Supporting Information

Transition-Metal-Free four-component reaction of nitriles and disulfides/diselenides

Hui-Hui Wang, Yang-Yun Zhu, Chuan-Li Chen, Xiao-Bo Huang, Miao-Chang Liu, Yun-Bing Zhou,* and Hua-Yue Wu*College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou,325035, P. R. of China
Table of Contents

1. General Information S2
2. Optimization of the Reaction Conditions S3
3. Crystal Data and Structure Refinement of Products S4
4. General Experimental Procedures and the ControlExperimentsS7
5. Characterization of Products in Details S11
6. ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and ${ }^{19} \mathrm{~F}$ NMR Spectra of Products S27
7. References S59

1. General Information

All reagents and solvents were purchased from Energy Chemical, SigmaAldrich, Bidepharm, Macklin and Meryer. All reactions were conducted using standard Schlenk techniques. Column chromatography was performed using Aluminium oxide neutral (200-300 mesh). ${ }^{1} \mathrm{H}$ NMR spectra were measured on a 400 MHz Oxford Instruments spectrometer (400 MHz for ${ }^{1} \mathrm{H}, 100 \mathrm{MHz}$ for ${ }^{13} \mathrm{C}$) and ${ }^{13} \mathrm{C}$ NMR spectra were measured on a 500 MHz Bruker AVANCE spectrometer $\left(500 \mathrm{MHz}\right.$ for ${ }^{1} \mathrm{H}, 125 \mathrm{MHz}$ for ${ }^{13} \mathrm{C}$, 471 MHz for ${ }^{19} \mathrm{~F}$), using CDCl_{3} as the solvent with tetramethylsilane (TMS) as the internal standard at room temperature. Chemical shifts were reported in ppm. ${ }^{1} \mathrm{H}$ NMR spectra was referenced to $\mathrm{CDCl}_{3}(7.26 \mathrm{ppm})$, and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectra was referenced to $\mathrm{CDCl}_{3}(77.0$ ppm), and ${ }^{19} \mathrm{~F}-\mathrm{NMR}$ spectra was referenced to CDCl_{3}. Peak multiplicities were designated by the following abbreviations: s, singlet; d, doublet; t , triplet; m, multiplet. Chemical shifts are given in δ relative to TMS, the coupling constants J are given in Hz. Analysis of crude reaction mixture was done on the Varian 4000 GC/MS and Agilent 7890A/5975C. Highresolution mass spectra were recorded on a micrOTOF-Q II 10410 mass spectrometer. A 15 W UV light and a 500 W super high-pressure mercury lamp were used for photoirradiation. Unless otherwise noted, all reagents and solvents were obtained commercially and used without further purification. The disulfides ${ }^{[1]} /$ diselenides ${ }^{[2]}$ were prepared according to the corresponding literature procedures.

2. Optimization of the Reaction Conditions

Table S1: Optimization of Reaction Conditions for the reaction of 1,2 -di-p-tolyldisulfane with mixed nitriles. ${ }^{[a]}$

3. Crystal data and structure refinement of products

Single crystals of $\mathbf{1 6}$ were grown in trichloromethane and hexanes. Trichloromethane (4.0 mL) was added to $\mathbf{1 6}$ (20 mg in a 20 mL vial) followed by hexanes (8.0 mL). The 20 mL vial was not capped and placed at room temperature in the experimental cabinet for 3 days, whereupon crystals formed. A colorless diamond-shaped lumpy crystal of $\mathbf{1 6}$ was used for the X-ray crystallographic analysis. The crystal data of $\mathbf{1 6}$ have been deposited in CCDC with number mo_dd22001_0m and have been displayed at 50\% ellipsoid contour probability level.

Table S2: Crystal data and structure refinement for mo_dd22001_0m.

Crystal data and structure refinement for mo_dd22001_0m.	
Identification code	mo_dd22001_0m
Empirical formula	$\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{Se}$
Formula weight	278.21
Temperature	$293(2) \mathrm{K}$
Wavelength	$0.71073 \AA$
Crystal system	Triclinic

