Supporting Information

Continuous selective conversion of methane to methanol over Cu-KFI zeolite catalyst using water-O₂ mixture as the oxygen source

Hailong Zhang^{a, *}, Jiaxiu Guo^a, Yi Cao^{b, *}

^aCollege of Carbon Neutrality Future Technology, Sichuan University, Chengdu 610064, PR China;

^bSchool of materials science and chemical engineering, Ningbo University, Ningbo, Zhejiang, 315211, PR China.

Corresponding authors:

H.L. Zhang (hailongzhang@scu.edu.cn; catalysis5785@126.com)

Y. Cao (Caoyi@nbu.edu.cn)

Content

3
3
3
5
5
6
7
7
9
10
15
-

S1. Materials and method

S1.1. Zeolite synthesis

KFI: The molar ratio of the synthetic gel was SiO₂ : 0.38 KOH : 0.2 Al(OH)₃ : 0.01Sr(OH)₂ : 15H₂O. 4.98 g of KOH (\geq 85%, Shanghai Macklin Biochemical Co., Ltd) was dissolved in 10 g of H₂O. 3.12 g of Al(OH)₃ (99%, Shanghai Macklin Biochemical Co., Ltd) was added into the above KOH solution, and it was heated to 100 °C until clear, then it was cooled down to the room temperature and denoted as alkali solution. 0.531 g of Sr(OH)₂·8H₂O (95%, Sinopharm Chemical Reagent Co., Ltd) was dissolved in 14 g of H₂O, and Sr(OH)₂ solution was added dropwise in 40 g of Silica solution (30%, Sigma-Aldrich) to form a homogenous viscous gel. The above alkali solution was poured into the homogenous viscous gel, and 4g of H₂O was applied to transfer the residual alkali solution into the homogenous viscous gel, then it was stirred vigorously to obtain homogenous gel. The obtained gel was poured into the PTFE-lined autoclave and transferred into a high-temperature oven for crystallization under 145 °C for 120 h. After the crystallization process, the autoclave was taken out to cool down naturally. Finally, the obtained zeolite was separated, washed and dried overnight.

CHA (SSZ-13): In order to synthesize SSZ-13 with low SAR (Si/Al ratio), SSZ-13 seed was synthesized with template-free method. The molar composition of gel was $0.38 \text{ KOH} : 0.017 \text{ Sr}(\text{OH})_2 : 0.2 \text{ Al}(\text{OH})_3 : 1\text{SiO}_2 : 39 \text{ H}_2\text{O}$. The gel was poured to a PTFE-lined autoclave and placed into rotation oven at 175 °C for 24 h. Finally, the seeds were recovered with centrifugation, tilting, washing and drying under the same conditions with the synthesis of KFI.

Other zeolites: The other zeolites such as H-MOR (Si/Al = 11), H-ZSM-5 (MFI-type, Si/Al = 15), H-SSZ-39 (AEI-type, Si/Al = 10) and H-SSZ-13 (CHA-type, Si/Al = 10) were commercial purchase.

S1.2. Ion-exchanged procedures

NH₄⁺-exchange: The NH₄⁺-exchange of the synthesized KFI and CHA zeolites was

performed in 100 mL of 0.1 M NH₄NO₃ (99 wt%) aqueous solution (100 mL deionized water and 0.8 g NH₄NO₃). The solution was stirred at 80 °C for 6 h during the ion-exchange process. After NH₄⁺-exchange, the ion-exchanged zeolites were separated and washed via centralization for 3-5 times using deionized water, and then dried at 80 °C for a day. The same exchange procedure was repeated for 3 times using the above exchanged zeolites in a new NH₄NO₃ solution under the same conditions. The final NH₄⁺-zeolites were calcined at 500 °C for 5 h after drying at 80 °C for a day to obtain H-type zeolites.

