, 125.8, 125.8, 125.3, 122.3, 117.4, 94.3, 50.9, 45.2, 30.6, 27.8, 27.8, 20.9, 12.5; HRMS (TOF ES+): m/z calcd for C₂₅H₂₆N₃OS [(M+H)⁺], 416.1791, found, 416.1798.

7,11,11-Trimethyl-8-(naphthalen-1-ylthio)-11,12-dihydro-9*H*-dibenzo[*d*,*f*]pyrazol o[1,5-*a*][1,3]diazepin-13(10*H*)-one (3n)

V_{Petroleum ether}/V_{Ethyl acetate} =5:1, R_f = 0.25; Yellow solid: 108 mg (80%); mp = 211–213 °C; ¹H NMR (600 MHz, CDCl₃) δ = 7.80–7.74 (m, 3H, ArH), 7.67 (d, *J* = 8.0 Hz, 1H, ArH), 7.48–7.39 (m, 3H, ArH), 7.36–7.31 (m, 2H, ArH), 7.26–7.22 (m, 2H, ArH), 5.66 (s, 1H, NH), 2.30 (s, 3H, CH₃), 2.24 (s, 2H, CH₂), 2.01 (s, 2H, CH₂), 0.90 (s, 6H, 2CH₃); ¹³C NMR (150 MHz, CDCl₃) δ = 195.8, 161.4, 154.4, 150.0, 138.4, 134.7, 133.8, 132.1, 131.6, 129.1, 128.2, 127.8, 127.0, 126.9, 126.2, 125.8, 125.5, 124.1, 123.1, 122.4, 117.5, 93.8, 50.8, 45.1, 30.4, 27.7, 27.7, 12.6; HRMS (TOF ES+): m/z calcd for C₂₈H₂₆N₃OS [(M+H)⁺], 452.1791, found, 452.1798.

11,11-Dimethyl-7-(*p*-tolyl)-11,12-dihydro-9*H*-dibenzo[*d*,*f*]pyrazolo[1,5-*a*][1,3]diaz epin-13(10*H*)-one (30)

V_{Petroleum ether}/V_{Ethyl acetate} = 2:1, R_f = 0.25; Yellow solid: 38 mg (35%); mp = 302–304 °C; ¹H NMR (600 MHz, CDCl₃) δ = 7.80 (d, *J* = 7.9 Hz, 1H, ArH), 7.69 (d, *J* = 7.8 Hz, 2H, ArH), 7.38 (d, *J* = 7.5 Hz, 1H, ArH), 7.30 (s, 1H, ArH), 7.22 (d, *J* = 7.9 Hz, 3H, ArH), 5.96 (s, 1H, NH), 5.54 (s, 1H, C=CH), 2.45 (s, 2H, CH₂), 2.40 (s, 2H, CH₂), 2.38 (s, 3H, ArCH₃), 1.14 (s, 6H, 2CH₃); ¹³C NMR (150 MHz, CDCl₃) δ = 195.7, 161.5, 152.9, 147.8, 138.6, 138.2, 131.7, 129.9, 129.3, 129.3, 127.9, 125.8, 125.7, 125.5, 125.5, 122.9, 117.3, 92.4, 50.9, 45.6, 30.5, 27.9, 27.9, 21.4; HRMS (TOF ES+): m/z calcd for C₂₄H₂₄N₃O [(M+H)⁺], 370.1914, found, 370.1912.

7-(Furan-2-yl)-11,11-dimethyl-11,12-dihydro-9*H*-dibenzo[*d*,*f*]pyrazolo[1,5-*a*][1,3] diazepin-13(10*H*)-one (3p)

V_{Petroleum ether}/V_{Ethyl acetate} = 5:1, R_f = 0.25; Yellow solid: 47 mg (45%); mp = 276–278 °C; ¹H NMR (600 MHz, DMSO-*d*₆): δ = 8.97 (s, 1H, NH), 7.75 (s, 1H, C=CH), 7.57 (d, *J* = 8.0 Hz, 1H, C=CH), 7.28–7.25 (m, 1H, ArH), 7.22–7.19 (m, 2H, ArH), 6.84 (d, *J* = 3.0 Hz, 1H, ArH), 6.61–6.59 (m, 1H, C=CH), 6.04 (s, 1H, C=CH), 2.50 (s, 2H, CH₂), 2.30 (s, 2H, CH₂), 1.04 (s, 6H, 2CH₃); ¹³C NMR (150 MHz, DMSO-*d*₆): δ = 195.5, 164.9, 149.4, 148.1, 145.3, 143.4, 138.7, 132.3, 127.8, 127.1, 126.1, 122.7, 114.9, 112.2, 107.6, 92.9, 50.8, 44.1, 30.4, 27.8, 27.8; HRMS (TOF ES+): m/z calcd for C₂₁H₂₀N₃O₂ [(M+H)⁺], 346.1550, found, 346.1547.

11,11-Dimethyl-7-(thiophen-2-yl)-11,12-dihydro-9*H*-dibenzo[*d*,*f*]pyrazolo[1,5-*a*] [1,3]diazepin-13(10*H*)-one (3q)

V_{Petroleum ether}/V_{Ethyl acetate} = 5:1, R_f = 0.25; Yellow solid: 52 mg (48%); mp = 284–286 °C; ¹H NMR (600 MHz, DMSO-*d*₆): δ =8.97 (s, 1H, NH), 7.54 (m, 2H, C=CH), 7.49–7.47 (m, 1H, ArH), 7.29–7.26 (m, 1H, ArH), 7.21–7.19 (m, 2H, ArH), 7.13–7.10 (m, 1H, C=CH), 6.13 (s, 1H, C=CH), 2.51 (s, 2H, CH₂), 2.31 (s, 2H, CH₂), 1.04 (s, 6H, 2CH₃); ¹³C NMR (150 MHz, DMSO-*d*₆): δ = 195.4, 164.8, 149.7, 148.5, 138.6, 135.9, 132.3, 128.2, 127.8, 127.0, 126.4, 126.1, 125.7, 122.6, 114.9, 93.2, 50.8, 44.1, 30.4, 27.8, 27.8; HRMS (TOF ES+): m/z calcd for C₂₁H₂₀N₃OS [(M+H)⁺], 362.1322, found, 362.1322.

7,11-Dimethyl-11,12-dihydro-9*H*-dibenzo[*d*,*f*]pyrazolo[1,5-*a*][1,3]diazepin-13(10 *H*)-one (3r)

V_{Petroleum ether}/V_{Ethyl acetate} = 5:1, R_f = 0.25; Yellow solid: 48 mg (58%); mp = 294–296 °C; ¹H NMR (600 MHz, DMSO-*d*₆): δ = 8.86 (s, 1H, NH), 7.48 (d, *J* = 8.0 Hz, 1H, ArH), 7.21–7.17 (m, 1H, ArH), 7.12 (d, *J* = 4.2 Hz, 2H, ArH), 5.59 (s, 1H, C=CH), 2.63 (d, *J* = 15.7 Hz, 1H, CH₂), 2.39 (d, *J* = 15.2 Hz, 1H, CH₂), 2.28–2.24 (m, 2H, CH₂), 2.13 (s, 3H, CH₃), 2.08–2.05 (m, 1H, CH), 1.01 (d, *J* = 6.2 Hz, 3H, CH₃); ¹³C NMR (150 MHz, DMSO-*d*₆): δ = 195.5, 165.7, 150.9, 148.8, 139.1, 132.6, 127.5, 126.7, 125.4, 122.2, 115.4, 95.9, 45.6, 38.8, 26.3, 20.4, 14.3; HRMS (TOF ES+): m/z calcd for C₁₇H₁₈N₃O [(M+H)⁺], 280.1444, found, 280.1442.

7-Methyl-11-phenyl-11,12-dihydro-9*H*-dibenzo[*d*,*f*]pyrazolo[1,5-*a*][1,3]diazepin-1 3(10*H*)-one (3s)

V_{Petroleum ether}/V_{Ethyl acetate} = 5:1, R_f = 0.25; Yellow solid: 82 mg (80%); mp = 216–218 °C; ¹H NMR (600 MHz, DMSO-*d*₆): δ = 8.97 (s, 1H, NH), 7.51 (d, *J* = 7.9 Hz, 1H, ArH), 7.38–7.34 (m, 4H, ArH), 7.26 (t, *J* = 7.0 Hz, 1H, ArH), 7.24–7.20 (m, 1H, ArH), 7.16 (d, *J* = 6.5 Hz, 2H, ArH), 5.62 (s, 1H, C=CH), 2.82–2.74 (m, 3H, CH₂, CH), 2.56–2.52 (m, 2H, CH₂), 2.14 (s, 3H, CH₃); ¹³C NMR (150 MHz, DMSO-*d*₆): δ = 194.9, 165.3, 150.9, 148.7, 143.5, 139.1, 132.7, 129.0, 129.0, 127.6, 127.5, 127.5, 127.2, 126.6, 125.5, 122.3, 115.6, 95.9, 44.4, 38.4, 36.7, 14.3; HRMS (TOF ES+): m/z calcd for C₂₂H₂₀N₃O [(M+H)⁺], 342.1601, found, 342.1603.