Space group	P-1
Unit cell dimensions	$\begin{array}{ll} a=10.093(3) \AA & a=102.228(7)^{\circ} . \\ b=11.029(2) \AA & b=113.956(7)^{\circ} . \\ c=12.285(3) \AA & g=91.965(7)^{\circ} . \end{array}$
Volume	$1210.3(5) \AA^{3}$
Z	4
Density (calculated)	$1.527 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$3.079 \mathrm{~mm}^{-1}$
F(000)	560
Crystal size	$0.160 \times 0.100 \times 0.060 \mathrm{~mm}^{3}$
Theta range for data collection	2.731 to 25.998°.
Index ranges	$-12<=\mathrm{h}<=12,-13<=\mathrm{k}<=13,-$ $15<=1<=15$
Reflections collected	27602
Independent reflections	$4740[\mathrm{R}($ int $)=0.0350]$
Completeness to theta $=25.242^{\circ}$	99.5 \%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.7456 and 0.5217
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	4740 / 0 / 309
Goodness-of-fit on F^{2}	1.013

Final R indices [I>2sigma(I)]	$\mathrm{R} 1=0.0267, \mathrm{wR} 2=0.0626$
R indices (all data)	$\mathrm{R} 1=0.0396, \mathrm{wR} 2=0.0693$
Extinction coefficient	n / a
Largest diff. peak and hole	0.287 and $-0.313 \mathrm{e} . \AA^{-3}$

4. General Experimental Procedures and the Control Experiments

(1) General procedure for the reactions of disulfides or diselenides with $\mathrm{CH}_{3} \mathrm{CN}$

A 10 mL pressure tube equipped with a stir bar was charged with disulfides or diselenides (0.2 mmol), t - BuOK (2.0 equiv), $\mathrm{K}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$ (2.0 equiv), and $\mathrm{CH}_{3} \mathrm{CN}(28.7 \mathrm{mmol}, 1.5 \mathrm{~mL})$. The reaction mixture was stirred at $140^{\circ} \mathrm{C}$ under an air atmosphere for 24 h . After cooling the reaction to room temperature, the residue was purified by flash chromatography with neutral alumina to obtain the corresponding product.
(2) General procedure for the reactions of 1,2-di-p-tolyldisulfane with mixed nitriles

A 10 mL pressure tube equipped with a stir bar was charged with 1,2-di-ptolyldisulfane (0.2 mmol), t-BuOK (2.0 equiv), $\mathrm{K}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$ (2.0 equiv), $\mathrm{CH}_{3} \mathrm{CN}(11.5 \mathrm{mmol}, 0.6 \mathrm{~mL})$ and $\mathrm{DME}(1.0 \mathrm{~mL})$. The reaction mixture was stirred at room temperature under an air atmosphere for 12 h . Next, benzonitrile (0.4 mmol) and DME (1.0 mL) were added to the mixture, and the temperature was increased to $140{ }^{\circ} \mathrm{C}$ under an air atmosphere for 12 h . After cooling the reaction to room temperature, the residue was purified by flash chromatography with neutral alumina to obtain the corresponding product.

(3) General procedure for the reaction of bis(4-methoxyphenyl)

 disulphide with three-component mixed nitriles.

A 10 mL pressure tube equipped with a stir bar was charged with bis(4methoxyphenyl) disulphide (0.2 mmol), t - BuOK (2.0 equiv), $\mathrm{K}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}(2.0$ equiv), $\mathrm{CH}_{3} \mathrm{CN}$ ($11.5 \mathrm{mmol}, 0.6 \mathrm{~mL}$), benzonitrile (1.2 mL) and DME (0.5 mL). The reaction mixture was stirred at room temperature under an air atmosphere for 12 h . Next, 2-thiophenecarbonitrile (0.4 mmol) and DME $(1.0 \mathrm{~mL})$ were added to the mixture, and the temperature was then increased to $140{ }^{\circ} \mathrm{C}$ under an air atmosphere for 12 h . After cooling the reaction to room temperature, the residue was purified by flash chromatography with neutral alumina to obtain the corresponding product.
(4) General procedure for gram-scale synthesis.

A 50 mL pressure tube equipped with a stir bar was charged with bis(4methoxyphenyl) disulphide (5 mmol), t - BuOK ($10 \mathrm{mmol}, 2.0$ equiv), $\mathrm{K}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$ ($10 \mathrm{mmol}, 2.0$ equiv), and $\mathrm{CH}_{3} \mathrm{CN}$ ($287 \mathrm{mmol}, 15 \mathrm{~mL}$). The reaction mixture was stirred at $140{ }^{\circ} \mathrm{C}$ under an air atmosphere for 24 h . After cooling the reaction to room temperature, the residue was purified by flash chromatography with neutral alumina to obtain the corresponding product $\mathbf{3}(1.05 \mathrm{~g}, 86 \%)$.
(5) General procedure for the reaction between 1,2-di-p-tolyldisulfane and 2,6-dimethylpyrimidin-4-amine

