Electronic Supplementary Material (ESI) for Chemical Communications. This journal is © The Royal Society of Chemistry 2024

Electronic Supplementary Information (ESI)

Mononuclear indium(III) photosensitizers for photodehalogenation and olefin reduction

Li-Zhi Fu,^a Piao He,^a Jia-Wei Wang,^b Fan Ma,^a Chao Liu,^a Guo Chen,^a Xiao-Yi Yi^{*a}

^a College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, P. R. China

^b School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China

Email: <u>xyyi@csu.edu.cn</u> Phone: 86-731-88879616

Contents

1.	General Conidiations	3					
	1.1 Materials	3					
	1.2 Characterization	3					
2.	Experimental Procedures and Spectroscopic Data	4					
3.	Crystallographic Data	.13					
4.	DFT Calculation15						
5.	Absorption and Emission Spectra in Various Solvents25						
6.	Cyclic Voltammetry	.27					
7.	Photoredox Catalysis	.28					
	7.1 Experimental setup for photoredox reactions	.28					
	7.2 Indium(III) photosensitizers for photo-dehalogenation	.29					
	7.3 Indium(III) photosensitizers for reduction of cis-diethyl maleate	.32					
8.	References	.34					

1. General Conidiations

1.1 Materials

All syntheses were carried using a standard vacuum line and Schlenk technology with an atmosphere of purified argon. Solvents for air- and moisture-sensitive manipulations were dried and deoxygenated using a JC-Meyer Phoenix solvent drying system. The ligands **HL1** (2-(1Hpyrrol-2-yl)pyridine), **HL2** (2-(4-methyl-1H-pyrrol-2-yl)pyridine), **HL3** (2-(3,5-dimethyl-1H-pyrrol-2-yl)pyridine), and **HL4** (2-(3,4,5-trimethyl-1H-pyrrol-2-yl)pyridine) were prepared according to literature methods.^{1, 2} All other chemicals were obtained from J&K Scientific Ltd and used without further purification.

1.2 Characterization

The ¹H NMR spectra were recorded on a Bruker AVANCE (III) 400M spectrometer. The infrared spectra (in KBr) were recorded on a Nicolet 6700 spectrometer FT-IR spectrophotometer. The UV-Vis spectra were recorded on an Agilent Technologies Cary 8454 UV-Vis spectrometer at ambient temperature with a 1 cm quartz cell. ESI-MS was performed on a Bruker Daltonik GmbH, Bremen mass spectrometer equipped with an electrospray ionization (ESI) source. Emission spectra were recorded on a F97Pro Fluorescence spectrometer. The quantum yields were carried out on a fluorescence spectrometer (F-7000, Hitachi, Japan) equipped with an integrating sphere, which was also reproduced on fluorescence spectrometer (FLS 1000, Edinburgh Instruments LTD.). The excited-state lifetimes (τ) were conducted on a modular fluorescent life and steady-state fluorescence spectrometer (FLS 1000, Edinburgh Instruments LTD.). The photocatalytic reaction experiments are performed by the Perfect Light PCX50C photochemistry system. Cyclic voltammetry was performed on a CHI Instruments CHI660e electrochemical analyzer. The working electrode was a glassy carbon electrode, the counter electrode is a Pt wire, and the reference electrode is an Ag/AgCl electrode in saturated KCl. Electrochemical measurements were performed in acetonitrile solution containing 0.1 M tBu₄N·PF₆ electrolyte in a one compartment cell. All potentials were converted to $E_{1/2}$ vs. $Cp_2Fe^{+/0}$ in CH₃CN by adding -0.43 V to the measured potential.

X-ray Diffraction Studies: Diffraction data was record on a Bruker CCD diffractometer with monochromatized Mo-K α radiation (λ = 0.71073 Å). The collected frames are processed using the software SAINT. The absorption correction was processed with SADABS. The structure was solved by a direct method and refined using a full matrix least squares method on F² with the SHELXTL software package. Atomic positions of non-hydrogen atoms were refined with anisotropic parameters. All hydrogen atoms were introduced at their geometrical positions and refined as riding atoms.