7-Methyl-11,12-dihydro-9*H*-dibenzo[*d*,*f*]pyrazolo[1,5-*a*][1,3]diazepin-13(10*H*)-on e (3t)

V_{Petroleum ether}/V_{Ethyl acetate} = 5:1, R_f = 0.25; Yellow solid: 29 mg (37%); mp = 284–286 °C; ¹H NMR (600 MHz, DMSO- d_6): δ = 8.90 (s, 1H, NH), 7.48 (d, *J* = 7.9 Hz, 1H, ArH), 7.22–7.18 (m, 1H, ArH), 7.13–7.10 (m, 2H, ArH), 5.60 (s, 1H, C=CH), 2.56 (t, *J* = 5.8 Hz, 2H, CH₂), 2.35 (t, *J* = 6.4 Hz, 2H, CH₂), 2.13 (s, 3H, CH₃), 1.82–1.78 (m, 2H, CH₂); ¹³C NMR (150 MHz, DMSO- d_6): δ = 195.7, 166.2, 150.9, 148.8, 139.1, 132.8, 127.5, 126.8, 125.4, 122.2, 115.8, 95.9, 37.6, 30.9, 19.2, 14.2; HRMS (TOF ES+): m/z calcd for C₁₆H₁₆N₃O [(M+H)⁺], 266.1288, found, 266.1288.

7,12,12-Trimethyl-11,12-dihydro-9*H*-dibenzo[*d*,*f*]pyrazolo[1,5-*a*][1,3]diazepin-13 (10*H*)-one (3u)

V_{Petroleum ether}/V_{Ethyl acetate} = 3:1, R_f = 0.25; Yellow solid: 33 mg (38%); mp = 243–245 °C; ¹H NMR (600 MHz, DMSO-*d*₆): δ = 8.82 (s, 1H, NH), 7.48 (d, *J* = 8.0 Hz, 1H, ArH), 7.19 (t, *J* = 7.6 Hz, 1H, ArH), 7.11 (t, *J* = 7.5 Hz, 1H, ArH), 6.99 (d, *J* = 7.8 Hz, 1H, ArH), 5.59 (s, 1H, C=CH), 2.55 (t, *J* = 6.0 Hz, 2H, CH₂), 2.12 (s, 3H, CH₃), 1.72 (t, *J* = 6.0 Hz, 2H, CH₂), 1.06 (s, 6H, 2CH₃); ¹³C NMR (150 MHz, DMSO-*d*₆): δ = 200.9, 164.2, 150.9, 148.9, 139.3, 132.9, 127.5, 127.1, 125.4, 122.2, 114.4, 95.8, 32.7, 27.2, 25.4, 25.4, 25.4, 14.3; HRMS (TOF ES+): m/z calcd for C₁₈H₂₀N₃O [(M+H)⁺], 294.1601, found, 294.1603.

7-Methyl-10,11-dihydrobenzo[f]cyclopenta[d]pyrazolo[1,5-a][1,3]diazepin-12(9 H)-one (3v)

V_{Petroleum ether}/V_{Ethyl acetate} = 2:1, R_f = 0.25; Yellow solid: 47 mg (62%); mp = 259–261 °C; ¹H NMR (600 MHz, DMSO-*d*₆): δ = 10.03 (s, 1H, NH), 8.18–8.15 (m, 1H, ArH), 7.68–7.65 (m, 1H, ArH), 7.09–7.04 (m, 2H, ArH), 5.59 (s, 1H, C=CH), 3.45 (s, 2H, CH₂), 2.41 (d, *J* = 5.1 Hz, 2H, CH₂), 2.09 (s, 3H, CH₃); ¹³C NMR (150 MHz, DMSO-*d*₆): δ = 201.6, 173.2, 150.9, 145.1, 137.3, 127.3, 126.9, 126.1, 123.9, 122.1, 112.2, 96.5, 34.3, 26.3, 14.1; HRMS (TOF ES+): m/z calcd for C₁₅H₁₄N₃O [(M+H)⁺], 252.1131, found, 252.1131.

7-Methyl-10,11,12,13-tetrahydrobenzo[*f*]cyclohepta[*d*]pyrazolo[1,5-*a*][1,3]diazepi n-14(9*H*)-one (3w)

V_{Petroleum ether}/V_{Ethyl acetate} = 3:1, R_f = 0.25; Yellow solid: 21 mg (25%); mp = 221–223 °C; ¹H NMR (600 MHz, DMSO- d_6): δ = 8.79 (s, 1H, NH), 7.41 (d, J = 7.8 Hz, 1H, ArH), 7.17 (t, J = 7.6 Hz, 2H, ArH), 7.14–7.11 (m, 1H, ArH), 5.61 (s, 1H, C=CH), 2.69–2.65 (m, 2H, CH₂), 2.59 (t, J = 6.0 Hz, 2H, CH₂), 2.14 (s, 3H, CH₃), 1.76–1.70 (m, 9.3 Hz, 4H, 2CH₂); ¹³C NMR (150 MHz, DMSO- d_6): δ = 199.4, 169.5, 150.7, 149.3, 138.9, 132.4, 129.2, 127.1, 125.4, 121.8, 116.8, 95.8, 41.3, 33.5, 22.9, 21.9, 14.3; HRMS (TOF ES+): m/z calcd for C₁₇H₁₈N₃O [(M+H)⁺], 280.1444, found, 280.1441.

7-Methylbenzo[f]chromeno[4,3-d]pyrazolo[1,5-a][1,3]diazepin-15(9H)-one (3x)

V_{Petroleum ether}/V_{Ethyl acetate} = 5:1, R_f = 0.25; Yellow solid: 19 mg (20%); mp = 291–293 °C; ¹H NMR (600 MHz, DMSO- d_6): δ = 9.13 (s, 1H, NH), 8.31 (d, J = 7.5 Hz, 1H,

ArH), 7.71 (t, J = 7.7 Hz, 1H, ArH), 7.61 (d, J = 8.1 Hz, 1H, ArH), 7.55 (d, J = 7.9 Hz, 1H, ArH), 7.47–7.44 (m, 2H, ArH), 7.37 (d, J = 7.3 Hz, 1H, ArH), 7.28 (t, J = 7.6 Hz, 1H, ArH), 5.83 (s, 1H, C=CH), 2.18 (s, 3H, CH₃); ¹³C NMR (150 MHz, DMSO- d_6): $\delta = 161.1$, 155.6, 152.4, 151.5, 148.7, 139.1, 133.4, 132.3, 129.2, 125.9, 125.8, 124.8, 123.5, 122.5, 117.3, 115.9, 107.1, 97.6, 14.4; HRMS (TOF ES+): m/z calcd for C₁₉H₁₄N₃O₂ [(M+H)⁺], 316.1081, found, 316.1081.

4-(2-Hydroxy-4,4-dimethyl-6-oxocyclohex-1-en-1-yl)-7,11,11-trimethyl-11,12-dih ydro-9*H*-dibenzo[*d*,*f*]pyrazolo[1,5-*a*][1,3]diazepin-13(10*H*)-one (4a)

V_{Petroleum ether}/V_{Ethyl acetate} = 1:3, R_f = 0.25; White solid: 155 mg (90%); mp = 318–320 °C; ¹H NMR (600 MHz, DMSO- d_6): δ = 8.44 (s, 1H, ArH), 7.08 (t, *J* = 7.6 Hz, 1H, ArH), 7.03 (d, *J* = 7.6 Hz, 1H, ArH), 6.90 (br, 1H, OH), 5.42 (s, 1H, C=CH), 2.47 (s, 2H, CH₂), 2.42 (s, 2H, CH₂), 2.34 (s, 2H, CH₂), 2.16 (s, 2H, CH₂), 1.99 (s, 3H, CH₃), 1.08 (s, 3H, CH₃), 1.02 (s, 6H, 2CH₃), 1.00 (s, 3H, CH₃); ¹³C NMR (150 MHz, DMSO- d_6): δ = 195.5, 195.5, 167.2, 149.3, 149.3, 148.3, 138.1, 132.1, 130.2, 130.2, 129.7, 124.8, 115.8, 105.5, 95.2, 50.8, 50.8, 43.9, 43.9, 31.7, 30.3, 29.2, 29.2, 28.4, 25.1, 14.5; HRMS (TOF ES+): m/z calcd for C₂₆H₃₀N₃O₃ [(M+H)⁺], 432.2282, found, 432.2273.

4-(2-Hydroxy-4,4-dimethyl-6-oxocyclohex-1-en-1-yl)-2,7,11,11-tetramethyl-11,12dihydro-9*H*-dibenzo[*d*,*f*]pyrazolo[1,5-*a*][1,3]diazepin-13(10*H*)-one (4b)

V_{Petroleum ether}/V_{Ethyl acetate} = 1:2, R_f = 0.25; White solid: 167 mg (94%); mp > 330 °C; ¹H NMR (600 MHz, DMSO-*d*₆): δ = 9.97 (br, 1H, NH), 8.39 (s, 1H, ArH), 6.84 (s, 1H, ArH), 6.67 (br, 1H, OH), 5.40 (s, 1H, C=CH), 2.50–2.24 (m, 6H, 3CH₂), 2.21 (s, 3H, ArCH₃), 2.15 (s, 2H, CH₂), 1.98 (s, 3H, CH₃), 1.08 (s, 3H, CH₃), 1.02 (s, 6H, 2CH₃), 1.00 (s, 3H, CH₃); ¹³C NMR (150 MHz, DMSO-*d*₆): δ = 195.5, 195.5, 166.9, 149.0, 149.0, 147.9, 135.8, 133.5, 132.6, 130.6, 129.8, 129.4, 115.9, 106.8, 94.9, 50.9, 50.9, 43.9, 43.9, 31.7, 30.3, 29.3, 28.4, 28.4, 25.5, 20.9, 14.5; HRMS (TOF ES+): m/z calcd for C₂₇H₃₂N₃O₃ [(M+H)⁺], 446.2438, found, 446.2446.