A 10 mL pressure tube equipped with a stir bar was charged with bis(4methoxyphenyl) disulphide (0.2 mmol), 2,6-dimethylpyrimidin-4-amine (0.4 mmol), t - BuOK ($0.4 \mathrm{mmol}, 2.0$ equiv), $\mathrm{K}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}(0.4 \mathrm{mmol}, 2.0$ equiv), and DME (1.5 mL). The reaction mixture was stirred at $140{ }^{\circ} \mathrm{C}$ under an air atmosphere for 24 h . After cooling the reaction to room temperature, the residue was detected by GC-MS and no formation of the product $\mathbf{3}$ was observed.
(6) General procedure for the control reaction of 1,2 -di-ptolyldisulfane at $140{ }^{\circ} \mathrm{C}$ or room temperature.

A 10 mL pressure tube equipped with a stir bar was charged with bis(4methoxyphenyl) disulfide (0.2 mmol), t - BuOK ($0.4 \mathrm{mmol}, 2.0$ equiv), $\mathrm{K}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$ ($0.4 \mathrm{mmol}, 2.0$ equiv), and $\mathrm{CH}_{3} \mathrm{CN}(28.7 \mathrm{mmol}, 1.5 \mathrm{~mL}$). The reaction mixture was stirred at $140{ }^{\circ} \mathrm{C}$ under an air atmosphere for 24 h . After cooling the reaction to room temperature, the residue was purified by flash chromatography with neutral alumina to obtain the corresponding product 3 ($43.6 \mathrm{mg}, 89 \%$). Meanwhile, the residue was detected by GCMS and a trace of the product 3a was detected. Alternatively, the reaction mixture was stirred at room temperature under an air atmosphere for 24 h . When the reaction was completed, the residue was purified by flash chromatography with neutral alumina to obtain the corresponding product

3a ($36.7 \mathrm{mg}, 90 \%$). Meanwhile, the residue was detected by GC-MS and trace of the product $\mathbf{3}$ was detected.

(7) General procedure for the control reaction of alkenyl sulfide 3a in

 $\mathrm{CH}_{3} \mathrm{CN}$

A 10 mL pressure tube equipped with a stir bar was charged with alkenyl sulfide 3a (0.2 mmol), t - BuOK ($0.4 \mathrm{mmol}, 2.0$ equiv), $\mathrm{K}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}(0.4 \mathrm{mmol}$, 2.0 equiv), and $\mathrm{CH}_{3} \mathrm{CN}(28.7 \mathrm{mmol}, 1.5 \mathrm{~mL})$. The reaction mixture was stirred at $140{ }^{\circ} \mathrm{C}$ under an air atmosphere for 24 h . After cooling the reaction to room temperature, the residue was purified by flash chromatography with neutral alumina to obtain the corresponding product 3 ($41.6 \mathrm{mg}, 85 \%$) .

5. Characterization data for the products

2,6-dimethyl-5-(phenylthio)pyrimidin-4-amine (1): yellow solid (42.1 $\mathrm{mg}, 91 \%$ yield), m.p. $113.3-114.3^{\circ} \mathrm{C} .{ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm})$ 7.19 (d, $J=4.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.17-7.01(\mathrm{~m}, 1 \mathrm{H}), 6.99(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.25$ (br, 2H), $2.45(\mathrm{~s}, 3 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm})$ $171.1,167.5,164.5,134.6,129.3,125.9,125.9,103.0,25.6,23.1$.

HR-MS (ESI) m/z: Calculated for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{~N}_{3} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{H}]^{+}: 232.0903$. Found: 232.0901 .

5-((4-(tert-butyl)phenyl)thio)-2,6-dimethylpyrimidin-4-amine
yellow solid ($49.9 \mathrm{mg}, 87 \%$ yield), m.p. 137.4-138.7 ${ }^{\circ} \mathrm{C} . \mathbf{}^{\mathbf{H}} \mathbf{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 7.30(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.03(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H})$, 6.05 (br, 2H), $2.55(\mathrm{~s}, 3 \mathrm{H}), 2.52(\mathrm{~s}, 3 \mathrm{H}), 1.31(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 170.9,167.4,164.4,149.2,131.0,126.4,126.0,103.6$, 34.4, 31.3, 25.7, 23.1.

HR-MS (ESI) m/z: Calculated for $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{~N}_{3} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{H}]^{+}:$288.1529. