Supporting Information

Palladium-Catalyzed Ligand-Regulated Divergent Synthesis of Pyrrole[2,3-b]indoles and Ureas from 2-Ethynylanilines and Isocyanides[†]

Min Zhang,^{a,‡} Yongpeng Zheng,^{a,‡} Yangbin Jin,^a Huanfeng Jiang,^a Wanqing Wu^{a,*}

^{a.} Key Laboratory of Functional Molecular Engineering of Guangdong Province, State Key
Laboratory of Luminescent Materials and Devices, School of Chemistry and Chemical
Engineering, South China University of Technology, Guangzhou 510640, China.
[‡] These authors contributed equally to this work.
E-mail: cewuwq@scut.edu.cn. Fax and Tel.: (+86) 20-87112906

Table of Contents

A.	General Information	S2
B.	Optimization of Reaction Conditions	S2
C.	General Procedure for the Synthesis of Pyrrolo[2,3-b]Indoles	
D.	General Procedure for the Synthesis of Ureas	
E.	Further Synthetic Applications	
F.	Characterization Data for All Products	S6
G.	References	S15
H.	X-ray Crystallographic Analysis	S16
I.	Copies of ¹ H, ¹³ C, and ¹⁹ F NMR Spectra	S18

A. General Information

All purchased reagents and solvents were used without further purification unless otherwise noted. Analytical thin layer chromatography was performed by using commercially prepared 100-400 mesh silica gel plates (GF_{254}) and visualization was effected at 254 nm. All the *o*-alkynylanilines were prepared according to known procedures. ¹H and ¹³C NMR spectra were recorded using a Bruker DRX-400 spectrometer using chloroform-*d* (CDCl₃) containing 0.03% (v/v) tetramethylsilane (TMS) as solvent. The chemical shifts are referenced to signals at 0.00 and 77.0 ppm, respectively. Mass spectra were recorded on a Thermo Scientific ISQ gas chromatographmass spectrometer. The data of HRMS was carried out on a high-resolution mass spectrometer (LCMS-IT-TOF). IR spectra were obtained either as potassium bromide pellets or as liquid films between two potassium bromide pellets with a Bruker TENSOR 27 spectrometer. Melting points were determined with a Büchi Melting Point B-545 instrument.

B. Optimization of Reaction Conditions

NH 1a	+ t-BuNC [Pd] cata CH ₃ CN, 8	alyst 30 °C N N H-Bu 3a	o N H H H H H
entry ^a	[Pd] catalyst	yield of 3a (%) ^b	yield of $4a (\%)^b$
1	Pd(OAc) ₂	35	10
2	-	n.d.	n.d.
3	Pd(TFA) ₂	27	3
4	PdCl ₂	11	26
5	$Pd(acac)_2$	11	25
6	Pd(dba) ₂	30	15
7	$Pd(PCy_3)_2$	15	38

 \sim

Table S1. Screening of palladium catalyst^a

^{*a*} Reaction conditions: **1a** (0.1 mmol, 1 equiv), **2a** (2.4 equiv), [Pd] catalyst (10 mol %) in MeCN (1 mL) were added to a sealed tube at 80 °C under air for 12 h. ^{*b*}NMR yield was determined by ¹H NMR using CH₂Br₂ as an internal standard.

Table S2. Optimization of solvent^a

NH ₂	+ <i>t</i> -BuNC <u>Pd(OAc)</u> ₂ Solvent	(10 mol %) , 80 °C	+ O H H H H
1a	2a	3a	4a
entry	solvent	yield of 3a (%) ^b	yield of $4a \ (\%)^b$
1	EtOH	44	10
2	THF	24	7
3	DCM	40	14
4	Toluene	50	12

^{*a*} Reaction conditions: **1a** (0.1 mmol, 1 equiv), **2a** (2.4 equiv), $Pd(OAc)_2$ (10 mol %) in solvent (1 mL) were added to a sealed tube at 80 °C under air for 12 h. ^{*b*}NMR yield was determined by ¹H NMR using CH₂Br₂ as an internal standard.

NH ₂ 1a	+ t-BuNC Pd(OAc) ₂ (x mol % Toluene, 80 °C	→ N N + C 3a	O N H H H H H H H
entry	$Pd(OAc)_2 (x mol \%)$	yield of $3a (\%)^b$	yield of $4a \ (\%)^b$
1	5	51	9
2	6	50	10
3	7	41	8
4	8	55	17
5	9	57	10
6	12	65 (62)	10
7	15	59	13

Table S3. Optimization of catalyst amounts^a

^{*a*} Reaction conditions: **1a** (0.1 mmol, 1 equiv), **2a** (2.4 equiv), $Pd(OAc)_2$ (x mol %) in toluene (1 mL) were added to a sealed tube at 80 °C under air for 12 h. ^{*b*}NMR yield was determined by ¹H NMR using CH₂Br₂ as an internal standard. Data in parentheses refer to isolated yield.

Table S4. Screening of ligands^a

NH ₂ 1a	+ <i>t</i> -BuNC + <i>t</i>		N t-Bu H H
entry	ligand	yield of 3a (%) ^b	yield of $4a (\%)^b$
1	BPMZ	27	n.d.
2	ТРТР	9	44
3	DBPF	10	65 (60)
4	<i>t</i> -Bu ₂ PCl	2	11
5	DPPF	8	24
6	DBPB	7	12
7	$P(t-Bu)_3$	7	30

^{*a*} Reaction conditions: **1a** (0.1 mmol, 1 equiv), **2a** (2.4 equiv), $Pd(OAc)_2$ (12 mol %), toluene (1 mL) and ligand (10 mol%) were added to a sealed tube at 80 °C under air for 12 h. ^{*b*}NMR yield was determined by ¹H NMR using CH₂Br₂ as an internal standard. BPMZ = 1,3-Bis(2,6-diisopropylphenyl)imidazolinium. TPTP = tri-*p*-tolylphosphine. DBPF = 1,1-bis(di-*tert*-butylphosphino)ferrocene. DBPB = 1,4-bis(di-*tert*-butylphosphino)butane. Data in parentheses refer to isolated yield. n.d. = not detected.

Table S5. Screening of isocyanide amounts^a

NH ₂ 1a	+ <i>t</i> -BuNC 2a Pd(OAc) ₂ (12 mol %) DBPF (10 mol%) toluene, 80 °C	^N ^N ^N ^N ^N ^N ^N ^N ^N ^N	o N N t-Bu 4a
entry	amount of 2a (equiv)	yield of $3a (\%)^b$	yield of $4a \ (\%)^b$
1	1.05	trace	17
2	1.25	trace	40
3	1.50	10	67
4	2.00	11	64
5	2.40	10	65

^{*a*} Reaction conditions: **1a** (0.1 mmol, 1 equiv), **2a** (the amount as table), $Pd(OAc)_2$ (12 mol %), toluene (1 mL) and DBPF (10 mol%) were added to a sealed tube at 80 °C under air for 24 h. ^{*b*}NMR yield was determined by ¹H NMR using CH₂Br₂ as an internal standard. DBPF = 1,1-bis(di-*tert*-butylphosphino)ferrocene.

C. General Procedure for the Synthesis of Pyrrole[2,3-b]indoles

A mixture of 2-ethynylaniline 1 (0.1 mmol), isocyanide 2 (0.24 mmol), $Pd(OAc)_2$ (12 mol %), 1.0 mL of toluene and a stirred bar were added to a 10 mL sealed tube. The mixture was stirred at 80 °C for 12 h. Then the resulting mixture was cooled to room temperature and extracted with ethyl acetate. The combined organic layers were dried over anhydrous Na₂SO₄ and then evaporated under vacuum. The crude mixture was purified by column chromatography on silica gel using petroleum ether/ethyl acetate as an eluent to deliver the desired product **3** in the corresponding yield.

D. General Procedure for the Synthesis of Ureas

A mixture of 2-ethynylaniline 1 (0.1 mmol), isocyanide 2 (0.24 mmol), $Pd(OAc)_2$ (12 mol %), 1,1bis(di-*tert*-butylphosphino)ferrocene (10 mol%), 1.0 mL of toluene and a stirred bar were added to a 10 mL sealed tube. The mixture was stirred at 80 °C for 12 h. Then the resulting mixture was cooled to room temperature and extracted with ethyl acetate. The combined organic layers were dried over anhydrous Na₂SO₄ and then evaporated under vacuum. The crude mixture was purified by column chromatography on silica gel using petroleum ether/ethyl acetate as an eluent to deliver the desired product 4 in the corresponding yield.

E. Further Synthetic Applications

at 60 °C for 12 h. After the reaction was cooled to room temperature, the resulting mixture was extracted with ethyl acetate and the combined organic layers were evaporated under vacuum. The desired product **5a** was obtained in 50% yield after purified by column chromatography on silica gel with petroleum ether.