4-(2-Hydroxy-4,4-dimethyl-6-oxocyclohex-1-en-1-yl)-2-methoxy-7,11,11-trimethy l-11,12-dihydro-9*H*-dibenzo[*d*,*f*]pyrazolo[1,5-*a*][1,3]diazepin-13(10*H*)-one (4c)

V_{Petroleum ether}/V_{Ethyl acetate} = 1:3, R_f = 0.25; White solid: 167 mg (91%); mp > 330 °C; ¹H NMR (600 MHz, DMSO-*d*₆): δ = 10.22 (br, 1H, NH), 8.43 (s, 1H, ArH), 6.60 (s, 1H, ArH), 6.45 (br, 1H, OH), 5.40 (s, 1H, C=CH), 3.67 (s, 3H, ArOCH₃), 2.47–2.34 (m,4H, 2CH₂), 2.16 (s, 4H, 2CH₂), 1.98 (s, 3H, CH₃), 1.07 (s, 3H, CH₃), 1.02 (s, 6H, 2CH₃), 1.01 (s, 3H, CH₃); ¹³C NMR (150 MHz, DMSO-*d*₆): δ = 195.4, 195.4, 167.2, 155.9, 155.9, 147.7, 147.7, 131.7, 131.1, 130.7, 117.3, 116.2, 115.4, 107.6, 94.9, 55.6, 50.8, 50.8, 43.9, 43.9, 31.7, 30.28, 29.1, 28.8, 28.8, 28.3, 14.5; HRMS (TOF ES+): m/z calcd for C₂₇H₃₂N₃O₄ [(M+H)⁺], 462.2387, found, 462.2395.

2-Fluoro-4-(2-hydroxy-4,4-dimethyl-6-oxocyclohex-1-en-1-yl)-7,11,11-trimethyl-1 1,12-dihydro-9*H*-dibenzo[*d*,*f*]pyrazolo[1,5-*a*][1,3]diazepin-13(10*H*)-one (4d)

V_{Petroleum ether}/V_{Ethyl acetate} = 1:3, R_f = 0.25; White solid: 149 mg (83%); mp > 330 °C; ¹H NMR (600 MHz, DMSO-*d*₆): δ = 10.29 (br, 1H, NH), 8.60 (s, 1H, ArH), 6.86 (d, *J* = 12.5 Hz, 1H, ArH), 6.72 (br, 1H, OH), 5.43 (s, 1H, C=CH), 2.47 (s, 2H, CH₂), 2.36 (s, 2H, CH₂), 2.18 (s, 2H, CH₂), 2.12–1.89 (m, 5H, CH₂+CH₃), 1.08 (s, 3H, CH₃), 1.00 (s, 9H, 3CH₃); ¹³C NMR (150 MHz, DMSO-*d*₆): δ = 195.3, 195.3, 168.0, 159.02 (d, *J* = 240.4 Hz), 148.6, 148.6, 148.6, 134.6, 133.4, 132.0 (d, *J* = 9.2 Hz), 118.3 (d, *J* = 22.0 Hz), 116.1, 115.9, 107.0, 95.36, 50.7, 50.7, 43.9, 43.9, 31.7, 30.3, 29.2, 29.2, 28.3, 28.3, 14.5; HRMS (TOF ES+): m/z calcd for C₂₆H₂₉FN₃O₃ [(M+H)⁺], 450.2187, found, 450.2187.

2-Bromo-4-(2-hydroxy-4,4-dimethyl-6-oxocyclohex-1-en-1-yl)-7,11,11-Trimethyl-11,12-dihydro-9*H*-dibenzo[*d*,*f*]pyrazolo[1,5-*a*][1,3]diazepin-13(10*H*)-one (4e)

V_{Petroleum ether}/V_{Ethyl acetate} = 1:3, R_f = 0.25; White solid: 177 mg (87%); mp > 330 °C; ¹H NMR (600 MHz, DMSO-*d*₆): δ = 10.34 (br, 1H, NH), 8.65 (s, 1H, ArH), 7.19 (s, 1H, ArH), 7.05 (br, 1H, OH), 5.45 (s, 1H, C=CH), 2.46 (s, 2H, CH₂), 2.35 (s, 2H, CH₂), 2.18 (s, 2H, CH₂), 2.09–1.88 (m, 5H, CH₂, CH₃), 1.07 (s, 3H, CH₃), 1.02 (s, 6H, 2CH₃), 1.00 (s, 3H, CH₃); ¹³C NMR (150 MHz, DMSO-*d*₆): δ = 195.3, 195.3, 168.2, 149.0, 149.0, 137.5, 134.1, 132.1, 132.1, 131.9, 123.7, 117.6, 114.3, 95.6, 50.6, 50.6, 43.9, 43.9, 31.7, 30.3, 29.1, 28.3, 28.3, 25.5, 14.5; HRMS (TOF ES+): m/z calcd for C₂₆H₂₉BrN₃O₃ [(M+H)⁺], 510.1387, found, 510.1388.

4-(2-Hydroxy-4,4-dimethyl-6-oxocyclohex-1-en-1-yl)-7,11,11-trimethyl-13-oxo-10, 11,12,13-tetrahydro-9*H*-dibenzo[*d*,*f*]pyrazolo[1,5-*a*][1,3]diazepine-2-carbonitrile (4f)

V_{Petroleum ether}/V_{Ethyl acetate} = 1:3, R_f = 0.25; White solid: 150 mg (82%); mp > 330 °C; ¹H NMR (600 MHz, DMSO-*d*₆): δ = 10.34 (br, 1H, NH), 8.65 (s, 1H, ArH), 7.19 (s, 1H, ArH), 7.05 (br, 1H, OH), 5.45 (s, 1H, C=CH), 2.5 (d, *J* = 15.2 Hz, 4H, 2CH₂), 2.3 (s, 4H, 2CH₂), 2.0 (s, 3H, CH₃), 1.1 (s, 3H, CH₃), 1.0 (s, 6H, 2CH₃), 1.0 (s, 3H, CH₃); ¹³C NMR (150 MHz, DMSO-*d*₆): δ = 195.2, 195.2, 168.4, 150.1, 149.7, 142.2, 137.6, 135.3, 133.7, 131.2, 131.1, 128.2, 119.1, 113.9, 107.8, 96.2, 50.5, 50.5, 43.9, 43.9, 31.7, 30.3, 29.2, 29.2, 28.2, 28.2, 14.5; HRMS (TOF ES+): m/z calcd for C₂₇H₂₉N₄O₃ [(M+H)⁺], 457.2234, found, 457.2244.

4-(2-Hydroxy-4,4-dimethyl-6-oxocyclohex-1-en-1-yl)-7,11,11-trimethyl-2-(trifluor omethoxy)-11,12-dihydro-9*H*-dibenzo[*d*,*f*]pyrazolo[1,5-*a*][1,3]diazepin-13(10*H*)-o ne (4g)

V_{Petroleum ether}/V_{Ethyl acetate} = 1:2, R_f = 0.25; White solid: 167 mg (81%); mp > 330 °C; ¹H NMR (600 MHz, DMSO-*d*₆): δ = 10.50 (br, 1H, NH), 8.69 (s, 1H, ArH), 7.02 (d, *J* = 2.9 Hz, 1H, ArH), 6.88 (br, 1H, OH), 5.46 (s, 1H, C=CH), 2.48 (s, 2H, CH₂), 2.37 (s, 2H, CH₂), 2.24 (s, 2H, CH₂), 2.10 (s, 2H, CH₂), 2.00 (s, 3H, CH₃), 1.08 (s, 3H, CH₃), 1.00 (s, 9H, 3CH₃); ¹³C NMR (150 MHz, DMSO-*d*₆): δ = 195.2, 195.2, 168.3, 155.9, 149.2, 149.2, 145.1, 137.2, 131.9, 131.7, 124.0, 122.0, 120.6 (d, *J* = 256.1 Hz), 106.8, 114.2, 95.7, 50.6, 50.6, 43.9, 43.9, 31.7, 30.3, 28.9, 28.9, 28.6, 28.6, 14.5; HRMS (TOF ES+): m/z calcd for C₂₇H₂₉F₃N₃O₄ [(M+H)⁺], 516.2105, found, 516.2111.

4-(2-Hydroxy-4,4-dimethyl-6-oxocyclohex-1-en-1-yl)-7,11,11-trimethyl-2-(trifluor omethyl)-11,12-dihydro-9*H*-dibenzo[*d*,*f*]pyrazolo[1,5-*a*][1,3]diazepin-13(10*H*)-on e (4h)

V_{Petroleum ether}/V_{Ethyl acetate} = 1:3, R_{*f*} = 0.25; White solid: 180 mg (90%); mp > 330 °C; ¹H NMR (600 MHz, DMSO-*d*₆): δ = 10.45 (br, 1H, NH), 8.72 (s, 1H, ArH), 7.35 (s, 1H, ArH), 7.20 (br, 1H, OH), 5.48 (s, 1H, C=CH), 2.49 (s, 2H, CH₂), 2.31 (s, 4H, 2CH₂), 2.11 (s, 2H, CH₂), 2.01 (s, 3H, CH₃), 1.09 (s, 3H, CH₃), 1.03 (s, 6H, 2CH₃), 1.02 (s, 3H, CH₃); ¹³C NMR (150 MHz, DMSO-*d*₆): δ = 195.3, 195.3, 168.4, 149.7, 149.6, 141.4, 130.9, 130.9, 129.4, 128.4 (*J* = 3.1 Hz), 126.6 (*J* = 3.1 Hz), 125.3 (*J* = 31.5 Hz), 124.7 (*J* = 270.0 Hz), 114.39, 105.9, 96.0, 50.6, 50.6, 43.9, 43.9, 31.7, 30.3, 29.1, 29.1, 28.4, 28.4, 14.5; HRMS (TOF ES+): m/z calcd for C₂₇H₂₉F₃N₃O₃ [(M+H)⁺], 500.2156, found, 500.2156.

