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General. All experiments were performed under a nitrogen atmosphere using Schlenk techniques or a glove
box unless otherwise noted. H, 3P{*H}, °*F{*H} spectra (*H, 600 MHz; 3P, 243 MHz, °F, 565 MHz) were
recorded on a Bruker 600 Ultrashield NMR. Electrochemical measurements were performed by a P/G analyzer
(EC Frontier, ECstat-301). ESR spectra were recorded on a Bruker EMXplus. Column chromatography was
performed with silica gel (Kanto Chemical Co., INC. Silica gel 60N, 100-210 um). GC analyses were
performed on Shimadzu GC-2014 with DB-WAXetr122-7332 column or Shimadzu GC-2014S with GL
Sciences 1010-11142 column. GC-MS analyses were performed on a QP2010 gas chromatography-mass
spectrometry (GC-MS) spectrometer (Shimadzu) (He carrier, a capillary column [TC-1, GL Sciences]).

Chemicals. n-Hexane (KANTO Chemical CO. Inc.), THF (KANTO Chemical Co. Inc.), benzene (KANTO
Chemical Co. Inc.), and dichloromethane (FUJIFILM Wako Pure Chemical Co.) were purified by a solvent
purification system (MBraun SPS-800). Potassium tert-butoxide (KOtBu), sodium tert-butoxide (NaOtBu),
benzyl benzoate (BnBz), benzyl acetate (BnAc), 1,3,5-trimethylbenzene (mesitylene) 1,8-diazabicyclo[5.4.0]-
7-undecene (DBU), 4-(trifluoromethyl)benzyl alcohol, 4-methylbenzyl alcohol, 4-methoxybenzyl alcohol,
benzoyl chloride, 4-(trifluoromethyl)benzoic acid, p-toluic acid, p-anisic acid, benzyl chloride, benzhydrol,
trityl chloride, sodium benzoate, 2-naphthalenemethanol, 4-nitrotoluene, 2,2,6,6-tetramethylpiperidine 1-oxyl
free radical (TEMPO) and 5,5-dimethyl-1-pyrroline N-oxide (DMPOQO) were purchased from Tokyo Chemical
Industries (TCI) Co. Ltd. 1,3,5-trimethylbenzene was dried over 3A molecular sieve (FUJIFILM Wako Pure
Chemical Co.). 4-nitrobenzyl alcohol, p-nitrobenzoic acid, DMSO (Super dehydrated), acetonitrile (Super
dehydrated) 4-dimethylaminopyridine (DMAP), K.COs were purchased from FUJIFILM Wako Pure Chemical
Co. Triethylamine was purchased from Sigma-Aldrich Co. CsDs, DMSO-ds, and CDClIs, and 2-propanol
(dehydrated) were purchased from KANTO Chemical Co. Inc. CsDs was dried over sodium benzophenone
ketyl and distilled. DMSO-ds was dried over calcium hydride and distilled. H, gas (99.9%) was purified by a
clean column (CG-X, NIKKA SEIKO CO., LTD.). Other chemicals are used without further purification.
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Synthesis of [CoCI(PNNP)] (1). Synthesis of PNNP (2,9-bis((diphenylphosphanyl)methyl)-1,10-
phenanthroline) ligandSt and 152 were conducted according to the reported literature.

Synthesis of [Co(PNNP’)] (2). A 20 mL vial was charged with a benzene (10 mL) solution of [CoCI(PNNP)]
(1) (34 mg, 0.050 mmol) and potassium tert-butoxide (KOtBu) (8.0 mg 0.071 mmol). The solution was stirred
at room temperature overnight. Then the solution was filtered with a PTFE syringe filter (0.22 pum) and
evaporated. Complex 2 as a yellow-green solid (22 mg, 0.034 mmol, 69%) was obtained. Complex 2 was
identified by comparing the *H and 3P{*H} spectra with those reported in the literature.2

Synthesis of [Co(PNNP?”)] (3). A 20 ml vial was charged with a benzene (10 mL) solution of [Co(PNNP’)]
(2) (22 mg 0.034 mmol). 2-propanol (1 mL) was added to the solution, and the solution was stirred overnight.
The solution was once frozen at —20 °C and dried under the reduced pressure to give 3 as an aerogel-like red-
brown powder (21 mg, 0.033 mmol, 95%). Complex 3 was identified by comparing the *H and 3P{*H} spectra
with those reported in the literature.S?