(b) A mixture of (E)-3-(4-bromophenyl)-N,1-di-*tert*-Butylpyrrolo[2,3-b]indol-2(1H)-imine (**3f**, 0.1 mmol), trifluoroacetic acid (1 mL), and a stir bar were added to a sealed Schlenk tube. Then the mixture was stirred at reflux for 12 h. After the reaction was cooled to room temperature, the resulting mixture was extracted with ethyl acetate. The combined organic layers were evaporated under vacuum. The desired product **6a** was obtained in 30% yield after purification by column chromatography on silica gel with petroleum ether.

F. Characterization Data for All Products

(E)-N,1-di-tert-Butyl-3-phenylpyrrolo[2,3-b]indol-2(1H)-imine (3a)^[1]

Brown solid (17.9 mg, 50%), M.p.: 140-141 °C; Isolation by column chromatography, $R_f = 0.15$, (petroleum ether/ethyl acetate: 50/1); ¹H NMR (400 MHz,CDCl₃) δ 7.44 (t, J = 6.9 Hz, 3H), 7.33 (d, J = 6.4 Hz, 2H), 7.08 (s, 2H), 6.69 – 6.53 (m, 2H), 1.75 (s, 9H), 1.11 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 147.7, 132.1, 132.0, 131.4, 129.7, 129.0, 128.6, 128.3, 128.1, 123.3, 123.2, 121.5, 118.1,117.9, 114.3, 58.0, 56.4, 32.3, 30.1; IR: v_{max} (KBr) =

 $2965, 2924, 2853, 1657, 1615, 1557, 1493, 1432, 1389, 1361, 1298, 1212, 1079, 857, 749, 694 \ \rm cm^{-1}.$

(E)-N,1-di-tert-Butyl-3-(4-chlorophenyl)pyrrolo[2,3-b]indol-2(1H)-imine (3b)^[1]

Brown solid (17.6 mg, 45%), mp: 186.8-186.9 °C; Isolation by column chromatography, $R_f = 0.15$, (petroleum ether/ethyl acetate: 50/1); ¹H NMR (400 MHz, CDCl₃) δ 7.45 (d, J = 8.5 Hz, 2H), 7.28 (d, J = 8.5 Hz, 2H), 7.10 (d, J = 6.2 Hz, 2H), 6.69 – 6.57 (m, 2H), 1.74 (s, 9H), 1.12 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 150.9, 145.7, 134.7, 132.9, 132.4, 130.4, 128.7, 125.0, 123.2, 122.9, 121.7, 118.3, 58.2, 56.5, 32.4, 30.1; IR: v_{max} (KBr) = 3900, 3853, 3803, 3678, 3619, 2967, 2925, 1679, 1559, 1430, 1391, 1296, 1213, 1085, 1016, 846, 745, 631 cm⁻¹.

(E)-3-(4-Bromophenyl)-N,1-di-tert-Butylpyrrolo[2,3-b]indol-2(1H)-imine (3c)^[1]

Brown solid (23.1 mg, 53%); mp: 147.2-147.3 °C; Isolation by column chromatography, $R_f = 0.15$, (petroleum ether/ethyl acetate: 50/1); ¹H NMR (400 MHz, CDCl₃) δ 7.47 (d, J = 6.7 Hz, 3H), 7.31 (d, J = 7.7 Hz, 2H), 7.21 (d, J = 9.1 Hz, 1H), 6.95 (d, J = 8.3 Hz, 1H), 6.72 (s, 1H), 1.74 (s, 9H), 1.10 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 171.3, 162.4, 150.8, 144.2, 134.3, 133.8, 129.0, 128.8, 128.5, 127.8, 125.8, 125.1, 119.3, 114.0, 58.2, 56.7, 32.3, 30.1; IR: v_{max} (KBr) = 3858, 3746, 3677, 3618, 3061, 2965, 2926, 2856,

1834, 1742, 1678, 1618, 1556, 1426, 1382, 1268, 1212, 1179, 1134, 1082, 1004, 948, 822, 734, 698, 645 cm⁻¹.

(E)-N,1-di-tert-Butyl-3-(4-(tert-Butyl)phenyl)pyrrolo[2,3-b]indol-2(1H)-imine (3d)

Brown solid (20.7 mg, 50%); mp: 156.2-156.5 °C; Isolation by column chromatography, $R_f = 0.20$, (petroleum ether/ethyl acetate: 50/1); ¹H NMR (400 MHz, CDCl₃) δ 7.50 – 7.39 (m, 2H), 7.26 (s, 2H), 7.10 (d, J = 4.2 Hz, 2H), 6.79 – 6.66 (m, 1H), 6.65 – 6.58 (m, 1H), 1.75 (s, 9H), 1.37 (s, 9H), 1.10 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 151.9, 151.4, 144.8, 131.9, 131.1, 128.7, 127.0, 125.1, 123.2, 121.5, 118.0, 58.0, 56.5, 34.7, 32.2, 31.3, 30.1; IR: v_{max} (KBr) = 3896, 3849, 3805, 3746, 3679, 3648, 3618, 3442, 2964,

2863, 1676, 1560, 1430, 1393, 1361, 1298, 1213, 1081, 1023, 849, 743, 632, 468 cm⁻¹; HRMS (ESI) m/z: calcd for $C_{28}H_{35}N_3$ [M+H]⁺ 413.2831, found 413.2837.

(E)-N,1-di-tert-Butyl-3-(4-isopropylphenyl)pyrrolo[2,3-b]indol-2(1H)-imine (3e)

Brown solid (24.4 mg, 61%); mp: 113.4-113.6 °C; Isolation by column chromatography, $R_f = 0.17$, (petroleum ether/ethyl acetate: 50/1); ¹H NMR (400 MHz, CDCl₃) δ 7.30 (d, J = 8.1 Hz, 2H), 7.24 (d, J = 8.3 Hz, 2H), 7.09 (d, J = 3.8 Hz, 2H), 6.71 (d, J = 7.2 Hz, 1H), 6.65 – 6.57 (m, 1H), 2.98 (p, J = 6.9 Hz, 1H), 1.75 (s, 9H), 1.30 (d, J = 6.9 Hz, 6H), 1.11 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 171.4, 163.4, 151.5, 149.5, 144.9, 131.9, 131.6, 128.9, 127.0, 126.3, 123.3, 123.2, 121.5, 118.1, 57.9, 56.5, 33.9, 23.9; IR:

 v_{max} (KBr) = 3897, 3859, 3745, 3678, 3618, 2963, 1742, 1682, 1647, 1558, 1428, 1393, 1295, 1213, 1082, 939, 849, 744, 626, 521, 463 cm⁻¹; HRMS (ESI) m/z: calcd for $C_{27}H_{33}N_3$ [M+H]⁺: 400.2747, found 400.2739.

(E)-N,1-di-tert-Butyl-3-(2-methoxyphenyl)pyrrolo[2,3-b]indol-2(1H)-imine (3f)

Brown liquid (16.7 mg, 43%); Isolation by column chromatography, $R_f = 0.15$, (petroleum ether/ethyl acetate: 50/1); ¹H NMR (400 MHz, CDCl₃) δ 7.44 – 7.37 (m, 1H), 7.22 (d, J = 9.1 Hz, 1H), 7.12 – 7.00 (m, 3H), 6.94 (d, J = 8.4 Hz, 1H), 6.62 – 6.55 (m, 2H), 3.75 (s, 3H), 1.75 (s, 9H), 1.09 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 156.8, 151.7, 131.7, 130.5, 130.2, 123.3, 123.2, 121.4, 120.2, 117.9, 110.7, 57.9, 56.2, 55.1, 31.9, 30.1; IR: v_{max}(KBr)

= 3943, 3896, 3852, 3745, 3678, 3619, 3567, 3501, 3358, 3304, 3229, 3183, 3120, 3058, 2923, 2854, 2372, 1918, 1835, 1741, 1697, 1647, 1552, 1518, 1462, 1398, 1263, 1030, 961, 755, 720, 627, 519, 456 cm⁻¹; HRMS (ESI) m/z: calcd for $C_{25}H_{29}N_3O$ [M+H]⁺ 388.2383, found 388.2376.

(E)-N,1-Dicyclopentyl-3-phenylpyrrolo[2,3-b]indol-2(1H)-imine (3g)

Brown solid (16.0 mg, 42%); mp: 123.9-124.3 °C; Isolation by column chromatography, $R_f = 0.15$, (petroleum ether/ethyl acetate: 50/1); ¹H NMR (400 MHz, CDCl₃) δ 7.45 (s, 5H), 7.14 (d, J = 4.0 Hz, 2H), 6.98 (d, J = 7.3 Hz, 1H), 6.67 (dt, J = 8.2, 4.3 Hz, 1H), 4.68 (p, J = 8.5 Hz, 1H), 4.20 (p, J = 5.8 Hz, 1H), 2.33 – 2.21 (m, 2H), 1.91 (d, J = 10.2 Hz, 6H), 1.79 – 1.72 (m, 2H), 1.58 (dt, J = 18.9, 5.7 Hz, 6H), 1.46 – 1.39 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 170.9, 164.1, 154.2, 142.5, 133.6, 132.1, 128.7, 128.5, 128.1, 126.6,

123.6, 123.5, 121.7, 118.4, 59.1, 53.4, 36.0, 29.2, 24.6, 24.2; IR: $v_{max}(KBr) = 2954$, 2865, 1651, 1618, 1576, 1432, 1345, 1303, 1146, 1082, 745, 699, 641 cm⁻¹. HRMS (ESI) m/z: calcd for C₂₆H₂₇N₃ [M+H]⁺ 382.2278, found 382.2276.