4-(2-Hydroxy-4,4-dimethyl-6-oxocyclohex-1-en-1-yl)-11,11-dimethyl-7-(*p*-tolyl)-1 1,12-dihydro-9*H*-dibenzo[*d*,*f*]pyrazolo[1,5-*a*][1,3]diazepin-13(10*H*)-one (4i)

V_{Petroleum ether}/V_{Ethyl acetate} = 1:3, R_f = 0.25; White solid: 162 mg (80%); mp = 327–329 °C; ¹H NMR (600 MHz, DMSO- d_6): δ = 8.63 (s, 1H, ArH), 7.57 (d, J = 7.0 Hz, 2H, ArH), 7.20 (d, J = 7.5 Hz, 2H, ArH), 7.15 (t, J = 7.6 Hz, 1H, ArH), 7.09 (d, J = 7.6 Hz, 1H, ArH), 6.96 (br, 1H, OH), 6.00 (s, 1H, C=CH), 2.54 (s, 2H, CH₂), 2.38 (s, 2H, CH₂), 2.31 (s, 3H, ArCH₃), 2.18 (s, 2H, CH₂), 1.69 (s, 2H, CH₂), 1.04 (s, 6H, 2CH₃),

0.94 (s, 3H, CH₃), 0.78 (s, 3H, CH₃); ¹³C NMR (150 MHz, DMSO- d_6): δ = 195.6, 195.6, 166.9, 150.5, 150.2, 150.2, 138.0, 137.5, 132.1, 130.8, 130.3, 130.1, 129.8, 129.5, 129.5, 125.3, 125.1, 125.1, 115.9, 92.1, 50.8, 50.8, 43.9, 43.9, 31.5, 30.4, 27.2, 27.2, 27.2, 25.5, 21.3; HRMS (TOF ES+): m/z calcd for C₃₂H₃₄N₃O₃ [(M+H)⁺], 508.2595, found, 508.2597.

7-(Furan-2-yl)-4-(2-hydroxy-4,4-dimethyl-6-oxocyclohex-1-en-1-yl)-11,11-dimeth yl-11,12-dihydro-9*H*-dibenzo[d,f]pyrazolo[1,5-a][1,3]diazepin-13(10*H*)-one (4j)

V_{Petroleum ether}/V_{Ethyl acetate} = 1:3, R_f = 0.25; White solid: 131 mg (68%); mp = 334–336 °C; ¹H NMR (600 MHz, DMSO-*d*₆): δ = 8.64 (s, 1H, C=CH), 7.69 (s, 1H, C=CH), 7.16 (d, *J* = 7.7 Hz, 1H, ArH), 7.07 (d, *J* = 8.8 Hz, 1H, ArH), 6.97 (br, 1H, OH), 6.60 (d, *J* = 2.8 Hz, 1H, ArH), 6.55–6.54 (m, 1H, C=CH), 5.86 (s, 1H, C=CH), 2.41 (t, *J* = 20.1 Hz, 4H, 2CH₂), 2.17 (d, *J* = 16.6 Hz, 2H, CH₂), 1.85 (d, *J* = 68.0 Hz, 2H, CH₂), 1.04 (s, 6H, 2CH₃), 0.97 (s, 3H, CH₃), 0.89 (s, 3H, CH₃); ¹³C NMR (150 MHz, DMSO-*d*₆): δ = 195.6, 195.6, 166.9, 150.1, 148.8, 143.5, 142.9, 137.8, 132.2, 130.2, 130.1, 130.1, 129.9, 125.4, 116.1, 111.9, 106.4, 106.4, 92.3, 50.8, 50.8, 43.9, 43.9, 31.5, 30.4, 29.9, 27.5, 27.5, 25.5; HRMS (TOF ES+): m/z calcd for C₂₉H₃₀N₃O₄ [(M+H)⁺], 484.2231, found, 484.2237.

4-(2-Hydroxy-4,4-dimethyl-6-oxocyclohex-1-en-1-yl)-7,11,11-trimethyl-8-phenyl-11,12-dihydro-9*H*-dibenzo[*d*,*f*]pyrazolo[1,5-*a*][1,3]diazepin-13(10*H*)-one (4k)

V_{Petroleum ether}/V_{Ethyl acetate} = 1:2, R_f = 0.25; White solid: 180 mg (89%); mp = 312–314 °C; ¹H NMR (600 MHz, DMSO- d_6): δ = 7.93 (s, 1H, ArH), 7.46 (d, J = 7.5 Hz, 2H, ArH), 7.32–7.28 (m, 3H, ArH), 7.13 (d, J = 7.6 Hz, 1H, ArH), 7.08 (d, J = 7.1 Hz, 1H, ArH), 6.96 (br, 1H, OH), 2.59 (d, J = 14.7 Hz, 2H, CH₂), 2.47 (s, 4H, 2CH₂), 2.16 (d, J = 16.3 Hz, 2H, CH₂), 2.02 (s, 3H, CH₃), 1.13 (s, 3H, CH₃), 1.08 (s, 3H, CH₃), 1.03 (s, 3H, CH₃), 1.00 (s, 3H, CH₃); ¹³C NMR (150 MHz, DMSO- d_6): δ = 195.9, 195.9, 167.6, 146.6, 146.6, 144.4, 137.8, 132.3, 132.1, 130.7, 130.3, 129.8, 129.7, 129.7,

129.1, 129.1, 126.7, 124.9, 116.6, 115.5, 108.9, 50.9, 50.9, 43.5, 43.5, 31.7, 30.4, 29.0, 28.7, 25.5, 19.8, 13.9; HRMS (TOF ES+): m/z calcd for $C_{32}H_{34}N_3O_3$ [(M+H)⁺], 508.2595, found, 508.2598.

4-(2-Hydroxy-4,4-dimethyl-6-oxocyclohex-1-en-1-yl)-7,11,11-trimethyl-8-(*p*-tolyl) -11,12-dihydro-9H-dibenzo[*d*,*f*]pyrazolo[1,5-*a*][1,3]diazepin-13(*10H*)-one (4l)

V_{Petroleum ether}/V_{Ethyl acetate} = 1:2, R_f = 0.25; White solid: 179 mg (86%); mp > 330 °C; ¹H NMR (600 MHz, DMSO-*d*₆): δ = 7.87 (d, *J* = 50.8 Hz, 1H, ArH), 7.30–7.24 (m, 2H, ArH), 7.21–7.11 (m, 3H, ArH), 7.08 (d, *J* = 7.8 Hz, 1H, ArH), 6.93 (br, 1H, OH), 2.57 (s, 2H, CH₂), 2.50 (s, 2H, CH₂), 2.46–2.29 (m, 5H, CH₃+CH₂), 2.22–2.11 (m, 2H, CH₂), 2.01 (s, 3H, ArCH₃), 1.11 (s, 3H, CH₃), 1.09–0.97 (m, 9H, 3CH₃); ¹³C NMR (150 MHz, DMSO-*d*₆): δ = 195.9, 195.9, 167.6, 146.8, 146.6, 144.5, 137.9, 135.9, 131.9, 130.7, 130.1, 129.9, 129.7, 129.7, 129.7, 129.2, 125.1, 124.8, 116.3, 115.3, 108.9, 50.9, 50.4, 43.5, 43.5, 30.4, 30.4, 29.2, 28.9, 28.4, 25.5, 21.2, 13.8; HRMS (TOF ES+): m/z calcd for C₃₃H₃₆N₃O₃ [(M+H)⁺], 522.2715, found, 522.2759.

4-(2-Hydroxy-4,4-dimethyl-6-oxocyclohex-1-en-1-yl)-7,11,11-trimethyl-8-(*p*-tolylt hio)-11,12-dihydro-9*H*-dibenzo[*d*,*f*]pyrazolo[1,5-*a*][1,3]diazepin-13(10*H*)-one (4m)

V_{Petroleum ether}/V_{Ethyl acetate} = 1:3, R_f = 0.25; White solid: 190 mg (86%); mp = 277–279 °C; ¹H NMR (600 MHz, DMSO-*d*₆): δ = 8.09 (s, 1H, ArH), 7.18 (t, *J* = 7.8 Hz, 1H, ArH), 7.12–7.08 (m, 3H, ArH), 6.96–6.88 (m, 2H, ArH), 2.56 (s, 2H, CH₂), 2.35 (s, 2H, CH₂), 2.25 (s, 3H, ArCH₃), 2.15 (d, *J* = 15.6 Hz, 2H, CH₂), 1.95 (s, 5H, CH₃, CH₂), 1.08 (s, 3H, CH₃), 1.04 (s, 3H, CH₃), 0.95 (s, 6H, 2CH₃); ¹³C NMR (150 MHz, DMSO-*d*₆): δ = 195.7, 195.7, 167.5, 152.1, 152.1, 152.1, 137.7, 135.3, 135.3, 134.8, 132.3, 130.2, 130.2, 130.1, 129.8, 125.5, 125.5, 125.5, 116.9, 105.6, 93.4, 50.8, 43.6, 43.6, 31.8, 30.1, 25.5, 25.5, 25.5, 25.5, 20.9, 12.9; HRMS (TOF ES+): m/z calcd for C₃₃H₃₆N₃O₃S [(M+H)⁺], 554.2472, found, 554.2476.