Cu²⁺-exchange: 2 g of zeolite powder was stirred in 100 mL of copper(II) nitrate trihydrate (Cu(NO₃)₂·3H₂O, 99.99%, Sinopharm Chemical Reagent Co., Ltd) at 80 °C. The loading amount of copper and the Cu/Al ratios were determined by controlling the concentration of copper(II) nitrate solutions and the ion-exchange time. Subsequently, the suspension was centrifugalized and rinsed 3-4 times with deionized water (50 mL each time) to remove the surplus copper ions and ensure the pores in zeolites only contained the exchanged copper ions. The copper-exchanged samples were finally dried at 60 °C for a day and calcined in static air at 550 °C for 6 h with a heating rate of 1 °C min⁻¹. Copper (Cu), aluminum (Al) and silicon (Si) contents were measured by wavelength dispersive X-ray fluorescence (WDXRF) on a S8 TIGER X-ray fluorescence spectrometer (Bruker, Germany). The X-ray fluorescent spectra of Cu-zeolite samples were collected under vacuum condition with the working voltage of 60 kV and the electric current of 40 mA.

Tuble 51. The composition of Ca chemangea Zeontes.				
Cu-zeolite	Si/Al	Cu loading (wt%)	Cu/Al	
Cu-KFI	3.5	0.45	0.037	
Cu-KFI	3.5	2.04	0.17	
Cu-CHA	4.1	1.9	0.18	
Cu-CHA	10	2.1	0.43	
Cu-MOR	11	2.1	0.47	
Cu-SSZ-39	10	2.2	0.45	
Cu-ZSM-5	15	1.7	0.51	

 Table S1. The composition of Cu-exchanged zeolites.

S1.3. Characterization methods

X-ray diffraction (XRD) patterns of Cu-zeolite samples were measured on Rigaku Ultima IV using Cu K α radiation ($\lambda = 0.15406$ nm, 40 kV, 40 mA). Morphology of the as-prepared KFI zeolite was measured through Scanning Electron Microscopy (SEM) on a QUANTA 400F Field Emission microscope operated at 20 kV. High angle annular dark filed scanning transmission electron microscopy (HAADF-STEM) was carried out to confirm the presence of copper atoms located on Cu-KFI catalyst on a FEI Talos electron microscope. XPS (X-ray photoelectron spectroscopy) measurement of Cu-KFI was conducted on the AXIS Ultra DLD (Shimadzu Kratos Ltd., JPN) to obtain the chemical states of surface Cu species. Temperatureprogrammed reduction with hydrogen (H2-TPR) was performed using TCD as detector to identify the copper species confined in KFI zeolite. Prior to H₂-TPR, the Cu ion-exchanged KFI (50 mg) was pretreated at 400 °C in the flowing He (30 ml min⁻¹) for 30 min, then cooled down to room temperature (RT), H₂-TPR was carried out in the flowing 5% H₂/Ar (30 mL min⁻¹) at a ramp of 8 °C/min. The signal of H₂ consumption was recorded by TCD detector. FTIR spectra of Cu-KFI samples were measured on a Nicolet IS50 FTIR spectrometer in the diffuse reflectance mode equipped with a high sensitivity mercury-cadmium-telluride (MCT) detector and a high-temperature reaction cell with KBr window. The sample was first pretreated at 400 °C in the flowing He for 30 min, then the temperature was controlled to 200 °C and the IR spectrum of the sample was recorded using KBr powders as the background. Diffuse reflectance UV-Vis spectra of Cu-zeolite samples were measured to identify copper species on a Cary Series UV-Vis spectrophotometer (Agilent Technologies) in the diffuse reflectance mode equipped with a high-temperature reaction cell. The sample was firstly pretreated in the flowing He (30 ml min⁻¹) at 400 °C for 30 min, then cooled down to RT and the spectrum was collected, using BaSO₄ as the background.