DFT calculations were performed by using the Gaussian 09 package. Geometry optimizations were performed on the ground state structures with the Becke's three-parameter B3LYP exchange-correlation functional. The all-electron Gaussian basis

sets were those developed by the Ahlrichs group. The slightly smaller polarized splitvalence def2-SVP basis sets for H, C, N and triple- ζ quality basis sets def2-TZVP with one set of polarization functions for the In atom. Vibrational frequencies were calculated based on the optimized structures to confirm the absence of imaginary frequencies. MOs of complexes were calculated and visualized as well. The excited states calculations were carried out on the basis of the optimized S0 structures via time-dependent DFT (TD-DFT) at the same level. The solvation effects were also taken into account using the self-consistent reaction field (SCRF) and a universal solvation model density (SMD) with the CH₃CN solvent.

2. Experimental Procedures and Spectroscopic Data

Figure S1. (a) solid samples of In-1 - In-4; (b) solid samples of In-1 - In-4 upon irradiation at 365 nm at room temperature.

Synthesis of In-1: InMe₃ (48.0 mg, 0.3 mmol) was slowly added to the solution of HL1 (140.0 mg, 1.0 mmol) in toluene (5 mL). The reaction mixture was stirred for 2 hours at room temperature then heated to reflux overnight under nitrogen atmosphere to give a green solution. After cooling, toluene was removed in vacuo. The solid residue was washed three times with diethyl ether to remove any unreacted HL1. The crude product was redissolved in CH₂Cl₂ and filtered. Recrystallized by the addition of diethyl ether to give the desired product In-1 as a grey green solid. Yield: 101 mg (62%). The solution of In-1 in CH₂Cl₂ was layered by hexane to give block single crystals which were suitable for X-ray diffraction analysis.

¹H NMR (400 MHz, CDCl₃) δ 8.33 (d, J = 5.0 Hz, 1H), 7.77 – 7.70 (m, 1H), 7.64 (d, J = 8.2 Hz, 1H), 7.16 – 7.06 (m, 1H), 6.88 (dd, J = 3.4, 1.0 Hz, 1H), 6.73 (dd, J = 1.7, 1.1 Hz, 1H), 6.30 (dd, J = 3.3, 2.0 Hz, 1H).

ESI-MS (m/z): 567.1044, calcd. 567.0759 for [M + K⁺]⁺.

IR (KBr, cm⁻¹): 1604 (s), 1525 (s), 1444 (s), 1390 (m), 1274 (m), 1159 (m), 1051 (m), 1000 (m), 944 (s), 728 (s), 518 (w).

Synthesis of In-2: InMe₃ (80.0 mg, 0.5 mmol) was slowly added to the solution of HL2 (260.0 mg, 1.65 mmol) in toluene (5 mL). The reaction mixture was stirred for 2 hours at room temperature then heated to reflux overnight under nitrogen atmosphere to give a dark-green solution. After cooling, toluene was removed in vacuo. The solid residue was washed three times with diethyl ether to remove any unreacted HL2. The crude product was redissolved in CH_2Cl_2 and filtered. Recrystallized by the addition of diethyl ether to give the desired product In-2 as a yellow solid. Yield: 152.4 mg (52%).

¹H NMR (400 MHz, CDCl₃) δ 7.58 (dd, J = 14.8, 6.6 Hz, 2H), 7.48 (d, J = 8.2 Hz, 1H), 6.81 (t, J = 6.1 Hz, 1H), 6.67 (s, 1H), 6.48 (s, 1H), 2.20 – 2.06 (m, 3H).

ESI-MS (m/z): 585.0781, calcd. 585.1252 for [M]⁺.

IR (KBr, cm⁻¹): 2919 (w), 2963 (w), 1601 (s), 1542 (m), 1439 (s), 1361 (m), 1288 (w), 1153 (w), 1105 (w), 964 (s), 769 (w), 615 (w), 489 (w).

Synthesis of In-3: InMe₃ (95.94 mg, 0.6 mmol) was slowly added to the solution of HL3 (292.6 mg, 1.7 mmol) in toluene (5 mL). The reaction mixture was stirred for 2 hours at room temperature then heated to reflux overnight under nitrogen atmosphere to give a yellow solution. After cooling, toluene was removed in vacuo. The solid residue was washed three times with diethyl ether to remove any unreacted HL3. The crude product was redissolved in CH₂Cl₂ and filtered. Recrystallized by the addition of diethyl ether to give the desired product In-3 as a light-yellow solid. Yield: 263.8 mg (70%). The solution of In-3 in CH₂Cl₂ was layered by hexane to give block yellow single crystals which were suitable for X-ray diffraction analysis.