(E)-N,1-Dicyclohexyl-3-phenylpyrrolo[2,3-b]indol-2(1H)-imine (3h)^[2]

Brown solid (9.0 mg, 22%); Isolation by column chromatography, $R_f = 0.15$, (petroleum ether/ethyl acetate: 50/1); ¹H NMR (400 MHz, CDCl₃) δ 7.45 (s, 5H), 7.14 (d, J = 6.5 Hz, 2H), 6.92 (d, J = 7.2 Hz, 1H), 6.72 – 6.61 (m, 1H), 4.27 – 4.16 (m, 1H), 3.64 (tt, J = 9.3, 3.6 Hz, 1H), 2.23 (q, J = 14.2, 13.1 Hz, 2H), 1.85 (d, J = 8.3 Hz, 4H), 1.68 (s, 4H), 1.53 – 1.44 (m, 2H), 1.43 – 1.31 (m, 5H), 1.14 (q, J = 12.4 Hz, 1H), 0.89 – 0.76 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 171.1, 164.4, 153.9, 142.9, 133.9, 132.1, 128.8, 128.6, 127.8,

126.5, 123.7, 123.6, 121.8, 118.5, 56.7, 52.2, 35.0, 30.2, 26.0, 25.4, 25.3, 24.0; $v_{\text{max}}(\text{KBr}) = 3057, 2927, 2853, 1622, 1575, 1431, 1369, 1302, 1151, 1084, 882, 741, 700, 644 \text{ cm}^{-1}.$

(E)-N,1-Dicyclopentyl-3-isopentylpyrrolo[2,3-b]indol-2(1H)-imine (3i)

Brown solid (7.8 mg, 21%); mp: 102.3-102.5 °C; Isolation by column chromatography, $R_f = 0.15$, (petroleum ether/ethyl acetate: 50/1); ¹H NMR (400 MHz, CDCl₃) δ 7.30 (d, J = 7.3 Hz, 1H), 7.15 (d, J = 6.8 Hz, 2H), 6.83 (td, J = 7.3, 2.4 Hz, 1H), 4.59 (dt, J = 17.3, 8.1 Hz, 2H), 2.88 – 2.73 (m, 2H), 2.23 – 2.11 (m, 2H), 1.92 – 1.83 (m, 7H), 1.67 (dd, J = 13.3, 6.6 Hz, 7H), 1.61 – 1.55 (m, 3H), 0.99 (d, J = 6.6 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 131.2, 130.2, 123.6, 121.7, 118.3, 58.6, 53.2, 38.3, 36.2, 29.1, 28.4, 26.9, 24.5, 24.2,

22.2; IR: $v_{\text{max}}(\text{KBr}) = 2952, 2861, 1646, 1575, 1428, 1337, 1085, 744 \text{ cm}^{-1}$. HRMS (ESI) m/z: calcd for $C_{25}H_{33}N_3$ [M+H]⁺ 376.2747, found 376.2744.

(E)-N,1-di-tert-Butyl-3-hexylpyrrolo[2,3-b]indol-2(1H)-imine (3j)

Brown solid (12.1 mg, 32%); mp: 148.2-148.5 °C; Isolation by column chromatography, $R_f = 0.15$, (petroleum ether/ethyl acetate: 50/1); ¹H NMR (400 MHz, CDCl₃) δ 7.21 (d, J = 7.2 Hz, 1H), 7.13 (dd, J = 13.4, 6.1 Hz, 2H), 6.81 (t, J = 7.2 Hz, 1H), 2.83 – 2.68 (m, 2H), 1.69 (s, 2H), 1.67 (s, 9H), 1.48 (s, 9H), 1.47 (s, 2H), 1.36 – 1.30 (m, 4H), 0.90 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 171.9, 153.4, 144.2, 131.2, 128.6, 123.8, 123.6, 121.6, 118.1, 57.7, 55.0, 32.5, 31.4, 30.1, 29.6, 29.4, 28.7, 22.5, 13.9; IR: $v_{max}(\text{KBr}) = 3897$,

3853, 3808, 3744, 3679, 3618, 3565, 3233, 2926, 2856, 1835, 1741, 1648, 1560, 1460, 1394, 1290, 1213, 1078, 750, 630, 588, 512 cm⁻¹; HRMS (ESI) m/z: calcd for $C_{24}H_{35}N_3$ [M+H]⁺ 366.2904, found 366.2896.

(E)-N,1-di-tert-Butyl-3-cyclohexylpyrrolo[2,3-b]indol-2(1H)-imine (3k)

Brown solid (14.9 mg, 41%); mp: 147.3-147.5 °C; Isolation by column chromatography, *R_f* = 0.15, (petroleum ether/ethyl acetate: 50/1); ¹H NMR (400 MHz, CDCl₃) δ 7.22 (d, *J* = 7.4 Hz, 1H), 7.16 – 7.06 (m, 2H), 6.80 (t, *J* = 7.2 Hz, 1H), 3.26 (ddd, *J* = 18.5, 10.6, 7.8 Hz, 1H), 1.97 (ddt, *J* = 34.3, 17.4, 8.0 Hz, 6H), 1.75 (d, *J* = 6.0 Hz, 2H), 1.68 (s, 9H), 1.66 (s, 2H), 1.50 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 153.2, 142.3, 134.0, 131.0, 125.6,

121.4, 118.1, 57.8, 55.1, 39.1, 32.9, 32.3, 26.0; IR: v_{max} (KBr) = 3847, 3746, 3676, 3618, 3567, 3503, 3470, 3426, 3383, 3322, 3246, 3185, 2925, 2854, 1834, 1741, 1649, 1548, 1457, 1367, 1213, 1072, 959, 897, 747, 626, 517, 460 cm⁻¹; HRMS (ESI) m/z: calcd for C₂₄H₃₃N₃ [M+H]⁺ 364.2746, found 364.2739.

(E)-N,1-di-tert-Butyl-3-butylpyrrolo[2,3-b]indol-2(1H)-Imine (3l)

Brown liquid (8.4 mg, 25%); Isolation by column chromatography, $R_f = 0.17$, (petroleum ether/ethyl acetate: 50/1); ¹H NMR (400 MHz, CDCl₃) δ 7.22 (d, J = 7.2 Hz, 1H), 7.16 – 7.08 (m, 2H), 6.81 (td, J = 7.2, 1.3 Hz, 1H), 2.85 – 2.69 (m, 2H), 1.79 (s, 2H), 1.68 (s, 9H), 1.65 – 1.56 (m, 2H), 1.48 (s, 9H), 0.98 (t, J = 7.3 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 153.4, 144.2, 131.2, 128.6, 123.7, 123.6, 121.6, 118.1, 57.7, 55.0, 32.5, 31.5,

30.1, 28.4, 23.0, 13.7; $v_{\text{max}}(\text{KBr}) = 2964$, 2928, 2866, 1667, 1613, 1560, 1431, 1392, 1361, 1286, 1212, 1080, 1009, 751 cm⁻¹; HRMS (ESI) m/z: calcd for C₂₂H₃₁N₃ [M+H]⁺ 338.2591, found 338.2584.

(E)-N,1-di-tert-Butyl-3-isopentylpyrrolo[2,3-b]indol-2(1H)-imine (3m)

Brown solide (11.2 mg, 32%), M.p.: 73-74 °C; Isolation by column chromatography, $R_f = 0.15$, (petroleum ether/ethyl acetate: 50/1); ¹H NMR (400 MHz, CDCl₃) δ 7.21 (d, J = 7.2 Hz, 1H), 7.16 – 7.07 (m, 2H), 6.81 (t, J = 7.2 Hz, 1H), 2.92 – 2.65 (m, 2H), 1.72 (d, J = 6.7 Hz, 2H), 1.67 (s, 9H), 1.53 (dt, J = 12.1, 7.1 Hz, 1H), 1.49 (s, 9H), 1.00 (d, J = 6.6 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 153.4, 144.2, 131.2, 128.8, 123.7, 123.6,

121.6, 118.1, 57.7, 55.0, 38.0, 32.6, 30.1, 28.8, 26.7, 22.3; $v_{max}(KBr) = 2961$, 2862, 1667, 1560, 1432, 1392, 1361, 1287, 1212, 1080, 1011, 749 cm⁻¹; HRMS (ESI) m/z: calcd for C₂₃H₃₃N₃ [M+H]⁺ 352.2747, found 352.2740.