S1.4. Catalytic continuous MTM conversion tests

Continuous MTM conversion was carried out in a tubular reactor (U-shaped quartz

tube, I.D. 8.0 mm) with a continuous flow of 15 ml min⁻¹ (GHSV = 9000 ml g_{cat} ⁻¹ h⁻¹) under 1 bar pressure. The reactor was heated through a single-zone furnace. K-type thermocouple was mounted into the oven and used to control the reaction temperature. 100 mg of Cu-KFI zeolite (40-60 mesh, 0.3-0.45 mm) were packed between quartz wool plugs in the reactor and placed in the furnace heating zone. The reaction gas mixture, i.e., 90% CH₄, 3.2% H₂O, 100 ppm O₂, He as the balance, was fed into the reactor and their flow rates were controlled by independent mass flow meters (Bronkhorst). The steam was introduced into the reactor through a saturator maintained at 25 °C. In the continuous MTH conversion process, the Cu-exchanged zeolite was firstly pretreated in the flowing helium (15 ml min⁻¹) at 400 °C for 30 min with a heating rate of 5 °C min⁻¹ and then exposed in the reaction gas mixture in a reaction temperature range of 200-550 °C. The effluent products were identified and quantified on a mass spectrometer (MS, ThermoStar, GSD320, Shanghai, China) based on MS signals of methanol (CH₃OH), formaldehyde (HCHO), dimethyl ether ((CH₃)₂O) and carbon dioxide (CO₂) at m/z = 31, 30, 45 and 44. The space-time yields (STYs) of the products were calculated as follows:

$$Y_i = \frac{k_i \times M_{Cu}}{m \times x^{0/0}} \int_0^{60} I_i dt$$

where Y_i , k_i , I_i , M_{Cu} , m, x% and t refer to the space-time yield of *i*-product (mol mol_{Cu}⁻¹ h⁻¹), the calibration coefficient, the MS intensity of i-product, the molar mass of copper (g mol⁻¹), the mass of Cu-zeolite used for methane-steam conversion (0.1 g), the content (wt.%) of copper in per gram catalyst and the continuous reaction time (min), respectively.

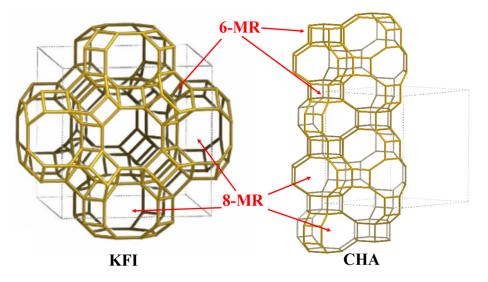
The selectivity of methanol (S_{CH3OH}) was calculated as the following equation:

$$S_{CH3OH} = \frac{Y_{CH3OH}}{\sum i Y_i}$$

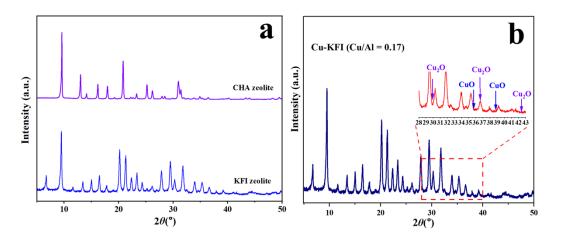
S1.5. Temperature-programmed surface reaction (TPSR) coupled with isotope labelling

Temperature-programmed surface reaction (TPSR) coupled with deuterium and ¹⁸O

labelling experiments were performed in a fixed-bed reactor to reveal the oxygen source of MTM. 100 mg of Cu-zeolite sample (40-60 mesh, 0.3-0.45 mm) was placed in a U-shape quartz reactor (I.D. 8.0 mm) and pretreated at 400 °C in He flow (15 ml min⁻¹) for 30 min. After the temperature dropped to 120-150 °C, the reaction gas mixtures including CH_4 (~96.8%) + D₂O (3.2%) + O₂ (100 ppm) and CH_4 + H₂¹⁸O + O₂ (100 ppm) were fed to the reactor with the total flow rate of 15 ml min⁻¹. In the TPSR mode, the sample was heated from 150 to 700 °C at a rate of 8 °C min⁻¹. The reaction outlet composition was analyzed on-line on the MS (Pfeiffer Omnistar GSD320, Shanghai, China) based on the time-dependent evolution of m/z signals of the products.