¹H NMR (400 MHz, CDCl₃) δ 7.57 – 7.49 (m, 6H), 7.43 (dd, J = 10.2, 4.7 Hz, 2H), 7.28 (d, J = 5.6 Hz, 1H), 6.73 (t, J = 5.6 Hz, 1H), 6.70 – 6.66 (m, 1H), 6.57 (s, 1H), 5.86 (s, 2H), 5.81 (s, 1H), 2.38 – 2.35 (m, 9H), 1.83 (s, 3H), 1.75 (d, J = 9.2 Hz, 6H).

ESI-MS (m/z): 628.1288, calcd. 628.1800 for [M]⁺.

IR (KBr, cm⁻¹): 3068 (w), 2910 (w), 1606 (m), 1531 (m), 1484 (s), 1346 (m), 1272 (m), 1159 (w), 1024 (w), 971 (m), 777 (m), 671 (w).

Synthesis of In-4: InMe₃ (48.0 mg, 0.3 mmol) was slowly added to the solution of HL4 (148.9 mg, 0.8 mmol) in toluene (5 mL). The reaction mixture was stirred for 2 hours at room temperature then heated to reflux overnight under nitrogen atmosphere to give a yellow solution. After cooling, toluene was removed in vacuo. The solid residue was washed three times with diethyl ether to remove any unreacted HL4. The crude product was redissolved in CH_2Cl_2 and filtered. Recrystallized by the addition of diethyl ether to give the desired product In-4 as a yellow solid. Yield: 100.5 mg (50%).

¹H NMR (400 MHz, CDCl₃) δ 7.56 – 7.44 (m, 6H), 7.40 (d, J = 5.3 Hz, 1H), 7.34 – 7.27 (m, 2H), 6.72 – 6.47 (m, 3H), 2.28 (d, J = 4.1 Hz, 9H), 1.91 (dd, J = 17.5, 6.5 Hz, 9H), 1.72 (dd, J = 13.4, 8.0 Hz, 9H).

ESI-MS (m/z): 670.1716, calcd. 670.2270 for [M]⁺.

IR (KBr, cm⁻¹): 2911 (m), 2854 (m), 1602 (s), 1473 (s), 1351 (s), 1251 (m), 1159 (m), 1006 (m), 939 (m), 773 (m), 669 (w).

Figure S2. ESI-MS spectrum of complex **In-1** in CH₃CN. Inset: the comparison of observed and predicted isotope distribution.

Figure S3. ESI-MS spectrum of complex **In-2** in CH₃CN. Inset: the comparison of observed and predicted isotope distribution.

Figure S4. ESI-MS spectrum of complex **In-3** in CH₃CN. Inset: the comparison of observed and predicted isotope distribution.

Figure S5. ESI-MS spectrum of complex **In-4** in CH₃CN. Inset: the comparison of observed and predicted isotope distribution.

Figure S6. IR spectrum of complex In-1.

Figure S7. IR spectrum of complex In-2.

Figure S8. IR spectrum of complex In-3.

Figure S9. IR spectrum of complex In-4.

Figure S10. ¹H NMR spectrum of complex In-1 in CDCl₃.

Figure S11. ¹H NMR spectrum of complex In-2 in CDCl₃.

Figure S12. ¹H NMR spectrum of complex In-3 in CDCl₃.

Figure S13. ¹H NMR spectrum of complex In-4 in CDCl₃.

3. Crystallographic Data

Compound	In-1	In-3
Empirical formula	$C_{27}H_{21}InN_6$	C33H33InN6
CCDC number	2257308	2257309
Formula weight	544.32	628.47
T/K	296(2)	296.15
Crystal system	monoclinic	triclinic
Space group	$P2_1/c$	P-1
a/Å	16.1797(10)	9.9431(2)
b/Å	15.4641(10)	10.4086(2)
c/Å	9.7077(6)	14.7800(3)
α/\circ	90	83.547(2)
β/°	99.032(3)	80.2990(10)
γ/°	90	74.8850(10)
$V/Å^3$	2398.8(3)	1451.83(5)
Z	4	2
$\rho_{calc}/g \cdot cm^{-3}$	1.507	1.438
μ/mm^{-1}	1.012	0.847
F(000)	1096.0	644.0
Reflections collected	16047	18624
Independent reflections	$5342 \ [R \ _{int} = 0.0204, \ R \ _{sigma} \\ = 0.0280]$	$\begin{array}{l} 6583 \; [R_{int} = 0.0284, R_{sigma} \\ = 0.0403] \end{array}$
Data/restraints/parameters	5342/102/286	6583/216/466
^a Goodness-of-fit on F ²	1.061	1.045
^b Final R indexes [I>= 2σ (I)]	$R_1 = 0.0950, wR_2 = 0.2616$	$R_1 = 0.0455, wR_2 = 0.1146$
Final R indexes [all data]	$R_1 = 0.1196, wR_2 = 0.2811$	$R_1 = 0.0634, wR_2 = 0.1232$
^{<i>a</i>} GoF = $[\Sigma w(F_o - F_c)^2/(N_{obs} - N)$	$[\text{param})]^{1/2}$.	