8-((3,5-Dimethylphenyl)thio)-4-(2-hydroxy-4,4-dimethyl-6-oxocyclohex-1-en-1-yl) -7,11,11-trimethyl-11,12-dihydro-9*H*-dibenzo[*d*,*f*]pyrazolo[1,5-*a*][1,3]diazepin-13 (10*H*)-one (4n)

V_{Petroleum ether}/V_{Ethyl acetate} = 1:1, R_f = 0.25; White solid: 186 mg (82%); mp = 316–318 °C; ¹H NMR (600 MHz, DMSO-*d*₆): δ = 10.41 (br, 1H, NH), 8.08 (d, *J* = 16.2 Hz, 1H, ArH), 7.18 (t, *J* = 7.7 Hz, 1H, ArH), 7.08 (d, *J* = 6.6 Hz, 1H, ArH), 6.75 (s, 1H, ArH), 6.63 (d, *J* = 56.3 Hz, 2H), 2.64 (d, *J* = 18.2 Hz, 2H, CH₂), 2.38 (s, 2H, CH₂), 2.21 (s, 6H, 2CH₃), 2.13 (d, *J* = 32.8 Hz, 2H, CH₂), 2.02–1.89 (m, 5H, CH₂+CH₃), 1.07 (s, 3H, CH₃), 1.03 (s, 3H, CH₃), 0.96 (s, 6H, 2CH₃); ¹³C NMR (150 MHz, DMSO-*d*₆): δ = 195.6, 193.9, 169.4, 167.5, 152.6, 152.1, 138.6, 137.7, 132.3, 130.2, 130.1, 130.1, 129.6, 127.0, 125.5, 122.8, 122.8, 116.9, 115.8, 106.9, 92.9, 50.8, 50.4, 43.7, 43.6, 31.7, 30.2, 29.2, 28.4, 25.5, 25.5, 21.3, 21.3, 12.9; HRMS (TOF ES+): m/z calcd for C₃₄H₃₈N₃O₃S [(M+H)⁺], 568.2628, found, 568.2629.

4-(2-Hydroxy-4,4-dimethyl-6-oxocyclohex-1-en-1-yl)-8-((4-methoxyphenyl)thio)-7, 11,11-trimethyl-11,12-dihydro-9*H*-dibenzo[*d*,*f*]pyrazolo[1,5-*a*][1,3]diazepin-13(10 *H*)-one (40)

V_{Petroleum ether}/V_{Ethyl acetate} = 1:1, R_f = 0.25; White solid: 177 mg (78%); mp = 289–291 °C; ¹H NMR (600 MHz, DMSO-*d*₆): δ = 10.40 (br, 1H, NH), 8.10 (s, 1H, ArH), 7.16 (s, 1H, ArH), 7.08 (d, *J* = 6.6 Hz, 1H, ArH), 7.00 (s, 2H, ArH), 6.88 (s, 2H, CH₂), 3.71 (s, 3H, ArOCH₃), 2.57 (s, 2H, CH₂), 2.32 (d, *J* = 68.4 Hz, 2H, CH₂), 2.14 (d, *J* = 16.0 Hz, 2H, CH₂), 1.97 (d, *J* = 25.0 Hz, 5H, CH₂+CH₃), 1.07 (s, 3H, CH₃), 1.03 (s, 3H, CH₃), 0.95 (s, 6H, 2CH₃); ¹³C NMR (150 MHz, DMSO-*d*₆): δ = 195.6, 193.9, 167.5, 157.9, 152.3, 151.9, 142.9, 137.7, 132.3, 130.1, 130.1, 129.7, 129.1, 127.4, 125.5, 125.5, 116.8, 115.2, 115.2, 107.9, 94.3, 55.7, 50.8, 50.8, 43.6, 43.6, 31.7, 30.1, 29.2, 28.3, 25.5, 25.5, 12.9; HRMS (TOF ES+): m/z calcd for C₃₃H₃₆N₃O₄S [(M+H)⁺], 570.2421, found, 570.2428.

8-((4-Fluorophenyl)thio)-4-(2-hydroxy-4,4-dimethyl-6-oxocyclohex-1-en-1-yl)-7,1 1,11-trimethyl-11,12-dihydro-9*H*-dibenzo[*d*,*f*]pyrazolo[1,5-*a*][1,3]diazepin-13(10 *H*)-one (4p)

V_{Petroleum ether}/V_{Ethyl acetate} = 1:1, R_f = 0.25; White solid: 167 mg (75%); mp = 310–312 °C; ¹H NMR (600 MHz, DMSO- d_6): δ = 8.14 (d, J = 28.0 Hz, 1H, ArH), 7.20–7.13 (m, 2H, ArH), 7.10–6.99 (m, 4H, ArH), 2.46 (s, 2H, CH₂), 2.31 (s, 2H, CH₂), 2.13 (s, 2H, CH₂), 2.00–1.81 (m, 5H, CH₂+CH₃), 1.03 (s, 6H, 2CH₃), 0.96 (s, 6H, 2CH₃); ¹³C NMR (150 MHz, DMSO- d_6): δ = 195.7, 194.0, 169.5, 167.3, 160.8 (d, J = 243.5 Hz), 152.9, 151.9, 137.8, 134.4, 132.3 (d, J = 4.5 Hz), 132.3 (d, J = 4.5 Hz), 130.1, 129.7, 127.3 (d, J = 7.5 Hz), 127.3 (d, J = 7.5 Hz), 127.4 (d, J = 7.5 Hz), 127.5 (d, J = 7.5 Hz), 125.6, 116.4 (d, J = 21 Hz), 116.4 (d, J = 21 Hz), 115.7, 106.9, 93.1, 50.7, 50.7, 43.7, 43.7, 31.7, 30.2, 29.2, 28.1, 25.5, 25.5, 12.7; HRMS (TOF ES+): m/z calcd for C₃₂H₃₃FN₃O₃S [(M+H)⁺], 558.2221, found, 558.2230.

8-((4-Chlorophenyl)thio)-4-(2-hydroxy-4,4-dimethyl-6-oxocyclohex-1-en-1-yl)-7,1 1,11-trimethyl-11,12-dihydro-9*H*-dibenzo[*d*,*f*]pyrazolo[1,5-*a*][1,3]diazepin-13(10 *H*)-one (4q)

V_{Petroleum ether}/V_{Ethyl acetate} = 1:2, R_f = 0.25; White solid: 165 mg (72%); mp = 302–304 °C; ¹H NMR (600 MHz, DMSO- d_6): δ = 8.16 (s, 1H, ArH), 7.36 (d, J = 6.6 Hz, 2H, ArH), 7.19 (t, J = 7.7 Hz, 1H, ArH), 7.14–6.95 (m, 3H, ArH), 2.57 (s, 2H, CH₂), 2.30 (s, 2H, CH₂), 2.17 (s, 2H, CH₂), 2.06 (s, 2H, CH₂), 1.95 (s, 3H, CH₃), 1.08 (s, 3H, CH₃), 1.04 (s, 3H, CH₃), 0.96 (s, 6H, 2CH₃); ¹³C NMR (150 MHz, DMSO- d_6): δ = 195.7, 195.7, 167.3, 152.0, 152.0, 152.0, 138.3, 137.7, 132.3, 130.2, 130.1, 130.0, 129.8, 129.4, 127.0, 127.0, 127.0, 125.6, 117.1, 105.5, 92.4, 50.8, 50.8, 43.7, 43.7, 31.8, 30.2, 25.5, 25.5, 25.5, 25.5, 12.8; HRMS (TOF ES+): m/z calcd for C₃₂H₃₃ClN₃O₃S [(M+H)⁺], 574.1926, found, 574.1924.

8-((4-Bromophenyl)thio)-4-(2-hydroxy-4,4-dimethyl-6-oxocyclohex-1-en-1-yl)-7,1 1,11-trimethyl-11,12-dihydro-9*H*-dibenzo[*d*,*f*]pyrazolo[1,5-*a*][1,3]diazepin-13(10 *H*)-one (4r)

V_{Petroleum ether}/V_{Ethyl acetate} = 1:1, R_f = 0.25; White solid: 197 mg (80%); mp = 311–313 °C; ¹H NMR (600 MHz, DMSO- d_6): δ = 8.17 (s, 1H, ArH), 7.55–7.42 (m, 2H, ArH), 7.18 (t, J = 7.1 Hz, 1H, ArH), 7.08 (s, 1H, ArH), 7.03–7.00 (m, 1H, ArH), 6.92 (s, 1H, ArH), 2.57 (s, 2H, CH₂), 2.36 (d, J = 67.1 Hz, 2H, CH₂), 2.15 (d, J = 15.9 Hz, 2H, CH₂), 2.07–1.87 (m, 5H, CH₂+CH₃), 1.07 (s, 3H, CH₃), 1.03 (s, 3H, CH₃), 0.96 (s, 6H, 2CH₃); ¹³C NMR (150 MHz, DMSO- d_6): δ = 195.7, 194.1, 167.3, 152.9, 152.1, 152.1, 138.8, 137.8, 132.5, 132.2, 132.1, 130.1, 129.7, 127.4, 127.4, 125.7, 118.2, 117.0, 115.7, 105.2, 92.3, 50.7, 50.7, 43.7, 43.7, 31.7, 30.2, 29.3, 28.1, 25.5, 25.5, 12.8; HRMS (TOF ES+): m/z calcd for C₃₂H₃₃BrN₃O₃S [(M+H)⁺], 618.1421, found, 618.1430.

4-(2-Hydroxy-4,4-dimethyl-6-oxocyclohex-1-en-1-yl)-7,11,11-trimethyl-8-((4-nitr ophenyl)thio)-11,12-dihydro-9*H*-dibenzo[*d*,*f*]pyrazolo[1,5-*a*][1,3]diazepin-13(10 *H*)-one (4s)

V_{Petroleum ether}/V_{Ethyl acetate} = 1:1, R_f = 0.25; White solid: 180 mg (77%); mp = 321–322 °C; ¹H NMR (600 MHz, DMSO- d_6): δ = 10.52 (br, 1H, NH), 8.28 (s, 1H, ArH), 8.12 (s, 1H, ArH), 7.35 (d, J = 8.5 Hz, 1H, ArH), 7.21 (t, J = 7.7 Hz, 2H, ArH), 7.16–7.05 (m, 2H, ArH), 2.59 (s, 2H, CH₂), 2.42 (d, J = 30.0 Hz, 2H, CH₂), 2.29–2.06 (m, 4H, 2CH₂), 1.96 (s, 3H, CH₃), 1.09 (s, 3H, CH₃), 1.05 (s, 3H, CH₃), 0.97 (s, 6H, 2CH₃); ¹³C NMR (150 MHz, DMSO- d_6): δ = 195.8, 194.3, 169.8, 167.2, 153.7, 151.9, 149.7, 145.2, 137.8, 132.4, 130.2, 130.2, 129.7, 125.8, 125.6, 125.6, 124.9, 124.3, 117.3, 115.7, 90.8, 50.7, 50.7, 43.8, 43.8, 31.7, 30.2, 29.4, 28.0, 25.5, 25.5, 12.8; HRMS (TOF ES+): m/z calcd for C₃₂H₃₃N₄O₅S [(M+H)⁺], 585.2166, found, 585.2172.

8-((3-Chlorophenyl)thio)-4-(2-hydroxy-4,4-dimethyl-6-oxocyclohex-1-en-1-yl)-7,1 1,11-trimethyl-11,12-dihydro-9*H*-dibenzo[*d*,*f*]pyrazolo[1,5-*a*][1,3]diazepin-13(10 *H*)-one (4t)

V_{Petroleum ether}/V_{Ethyl acetate} = 1:1, R_f = 0.25; White solid: 153 mg (67%); mp = 290–292 °C; ¹H NMR (600 MHz, DMSO- d_6): δ = 8.23 (s, 1H, ArH), 7.37–7.28 (m, 1H, ArH), 7.19 (t, J = 7.6 Hz, 2H, ArH), 7.10 (d, J = 7.5 Hz, 2H, ArH), 7.03 (s, 1H, ArH), 2.61 (d, J = 17.7 Hz, 2H, CH₂), 2.41–2.32 (m, 2H, CH₂), 2.17 (d, J = 16.1 Hz, 2H, CH₂), 2.07–1.95 (m, 5H, CH₂+CH₃), 1.08 (s, 3H, CH₃), 1.02 (s, 3H, CH₃), 0.96 (s, 6H, 2CH₃); ¹³C NMR (150 MHz, DMSO- d_6): δ = 195.7, 193.9, 167.3, 152.9, 152.2, 141.8, 137.7, 134.5, 132.3, 131.0, 130.2, 130.1, 129.7, 125.7, 125.4, 124.2, 124.0, 117.0, 115.6, 104.9, 91.8, 50.8, 50.8, 43.8, 43.8, 31.7, 30.2, 29.1, 28.4, 25.5, 25.5, 12.8; HRMS (TOF ES+): m/z calcd for C₃₂H₃₃ClN₃O₃S [(M+H)⁺], 574.1926, found, 574.1933.

4-(2-Hydroxy-4,4-dimethyl-6-oxocyclohex-1-en-1-yl)-2,7,11,11-tetramethyl-8-(*p*-t olylthio)-11,12-dihydro-9H-dibenzo[*d*,*f*]pyrazolo[1,5-*a*][1,3]diazepin-13(10*H*)-one (4u)

V_{Petroleum ether}/V_{Ethyl acetate} = 1:1, R_f = 0.25; White solid: 188 mg (83%); mp = 319–321 °C; ¹H NMR (600 MHz, DMSO- d_6): δ = 8.05 (s, 1H, ArH), 7.09 (d, J = 7.8 Hz, 2H, ArH), 6.91 (d, J = 29.2 Hz, 3H, ArH), 2.58 (d, J = 18.5 Hz, 2H, CH₂), 2.43 (d, J = 29.7 Hz, 2H, CH₂), 2.25 (d, J = 3.6 Hz, 6H, 2ArCH₃), 2.13 (d, J = 15.8 Hz, 2H, CH₂), 2.04–1.87 (m, 5H, CH₃+CH₂), 1.07 (s, 3H, CH₃), 1.03 (s, 3H, CH₃), 0.95 (s, 6H, 2CH₃); ¹³C NMR (150 MHz, DMSO- d_6): δ = 195.7, 194.0, 167.3, 152.2, 151.8, 151.8, 135.5, 135.3, 135.3, 134.6, 134.4, 132.8, 130.5, 130.1, 129.9, 129.5, 125.5, 125.5, 116.9, 105.5, 93.1, 50.8, 50.8, 43.6, 43.6, 31.7, 30.2, 28.3, 25.5, 25.5, 25.5, 20.9, 20.8, 12.8; HRMS (TOF ES+): m/z calcd for C₃₄H₃₈N₃O₃S [(M+H)⁺], 568.2628, found, 568.2630.

4-(2-Hydroxy-4,4-dimethyl-6-oxocyclohex-1-en-1-yl)-2-methoxy-7,11,11-trimethy l-8-(*p*-tolylthio)-11,12-dihydro-9*H*-dibenzo[*d*,*f*]pyrazolo[1,5-*a*][1,3]diazepin-13(10 *H*)-one (4v)

V_{Petroleum ether}/V_{Ethyl acetate} = 1:2, R_f = 0.25; White solid: 189 mg (81%); mp = 294–296 °C; ¹H NMR (600 MHz, DMSO-*d*₆): δ = 10.44 (br, 1H, NH), 8.09 (s, 1H, ArH), 7.10 (s, 2H, ArH), 6.98–6.87 (m, 2H, ArH), 6.64 (s, 1H, ArH), 3.71 (s, 3H, OMe), 2.57 (s, 2H, CH₂), 2.39 (s, 2H, CH₂), 2.25 (s, 3H, CH₃), 2.14 (d, *J* = 15.9 Hz, 2H, CH₂), 2.01–1.87 (m, 5H, CH₂+CH₃), 1.07 (s, 3H, CH₃), 1.03 (s, 3H, CH₃), 0.95 (s, 6H, 2CH₃); ¹³C NMR (150 MHz, DMSO-*d*₆): δ = 195.6, 193.8, 167.6, 156.4, 156.4, 151.7, 151.7, 135.4, 135.4, 135.4, 134.7, 131.2, 130.1, 125.4, 125.4, 125.4, 117.5, 116.7, 115.2, 105.3, 93.0, 55.7, 50.8, 50.8, 43.7, 43.7, 31.7, 30.1, 29.0, 28.5, 25.5, 25.5, 20.9, 12.8; HRMS (TOF ES+): m/z calcd for C₃₄H₃₈N₃O4S [(M+H)⁺], 584.2578, found, 584.2584.

2-Fluoro-4-(2-hydroxy-4,4-dimethyl-6-oxocyclohex-1-en-1-yl)-7,11,11-trimethyl-8 -(*p*-tolylthio)-11,12-dihydro-9*H*-dibenzo[*d*,*f*]pyrazolo[1,5-*a*][1,3]diazepin-13(10*H*) -one (4w)

V_{Petroleum ether}/V_{Ethyl acetate} = 1:2, R_f = 0.25; White solid: 182 mg (80%); mp = 285–287 °C; ¹H NMR (600 MHz, DMSO-*d*₆): δ = 10.68 (br, 1H, NH), 8.27 (s, 1H, ArH), 7.16–7.08 (m, 2H, ArH), 6.91 (d, *J* = 11.7 Hz, 3H, ArH), 2.59 (s, 2H, CH₂), 2.38 (s, 2H, CH₂), 2.25 (s, 3H, CH₃), 2.15 (d, *J* = 15.8 Hz, 2H, CH₂), 1.97 (d, *J* = 44.5 Hz, 5H, CH₂, CH₃), 1.07 (s, 3H, CH₃), 1.03 (s, 3H, CH₃), 0.94 (s, 6H, 2CH₃); ¹³C NMR (150 MHz, DMSO-*d*₆): δ = 195.5, 193.5, 159.4 (d, *J* = 241.2 Hz), 158.6, 152.4, 152.4, 152.1, 135.2, 135.2, 134.8, 134.2, 132.2, 131.9, 130.1 (d, *J* = 7.5 Hz), 125.5, 125.5, 118.6 (d, *J* = 22.0 Hz), 116.15 (d, *J* = 23.4 Hz), 115.8, 105.6, 93.6, 50.6, 50.6, 43.7, 43.7, 31.7, 30.1, 28.4, 28.4, 28.3, 28.3, 20.9, 12.8; HRMS (TOF ES+): m/z calcd for C_{33H35}FN₃O₃S [(M+H)⁺], 572.2378, found, 572.2385.