	The m/z values for the chemicals used in this study and their relative intensities.					
Chemicals	m/z	Chemicals	m/z			
H_2	2 (100%), 1 (1%)	CH_4	16 (100%), 15 (85%), 14 (16%)			
D_2	4 (100%), 2 (1%)	CH ₃ OH	31 (100%), 32 (74%), 29 (43%)			
HD	3 (100%), 2 (1%), 1 (1%)	CH ₃ OD	32 (100%), 33 (74%), 29 (43%)			
H ₂ O	18 (100%), 17 (21%), 16 (1%)	CH ₃ ¹⁸ OH	33 (100%), 34 (74%), 31 (43%)			
$H_2^{18}O$	20 (100%), 19 (21%), 18 (%)	CO_2	44 (100%), 28 (50%), 16 (50%)			
D_2O	20 (100%), 18 (21%), 16 (1%)	$C^{18}O_2$	48 (100%), 30 (50%), 18 (50%)			
HDO	19 (100%), 18 (21%), 16 (1%)	CH ₃ OCH ₃	45 (100%), 46 (61%), 29 (39%)			
CH ₃ D	17 (100%), 16 (76%)	O ₂	32 (100%), 16 (22%)			

The m/z values for the chemicals used in this study and their relative intensities


Indicative m/z values shown in red; relative intensities shown in parentheses.

S2. Characterization results

S2.1. Structure and morphology of KFI and CHA zeolites

Fig. S1. Framework structure of KFI and CHA zeolites. Both the zeolites show a similar ring structure, mainly including double 6MR and 8MR.

Fig. S2. XRD pattern of the as-prepared KFI and CHA zeolites. The result confirms that the zeolites were successfully synthesized.

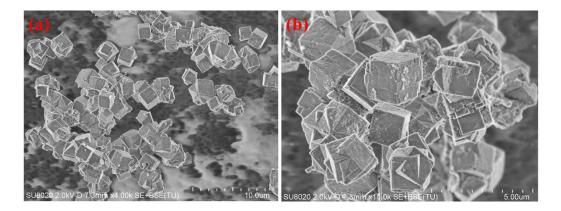


Fig. S3. SEM images of the as-prepared KFI zeolite.

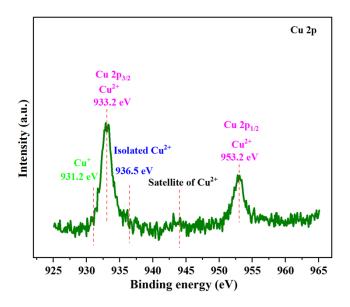
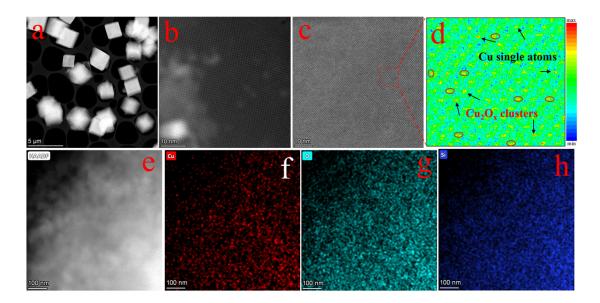



Fig. S4. Cu 2p XP spectrum of Cu-KFI (Cu/Al = 0.17).

S2.2. HAADF-STEM and H₂-TPR of Cu-KFI

Fig. S5. HAADF-STEM images of the as-prepared Cu-KFI zeolite (a-c), d showing the energy distribution map obtained through image-matrix transformation for the red box in c and the EDX elemental mapping of Cu, O and Si (e-h).