 Table S1. X-ray crystallographic data for complexes In-1 and In-3.

 ${}^{b}R_{1} = \Sigma ||F_{o}| - |F_{c}|| / \Sigma |F_{o}|. {}^{c}wR_{2} \left[(\Sigma w |F_{o}| - |F_{c}|)^{2} / \Sigma w^{2} |F_{o}|^{2} \right]^{\frac{1}{2}}.$

Compound	In 1	In 2
Compound	IN-1	111-3
	Bond lengths (A)	
In1-N1	2.163(7)	2.200(3)
In1-N2	2.287(7)	2.278(4)
In1-N3	2.125(10)	2.186(4)
In1-N4	2.290(7)	2.223(4)
In1-N5	2.184(5)	2.211(3)
In1-N6	2.264(5)	2.327(4)
In1-N3'		2.211(7)
In1-N4'		2.282(6)
	Angles (°)	
N1-In1-N2	75.1(3)	74.04(15)
N1-In1-N3	104.9(3)	96.8(2)
N1-In1-N6	157.0(3)	89.70(13)
N2-In1-N3	100.0(3)	103.95(18)
N2-In1-N6	90.3(3)	92.87(13)
N3-In1-N6	94.9(3)	163.06(17)
N4-In1-N1	99.5(3)	101.8(2)
N4-In1-N2	171.6(3)	175.67(19)
N4-In1-N3	74.8(3)	75.2(2)
N4-In1-N6	96.7(3)	88.19(18)
N5-In1-N1	90.6(3)	156.01(14)
N5-In1-N2	94.6(3)	89.16(14)
N5-In1-N3	160.9(3)	103.9(2)
N5-In1-N4	92.0(3)	95.16(19)
N5-In1-N6	72.6(3)	73.86(13)
N3'-In1-N1		103.6(2)
N3'-In1-N2		161.5(2)
N3'-In1-N5		97.7(2)
N3'-In1-N6		105.5(2)
N3'-In1-N4'		74.6(3)
N4'-In1-N1		94.4(2)
N4'-In1-N2		87.1(2)
N4'-In1-N5		101.8(2)
N4'-In1-N6		175.68(19)

 Table S2. Selected bond lengths (Å) and angles (°)

4. DFT Calculation

DFT calculations were performed by using the Gaussian 09 package^[4]. Geometry optimizations were performed on the ground state structures with the Becke's three-parameter B3LYP exchange-correlation functional^[5,6]. The all-electron Gaussian basis sets were those developed by the Ahlrichs group^[7-9]. The slightly smaller polarized split-valence def2-SVP basis sets for H, C, N and In atom Vibrational frequencies were calculated based on the optimized structures to confirm the absence of imaginary frequencies. MOs of complexes were calculated and visualized as well. The excited states calculations were carried out on the basis of the optimized S0 structures via time-dependent DFT (TD-DFT)^[10] at the same level. The solvation effects were also taken into account using the self-consistent reaction field (SCRF) and a universal solvation model density (SMD)^[11] with the acetonitrile solvent.

Input File Examples

Geometry Optimizations

%chk=In-1.chk

%mem=6GB

%nprocshared=8

#p b3lyp/def2SVP opt freq geom=connectivity

opt for In-1

01

Coordinates

TD-DFT Calculations

%chk=In-1-uv.chk %mem=6GB %nprocshared=8 #p td=(50-50, nstates=50, root=1) b3lyp/def2SVP SCRF(SMD,solvent=acetonitrile) geom=connectivity

uv for In-1

01

Coordinates

Figure S14. Optimized geometries for In-1, In-2, In-3 and In-4

Table S3	. Comparison	of selected	bond	lengths	(Å)	and	angles	(°) 0	f In-1	and	In-3
from expe	erimental and	calculated r	esults								