Caution: If the solution is dried without freezing, 3 becomes a sticky red-brown solid, which is difficult to
handle.
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Reaction of 3 with 1 equiv BnBz-(H, CF3) in DMSO-ds

0L

BnBz-(H, CF;) CHs
R 1 equiv
Ni. ol \PPh,
H N\ DMSO0-dg 0.5 mL
o —PPh, 100 °C, 24 h
H”: CF,
H 3 1

26% 27%

Scheme S1. Reaction of 3 with 1 equiv BnBz-(H, CF3) in DMSO-ds.

In a J-Young NMR tube, complex 3 (6.4 mg, 0.010 mmol) was dissolved in DMSO-ds (0.50 mL). To the
solution, was added 1 equivalent BnBz-(H, CF3) (1.9 uL, 0.010 mmol). The solution was kept at 100 °C for
24 hours. Mesitylene (1.4 uL, 0.010 mmol) and triphenyl phosphate (6.5 mg, 0.020 mmol) were added to the
solution as internal standards. The reaction was followed by *H (Figure S1), **F{*H} (Figure S2), and 3'P{*H}
(Figure S3) NMR spectroscopy, showing the formation of 1* (yield: 26%) and of 4-trifluoromethyltoluene

(yield: 27%). Conversion of 3 could not be determined due to the severe broadening of the signals.

1*: 'H NMR (600 MHz DMSO-ds, 25 °C) ¢ 8.68 (br, 2H, Phen-H), 8.02 (br, 4H, Phen-H), 7.36 (br, 4H, PPh,),
7.16 (br, 16H, PPhy), 4.83 (s, 4H, CH,PPhy). 3P{*H} NMR (243 MHz DMSO-ds, 25 °C) 6 65.1 (s).
A-trifluoromethyltoluene: *H NMR (600 MHz DMSO-ds, 25 °C) & 7.58 (d, 2H), 7.38 (d, 2H), 7.36 (br, 4H),
2.37 (s, 3H). 1*F{*H} NMR (243 MHz DMSO-ds, 25 °C) 5 —60.7 (s).
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Figure S1. *H NMR (DMSO-ds) spectrum of the reaction solution.
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Figure S2. °F{*H} NMR (DMSO-ds) spectrum of stoichiometric reaction solution.
*: The signal at —60.8 ppm is based on unidentified compounds, which might be the adduct intermediate of
BnBz-(H,CF3) and 3.
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Figure S3.%P{*H} NMR (DMSO-ds) spectrum of stoichiometric reaction solution.
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General Procedure for Catalytic Hydrogenolysis of Esters (Tables 1 and S1).

The procedure for Table 1, entry 1 serves as typical procedure for catalytic hydrogenolysis of esters.
Modification was made to this typical procedure to fulfill each subsequent experiment (Tables 1 and S1).
Table S1, entry 1 A DMSO solution (0.12 mL) containing 1 (6.7 mg, 0.010 mmol), 1,8-diazabicyclo[5.4.0]-7-
undecene (DBU) (60 pL, 0.40 mmol), and BnBz (38 L, 0.20 mmol) were charged in a 10 mL Schlenk tube
equipped with a Teflon valve. After one freeze-pump-thaw cycle, Hz gas (1 atm) was introduced into the flask.

The solution was kept at 100 °C for 15 h with stirring. The color of the solution turned brown. Mesitylene (28
uL, 0.20 mmol) as an internal standard was added to the solution for quantification in *H NMR measurements.
Then, the solution was analyzed by NMR and GC-MS. Identification of products was performed by comparing
their NMR spectra and GC-MS profiles with those of the authentic samples. Conversion yield of BnBz, the
product yields of benzoic acid and toluene were determined to be 80%, 80%, and 65%, respectively.