(E)-N,1-di-tert-Butyl-3-heptylpyrrolo[2,3-b]indol-2(1H)-imine (3n)

Brown liquid (10.6 mg, 28%); Isolation by column chromatography, $R_f = 0.15$, (petroleum ether/ethyl acetate: 50/1); ¹H NMR (400 MHz, CDCl₃) δ 7.22 (d, J = 7.3 Hz, 1H), 7.13 (q, J = 8.1 Hz, 2H), 6.82 (td, J = 7.2, 1.5 Hz, 1H), 2.92 – 2.63 (m, 2H), 1.77 (s, 2H), 1.68 (s, 9H), 1.62 (ddd, J = 12.5, 8.2, 4.9 Hz, 2H), 1.48 (s, 9H), 1.47 – 1.39 (m, 2H), 1.34 (dd, J = 9.7, 6.2 Hz, 2H), 1.30 (s, 2H), 0.89 (t, J = 6.8 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 153.3, 144.2, 131.3, 128.7, 123.6, 121.7, 118.1, 57.8, 55.1, 32.5, 31.7, 30.1, 29.9, 29.4, 28.9, 28.7, 22.5, 14.0; v_{max} (KBr) = 2962, 2927, 2855, 1670, 1614, 1561, 1431, 1393, 1362, 1288, 1213, 1179, 1081, 1005, 864, 741, 629 cm⁻¹; HRMS (ESI) m/z: calcd for C₂₅H₃₇N₃ [M+H]⁺ 380.3060, found 380.3053.

(E)-N,1-di-tert-Butyl-3-(phenylethynyl)pyrrolo[2,3-b]indol-2(1H)-imine (30)

Brown solid (17.2 mg, 45%); mp: 168.2-168.5 °C; Isolation by column chromatography, $R_f = 0.20$, (petroleum ether/ethyl acetate: 30/1); ¹H NMR (400 MHz, CDCl₃) δ 7.56 (d, J = 7.2 Hz, 1H), 7.37 (d, J = 7.0 Hz, 1H), 7.19 (dtd, J = 18.6, 7.9, 1.2 Hz, 2H), 7.09 (d, J = 7.7 Hz, 1H), 6.87 – 6.70 (m, 3H), 4.36 (s, 1H), 1.72 (s, 9H), 1.65 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 163.5, 150.9, 148.7, 148.2, 132.9, 132.2, 131.2, 123.6, 123.3, 122.1, 118.5, 118.2, 114.7, 106.9, 106.4, 102.0, 90.5, 58.5, 55.8, 31.9, 29.9; IR: v_{max} (KBr) = 3474,

3427, 3348, 3205, 3060, 2921, 2850, 2178, 1648, 1558, 1459, 1386, 1314, 1260, 1214, 1088, 1025, 864, 752, 634 cm⁻¹.

1-(tert-Butyl)-3-(2-(phenylethynyl)phenyl)urea (4a)

Yellow liquid (17.5 mg, 60%); Isolation by column chromatography, $R_f = 0.25$, (petroleum ether/ethyl acetate: 10/1); ¹H NMR (400 MHz, CDCl₃) δ 8.11 (d, J = 8.3 Hz, 1H), 7.53 (dd, J = 6.5, 2.9 Hz, 2H), 7.45 (dd, J = 7.7, 1.4 Hz, 1H), 7.39 – 7.33 (m, 3H), 7.31 – 7.26 (m, 1H), 7.02 – 6.89 (m, 2H), 4.84 (s, 1H), 1.38 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 153.9, 140.3, 132.0, 131.5, 129.6, 128.6, 128.4,

122.6, 121.8, 118.9, 111.5, 95.4, 85.0, 50.8, 29.3; IR: v_{max} (KBr) = 3846, 3807, 3678, 3617, 3506, 3060, 2968, 2925, 2855, 2127, 1698, 1506, 1365, 1260, 1187, 1087, 1028, 801, 753, 693, 594, 514, 456 cm⁻¹; HRMS (ESI) m/z: calcd for C₁₉H₂₀N₂O [M-H]⁻ 291.1503, found 291.1504.

1-(tert-Butyl)-3-(2-(4-methylpent-1-yn-1-yl)phenyl)urea (4b)

White solid (16.9 mg, 62%); mp: 174.2-174.5 °C; Isolation by column chromatography, $R_f = 0.25$, (petroleum ether/ethyl acetate: 10/1); ¹H NMR (400 MHz, CDCl₃) δ 8.05 (t, J = 6.5 Hz, 1H), 7.35 (d, J = 6.9 Hz, 1H), 7.26 (dd, J = 12.8, 5.6 Hz, 1H), 6.92 (dd, J = 16.0, 8.2 Hz, 2H), 4.55 (s, 1H), 2.40 (d, J = 6.5

Hz, 2H), 1.97 (dt, J = 13.3, 6.6 Hz, 1H), 1.42 (s, 9H), 1.10 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 159.9, 153.9, 140.1, 131.7, 128.7, 121.6, 118.4, 112.3, 95.9, 50.8, 29.3, 28.7, 28.1, 22.0; IR: v_{max} (KBr) = 3901, 3851, 3802, 3679, 3617, 3328, 3085, 2962, 2920, 2862, 1742, 1694, 1655, 1559, 1517, 1450, 1394, 1363, 1297, 1266, 1209, 1116, 948, 756, 653 cm⁻¹; HRMS (ESI) m/z: calcd for C₁₇H₂₄N₂O [M-H]⁻ 271.1816, found 271.1815.

1-(tert-Butyl)-3-(2-(6-chlorohex-1-yn-1-yl)phenyl)urea (4c)

White solid (12.9 mg, 42%); mp: 201.4-201.6 °C; Isolation by column chromatography, $R_f = 0.25$, (petroleum ether/ethyl acetate: 10/1); ¹H NMR (400 MHz, CDCl₃) δ 8.03 (d, J = 8.3 Hz, 1H), 7.32 (dd, J = 7.7, 1.4 Hz, 1H), 7.25 – 7.20 (m, 1H), 6.91 (td, J = 7.6, 0.9 Hz, 1H), 6.80 (s, 1H), 4.64 (s, 1H),

3.62 (t, J = 6.4 Hz, 2H), 2.54 (t, J = 6.9 Hz, 2H), 2.04 – 1.92 (m, 2H), 1.80 (p, J = 7.0 Hz, 2H), 1.40 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 153.9, 140.1, 131.9, 128.9, 121.7, 118.6, 112.0, 95.9, 50.9, 44.6, 31.6, 29.3, 25.8, 19.0; IR: v_{max} (KBr) = 3899, 3849, 3802, 3679, 3616, 3501, 3332, 2961, 2859, 1654, 1554, 1518, 1447, 1396, 1360, 1298, 1263, 1204, 1103, 1024, 946, 803, 753, 646 cm⁻¹; HRMS (ESI) m/z: calcd for C₁₇H₂₃ClN₂O [M+H]⁺ 307.1572, found 307.1565.

1-(tert-Butyl)-3-(2-(cyclopentylethynyl)phenyl)urea (4d)

White solid (12.8 mg, 45%); mp: 184.5-184.6 °C; Isolation by column chromatography, $R_f = 0.25$, (petroleum ether/ethyl acetate: 10/1); ¹H NMR (400 MHz, CDCl₃) δ 8.00 (d, J = 8.3 Hz, 1H), 7.31 (dd, J = 7.7, 1.3 Hz, 1H), 7.25 – 7.19 (m, 1H), 6.90 (td, J = 7.6, 0.9 Hz, 1H), 6.81 (s, 1H), 4.51 (s, 1H), 2.90 (q, J = 7.4 Hz, 1H), 2.22 – 1.93 (m, 2H), 1.85 – 1.67 (m, 4H), 1.63 (s, 2H), 1.40 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 153.9, 140.0, 131.7, 128.7, 121.7, 118.5, 112.4, 101.4, 75.9, 50.8, 34.0, 30.9, 29.3, 24.9; IR: v_{max} (KBr) = 3948, 3857, 3811, 3747, 3677, 3621, 3494, 3449, 3312, 3220, 3159, 3083, 2962, 2924, 2859, 2668, 2216, 1835, 1741, 1654, 1557, 1517, 1451, 1398, 1360, 1299, 1266, 1207, 1114, 1034, 946, 756, 645, 520, 418 cm⁻¹. HRMS (ESI) m/z: calcd for C₁₈H₂₄N₂O [M+H]⁺ 285.1961, found 285.1954.