Bond		Cala (Irr 1)	E-m (In 1)	Cala (In 2)	E (I 2)	
	length/angle	Carc. (III-1)	Exp. (111-1)	Calc. (111-3)	Ехр. (Ш-3)	
	In-N1	2.19939	2.163(7)	2.22226	2.200(3)	
	In-N2	2.34523	2.287(7)	2.33738	2.278(4)	
			C1 C			

In-N3	2.20332	2.125(10)	2.20492	2.186(4)
In-N4	2.34835	2.290(7)	2.34352	2.223(4)
In-N5	2.19892	2.184(5)	2.22436	2.211(3)
In-N6	2.38990	2.264(5)	2.35914	2.327(4)

Figure S15. Electronic absorption spectrum of **In-1**, **In-2**, **In-3** and **In-4** obtained via TD-DFT calculations (red line, fwhm of 0.5 eV). The stick plot indicates the positions and relative intensities of individual transitions. Transitions with calculated oscillator strengths larger than 0.03 are labeled according to their TD-DFT state number. The experimental spectrum is shown as a black line for comparison.

Table S4. Vertical Electronic Excitation Energies and Main Excitations Contributingto the Absorption Bands of In-1, In-2, In-3 and In-4 Obtained via TD-DFTCalculations.

	hand	atoto	E (aV)	λ	f	Excitations	Character	
	Dallu	state	E (ev)	(nm)	Josc	(weight) ^{a,b}	Character	
In-1	Ι	16	3.5763	346.68	0.1077	122→125 (0.64)	¹ LLCT	
						122 . 125 (0.08)	$^{1}LLCT +$	
						125→125 (0.08)	¹ ILCT	
		01	2 (005	226.14	0.2446	121 . 12((0.74)	$^{1}LLCT +$	
		21	3.0883	330.14	0.2440	$121 \rightarrow 120 (0.74)$	¹ ILCT	
	Π	32	4.0952	302.76	0.4962	121→128 (0.27)	¹ LLCT	
						122 \127 (0.20)	$^{1}LLCT +$	
						$122 \rightarrow 127 (0.20)$	¹ ILCT	
						122→128 (0.23)	¹ LLCT	
		35	1 1333	200 07	0 2183	123-120 (0.56)	$^{1}LLCT +$	
		55	4.1555	299.91	0.2163	$123 \rightarrow 129 (0.30)$	¹ ILCT	
						121→129 (0.13)	¹ LLCT	
In-2	T	16	3 1713	356.86	0 1127	134→137 (0 57)	$^{1}LLCT +$	
111-2	I	10	5.4745	550.00	0.1127	154 /157 (0.57)	¹ ILCT	
						133-138 (0.08)	$^{1}LLCT +$	
						155 /158 (0.08)	¹ ILCT	
						134→136 (0.05)	$^{1}LLCT +$	
						154 /150 (0.05)	¹ ILCT	
		19	3 5485	349 40	0 0646	134→138 (0 59)	$^{1}LLCT +$	
		17	5.5 105	517.10	0.0010	151 (150 (0.55)	¹ ILCT	
		21	3 5853	345 81	0 2163	133→138 (0 79)	$^{1}LLCT +$	
		21	5.5055	515.01	0.2105	155 (150 (0.75)	¹ ILCT	
	П	25	3.9192	316.35	0.0875	135→139 (0.85)	$^{1}LLCT +$	
	п	20	5.7172	510.55	0.0075	105 (0.05)	¹ ILCT	
		31	3.9890	310.82	0.4836	$134 \rightarrow 140 \ (0.27)$	$^{1}LLCT +$	
			U 1	2.7070	210.02	0.1000	(0.27)	¹ ILCT
						134→139 (0.20)	$^{1}LLCT +$	
						107 (0.20)	¹ ILCT	

						133→140 (0.15)	¹ ILCT
		35	4.0307	307.60	0.1446	135→141 (0.52)	1 LLCT + 1 ILCT
						134→140 (0.10)	¹ LLCT + ¹ ILCT
						134→141 (0.08)	¹ LLCT + ¹ ILCT
In-3	I	7	3.2414	382.51	0.0761	147→148 (0.88)	¹ LLCT + ¹ ILCT
						145→148 (0.05)	¹ LLCT + ¹ ILCT
		15	3.3356	371.69	0.0582	146→149 (0.00)	¹ LLCT + ¹ ILCT
		16	3.3443	370.73	0.0577	145→149 (0.62)	¹ LLCT + ¹ ILCT
		18	3.3850	366.27	0.0561	147→150 (0.64)	¹ LLCT + ¹ ILCT
						146→150 (0.19)	¹ LLCT + ¹ ILCT
						145→149 (0.07)	¹ LLCT + ¹ ILCT
		20	3.4438	360.02	0.2040	146→150 (0.66)	¹ LLCT + ¹ ILCT
	п	29	3.8479	322.21	0.1492	145→151 (0.41)	¹ LLCT + ¹ ILCT
						146→152 (0.35)	¹ LLCT + ¹ ILCT
		33	3.9283	315.62	0.2348	146→152 (0.41)	¹ LLCT + ¹ ILCT
						147→153 (0.10)	¹ LLCT + ¹ ILCT
						147→152 (0.08)	¹ LLCT + ¹ ILCT