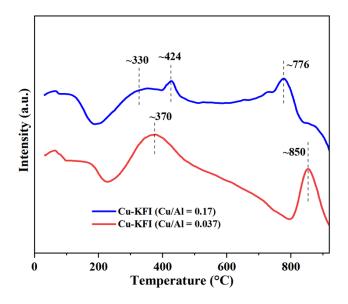


Fig. S6. H_2 -TPR profiles of Cu-KFI zeolites with Cu/Al = 0.037 and 0.17.

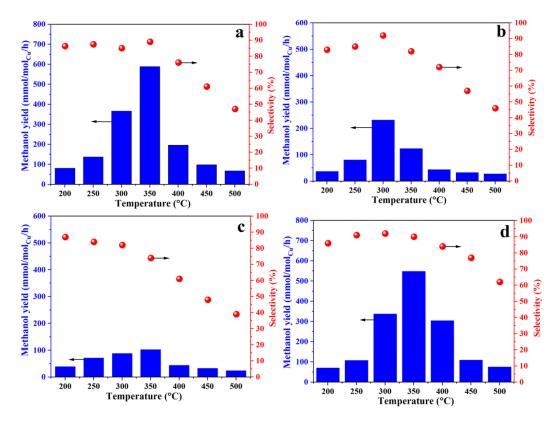


Fig. S7. Selective methane conversion to methanol on a Cu-SSZ-13 (Cu/Al = 0.43, Si/Al = 10), b Cu-MOR (Cu/Al = 0.47, Si/Al = 11), c Cu-ZSM-5 (Cu/Al = 0.51, Si/Al = 15) and d Cu-SSZ-39

(Cu/Al = 0.45, Si/Al = 10) under reaction gas mixture of 90% CH₄ + 100 ppm O₂ + 3.2% H₂O upon elevating reaction temperatures from 200 to 500 °C. Blue bars and red points refer to methanol yield (mmol mol_{Cu} ⁻¹ h⁻¹) and methanol selectivity (%), respectively.

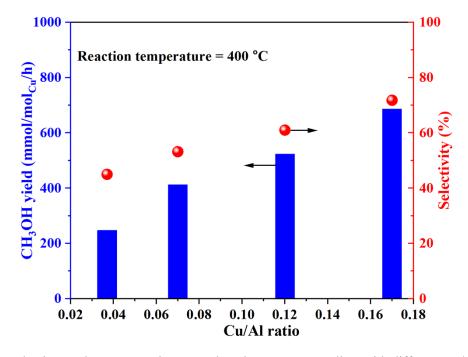

Cu-	Si/Al	Cu/Al	Reaction conditions	CH ₃ OH yield	Selectivity	Ref. ^b
zeolite				$(\text{mmol mol}_{Cu}^{-1} \text{ h}^{-1})$	(%)	
Cu-MOR	7.5	0.145	33 mol% CH ₄ , 67 mol%	~17	/	1
			steam, 350 °C			
Cu-MOR	15	0.185	33 mol% CH ₄ , 67 mol%	~22	/	1
			steam, 350 °C			
Cu-SSZ-	6.3	0.22	$P_{\rm CH4} = 40.5 \text{ kPa}, P_{\rm N2O} =$	~1020	34	2
39			15.2 kPa, $P_{\rm H2O} = 4.0$ kPa,			
			325 °C			
Cu-SSZ-	9.7	0.10	$P_{\rm CH4} = 40.5 \text{ kPa}, P_{\rm N2O} =$	157	59	2
13			10.1 kPa, $P_{\rm H2O} = 2.6$ kPa,			
			300 °C			
Cu-MOR	8.9	0.15	$P_{\rm CH4} = 40.5 \text{ kPa}, P_{\rm N2O} =$	220	54	2
			10.1 kPa, $P_{\rm H2O} = 2.6$ kPa,			
			300 °C			
Cu-CHA	17.8	0.8	0.20 MPa O ₂ , 0.5 MPa	~80	/	3
			CO, 2.0 MPa CH ₄ , 5 mL			
			H ₂ O, 200 °C			
Cu-SSZ-	10	0.33	$P_{\rm CH4} = 49.5$ kPa, $P_{\rm O2} =$	13	/	4
13			$0.025 \text{ kPa}, P_{\text{H2O}} = 2.3$			
			kPa, 225 °C			
Cu-SSZ-	23	0.22	$P_{\rm CH4} = \sim 72 \text{ kPa}, P_{\rm O2} =$	130	/	5
13			$0.09 \text{ kPa}, P_{\text{H2O}} = 3.14$			
			kPa, 270 °C			
Cu-SSZ-	11	0.23	98% CH ₄ , 400 ppm O ₂ ,	540	91	6
13			2% H ₂ O, 300 °C			