1-(tert-Butyl)-3-(2-(oct-1-yn-1-yl)phenyl)urea (4e)

White solid (19.8 mg, 66%); mp: 142.5-142.8 °C; Isolation by column chromatography, $R_f = 0.25$, (petroleum ether/ethyl acetate: 10/1); ¹H NMR (400 MHz, CDCl₃) δ 8.04 (d, J = 8.4 Hz, 1H), 7.32 (d, J = 7.6 Hz, 1H), 7.22 (t, J = 7.4 Hz, 1H), 6.89 (dd, J = 13.6, 5.7 Hz, 2H), 4.59 (s, 1H), 2.47 (t, J

= 7.1 Hz, 2H), 1.63 (td, J = 15.9, 14.9, 8.6 Hz, 3H), 1.52 – 1.43 (m, 1H), 1.40 (s, 9H), 1.32 (dt, J = 7.2, 3.7 Hz, 4H), 0.91 (t, J = 6.8 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 153.9, 140.1, 131.8, 128.7, 121.6, 118.4, 112.2, 97.1, 76.5, 50.8, 31.3, 29.3, 28.6, 28.6, 22.5, 19.6, 14.0; IR: v_{max} (KBr) = 3745, 3330, 3085, 2959, 2928, 2860, 2225, 2133, 1653, 1560, 1518, 1448, 1392, 1362, 1297, 1265, 1207, 1111, 1031, 946, 804, 753, 658 cm⁻¹. HRMS (ESI) m/z: calcd for C₁₉H₂₈N₂O [M+H]⁺ 301.2274, found 301.2269.

1-(tert-Butyl)-3-(2-(hex-1-yn-1-yl)phenyl)urea (4f)

White solid (14.1 mg, 52%); mp: 146.3-146.8 °C; Isolation by column chromatography, $R_f = 0.25$, (petroleum ether/ethyl acetate: 10/1);¹H NMR (400 MHz, CDCl₃) δ 8.03 (d, J = 8.3 Hz, 1H), 7.32 (d, J = 7.6 Hz, 1H), 7.23 (t, J = 7.9 Hz, 1H), 6.95 – 6.82 (m, 2H), 4.59 (s, 1H), 2.48 (t, J = 7.0 Hz, 2H), 1.62 (m, J = 100

7.0 Hz, 2H), 1.55 – 1.45 (m, 2H), 1.40 (s, 9H), 0.96 (t, J = 7.3 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 153.9, 140.1, 131.8, 128.7, 121.6, 118.4, 112.2, 97.0, 76.5, 50.8, 30.7, 29.3, 22.0, 19.3, 13.6; IR: v_{max} (KBr) = 3327, 3089, 2961, 2929, 2865, 1649, 1563, 1513, 1445, 1389, 1362, 1297, 1265, 1209, 1114, 946, 754, 664 cm⁻¹; HRMS (ESI) m/z: calcd for C₁₇H₂₄N₂O [M+H]⁺ 273.1961, found 273.1955.

1-(tert-Butyl)-3-(2-(5-methylhex-1-yn-1-yl)phenyl)urea (4g)

White solid (17.2 mg, 60%); mp: 133.1-133.4 °C; Isolation by column chromatography, $R_f = 0.25$, (petroleum ether/ethyl acetate: 10/1); ¹H NMR (400 MHz, CDCl₃) δ 8.03 (d, J = 8.3 Hz, 1H), 7.31 (d, J = 7.6 Hz, 1H), 7.23 (t, J = 7.9 Hz, 1H), 6.88 (dd, J = 18.1, 10.6 Hz, 2H), 4.54 (s, 1H), 2.49 (t, J = 7.2 Hz, 2H),

1.77 (dt, J = 13.4, 6.7 Hz, 1H), 1.53 (q, J = 7.1 Hz, 2H), 1.40 (s, 9H), 0.96 (d, J = 6.6 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 153.9, 140.1, 131.7, 128.7, 121.6, 118.4, 112.2, 97.1, 76.4, 50.8, 37.5, 29.3, 27.3, 22.1, 17.6; IR: v_{max} (KBr) = 3425, 3330, 3182, 3132, 3097, 2959, 2924, 2852, 2349, 1650, 1563, 1514, 1447, 1391, 1362, 1265, 1211, 1072, 950, 798, 753, 666 cm⁻¹; HRMS (ESI) m/z: calcd for C₁₈H₂₆N₂O [M+H]⁺ 287.2118, found 287.2112.

1-(tert-Butyl)-3-(2-(non-1-yn-1-yl)phenyl)urea (4h)

White solid (18.2 mg, 58%); mp: 100.7-100.9 °C; Isolation by column chromatography, $R_f = 0.25$, (petroleum ether/ethyl acetate: 10/1); ¹H NMR (400 MHz, CDCl₃) δ 8.04 (d, J = 8.3 Hz, 1H), 7.32 (d, J = 7.5 Hz, 1H), 7.23 (t, J = 7.8 Hz, 1H), 6.89 (dd, J = 14.0, 5.8 Hz, 2H), 4.59 (s, 1H),

2.47 (t, J = 7.0 Hz, 2H), 1.64 (dd, J = 17.1, 9.7 Hz, 4H), 1.44 (d, J = 7.7 Hz, 2H), 1.40 (s, 9H), 1.30 (s, 4H), 0.89 (t, J = 6.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 153.9, 140.1, 131.8, 128.7, 121.6, 118.4, 112.2, 97.1, 76.5, 50.8, 31.7, 29.3, 28.9, 28.8, 28.7, 22.6, 19.6, 14.0; IR: v_{max} (KBr) = 3426, 3338, 2960, 2927, 1655, 1556, 1516, 1446, 1391, 1362, 1299, 1263, 1205, 1113, 940, 797, 752, 667 cm⁻¹; HRMS (ESI) m/z: calcd for C₂₀H₃₀N₂O [M+H]⁺ 315.2431, found 315.2425.

1-((3s,5s,7s)-Adamantan-1-yl)-3-(2-(4-methylpent-1-yn-1-yl)phenyl)urea (4i)

White solid (21.7 mg, 62%), M.p. 88-90 °C; Isolation by column chromatography, $R_f = 0.20$, (petroleum ether/ethyl acetate: 10/1); ¹H NMR (400 MHz, CDCl₃) δ 8.01 (d, J = 8.3 Hz, 1H), 7.29 (dd, J = 7.7, 1.2 Hz, 1H), 7.24 – 7.17 (m, 1H), 6.93 – 6.81 (m, 2H), 4.51 (s, 1H), 2.10 (s, 3H), 2.04 (s, 6H), 1.69 (s, 6H), 1.65 (s, 2H), 1.50 (ddd, J = 13.3, 8.3, 5.1 Hz, 1H), 0.98 – 0.78 (m, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 153.6, 140.4, 132.0, 128.7, 121.6, 118.5, 112.1, 100.0, 71.5, 51.4, 42.2,

36.3, 29.5, 9.0, 0.4. IR: v_{max} (KBr) = 3899, 3847, 3617, 3467, 3342, 3232, 3176, 3088, 2962, 2922, 2853, 1917, 1833, 1795, 1740, 1650, 1558, 1515, 1447, 1393, 1362, 1290, 1212, 1100, 1037, 947, 755, 691, 639 cm⁻¹; HRMS (ESI) m/z: calcd for C₂₃H₃₀N₂O [M+H]⁺ 351.2431, found 351.2424.

1-((3s,5s,7s)-Adamantan-1-yl)-3-(2-(cyclopropylethynyl)phenyl)urea (4j)

White solid (25.1 mg, 75%); mp: 79.1-79.5 °C; Isolation by column chromatography, $R_f = 0.22$, (petroleum ether/ethyl acetate: 10/1); ¹H NMR (400 MHz, CDCl₃) δ 8.01 (d, J = 8.3 Hz, 1H), 7.29 (dd, J = 7.7, 1.2 Hz, 1H), 7.21 (t, J = 7.9 Hz, 1H), 6.87 (dd, J = 17.0, 9.4 Hz, 2H), 4.49 (s, 1H), 2.10 (s, 3H), 2.04 (s, 6H), 1.69 (s, 6H), 1.50 (ddd, J = 13.2, 8.3, 5.1 Hz, 1H), 0.92 (dt, J = 7.9, 3.0

Hz, 2H), 0.86 - 0.80 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 153.65, 140.47, 132.05, 128.77, 121.66, 118.57, 112.13, 100.10, 71.54, 51.44, 42.28, 36.34, 29.53, 9.00, 0.40; IR: v_{max} (KBr) = 3745, 3677, 3618,

3324, 2906, 2848, 2215, 1836, 1743, 1696, 1641, 1548, 1512, 1454, 1353, 1293, 1238, 1036, 948, 812, 750, 628, 521 cm⁻¹; HRMS (ESI) m/z: calcd for C₂₂H₂₆N₂O [M+H]⁺ 335.2118, found 335.2108.