Large Scale Catalytic Hydrogenolysis of 2-Naphthalenylmethyl Benzoate (NMBz) (Table 1, Entry 11).
A DMSO solution (1.2 mL) containing 1 (67.2 mg, 0.10 mmol), DBU (609 mg, 4.0 mmol), and NMBz (526
mg, 2.0 mmol) were charged in a 10 mL Schlenk tube equipped with a Teflon valve. After one freeze-pump-
thaw cycle, H; gas (1 atm) was introduced into the flask. The solution was kept at 100 °C for 15 h with stirring.
1,3,5-Trimethoxybenzene (168 mg, 1.0 mmol) as an internal standard was added to the solution for
quantification in tH NMR measurements. Then, the solution was analyzed by NMR, revealing the NMR vyields
of benzoic acid (>95%) and 2-methylnaphthalene (>95%). The reaction mixture was transferred to a 50 mL
round flask, and the volatiles were transferred to a different flask using a trap to trap method under vacuum.
The separated liquid part, which contained mainly DMSO and 2-methylnaphthalene, was purified by silica
column chromatography (eluent: hexane:AcOEt = 1:9 v/v). Analytically pure 2-methylnaphthalene (224 mg,
1.58 mmol, 78%) was isolated. After the trap-to trap distillation, the brown solid residue was obtained. To this,
was added HClyq (1 M, 6 mL) to transfer benzoate DBU salt to PhnCOOH, which was extracted with Et,O (10
ml x3). The extract was purified by silica column chromatography (eluent: hexane:AcOEt = 1:9 v/v, then
AcOEt only) to give benzoic acid (213 mg, 1.74 mmol, 87%).

Benzoic Acid
IH NMR (400 MHz, CDCls) 6 8.12 (d, 2H), 7.62 (t, 1H), 7.48 (m, 2H).

2-Methylnaphthalene
'H NMR (400 MHz, CDCls) 6 7.81-7.73 (m, 3H), 7.61 (t, 1H), 7.46-7.38 (m, 2H), 7.32 (d, 1H), 2.52 (s, 3H).
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Table S1. Optimization of the Reaction Conditions

entry deviation from standard conditions * toluene yield ®
1 None 65%
2 0.12 mL toluene 13%°
3 0.12 mL THF 12%
4 0.12 mL acetonitrile 9%

5 0.60 mL DMSO trace
6 80 °C trace
7 0.01 mmol DBU trace
8 0.01 mmol NaO7Bu trace
9 without 1 ND
10 without H» ND

& Standard conditions: BnBz (0.2 mmol), 1 (5 mol%), DBU (0.4 mmol), H, (1 atm), DMSO (0.12 mL),
100 °C, 15 h; ® Yields were determined by *H NMR spectroscopy using mesitylene as an internal standard. ©
Yield of benzoic acid.
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GC-MS Chart of the Reaction Mixture of Catalytic Hydrogenolysis of BnBz.
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Figure S4. A GC-MS chart (top) and corresponding MS spectra (bottom, at 3.72 min for toluene and 12.71

min for benzoic acid) of the reaction mixture of catalytic hydrogenolysis of BnBz.
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Procedure for Catalytic Hydrogenolysis of Benzyl 4-Nitrobenzoate (BnBz-(NO,, H) (Table 2, entry 4)

1 (0.01 mmol)
o} DBU (0.4 mmol)
/©)‘\ H2 (1 atm)
0/\© /@OH DBU * dOH DBU *
DMSO 0.12 mL
OoN 100 °C, 15 h HoN
BnBz-(NO,, H) 4-nitrobenzoic acid 4-aminobenzoic acid toluene
Conv. 99% 63% 30% 60%