Table S2. The comparative activities of continuous MTM reaction on various Cu-zeolites.

			3.2% H ₂ O, 450 °C			work
Cu-KFI	3.5	~0.17	90% CH ₄ , 100 ppm O ₂ ,	~880.3	~83	This
39			3.2% H ₂ O, 400 °C			work
Cu-SSZ-	10	0.47	90% CH ₄ , 100 ppm O ₂ ,	548.3	90	This
ZSM-5			3.2% H ₂ O, 350 °C			work
Cu-	15	0.51	90% CH ₄ , 100 ppm O ₂ ,	102.4	74	This
13			3.2% H ₂ O, 350 °C			work
Cu-SSZ-	10	0.43	90% CH ₄ , 100 ppm O ₂ ,	588.7	89	This
			3.2% H ₂ O, 300 °C			work
Cu-MOR	11	0.47	90% CH ₄ , 100 ppm O ₂ ,	231.6	92	This
13			3.2% H ₂ O, 400 °C			work
Cu-SSZ-	4.1	0.18	90% CH ₄ , 100 ppm O ₂ ,	~327	~81	This
		7	3.2% H ₂ O, 400 °C			work
Cu-KFI	3.5	~0.03	90% CH ₄ , 100 ppm O ₂ ,	~250	~45	This
			°C			
			48/2/10/50 ml min ⁻¹ , 300			
Cu-CHA	10	~0.08	$CH_4/O_2/H_2O(g)/N_2 =$	~900	~88	8
			°C			
			48/2/10/50 ml min ⁻¹ , 300			
Cu-CHA	5	~0.13	$CH_4/O_2/H_2O(g)/N_2 =$	~700	~79	8
			0.5 g h ⁻¹ H ₂ O, 300 °C			
			min ⁻¹ O ₂ , 50 ml min ⁻¹ N ₂ ,			
Cu-MOR	10	/	48 ml min ⁻¹ CH ₄ , 2 ml	310	< 50%	7
ZSM-5			2% H ₂ O, 300 °C			
Cu-	12.8	0.27	98% CH ₄ , 400 ppm O ₂ ,	~100	~18	6
			2% H ₂ O, 300 °C			
Cu-MOR	10.9	0.27	98% CH ₄ , 400 ppm O ₂ ,	~15	~18	6

Reaction time	Methanol yield	TON	Selectivity
(min)	$(\mu mol/g_{cat.})$	TON	(%)
30	137.5	0.43	84
60	288.9	0.91	82
120	566.2	1.77	85
240	1083.5	3.40	85
360	1641.9	5.15	82
600	2761.9	8.66	81

Table S3. Turnover number (TON) and methanol selectivity of Cu-KFI zeolite (Cu/Al = 0.17) at reaction temperature of 450 $^{\circ}$ C with different reaction time.

Fig. S8. Selective methane conversion to methanol on Cu-KFI zeolites with different Cu/Al ratios under reaction gas mixture of 90% CH₄ + 100 ppm O_2 + 3.2% H₂O at the reaction temperature of 400 °C. Blue bars and red points refer to methanol yield (mmol mol_{Cu}⁻¹ h⁻¹) and methanol selectivity (%), respectively.