						145 153 (0.08)	$^{1}LLCT +$
						145-7155 (0.08)	¹ ILCT
		34	3 0/53	31/1 26	0 2250	147-153 (0.67)	$^{1}LLCT +$
		54	5.7455	514.20	0.2250	147-7155 (0.07)	¹ ILCT
		35	3 9700	312 31	0 0969	145→152 (0 51)	$^{1}LLCT +$
		55	5.7700	512.51	0.0707	145 /152 (0.51)	¹ ILCT
						146→152 (0 19)	$^{1}LLCT +$
						140 /152 (0.17)	¹ ILCT
						145→153 (0.09)	$^{1}LLCT +$
						115 (0.07)	¹ ILCT
		39	4 0240	308 11	0 1632	145→153 (0 57)	$^{1}LLCT +$
		57	1.0210	500.11	0.1052	115 1155 (0.57)	¹ ILCT
						146→153 (0.26)	$^{1}LLCT +$
						110 100 (0.20)	¹ ILCT
In-4	Ι	7	3.1621	392.10	0.0787	159→160 (0.89)	$^{1}LLCT +$
						,	¹ ILCT
		16	3.2623	380.06	0.1015	157→161 (0.69)	$^{1}LLCT +$
							¹ ILCT
						159→162 (0.09)	$^{1}LLCT +$
							¹ ILCT
						159→161 (0.07)	$^{1}LLCT +$
		18	3.3050	375.14	0.0562	159→162 (0.70)	$^{1}LLCT +$
						158→162 (0.13)	LLCT +
		20	3.3650	368.45	0.2200	158→162 (0.64)	1 UCT
						157→162 (0.15)	1 II CT
	II	29	3.7691	328.95	0.1567	157→163 (0.58)	1 II CT
						159→163 (0.08)	$^{1}LLCT +$

					¹ ILCT
30	2 9 2 9 5	222.00	0 2262	158 164 (0.48)	$^{1}LLCT +$
32	5.8585	525.00	0.2202	138-7104 (0.48)	¹ ILCT
				150 164 (0.11)	$^{1}LLCT +$
				139-7104 (0.11)	¹ ILCT
				157-164 (0.07)	$^{1}LLCT +$
				137-7104 (0.07)	¹ ILCT
				158-165 (0.06)	$^{1}LLCT +$
				158 /105 (0.00)	¹ ILCT
34	3 8607	321 14	0 1804	159-165 (0.63)	$^{1}LLCT +$
54	5.0007	521.17	0.100-	157 /105 (0.05)	¹ ILCT
				155→160 (0.06)	$^{1}LLCT +$
				155 /100 (0.00)	¹ ILCT
40	3 9667	312 57	0 1246	156→160 (0.67)	$^{1}LLCT +$
40	5.7007	512.57	0.1240	150 /100 (0.07)	¹ ILCT
				158→164 (0 15)	$^{1}LLCT +$
				150 /101 (0.15)	¹ ILCT
42	4 0016	309 84	0 1916	155→160 (0.32)	$^{1}LLCT +$
.2		207101	0.1710	100 (0.02)	¹ ILCT
				$156 \rightarrow 161 \ (0.28)$	$^{1}LLCT +$
				100 101 (0.20)	¹ ILCT
				157→165 (0.22)	$^{1}LLCT +$
					¹ ILCT

^a Only excitations contribution with a weight larger than 0.05 are shown. ^b for In-1: HOMO 123, LUMO 124; In-2: HOMO 135, LUMO 136; In-3: HOMO 147, LUMO 148; In-4: HOMO 159, LUMO 160.