Scheme S2. Hydrogenolysis of BnBz-(NO2, H) by PNNP-Co system.
A DMSO solution (0.12 mL) containing 1 (6.7 mg, 0.010 mmol), DBU (60 uL, 0.40 mmol), and BnBz-(NO,
H) (51.5 mg, 0.20 mmol) was charged in a 30 mL Schlenk equipped with a Teflon valve. After one freeze-
pump-thaw cycle, H, gas (1 atm) was introduced into the flask. The solution was kept at 100 °C for 15 h with
stirring. Mesitylene (28 uL, 0.20 mmol) as an internal standard was added to the solution. Then, the solution
was analyzed by *H NMR measurements. The obtained *H NMR spectrum is shown in Figure S5. Identification
of products was performed by comparing their NMR spectra with those of the authentic samples. The yields
of the products 63% for 4-nitrobenzoic acid and 30% for 4-aminobenzoic acid and 30% for toluene and
conversion of BnBz-(NO,, H) (99%) were determined by *H NMR analysis using mesitylene as an internal
standard.
4-Nitrobenzoic acid: *H NMR (600 MHz CDCls, 25 °C) 6 8.17 (m, 4H).
4-Aminobenzoic acid: *H NMR (600 MHz CDCls, 25 °C) ¢ 7.84 (d, 2H), 6.62 (d, 2H), 3.73 (s, 2H).
Toluene: 'H NMR (eoo MHz CDCI3, 25 °C) 6 7.32-7.27 (overlapped, 5H), 2.47 (s, 3H)
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Figure S5. 'H NMR spectrum of the reaction mixture obtained from hydrogenolysis of BnBz-(NO2, H)
catalyzed by 1. A: 4-nitrobenzoic acid; m: 4-Aminobenzoic acid; e: Toluene. *: Signals at 5.28 ppm and 4.57

ppm are unidentified compounds.
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Procedure for Catalytic Hydrogenolysis of 4-Nitrobenzyl Benzoate (BnBz-(H, NO,) (Table 2, entry 8)

1 (0.01 mmol)

(e} DBU (0.4 mmol) 0
H, (1 atm) \©\ N
OO O 0 QMg
DMSO 0.12 mL
NO, 100 °C,15h NO, NH,
BnBz-(H, NO,) benzoic acid 4-nitrotoluene 4-methylaniline  1,2-bis(4-methylphenyl)diazene

Conv. 99% 90% 30% trace 7%

Scheme S3. Hydrogenolysis of BnBz-(H, NO;) by PNNP-Co system.
A DMSO solution (0.12 mL) containing 1 (6.7 mg, 0.010 mmol), DBU (60 pL, 0.40 mmol), and BnBz-(H,
NO-) (27 mg, 0.20 mmol) was charged in a 30 mL Schlenk equipped with a Teflon valve. After one freeze-
pump-thaw cycle, H, gas (1 atm) was introduced into the flask. The solution was kept at 100 °C for 15 h with
stirring. Mesitylene (28 uL, 0.20 mmol) as an internal standard was added to the solution. Then, the solution
was analyzed by NMR. The obtained *H NMR spectrum is shown in Figure S6. Identification of products was
performed by comparing their NMR spectra with those of the authentic samples. The yields of the products
90% for benzoic acid, 30% for 4-nitrotoluene, trace amount of 4-methylaniline, and 7% for 1,2-bis(4-
methylphenyl)diazene) and conversion of BnBz-(H, NO:) (99%) were determined by 'H NMR using
mesitylene as an internal standard.
benzoic acid: H NMR (600 MHz CDCls, 25 °C) 6 8.04 (d, 2H), 7.53 (t, 1H), 7.41 (t, 2H).
4-nitrotoluene: *H NMR (600 MHz CDCls, 25 °C) 6 8.10 (d, 2H), 7.31 (d, 2H), 2.45 (s, 3H).
4-methylaniline: *H NMR (600 MHz CDCls, 25 °C) 6 6.91 (d, 2H), 6.64 (d, 2H).
1,2-bis(4-methylphenyl)diazene : *H NMR (600 MHz CDCls, 25 °C) 6 7.83 (d, 4H), 7.30 (d, 4H), 2.54
(overlapped, 6H).
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Figure S6. 'H NMR spectrum of the reaction mixture obtained from hydrogenolysis of BnBz-(H, NO,)

catalyzed by 1. A: benzoic acid; m: 4-nitrotoluene; e: 4-methylaniline. ¢ 1,2-bis(4-methylphenyl)diazene.
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Reaction of 4-Nitrotoluene with H (1 atm) Catalyzed by 1

NO, 1 (0.01 mmol)

DBU (0.4 mmol)
Hz (1 atm) <j \©\ Uinidentified
compound

DMSO 0.12 mL

100 °C, 15 h \©\
4-nitrobenzene 4-methylaniline 1,2-bis(4-methylphenyl)diazene
Conv. 50% 7% 14%

Scheme S4. Reduction of 4-nitrotoluene by PNNP-Co system.

A DMSO solution (0.12 mL) containing 1 (6.7 mg, 0.010 mmol), DBU (60 uL, 0.40 mmol), and 4-nitrotolune
(27 mg, 0.20 mmol) was charged in a 30 mL Schlenk equipped with a Teflon valve. After one freeze-pump-
thaw cycle, H; gas (1 atm) was introduced into the flask. The solution was kept at 100 °C for 15 h with stirring.
Mesitylene (28 pL, 0.20 mmol) as an internal standard was added to the solution. Then, the solution was
analyzed by NMR. The obtained *H NMR spectrum is shown in Figure S7. Identification of products was
performed by comparing their NMR spectra with those of the authentic samples. The yields of the products
(7% for 4-methylaniline and 14% for 1,2-bis(4-methylphenyl)diazene) and conversion of 4-nitrotoluene (50%)

were determined by *H NMR using mesitylene as an internal standard.

4-nitrotoluene: *H NMR (600 MHz CDCls, 25 °C) 6 8.10 (d, 2H), 7.31 (d, 2H), 2.45 (s, 3H).
4-methylaniline: *H NMR (600 MHz CDCls, 25 °C) 6 6.93 (d, 2H), 6.57 (d, 2H), 3.42 (br, 2H), 2.21(s, 3H).
1,2-bis(4-methylphenyl)diazene : *H NMR (600 MHz CDCls, 25 °C) 6 7.83 (d, 4H), 7.32 (overlapped, 4H),
2.54 (overlapped, 6H).
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Figure S7. *H NMR spectrum of the reaction mixture obtained from hydrogenation of 4-nitrotoluene with H,
catalyzed by 1.
A : 4-nitrotoluene; m: 4-methylaniline; e: 1,2-bis(4-methylphenyl)diazene. *: Signals at 6.85 ppm and 7.40

ppm are unidentified compounds.
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Compound Characterization Data

Benzoic acid, 4-methylbenzoic acid, 4-methoxybenzoic acid, 4-nitrobenzoic acid, 4-trifluoromethylbenzoic
acid, 4-trifluoromehyltoluene, and 4-nitrotoluene were characterized by the comparison with the commercially
available chemicals by NMR spectroscopy. Toluene®3, xylene®*, 4-methoxytolueneS®, 4-aminotoluene®, and

1,2-di-p-tolydiazeneare®’ are also identified by literature reports.

Typical Procedure for Synthesis of Benzyl Substituted Esters (BnBz-(H, Y)).

The modified procedure®® for synthesis of BnBz-(H, CF3) (Table 1, entry 7) serves as typical procedure for
synthesis of benzyl substituted esters. Modification was made to this typical procedure to synthesis each benzyl
substituted esters (Table 1 entries 5-8).

A 50 mL Schlenk was charged with a CH2Cl, (12 mL) solution of 4-trifluoromethylbenzyl alcohol (0.92 g 6.0
mmol), triethylamine (1.2 mL 9.0 mmol), and N,N-dimethyl-4-aminopyridine (DMAP) (0.037 g, 0.30 mmol).
benzoyl chloride (0.70 mL, 6.0 mmol) was added to the solution. The solution was stirred at room temperature
for 1 hour, then quenched with an excess amount of HCI (1 M, 10 mL) at room temperature. The solution was
extracted with Et,O (20 mL) three times. The product was purified by column chromatography (Hex:AcOEt,
5:1, viv), BnBz-(H, CF3) was obtained as a colorless oil (0.69 g, 2.7 mmol, 44%)

The procedure for synthesizing the other esters mentioned in Table 1, entries 1-4, followed the same procedure
above. The primary difference in the procedure was the utilization of the substituted benzyl alcohol

corresponding to each specific ester.

4-Trifluoromethylbenzyl Benzoate (BnBz-(H, CF3))

(0]

saavH

A colorless oil (0.92 g, 1.2 mmol, 56%).
'H NMR (600 MHz, CDCls) 6 8.09 (d, 2H), 7.65 (d, 2H), 7.60-7.56 (m, 3H), 7.46 (t, 2H), 5.42 (s, 2H).
F NMR (565 MHz, CDCls) 6 -62.62.