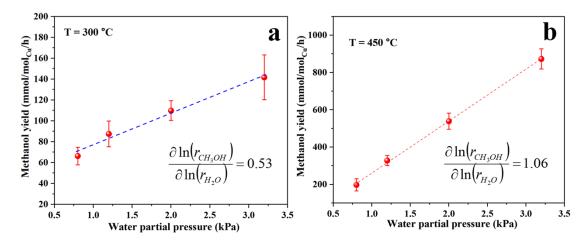


Fig. S9. Kinetic results of methane continuous conversion to methanol over Cu-KFI (Cu/Al = 0.17), which show the different reaction orders on water at different reaction temperatures.

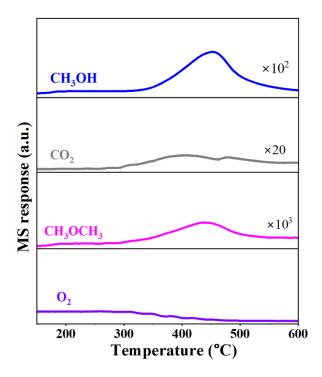
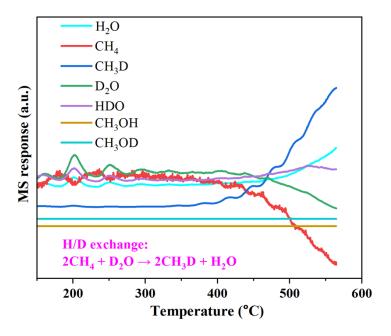



Fig. S10. Temperature-programmed surface reactions (TPSR) of continuous MTM on Cu-KFI (Cu/Al = 0.17). Reaction conditions: 100 mg catalyst was heated from 150 to 600 °C, heating rate = 8 °C min⁻¹, total flow rate = 15 ml min⁻¹; 96.8% CH₄, 3.2% H₂O, 100 ppm O₂.

Fig. S11. Temperature-programmed surface reactions (TPSR) of the KFI zeolite without Cu species. Reaction conditions: 100 mg KFI was heated from 150 to 600 °C, heating rate = 8 °C min⁻¹, total flow rate = 15 ml min⁻¹; 10% CH₄, 3.2% D₂O, He as the balance gas. The result shows that the H/D exchange between CH₄ and D₂O occurred and CH₃OH and CH₃OD were not detected.

S4. References

- 1. Y. R. Jeong, H. Jung, J. Kang, J. W. Han and E. D. Park, ACS Catal., 2021, 11, 1065-1070.
- 2. O. Memioglu and B. Ipek, Chem. Commun., 2021, 57, 1364-1367.
- 3. S. Sogukkanli, T. Moteki and M. Ogura, Green Chem., 2021, 23, 2148-2154.
- 4. A. Koishybay and D.F. Shantz, J. Am. Chem. Soc., 2020, 142, 11962-11966.
- K. T. Dinh, M. M. Sullivan, K. Narsimhan, P. Serna, R. J. Meyer, M. Dinca and Y. Román-Leshkov, J. Am. Chem. Soc., 2019, 141, 11641-11650.
- L. L. Sun, Y. Wang, C. M. Wang, Z. K. Xie, N. J. Guan and L. D. Li, *Chem*, 2021, 7, 1557-1568.
- J. Ohyama, A. Hirayama, Y. Tsuchimura, N. Kondou, H. Yoshida, M. Machida, S. Nishimura, K. Kato, I. Miyazato and K. Takahashi, *Catal. Sci. Technol.*, 2021, 11, 3437-3446.
- Y. Tsuchimura, H. Yoshida, M. Machida, S. Nishimura, K. Takahashi and J. Ohyama, *Energy Fuels*, 2023, 37, 9411-9418.