In1-120

In1-118

In1-124-LUMO

In1-119

In1-126

In1-127

33

In1-129

In2-130 In2-131

In2-132

In1-128

In2-135-HOMO

In2-136-LUMO

In2-137

in2-138

In2-139

In2-133

In2-141

In3-142

In3-143

In3-146

In3-147-HOMO

In3-148-LUMO

In3-149

In3-144

In3-151

In3-145

In3-152

In3-153

In2-134

In2-140

Figure S16. Frontier molecular orbital diagram of **In-1**, **In-2**, **In-3** and **In-4** showing the donor and acceptor orbitals contributing to TD-DFT excitations computed in visible region of electronic absorption spectrum.

5. Absorption and Emission Spectra in Various Solvents

Figure S17. The absorption spectra (a) and emission spectra (b) of **In-1** in CH₃CN solution under argon atmosphere or upon exposure to air; The absorption spectra (c)

and emission spectra (d) of In-2 in CH₃CN solution under argon atmosphere or upon exposure to air; The absorption spectra (e) and emission spectra (f) of In-3 in CH₃CN solution under argon atmosphere or upon exposure to air; The absorption spectra (g) and emission spectra (h) of In-4 in CH₃CN solution under argon atmosphere or upon exposure to air.

Figure S18. The excited state lifetimes of **In-1** (a), **In-2** (b), **In-3** (c) and **In-4** (d) in CH₃CN measured by time-resolved fluorescence spectroscopy in N_2 atmosphere.

6. Cyclic Voltammetry

Figure S19. Reductive cyclic voltammetry of 0.1mM **In-1** - **In-4**, in degassed CH₃CN solution with scan rate at 0.1 V s⁻¹, electrolyte: 0.1 M Bu₄NPF₆, reference electrode: AgCl/Ag electrode in saturated KCl solution; counter electrode: Pt wire; working electrode: glassy carbon electrode, E vs. $Cp_2Fe^{+/0}$.

Figure S20. Oxidative cyclic voltammetry of 0.1 mM **In-1** - **In-4**, in degassed CH₃CN solution with scan rate at $0.1 \text{ V} \text{ s}^{-1}$, electrolyte: $0.1 \text{ M} \text{ Bu}_4\text{NPF}_6$, reference electrode: AgCl/Ag electrode in saturated KCl solution; counter electrode: Pt wire; working electrode: glassy carbon electrode, E vs. Cp₂Fe^{+/0}.

7. Photoredox Catalysis

7.1 Experimental setup for photoredox reactions

All photoredox experiments were performed using Perfect Light PCX50C photochemistry system. Constant room temperature conditions were maintained using a water bath in a jacketed glass beaker with water cooling.

Figure S21. Experimental setup for irradiation of NMR tubes.

7.2 Indium(III) photosensitizers for photo-dehalogenation

The NMR tube was charged with photosensitizer (0.001 mmol, 1.0 equiv.), BIH (13.3 mg, 0.059 mmol, 59.0 equiv,), and ethyl bromodifluoroacetate (12.0 mg, 0.059 mmol, 59.0 equiv,) and C_6D_6 (0.6 mL) in the dry-box. The mixture was placed in a jacketed glass beaker with water cooling (at r. t.) and irradiated with different light source for given time. 1,3,5-trimethoxybenzene as an internal standard was added into the reaction mixture, the yield was calculated by NMR spectroscopy.

photosensitizers.			
Entry	Complex	λ (nm)	Yield ^a
1	In-1	420	46
2	In-1	450	50
3	In-1	White light	33
4	In-2	420	15
5	In-2	450	9
6	In-2	White light	7
7	In-3	420	18
8	In-3	450	46
9	In-3	White light	7
10	In-4	420	24
11	In-4	450	35
12	In-4	White light	12
13	In-1	-	Trace
14	In-2	-	Trace
15	In-3	-	Trace
16	In-4	-	Trace
17	-	420	10
18	-	450	9
19	-	White light	8

Table S5. Condition optimization of photo-dehalogenation by indium(III) photosensitizers.