4-Nitrobenzyl Benzoate (BnBz-(H, NO,))

o]

0L

A white crystalline solid (0.68 g, 2.2 mmol, 44%).
'H NMR (600 MHz, CDCls) 6 8.25 (d, 2H), 8.09 (d, 2H), 7.60 (t, 3H), 7.48 (t, 2H), 5.46 (s, 2H).
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4-Methylbenzyl Benzoate (BnBz-(H, Me))

0]

SaacH

A colorless oil (0.60 g, 2.7 mmol, 53%).
'H NMR (600 MHz, CDCls) 6 8.08 (d, 2H), 7.56 (t, 1H), 7.44 (t, 2H), 7.36 (d, 2H), 7.21 (d, 2H), 5.34 (s, 2H),
2.38 (s, 3H).

4-Methoxybenzyl Benzoate (BnBz-(H, OMe))

0]

0,

A colorless oil (0.84 g, 3.5 mmol, 58%).
'H NMR (600 MHz, CDCls) 6 8.07 (d, 2H), 7.55 (t, 1H), 7.43 (t, 2H), 7.40 (d, 2H), 6.92 (d, 2H), 5.31 (s, 2H),
3.82 (s, 3H).

Typical Procedure for Synthesis of Benzoate Substituted Esters (BnBz-(X, H)).

The modified procedure® for synthesis of BnBz-(NO>, H) (Table 1, entry 4) serves as typical procedure for
synthesis of benzyl substituted esters. Modification was made to this typical procedure to synthesis benzoate
substituted esters (Table 1 entries 1-4).

A 100 mL Schlenk was charged with acetonitrile (30 mL) solution of 4-nitrolbenzoic acid (1.7 g 10 mmol),
and K>COs (1.5 g, 12 mmol). benzyl chloride (1.3 g, 10 mmol) was added to the solution. The solution was
stirred at 60 °C overnight. Then the solution was extracted with Et,O (20 mL) three times. The product was
purified by column chromatography (Hex:AcOEt, 5:1, v/v) and BnBz-(NO,, H) was obtained as a colorless
crystalline solid (1.2 g, 4.7 mmol, 47%).

The procedure for synthesizing the other esters mentioned in Table 1, entries 5-8, followed the same procedure
above. The primary difference in the procedure was the utilization of the substituted benzoic acid

corresponding to each specific ester.

Benzyl 4-Nitrobenzoate (BnBz-(NO2, H))

0]

0

A white crystalline solid (1.2 g, 4.7 mmol, 47%)
'H NMR (600 MHz, CDCls) 6 8.27 (d, 2H), 8.23 (d, 2H), 7.45-7.35 (m, 5H), 5.40 (s, 2H).
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Benzyl 4-Trifloromethylbenzoate (BnBz-(CF3, H))
0

Jeaae

A Colorless oil (0.92 g, 3.3 mmol, 33%).
'H NMR (600 MHz, CDCls) 6 8.19 (d, 2H), 8.20 (d, 2H), 7.46-7.35 (m, 5H), 5.40 (s, 2H).
F NMR (565 MHz, CDCls) 6 -63.15.

Benzyl 4-Methylbenzoate (BnBz-(Me, H))

Begas

A colorless oil (0.89 g, 3.9 mmol, 39%).
'H NMR (600 MHz, CDCls) 6 7.98 (d, 2H), 7.46 (d, 2H), 7.40 (t, 2H), 7.35 (t, 1H), 7.24 (d, 2H), 5.36 (s, 1H),
2.41 (s, 3H).

Benzyl 4-Methoxybenzoate (BnBz-(OMe, H))

o]

Weaae

A colorless oil (0.80 g, 3.3 mmol, 33%).
'H NMR (600 MHz, CDCls) 6 8.04 (d, 2H), 7.45 (d, 2H), 7.39 (t, 2H), 7.34 (t, 1H), 6.92 (d, 2H), 5.34 (s, 1H),
3.86 (s, 3H).

Procedure for Synthesis of Trityl Benzoate (TrBz)
0
TTD

The trityl benzoate was synthesized by following the reported literature.S*® A 250 mL 3-neck flask was charged
with an acetone (40 mL) solution of trityl chloride (2.0 g 7.2 mmol), and sodium benzoate (1.1 g, 7.4 mmol)
was added to the solution. The solution was refluxed at 60 °C for 12 hours, then the solution was filtrated and
evaporated. The product was purified by column chromatography (Hex:AcOEt, 5:1, v/v) and TrBz was
obtained as a colorless powdery solid (1.8 g, 4.9 mmol, 69%).