1-(tert-Butyl)-3-(5-fluoro-2-(phenylethynyl)phenyl)urea (4k)

White solid (16.7 mg, 54%); mp: 138.8-138.9 °C; Isolation by column chromatography, $R_f = 0.25$, (petroleum ether/ethyl acetate: 10/1); ¹H NMR (400 MHz, CDCl₃) δ 7.68 – 7.57 (m, 3H), 7.39 – 7.30 (m, 4H), 7.17 (dd, J = 8.8, 2.9 Hz, 1H), 7.06 (dd, J = 8.8, 5.2 Hz, 1H), 6.95 (td, J = 8.8, 8.4, 3.0 Hz, 1H), 1.35 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 158.9 (d, J = 242 Hz), 137.7 (d, J = 2.9

Hz), 133.6, 131.7, 128.7, 128.3, 125.0 (d, J = 8.7 Hz), 122.9, 119.7 (d, J = 9.8 Hz), 119.2 (d, J = 23.7 Hz), 116.5, 116.4 (d, J = 22.7 Hz), 95.9, 85.4, 57.4, 31.4. IR: v_{max} (KBr) = 3896, 3849, 3809, 3746, 3677, 3649, 3617, 3423, 3381, 3309, 3218, 3050, 2965, 2923, 2853, 2588, 2551, 2252, 2123, 1917, 1869, 1834, 1740, 1697, 1652, 1511, 1461, 1402, 1365, 1252, 1186, 1133, 1081, 1026, 954, 867, 813, 754, 691, 627, 591, 516 cm⁻¹. HRMS (ESI) m/z: calcd for C₁₉H₁₉FN₂O [M-H]⁻ 309.1409, found 309.1410.

1-(4-Bromo-2-(phenylethynyl)phenyl)-3-(tert-butyl)urea (4l)

Yellow liquid (20.7 mg, 56%); Isolation by column chromatography, R_f = 0.25, (petroleum ether/ethyl acetate: 10/1); ¹H NMR (400 MHz, CDCl₃) δ 7.62 – 7.58 (m, 4H), 7.38 – 7.30 (m, 5H), 6.97 (d, *J* = 8.6 Hz, 1H), 1.35 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 140.8, 135.4, 132.9, 132.1, 131.7, 128.7, 128.3, 125.3, 122.9, 120.4, 116.5, 96.2, 85.1, 57.6, 31.4. IR: v_{max} (KBr) = 3953, 3897,

3847, 3708, 3447, 3388, 3292, 3230, 3058, 2969, 2926, 2854, 2360, 2208, 2123, 1870, 1833, 1797, 1771, 1740, 1698, 1647, 1553, 1499, 1366, 1259, 1235, 1185, 1098, 1024, 881, 848, 810, 752, 690, 648, 602 cm⁻¹. HRMS (ESI) m/z: calcd for $C_{19}H_{19}BrN_2O$ [M-H]⁻ 369.0608, found 369.0609.

1-(tert-Butyl)-3-(2-((4-fluorophenyl)ethynyl)phenyl)urea (4m)

White solid (19.8 mg, 64%); mp: 164.5-164.8 °C; Isolation by column chromatography, $R_f = 0.25$, (petroleum ether/ethyl acetate: 10/1); ¹H NMR (400 MHz, CDCl₃) δ 8.09 (d, J = 8.4 Hz, 1H), 7.53 (dd, J = 8.3, 5.5 Hz, 2H), 7.46 (d, J = 7.6 Hz, 1H), 7.31 (t, J = 7.9 Hz, 1H), 7.07 (t, J = 8.5 Hz, 2H), 6.98 (dd, J = 16.2, 8.6 Hz, 2H), 4.89 (s, 1H), 1.40 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ

162.7 (d, J = 249 Hz), 154.0, 140.3, 133.5 (d, J = 8.4 Hz), 132.2, 129.7, 122.0, 119.1, 118.8 (d, J = 3.4 Hz), 115.7 (d, J = 21.9 Hz), 111.5, 94.4, 84.8, 50.9, 29.3. IR: v_{max} (KBr) = 3955, 3861, 3677, 3619, 3312, 3087, 2970, 2921, 2854, 1835, 1700, 1645, 1560, 1510, 1450, 1362, 1289, 1218, 1155, 1101, 948, 834, 753, 647, 515, 549, 416 cm⁻¹. HRMS (ESI) m/z: calcd for C₁₉H₁₉FN₂O [M-H]⁻ 309.1409, found 309.1408.

1-(tert-Butyl)-3-(2-((4-isopropylphenyl)ethynyl)phenyl)urea (4n)

White solid (22.7 mg, 68%); mp: 178.3-178.5 °C; Isolation by column chromatography, $R_f = 0.25$, (petroleum ether/ethyl acetate: 10/1); ¹H NMR (400 MHz, CDCl₃) δ 8.10 (d, J = 8.4 Hz, 1H), 7.46 (dd, J = 11.8, 8.5 Hz, 3H),

7.30 (d, J = 8.5 Hz, 1H), 7.27 - 7.21 (m, 2H), 6.96 (t, J = 7.5 Hz, 1H), 6.88 (s, 1H), 4.63 (s, 1H), 2.93(p, J = 7.0 Hz, 1H), 1.40 (s, 9H), 1.27 (s, 3H), 1.26 (s, 3H).¹³C NMR (100 MHz, CDCl₃) δ 157.8, 153.9, 150.0, 140.3, 132.0, 131.6, 129.5, 126.7, 121.8, 119.9, 118.8, 111.7, 95.8, 84.3, 51.0, 34.1, 29.4, 23.8. IR: v_{max}(KBr) = 3900, 3851, 3802, 3679, 3617, 3328, 3085, 2962, 2920, 2861, 1741, 1694, 1654, 1559, 1517, 1450, 1393, 1363, 1297, 1266, 1208, 1115, 948, 756, 653 cm⁻¹. HRMS (ESI) m/z: calcd for $C_{22}H_{26}N_2O [M+H]^+ 335.2118$, found 335.2109.

1-(tert-Butyl)-3-(2-(m-tolylethynyl)phenyl)urea (40)

White solid (17.8 mg, 58%); mp: 156.2-156.3 °C; Isolation by column chromatography, $R_f = 0.25$, (petroleum ether/ethyl acetate: 10/1); ¹H NMR (400 MHz, CDCl₃) δ 8.09 (d, J = 8.4 Hz, 1H), 7.47 – 7.41 (m, 1H), 7.38 – 7.32 (m, 2H), 7.32 – 7.27 (m, 1H), 7.27 – 7.24 (m, 1H), 7.19 (d, J = 7.6 Hz, 1H), 6.96 (t, J = 7.5 Hz, 1H), 6.89 (s, 1H), 4.68 (s, 1H), 2.37 (s, 3H), 1.40 (s, 9H). ¹³C NMR

 $(100 \text{ MHz}, \text{CDCl}_3) \delta$ 153.9, 140.3, 138.3, 132.2, 132.1, 129.6, 129.6, 128.7, 128.4, 122.5, 121.9, 118.9, 111.6, 95.8, 84.7, 50.9, 29.3, 21.2. IR: v_{max}(KBr) = 3899, 3847, 3807, 3744, 3675, 3617, 3467, 3342, 3232, 3176, 3088, 2962, 2922, 2853, 1917, 1833, 1795, 1740, 1650, 1558, 1515, 1447, 1393, 1362, 1290, 1212, 1100, 1037, 947, 755, 691, 639, 455 cm⁻¹. HRMS (ESI) m/z: calcd for C₂₀H₂₂N₂O [M+H]⁺ 307.1805, found 307.1798.

1-(tert-Butyl)-3-phenylurea (4p)^[3]

White solid (12.5 mg, 65%); mp: 168.1-169.2 °C; Isolation by column chromatography, $R_f = 0.20$, (petroleum ether/ethyl acetate: 10/1); ¹H NMR (400 MUZ M20D) § 7.21 (dd I = 8.4.1.6 Hz 2U) 7.24 (t I = 7.6 Hz 2U) 6.05 (t MHz, MeOD) δ 7.31 (dd, J = 8.4, 1.6 Hz, 2H), 7.24 (t, J = 7.6 Hz, 2H), 6.95 (t, J = 7.6 Hz, 1H), 1.38 (s, 9H); ¹³C NMR (101 MHz, MeOD) δ 156.0, 139.7,

128.4, 121.7, 118.5, 49.7, 28.2.

1-(tert-butyl)-3-(p-tolyl)urea (4q)^[4]

White solid (13.8 mg, 67%); mp: 189-190 °C; Isolation by column N r_{H} chromatography, $R_f = 0.20$, (petroleum ether/ethyl acetate: 10/1); ¹H NMR (400 MHz, MeOD) δ 7.18 (d, J = 8.0 Hz, 2H), 7.06 (d, J = 8.0 Hz, 2H), 3.27 (400 MHz, MeOD) δ 7.18 (d, J = 8.0 Hz, 2H), 7.06 (d, J = 8.0 Hz, 2H), 3.27 (s, 3H), 1.37 (s, 9H); ¹³C NMR (101 MHz, MeOD) δ 156.2, 137.0, 131.3,

128.8, 118.8, 49.6, 28.3, 19.4.