4-(2-Hydroxy-4,4-dimethyl-6-oxocyclohex-1-en-1-yl)-7,11,11-trimethyl-13-oxo-8-(*p*-tolylthio)-10,11,12,13-tetrahydro-9*H*-dibenzo[*d*,*f*]pyrazolo[1,5-*a*][1,3]diazepine -2-carbonitrile (4x)

V_{Petroleum ether}/V_{Ethyl acetate} = 1:1, R_f = 0.25; White solid: 203 mg (88%); mp > 330 °C; ¹H NMR (600 MHz, DMSO-*d*₆): δ = 8.43 (s, 1H, ArH), 7.52 (s, 1H, ArH), 7.12 (d, *J* = 7.9 Hz, 2H, ArH), 6.94 (s, 2H, ArH), 2.60 (s, 2H, CH₂), 2.32 (s, 2H, CH₂), 2.25 (s, 3H, CH₃), 2.19 (s, 2H, CH₂), 2.03–1.95 (m, 5H, CH₂+CH₃), 1.07 (s, 3H, CH₃), 1.04 (s, 3H, CH₃), 0.95 (s, 6H, 2CH₃); ¹³C NMR (150 MHz, DMSO-*d*₆): δ = 195.4, 195.4, 168.8, 153.5, 148.7, 141.6, 135.5, 134.8, 133.7, 131.3, 131.3, 130.2, 130.2, 130.2, 130.2, 125.6, 125.6, 118.9, 115.2, 108.6, 106.2, 94.7, 50.5, 50.5, 43.7, 43.7, 31.8, 30.1, 29.2, 28.2, 25.6, 25.6, 20.9, 12.9; HRMS (TOF ES+): m/z calcd for C₃₄H₃₅N₄O₃S [(M+H)⁺], 579.2424, found, 579.2430.

4-(2-Hydroxy-5,5-dimethyl-6-oxocyclohex-1-en-1-yl)-7,12,12-trimethyl-11,12-dih ydro-9*H*-dibenzo[*d*,*f*]pyrazolo[1,5-*a*][1,3]diazepin-13(10*H*)-one (4y)

V_{Petroleum ether}/V_{Ethyl acetate} = 1:2, R_f = 0.25; White solid: 124 mg (72%); mp > 330 °C; ¹H NMR (600 MHz, DMSO- d_6): δ = 10.09 (br, 1H, NH), 8.41 (s, 1H, ArH), 7.05 (t, J = 7.6 Hz, 1H, ArH), 6.87 (d, J = 7.7 Hz, 2H, ArH), 5.39 (s, 1H, C=CH), 2.54 (s, 2H, CH₂), 2.00 (s, 3H, CH₃), 1.72 (s, 4H, 2CH₂), 1.1–0.87 (m, 12H, 4CH₃), 0.77 (s, 2H, CH₂); ¹³C NMR (150 MHz, DMSO- d_6): δ = 201.1, 201.1, 166.4, 149.1, 149.1, 148.2, 138.3, 132.1, 130.8, 130.3, 130.2, 124.8, 115.5, 107.9, 94.7, 34.4, 32.8, 27.1, 27.1, 26.6, 26.6, 25.3, 25.3, 23.9, 23.9, 14.7; HRMS (TOF ES+): m/z calcd for C₂₆H₃₀N₃O₃ [(M+H)⁺], 432.2282, found, 432.2289.

4-(2-Hydroxy-4-methyl-6-oxocyclohex-1-en-1-yl)-7,11-dimethyl-11,12-dihydro-9 *H*-dibenzo[*d*,*f*]pyrazolo[1,5-*a*][1,3]diazepin-13(10*H*)-one (4z)

V_{Petroleum ether}/V_{Ethyl acetate} = 1:3, R_f = 0.25; Yellow solid: White mg (81%); mp = 317– 319 °C; ¹H NMR (600 MHz, DMSO-*d*₆): δ = 10.12 (br, 1H, NH), 8.50 (s, 1H, ArH), 7.07 (t, *J* = 7.5 Hz, 1H, ArH), 6.99 (d, *J* = 6.0 Hz, 1H, ArH), 6.85 (br, 1H, OH), 5.40 (s, 1H, C=CH), 2.63 (d, *J* = 17.2 Hz, 2H, CH₂), 2.42–2.28 (m, 2H, CH₂), 2.17 (s, 2H, CH₂), 2.10 (s, 2H, CH₂), 2.01 (s, 3H, CH₃), 2.00–1.70 (m, 2H, 2CH), 1.01 (d, *J* = 5.7 Hz, 6H, 2CH₃); ¹³C NMR (150 MHz, DMSO-*d*₆): δ = 195.7, 195.7, 168.2, 151.4, 149.8, 148.1, 138.2, 131.9, 130.6, 129.8, 129.5, 124.7, 116.7, 105.6, 94.9, 45.8, 45.8, 38.9, 38.9, 27.9, 26.5, 21.7, 21.1, 14.5; HRMS (TOF ES+): m/z calcd for C₂₄H₂₆N₃O₃ [(M+H)⁺], 404.1969, found, 404.1972.

4-(2-Hydroxy-6-oxocyclohex-1-en-1-yl)-7-methyl-11,12-dihydro-9*H*-dibenzo[*d*,*f*]p yrazolo[1,5-*a*][1,3]diazepin-13(10*H*)-one (4aa)

V_{Petroleum ether}/V_{Ethyl acetate} = 1:2, R_f = 0.25; White solid: 123 mg (82%); mp = 325–327 °C; ¹H NMR (600 MHz, DMSO- d_6): δ = 10.15 (br, 1H, NH), 8.54 (s, 1H, ArH), 7.06 (t, J = 7.5 Hz, 1H, ArH), 6.98 (d, J = 7.3 Hz, 1H, ArH), 6.88 (br, 1H, OH), 5.40 (s, 1H, C=CH), 2.64–2.54 (m, 2H, CH₂), 2.33 (s, 4H, 2CH₂), 2.02 (s, 3H, CH₃), 1.95–1.65 (m, 6H, 3CH₂); ¹³C NMR (150 MHz, DMSO- d_6): δ = 195.7, 195.7, 168.3, 158.7, 149.7, 148.1, 138.2, 131.9, 130.7, 129.8, 129.6, 124.6, 116.9, 104.4, 94.8, 37.6, 37.6, 30.8, 30.8, 20.7, 19.3, 14.4; HRMS (TOF ES+): m/z calcd for C₂₂H₂₂N₃O₃ [(M+H)⁺], 376.1656, found, 376.1660.

(*E*)-7,11,11-trimethyl-11,12-dihydro-9*H*-dibenzo[*d*,*f*]pyrazolo[1,5-*a*][1,3]diazepin -13(10*H*)-one oxime (5)

V_{Petroleum ether}/V_{Ethyl acetate} = 3:1, R_f = 0.25; Yellow solid: 71 mg (92%); mp = 275–178 °C; ¹H NMR (600 MHz, DMSO- d_6): δ = 10.56 (s, 1H, NH), 7.71 (s, 1H, ArH), 7.44 (d, J = 7.9 Hz, 1H, ArH), 7.32 (d, J = 7.7 Hz, 1H, ArH), 7.18 (t, J = 7.3 Hz, 1H, ArH), 7.09 (t, J = 7.2 Hz, 1H, ArH), 5.47 (s, 1H, C=CH), 2.38 (s, 2H, CH₂), 2.18 (s, 2H, CH₂), 2.12 (s, 3H, CH₃), 0.99 (s, 6H, 2CH₃); ¹³C NMR (150 MHz, DMSO- d_6): δ = 154.8, 152.3, 150.8, 150.7, 139.7, 132.8, 128.8, 127.1, 124.7, 122.4, 112.3, 94.2, 43.4, 36.4, 36.4, 29.3, 29.3, 14.4; HRMS (TOF ES+): m/z calcd for C₁₈H₂₁N₄O [(M+H)⁺], 309.1710, found, 309.1706.

Ethyl 2-(7,11,11-trimethyl-13-oxo-10,11,12,13-tetrahydro-9*H*-dibenzo[*d*,*f*]pyrazol o[1,5-*a*][1,3]diazepin-9-yl)acetate (6)

V_{Petroleum ether}/V_{Ethyl acetate} = 5:1, R_f = 0.25; Yellow solid: 79 mg (83%); mp = 213–316 °C; ¹H NMR (600 MHz, DMSO-*d*₆): δ = 7.50 (d, *J* = 8.0 Hz, 1H, ArH), 7.31 (t, *J* = 7.4 Hz, 1H, ArH), 7.22 (t, *J* = 7.4 Hz, 1H, ArH), 7.16 (d, *J* = 7.7 Hz, 1H, ArH), 5.81 (s, 1H, C=CH), 4.55 (d, *J* = 17.9 Hz, 1H, OCH₂), 4.40 (d, *J* = 17.8 Hz, 1H, OCH₂), 4.10–4.03 (m, 2H, CH₂), 2.64 (d, *J* = 18.1 Hz, 1H, CH₂), 2.45 (d, *J* = 18.0 Hz, 1H, CH₂), 2.32 (d, *J* = 33.3 Hz, 2H, CH₂), 2.16 (s, 3H, CH₃), 1.10 (t, *J* = 7.0 Hz, 3H, CH₃), 1.03 (s, 3H, CH₃), 1.02 (s, 3H, CH₃); ¹³C NMR (150 MHz, DMSO-*d*₆): δ = 196.5, 169.3, 166.8, 151.7, 150.6, 138.6, 132.1, 128.1, 126.9, 125.2, 122.0, 120.0, 96.8, 61.3, 51.3, 50.9, 41.1, 31.3, 29.4, 26.6, 14.4, 14.4; HRMS (TOF ES+): m/z calcd for C₂₂H₂₆N₃O₃ [(M+H)⁺], 380.1969, found, 380.1967.