IH NMR (600 MHz, CDCls) 6 8.03 (d, 2H), 7.47 (t, 1H), 7.37-7.35 (m, 8H), 7.21 (t, 6H), 7.15 (t, 3H).
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Procedure for Synthesis of 2-Naphthalenylmethyl Benzoate (NMBz)

Jaace

A 50 mL Schlenk was charged with a THF (10 mL) solution of 2-naphthalenemethanol (0.79 g 5.0 mmol),
triethylamine (1.0 mL 7.5 mmol), and DMAP (0.061 g, 0.50 mmol). Benzoyl chloride (0.70 g, 1.0 mmol) was
added to the solution. The solution was stirred at 60 °C for 20 hours, then quenched with an excess amount of
HCI (1 M, 10 mL) at room temperature. The solution was extracted with Et,O (10 mL) three times. The product
was purified by column chromatography (Hex:AcOEt, 5:1, v/v) (Rf = 0.6), and NMBz was obtained as a
colorless crystalline solid (1.0 g, 3.9 mmol, 78%).

IH NMR (600 MHz, CDCls) 6 8.11 (d, 2H), 7.92 (s, 1H), 7.88-7.85 (m, 3H), 7.56 (t, 2H), 7.51-7.49 (m, 2H),
7.45 (t, 2H) 5.53 (s, 2H).
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Determination of Initial Rates from the Reaction of BnBz with H;

Six individual 20 mL Schlenk tubes equipped with a Teflon valve were charged with a DMSO solution (0.12
mL) of 1 (6.7 mg, 0.010 mmol), DBU (60 pL, 0.40 mmol), and BnBz (0.20 mmol) in each tube. After one
freeze-pump-thaw cycle, H; gas (1 atm) was introduced into the flask. The reaction solution was kept at 100 °C
with stirring. The reaction was terminated after appropriate reaction time, and mesitylene (28 uL, 0.20 mmol)
was added to the solution. The solution was analyzed by *H NMR to determine the product yields. The
concentration of toluene was calculated by its yield, [Toluene] = (0.2 x Y) / (0.12 + 0.060 + 0.018) (Y = yield
of toluene). The initial rates (vo) were similarly determined at different substrate concentrations (Table S1).

The data was used for Michaelis-Menten-type analysis.

0.30

0.25 e
. 0.20 o
£ 0.15
2 010 o
" 005 e R?=0.99

0.00 &=
0 50 100 150 200
Time, min.

M
L]

el
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Figure S8. Plots of Concentration of Toluene against Time (min). Slope: 1.5 x 10 (M/min).

Table S2. Initial Rates for Hydrogenolysis of BnBz at Different Initial Substrate Concentration

[BnBz]o, M Vo, M/min
0.11 0.24x10
0.21 0.60x 10
0.35 0.79x 10
0.50 1.18x 10 °
0.92 152%x10
1.27 1.90 x 10 °
Michaelis-Menten equation:
Vmax S
Yo = e (ea.1

Based on the curve-fitting analysis:
Vimax = 3.6 x 102 M/min
Kwm (Michaelis constant) = 1.1 M
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Determination of Initial Rates for Hydrogenolysis of BnBz derivatives

Two individual 20 mL Schlenk tubes equipped with a Teflon valve were charged with a DMSO solution (0.12
mL) of 1 (6.7 mg, 0.010 mmol), DBU (60 uL, 0.40 mmol), and BnBz derivatives (0.20 mmol) in each tube.
After one freeze-pump-thaw cycle, H, gas (1 atm) was introduced into the flask. The reaction solution was
kept at 100 °C with stirring. The reaction was terminated after the appropriate reaction time, and mesitylene
(28 uL, 0.20 mmol) was added to the solution. The product yields were determined by *H NMR analysis. The
concentration of both corresponding toluene and carboxylic acids were determined by using mesitylene as an
internal standard.

[Toluene] = (0.20 x Y1)/ (0.12 + 0.060 + V)

(Y1 =yield of toluene product, V = the volume of esters substrate, if the substrate is solid, V = 0)

[Acid] = (0.20 x Y2) / (0.12 + 0.060 + V)

(Y2 =ield of carboxylic acid product, V = the volume of esters substrate, if the substrate is solid, V = 0)

Table S3. Initial Rates of Toluene Formation

substrate Vo, M/min substrate Vo, M/min
BnBz-(H, NO2) 11x10° BnBz-(NO2, H) 1.0x10°
BnBz-(H, CFs) 41x10° BnBz-(CFs, H) 87x10
BnBz-(H, Me) 12x10° BnBz-(Me, H) 0.7x10
BnBz-(H, OMe) 18x10° BnBz-(OMe, H) 09x10

Table S4. Initial Rates of Carboxylic Acid Formation

substrate Vo, M/min substrate Vo, M/min
BnBz-(H, NO) 18x10° BnBz-(NO, H) 1.0%x10°
BnBz-(H, CFs) 49x10° BnBz-(CFs, H) 11x10
BnBz-(H, Me) 22x10° BnBz-(Me, H) 0.7x10
BnBz-(H, OMe) 19x10° BnBz-(OMe, H) 0.8x10
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Table S5. Hammett Parameters and logio(VoX/voH) Determined by Initial Rates of Toluene Formation.

Hammett
substrate parameters l0g10(VoX/voH)
(c,)%"
BnBz-(H, NO>) +0.71 0.84
BnBz-(NOz, H) +0.71 0.82
BnBz-(H, CF3) +0.54 0.43
BnBz-(CFs, H) +0.54 0.76
BnBz-(H, H) 0 0.0
BnBz-(H, Me) -0.17 -0.10
BnBz-(Me, H) -0.17 -0.36
BnBz-(OMe, H) —0.27 0.07
BnBz-(H, OMe) -0.27 -0.23
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Cyclic Voltammograms (CV) and Differential Pulse Voltammograms (DPV) of Substrates

Substrates (0.010 mmol, 0.10 mM) was dissolved in a DMSO solution of tetrabutylammonium
hexafluorophosphate ([N(n-Bu)s]PFs) (10 mL, 0.10 M). A glassy carbon electrode, a platinum wire, and a
Ag/AgNO; were used as a working, a counter, and a reference electrode, respectively. After 30 minutes of
nitrogen gas bubbling, the cyclic voltammetry was carried in a 100 mV/s scan rate at room temperature. The

1st cathodic potentials (Ep ) are determined from the CV measurements.
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Figure S9. CV (top) and DPV (bottom) of BnBz-(NO,, H) and BnBz-(H, NO).
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Figure S10 CV (top) and DPV (bottom) of BnBz-(CF3, H) and BnBz-(H, CF3).
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Figure S12 CV (top) and DPV (bottom) of BnBz-(OMe, H) and BnBz-(H, OMe).
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Table S6. The Summary for Ep¢ (V/vs Fc/Fc*) of Substrates.

substrate Epc, V substrate Epc,V
BnBz-(H, NO>) ~1.51 BnBz-(NO2, H) ~1.25
BnBz-(H, CF3) ~2.39 BnBz-(CFs, H) -2.19
BnBz-(H, Me) -2.53 BnBz-(H, H) -2.53
BnBz-(H, OMe) -2.54 BnBz-(OMe, H) -2.63
TrBz -2.41 BnAc n.d.

n.d.: not detected within the potential window.
The correlation between logio(voX/voH) and 1st cathodic potential (E,c) of benzyl benzoate and its derivatives

was studied.

S23



0.8 (CF'?_.’ H)

®
3 (H,CFy) .~
B (H, OMe) .-~
0 CSHH)
4, OMe, HL" (i ) y =2.3x+6.0
e R?=0.96
-0.4
-2.7 -2.6 2.5 -2.4 2.3 2.2 -2.1 -2

E, (Vvs Fc/Fc+),V

Figure S14. The correlation diagram between logio(vo X / Vo H) and 1st cathodic potential (Ep,c) of substrates

except for NO-containing substrates.
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Figure S16. **F{*H} NMR Spectrum of BnBz-(H, CFs).
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