^a The yield was calculated by using 1,3,5-trimethoxybenzene as the internal standard, reaction time: 1 h.

a)

Figure S22. a) ¹H NMR spectra and b) ¹⁹F NMR spectra of reaction mixture of ethyl bromodifluoroacetate and BIH in presence of catalyst **In-1** and internal standard 1,3,5-trimethoxybenzene before and after irradiation of 450 nm in C_6D_6 . grayish green line: ethyl bromodifluoroacetate + BIH + internal standard + **In-1**, 0 h; brown line: ethyl bromodifluoroacetate + BIH + internal standard + **In-1**, 1 h;

Figure S23.The fluorescence quenching curves of (a) **In-1**, (c) **In-2** with BIH. (b)(d) BIH on **In-1** and **In-2** Stern-Volmer quenching curve. $K_q(In-1)=8.37 \times 10^9 \text{ M}^{-1}\text{S}^{-1}$; $K_q(In-2)=3.05 \times 10^9 \text{ M}^{-1}\text{S}^{-1}$

7.3 Indium(III) photosensitizers for reduction of cis-diethyl maleate

The NMR tube was charged with photosensitizers (1 mg, 0.001 mmol, 1.0 equiv.), BIH (10.8 mg, 0.048 mmol, 48.0 equiv,), and cis-diethyl maleate (4.1 mg, 0.024 mmol, 24.0 equiv,) and 0.6 mL C_6D_6 in the dry-box. The mixture was placed in a water-cooled glass vessel and irradiated with different irradiation. 1,3,5-trimethoxybenzene was added as an internal standard. The products were analyzed by ¹H NMR spectroscopy and the yields are based on internal standard. The ¹H NMR spectroscopic data of diethyl maleate, diethyl fumarate, and diethyl succinate in C_6D_6 and CDCl₃ were established from commercially available pure materials.

Tuble 50. Reduction of els diethyr maleade using matam(m) photosensitizers.								
Entry	Complex	λ (nm)	Yield (a/b) ^a					
1	In-1	450	38:22					
2	In-2	450	40:60					
3	In-3	450	73:26					
4	In-4	450	61:39					
5	In-1	-	Trace					
6	In-2	-	Trace					
7	In-3	-	Trace					
8	In-4	-	Trace					
9	-	450	Trace					

Table S6. Reduction of cis-diethyl maleate using indium(III) photosensitizers.

^a The yield was calculated by using 1,3,5-trimethoxybenzene as the internal standard. The reaction time: 2 h.

Figure S24. ¹H NMR spectra of reaction mixture of diethyl maleate, BIH and in presence of catalyst **In-2** and internal standard 1,3,5-trimethoxybenzene before and after irradiation of 450 nm in C_6D_6 .

grayish green line: diethyl maleate + BIH + internal standard + **In-2**, 0 h; brown line: diethyl maleate + BIH + internal standard + **In-2**, 2 h.

8. References

- Ducloiset, C.; Jouin, P.; Paredes, E.; Guillot, R.; Sircoglou, M.; Orio, M.; Leibl, W.; Aukauloo, A. Monoanionic dipyrrin–pyridine ligands: synthesis, structure and photophysical properties. *Eur. J. Inorg. Chem.*, **2015**, 32, 5405-5410.
- 2. Klappa, J. J.; Rich, A. E.; McNeill, K. One-step synthesis of 3, 5-disubstituted-2pyridylpyrroles from the condensation of 1, 3-diones and 2-(aminomethyl) pyridine. *Org. Lett.*, **2002**, 4, 435-437.
- 3. Reichardt, C. Empirical parameters of solvent polarity as linear free-energy relationships. *Angew. Chem. Int. Ed.*, **1979**, 18, 98-110.
- Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J. A., Jr., Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Keith, T., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Rega, N., Millam, N. J., Klene, M., Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Martin, R. L., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, O., Foresman, J. B., Ortiz, J. V., Cioslowski, J. & Fox, D. J. *Gaussian 09, Revision D.01*; Gaussian, Inc.: Wallingford CT, 2009.
- 5. Becke, A. D., J. Chem. Phys., 1993, 98 (7), 5648-5652.
- 6. Lee, C., Yang, W. and Parr, R. G., Phys. Rev. B, 1988, 37 (2), 785-789.
- 7. Schäfer, A., Horn, H. and Ahlrichs, R., J. Chem. Phys., 1992, 97, 2571.
- 8. Schäfer, A., Huber, C. and Ahlrichs, R., J. Chem. Phys., 1994, 100, 5829.
- 9. Weigend. F. and Ahlrichs R., Phys. Chem. Chem. Phys., 2005, 7, 3297.
- 10. Fantacci, S., De Angelis, F. and Selloni, A., J. Am. Chem. Soc., 2003, 125 (14), 4381-4387.
- 11. Marenich A. V., Cramer C. J., and Truhlar D. G. J. Phys. Chem. B, 2009, 113, 6378-6396.