9-Benzyl-7,11,11-trimethyl-11,12-dihydro-9*H*-dibenzo[*d*,*f*]pyrazolo[1,5-*a*][1,3]dia zepin-13(10*H*)-one (7)

V_{Petroleum ether}/V_{Ethyl acetate} = 5:1, R_f = 0.25; Yellow solid: 67 mg (70%); mp = 248–250 °C; ¹H NMR (600 MHz, DMSO-*d*₆): δ = 7.52 (d, *J* = 7.9 Hz, 1H, ArH), 7.36 (d, *J* = 7.1 Hz, 1H, ArH), 7.27 (d, *J* = 7.2 Hz, 1H, ArH), 7.23 (d, *J* = 7.5 Hz, 3H, ArH), 7.18 (s, 1H, ArH), 7.13 (d, *J* = 7.2 Hz, 2H, ArH), 5.91 (s, 1H, C=CH), 4.92 (s, 1H, ArCH₂), 4.62 (d, *J* = 15.4 Hz, 1H, ArCH₂), 2.65 (d, *J* = 18.0 Hz, 1H, CH₂), 2.52 (s, 1H, CH₂), 2.29 (d, *J* = 25.1 Hz, 2H, CH₂), 2.15 (s, 3H, CH₃), 0.94 (s, 3H, CH₃), 0.71 (s, 3H, CH₃); ¹³C NMR (150 MHz, DMSO-*d*₆): δ = 196.5, 167.5, 152.3, 150.6, 138.7, 137.9, 131.9, 128.9, 128.9, 128.4, 127.7, 127.3, 127.3, 126.7, 125.3, 121.9, 121.7, 96.9, 52.7, 51.0, 40.9, 31.5, 29.1, 26.3, 14.5; HRMS (TOF ES+): m/z calcd for C₂₅H₂₆N₃O [(M+H)⁺], 384.2070, found, 384.2066.

6-Hydroxy-4,4-dimethyl-2'-(1*H*-pyrazol-1-yl)-4,5-dihydro-[1,1'-biphenyl]-2(3*H*)-one (9a)

V_{Petroleum ether}/V_{Ethyl acetate} = 1:3, R_f = 0.25; White solid: 128 mg (91%); mp = 185–187 °C; ¹H NMR (500 MHz, DMSO-*d*₆): δ = 10.52 (br, 1H, OH), 7.52 (d, *J* = 2.2 Hz, 1H, N-CH), 7.47 (d, *J* = 1.4 Hz, 1H, N=CH), 7.35–7.33 (m, 1H, ArH), 7.31–7.28 (m, 1H, ArH), 7.27–7.23 (m, 1H, ArH), 7.03–7.02 (m, 1H, ArH), 6.24 (s, 1H, C=CH), 2.21 (s, 2H, CH₂), 2.09 (s, 2H, CH₂), 0.94 (s, 3H, CH₃), 0.85 (s, 3H, CH₃); ¹³C NMR (150 MHz, DMSO-*d*₆): δ = 196.0, 171.5, 140.6, 140.1, 133.5, 130.4, 129.7, 128.1, 127.5, 125.4, 113.6, 106.4, 50.0, 43.7, 31.9, 28.9, 28.1; HRMS (TOF ES+): m/z calcd for C₁₇H₁₉N₂O₂ [(M+H)⁺], 283.1441, found, 283.1448.

6-Hydroxy-2'-(1*H*-indazol-1-yl)-4,4-dimethyl-4,5-dihydro-[1,1'-biphenyl]-2(3*H*)-one (9b)

V_{Petroleum ether}/V_{Ethyl acetate} = 1:5, R_f = 0.25; White solid: 141 mg (85%); mp = 224–226 °C; ¹H NMR (500 MHz, DMSO-*d*₆): δ = 10.38 (br, 1H, OH), 8.08 (s, 1H, N=CH), 7.69 (d, *J* = 8.0 Hz, 1H, ArH), 7.37 (d, *J* = 5.9 Hz, 3H, ArH), 7.24–7.17 (m, 3H, ArH), 7.06 (t, *J* = 7.1 Hz, 1H, ArH), 2.09 (s, 2H, CH₂), 1.77 (s, 2H, CH₂), 0.85 (s, 3H, CH₃), 0.51 (s, 3H, CH₃); ¹³C NMR (150 MHz, DMSO-*d*₆): δ = 195.4, 171.1, 139.8, 139.2, 134.3, 133.9, 131.9, 127.9, 127.7, 126.9, 126.5, 124.1, 121.1, 121.1, 113.4, 110.9, 50.5, 43.1, 31.5, 29.1, 27.4; HRMS (TOF ES+): m/z calcd for C₂₁H₂₁N₂O₂ [(M+H)⁺], 333.1598, found, 333.1599.

5. X-ray Structure and Data³ of 3j (CCDC 2292416) and 4r (CCDC 2292417).

Figure S2 X-Ray crystal structure of 3j.

<u> </u>	- J -
Empirical formula	$C_{24}H_{23}N_{3}O$
Formula weight	369.45
Temperature	296.15 K
Crystal system, space group	Monoclinic, P2(1)/c
Unit cell dimensions	a = 6.459(3) A alpha = 90 deg.
	b = 26.872(12) A beta = 98.252(9) deg.
	c = 13.342(5) A gamma = 90 deg.
Volume	2291.7(17) A^3
Z, Calculated density	4, 1.071 Mg/m^3
Absorption coefficient	0.067 mm^-1
F(000)	784.0
Theta range for data collection	6.356 to 49.994 deg.
Limiting indices	-7<=h<=7, -31<=k<=31, -15<=l<=14
Reflections collected / unique	11541 / 4024 [R(int) = 0.0922]
Data/restraints/parameters	4024 / 0 / 256
Goodness-of-fit on F ²	0.917
Final R indices [I>2sigma(I)]	R1 = 0.0755, WR2 = 0.1935
R indices (all data)	R1 = 0.1607, wR2 = 0.2423
Largest diff. peak and hole	0.25 and -0.213 e.A^-3

Table S2 Crystal data and structure refinement for 3j.

Figure S3 X-Ray crystal structure of 4r.

Empirical formula	C ₃₃ H ₃₆ BrN ₃ O ₄ S			
Formula weight	650.62			
Temperature	296.15 К			
Crystal system, space group	triclinic, P-1			
Unit cell dimensions	a = 9.915(3) A alpha = 113.225(5) deg.			
	b = 13.033(4) A beta = 97.316(5) deg.			
	c = 14.176(4) A gamma = 101.109(6) deg.			
Volume	1609.4(8) A^3			
Z, Calculated density	2, 1.343 Mg/m^3			
Absorption coefficient	1.382 mm^-1			
F(000)	676.0			
Theta range for data collection	5.442 to 55.206 deg.			
Limiting indices	-11<=h<=12, -15<=k<=16, -18<=l<=17			
Reflections collected / unique	9823 / 7049 [R(int) = 0.0209]			
Data/restraints/parameters	7049 / 0 / 387			
Goodness-of-fit on F ²	1.009			
Final R indices [I>2sigma(I)]	R1 = 0.0604, wR2 = 0.1434			
R indices (all data)	R1 = 0.1135, WR2 = 0.1691			
Largest diff. peak and hole	0.78 and -0.84 e.A^-3			

Table S3 Crystal data and structure refinement for 4r.

6. ¹H NMR and ¹³C NMR spectra for spectroscopic data.

2.34 2.30 2.25 2.18 -1.05 -7.71 -7.733 -7.77 -7.77

CLK-103.1.fid

S145

S147

7. References and notes.

- (a) Rimland, J.; Dunne, A.; Hunjan, S. S.; Sasse, R.; Uings, I.; Montanari, D.; Caivano, M.; Shah, P.; Standing, D.; Gray, D.; Brown, D.; Cairns, W.; Trump, R.; Smith, P. W.; Bertheleme, N.; D'Alessandro, P.; Gul, S.; Vimal, M.; Smith, D. N.; Watson, S. P. *Bioorg. Med. Chem. Lett.*, 2010, 20, 2340. (b) Saritha, R.; Annes, S. B.; Perumal, K.; Shankar, B.; Ramesh, S. *J. Org. Chem.*, 2022, 87, 13856.
- (a) Mayakrishnan, S.; Tamizmani, M.; Maheswari, N. U. Chem. Commun., 2020, 56, 15462. (b) Yang, L.; Pi, C.; Wu, Y.; Cui, X. Org. Lett., 2022, 24, 7502.
- 3. CCDC 2292416 and 2292417 contain the supplementary crystallographic data for compound **3j** and **4r**. These data can be obtained free of charge from The Cambridge Crystallographic Data Center *via* <u>www.ccdc.cam.ac.uk/data_request/cif.</u>