1-(4-Bromophenyl)-3-(tert-butyl)urea (4r)^[5]

White solid (18.5 mg, 68%); mp: 198.9-200.2 °C; Isolation by column chromatography, $R_f = 0.20$, (petroleum ether/ethyl acetate: 10/1); ¹H NMR (400 MHz, MeOD) δ 7.36 (d, J = 8.8 Hz, 2H), 7.26 (d, J = 8.8 Hz, 2H), 1.37 (s, 9H); ¹³C NMR (101 MHz, MeOD) δ 155.6, 139.2, 131.3, 120.1, 120.0,

113.6, 49.8, 28.2.

1-(4-Bromophenyl)-3-(tert-butyl)urea (4s)^[6]

White solid (9.7 mg, 40%); mp: 171-172 °C; Isolation by column chromatography, $R_f = 0.15$, (petroleum ether/ethyl acetate: 10/1); ¹H NMR (400 MHz, MeOD) δ 8.96 (s, 1H), 8.72 (dd, J = 4.0, 1.6 Hz, 1H), 8.55 (dd, J = 7.6, 1.2 Hz, 1H), 8.11 (dd, J = 8.0, 2.0 Hz, 1H), 7.48 (t, J = 8.0 Hz, 1H), 7.43-7.31

(m, 2H), 5.06 (s, 1H), 1.42 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 154.4, 147.5, 138.2, 136.5, 136.1, 128.1, 127.6, 121.3, 119.2, 114.8, 50.8, 29.4.

(E)-3-(tert-Butyl)-4-heptylidene-3,4-dihydroquinazolin-2(1H)-one (5a)

White solid (12.2 mg, 50%); mp: 74.2-74.3 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.52 (dd, J = 20.6, 7.8 Hz, 2H), 7.16 (dt, J = 21.2, 7.2 Hz, 2H), 6.31 (s, 1H), 5.58 (s, 1H), 2.94 (t, J = 7.6 Hz, 2H), 1.75 – 1.60 (m, 4H), 1.52 (s, 9H), 1.39 (dd, J = 12.7, 6.5 Hz, 2H), 1.36 – 1.29 (m, 2H), 0.89 (t, J = 6.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 190.1, 189.2, 150.6, 141.8, 135.4, 128.9, 122.1, 121.3, 120.2, 111.1, 103.7, 52.0, 31.6, 29.0, 28.9, 28.8, 28.1, 22.5, 14.0; IR: v_{max} (KBr) = 3298, 3055, 2957, 2924, 2854, 1668, 1541, 1453, 1363, 1319, 1206, 1015, 787, 741, 655 cm⁻¹; HRMS (ESI) m/z:

calcd for C₁₉H₂₈N₂O [M+H]⁺ 301.2274, found 301.2267.

3-(4-Bromophenyl)-1-(tert-Butyl)-1,3a-dihydropyrrolo[2,3-b]indol-2-amine (6a)

Brown solid (11.4 mg, 30%); mp: 150.1-150.2 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.51 (d, J = 6.9 Hz, 2H), 7.36 (dt, J = 14.3, 6.9 Hz, 2H), 7.30 (dd, J = 11.7, 2.0 Hz, 3H), 6.55 (d, J = 8.6 Hz, 1H), 3.56 (s, 2H), 1.68 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 171.3, 171.2, 143.4, 136.4, 133.5, 133.4, 130.4, 129.3, 128.6, 118.1, 116.0, 110.0, 58.1, 28.9; IR: ν_{max} (KBr) = 3474, 3357, 3183, 3138, 3092, 3060, 3023, 2965, 2924, 2923, 2920, 2851, 2800, 2643, 1868, 1835, 1759, 1741, 1698, 1649, 1593,

1482, 1461, 1460, 1423, 1402, 1396, 1395, 1348, 1261, 1086, 1085, 971, 880, 740, 699, 669, 612 cm⁻¹; HRMS (ESI) m/z: calcd for $C_{20}H_{20}BrN_3$ [M+H]⁺ 382.0914, found 382.0907.

G. References

[1] Z. Zhang, F. Xiao, B. Huang, J. Hu, B. Fu and Z. Zhang, Org. Lett., 2016, 18, 908.

[2] Q. Gao, P. Zhou, F. Liu, W.-J. Hao, C. Yao, B. Jiang, S.-J. Tu, Chem. Commun., 2015, 51, 9519.

[3] B. K. Malviya, P. K. Jaiswal, V. P. Verma, S. S. Badsara and S. Sharma, Org. Lett., 2020, 22, 2323.

[4] C.-L. Li, J.-B. Peng, X. Qi, J. Ying and X.-F. Wu, New J. Chem., 2018, 42, 12472.

[5] T. Kalita, D. Dev, S. Mondal, R. S. Giri and B. Mandal, Asian J. Org. Chem., 2021, 10, 1523.

[6] G.Pagani, M. L. Carmellino, G. Caccialanza and P. Borgna, *Farmaco, Edizione Scientifica*, 1983, **38**, 128.

H. X-ray Crystallographic Analysis

H ₂ N, t-Bu	
30	CCDC: 2295109
Empirical formula	$C_{26}H_{28}N_4$
Formula weight	396.52
Temperature	170.0 K
Wavelength	0.71073
Crystal system, space group	monoclinic, C2/c
Unit cell dimensions	a = 15.2301(4) \mathring{A} alpha = 90 deg. b = 10.2357(3) \mathring{A} beta = 95.8280(10) deg. c = 28.4109(8) \mathring{A} gamma = 90 deg.
Volume	4406.1(2) Å ³
Z, Calculated density	8, 1.196 g/cm ³
Absorption coefficient	0.072 mm ⁻¹
F(000)	1696.0
Crystal size	$0.12\times0.07\times0.05~mm^3$
Theta range for data collection	4.802 to 52.804 deg.
Index ranges	$\text{-18} \le h \le 18, \text{-12} \le k \le 12, \text{-35} \le l \le 35$
Reflections collected / unique	24779 / 4510 [$R_{int} = 0.0420, R_{sigma} = 0.0298$]
Completeness to theta $= 26.402$	0.995
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	4510/0/285
Goodness-of-fit on F ²	0.959
Final R indices [I>2sigma(I)]	$R_1 = 0.0410, wR_2 = 0.0941$
R indices (all data)	$R_1 = 0.0576, wR_2 = 0.1071$

Empirical formula	C ₁₉ H ₂₀ N ₂ O
Formula weight	292.37
Temperature	170.0 K
Wavelength	0.71073
Crystal system, space group	monoclinic, P2 ₁ /c
Unit cell dimensions	a = 8.637(3) \mathring{A} alpha = 90 deg. b = 13.293(4) \mathring{A} beta = 96.679(9) deg. c = 29.631(8) \mathring{A} gamma = 90 deg.
Volume	$3378.8(17) Å^3$
Z, Calculated density	8, 1.149 g/cm ³
Absorption coefficient	0.072 mm ⁻¹
F(000)	1248.0
Crystal size	$0.11\times0.04\times0.02~mm^3$
Theta range for data collection	4.13 to 52.862 deg.
Index ranges	$-8 \le h \le 10, -13 \le k \le 16, -37 \le l \le 37$
Reflections collected / unique	23319 / 6847 [$R_{int} = 0.1175$, $R_{sigma} = 0.1246$]
Completeness to theta $= 0.985$	26.431
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	6847/0/403
Goodness-of-fit on F ²	1.018
Final R indices [I>2sigma(I)]	$R_1 = 0.0726, wR_2 = 0.1353$
R indices (all data)	$R_1 = 0.1894, WR_2 = 0.1840$

I. Copies of ¹H, ¹³C, and ¹⁹F NMR Spectra

(E)-N,1-di-tert-Butyl-3-(4-chlorophenyl)pyrrolo[2,3-b]indol-2(1H)-imine (3b)

¹H NMR (400 MHz, CDCl₃) of compound **3b**

¹³C NMR (100 Mz, CDCl₃) of compound **3b**

150.983 145.728 134.722 134.722 132.896 132.843 132.843 132.856 123.286 125.286 125.286 125.286 125.286 125.286 125.286 125.286 125.286 125.286 125.286 125.286 125.286 125.286 125.286 125.286 125.286 125.286 125.286 125.28	77.318 77.000 76.683	58.203 56.564	32.469 30.119
	\checkmark	52	Ś Ź

(E) - 3 - (4 - Bromophenyl) - N, 1 - di - tert - butyl pyrrolo [2, 3 - b] indol - 2(1H) - imine (3c)

¹H NMR (400 MHz, CDCl₃) of compound **3c**

-10 150 140 110 100 f1 (ppm)

(E)-N,1-di-tert-Butyl-3-(4-(tert-butyl)phenyl)pyrrolo[2,3-b]indol-2(1H)-imine (3d)

¹H NMR (400 MHz, CDCl₃) of compound **3d**

¹³C NMR (100 Mz, CDCl₃) of compound **3d**

151.962 151.463 144.838 131.949 131.184 131.184 123.236 125.148 125.148 125.158 121.558 118.084	77.318 77.000 76.683	58.028 56.563	34.779 32.292 31.301 30.143
VI SUM	\checkmark	52	556

(E)-N,1-di-tert-Butyl-3-(4-isopropylphenyl)pyrrolo[2,3-b]indol-2(1H)-imine (3e)

¹H NMR (400 MHz, CDCl₃) of compound **3e**

¹³C NMR (100 Mz, CDCl₃) of compound 3e

171.401	163.444	151.531 149.575 144.909 131.911 131.911 131.605 131.605 126.393 126.393 126.312 123.382 123.382 123.306 121.496 121.496 121.496	77.318 77.000 76.683	57.961 56.501	33.921	23.904
			\checkmark	57		

(E)-N,1-di-tert-Butyl-3-(2-methoxyphenyl)pyrrolo[2,3-b]indol-2(1H)-imine (3f)

¹H NMR (400 MHz, CDCl₃) of compound **3f**

¹³C NMR (100 Mz, CDCl₃) of compound **3f**

(E)-N,1-Dicyclopentyl-3-phenylpyrrolo[2,3-b]indol-2(1H)-imine (3g)

^1H NMR (400 MHz, CDCl_3) of compound 3g

12 2 8 1 2 3 8 9 9 8	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 8 2 8 4 2 0 6 2 2 8 4 8 7 2 8 4 2 9 2 2 8 4 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
7.126 6.69 6.66 6.66 6.66 6.66 6.66 6.66 6.	27.44 27	

^{13}C NMR (100 Mz, CDCl_3) of compound 3g

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10

(E)-N,1-Dicyclohexyl-3-phenylpyrrolo[2,3-b]indol-2(1H)-imine (3h)

 $^1\mathrm{H}$ NMR (400 MHz, CDCl_3) of compound $\boldsymbol{3h}$

-10

(E)-N,1-Dicyclopentyl-3-isopentylpyrrolo[2,3-b]indol-2(1H)-imine (3i)

¹H NMR (400 MHz, CDCl₃) of compound **3i**

(E)-N,1-di-tert-Butyl-3-hexylpyrrolo[2,3-b]indol-2(1H)-imine (3j)

¹H NMR (400 MHz, CDCl₃) of compound **3**j

(E)-N,1-di-tert-Butyl-3-cyclohexylpyrrolo[2,3-b]indol-2(1H)-imine (3k)

¹H NMR (400 MHz, CDCl₃) of compound **3**k

¹³C NMR (100 Mz, CDCl₃) of compound **3**k

(E)-N,1-di-tert-Butyl-3-butylpyrrolo[2,3-b]indol-2(1H)-imine (3l)

¹H NMR (400 MHz, CDCl₃) of compound **3**I

-10 150 140 110 100 f1 (ppm)

(E)-N,1-di-tert-Butyl-3-isopentylpyrrolo[2,3-b]indol-2(1H)-imine (3m)

¹H NMR (400 MHz, CDCl₃) of compound **3m**

110 100 f1 (ppm) -10 150 140

(E)-N,1-di-tert-Butyl-3-heptylpyrrolo[2,3-b]indol-2(1H)-imine (3n)

¹H NMR (400 MHz, CDCl₃) of compound **3n**

-10 110 100 f1 (ppm)

(E)-N,1-di-tert-Butyl-3-(phenylethynyl)pyrrolo[2,3-b]indol-2(1H)-imine (30)

¹H NMR (400 MHz, CDCl₃) of compound **30**

-10 150 140 110 100 f1 (ppm)

1-(tert-Butyl)-3-(2-(phenylethynyl)phenyl)urea (4a)

¹H NMR (400 MHz, CDCl₃) of compound 4a

-10 110 100 f1 (ppm)

1-(*tert*-Butyl)-3-(2-(4-methylpent-1-yn-1-yl)phenyl)urea (4b)

¹H NMR (400 MHz, CDCl₃) of compound 4b

¹³C NMR (100 Mz, CDCl₃) of compound **4b**

1-(tert-Butyl)-3-(2-(6-chlorohex-1-yn-1-yl)phenyl)urea (4c)

¹H NMR (400 MHz, CDCl₃) of compound 4c

8.041 8.021	7.333 7.314 7.314 7.310 7.260 7.239 7.221 7.221 7.221 6.926 6.924 6.926 6.928 6.928 6.888 6.888	6.802 4.637 3.641 3.625 3.609	2.561 2.544 2.527 2.011 1.978 1.978 1.978	1.941 1.838 1.820 1.801 1.783 1.766 1.766
\sim		\sim		

^{13}C NMR (100 Mz, CDCl₃) of compound 4c

1-(tert-Butyl)-3-(2-(cyclopentylethynyl)phenyl)urea (4d)

 ^1H NMR (400 MHz, CDCl_3) of compound 4d

8.006 7.304 7.324 7.324 7.324 7.324 7.324 7.324 7.2243 7.2243 7.2244 7.2244 7.2204 6.881 6.919 6.9219 6.827 6.9212 6.827 6.9212 6.9

¹³C NMR (100 Mz, CDCl₃) of compound 4d

1-(tert-Butyl)-3-(2-(oct-1-yn-1-yl)phenyl)urea (4e)

 ^1H NMR (400 MHz, CDCl₃) of compound 4e

1-(tert-Butyl)-3-(2-(hex-1-yn-1-yl)phenyl)urea (4f)

 ^1H NMR (400 MHz, CDCl₃) of compound 4f

1-(tert-Butyl)-3-(2-(5-methylhex-1-yn-1-yl)phenyl)urea (4g)

 ^1H NMR (400 MHz, CDCl_3) of compound 4g

 ^{13}C NMR (100 Mz, CDCl_3) of compound 4g

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

1-(tert-Butyl)-3-(2-(non-1-yn-1-yl)phenyl)urea (4h)

^1H NMR (400 MHz, CDCl_3) of compound 4h

$^{13}\mathrm{C}$ NMR (100 Mz, CDCl₃) of compound 4h

1-((1R,38,5r,7r)-Adamantan-2-yl)-3-(2-(4-methylpent-1-yn-1-yl)phenyl)urea (4i)

¹H NMR (400 MHz, CDCl₃) of compound 4i

1H NMR (CDCJ, 400 MHz)

¹³C NMR (100 Mz, CDCl₃) of compound 4i

1-((1R,38,5r,7r)-Adamantan-2-yl)-3-(2-(cyclopropylethynyl)phenyl)urea (4j)

¹H NMR (400 MHz, CDCl₃) of compound 4j

1-(tert-Butyl)-3-(5-fluoro-2-(phenylethynyl)phenyl)urea (4k)

 ^1H NMR (400 MHz, CDCl_3) of compound 4k

¹⁹F NMR (376 MHz, CDCl₃) of compound 4k

1-(4-Bromo-2-(phenylethynyl)phenyl)-3-(tert-Butyl)urea (41)

¹H NMR (400 MHz, CDCl₃) of compound **4**l

¹³C NMR (100 Mz, CDCl₃) of compound **4**

1-(tert-Butyl)-3-(2-((4-fluorophenyl)ethynyl)phenyl)urea (4m)

¹H NMR (400 MHz, CDCl₃) of compound 4m

1-(tert-Butyl)-3-(2-((4-isopropylphenyl)ethynyl)phenyl)urea (4n)

 ^1H NMR (400 MHz, CDCl₃) of compound 4n

f1 (ppm) -10 1-(*tert*-Butyl)-3-(2-(*m*-tolylethynyl)phenyl)urea (40)

¹H NMR (400 MHz, CDCl₃) of compound 40

¹³C NMR (100 Mz, CDCl₃) of compound **40**

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

1-(*tert*-Butyl)-3-phenylurea (4p)

¹H NMR (400 MHz, MeOD) of compound **4p**

1-(tert-Butyl)-3-(p-tolyl)urea (4q)

¹H NMR (400 MHz, MeOD) of compound **4q**

1-(4-Bromophenyl)-3-(tert-butyl)urea (4r)

¹H NMR (400 MHz, MeOD) of compound 4r

1-(4-Bromophenyl)-3-(tert-butyl)urea (4s)

 ^1H NMR (400 MHz, CDCl_3) of compound 4s

(E)-4-Heptylidene-3,4-dihydroquinazolin-2(1H)-one (5a)

¹H NMR (400 MHz, CDCl₃) of compound **5a**

¹³C NMR (100 Mz, CDCl₃) of compound 5a

3-(4-Bromophenyl)-1-(*tert*-butyl)-1,3a-dihydropyrrolo[2,3-b]indol-2-amine (6a)

^1H NMR (400 MHz, CDCl₃) of compound $\mathbf{6a}$

¹³C NMR (100 Mz, CDCl₃) of compound **6a**

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)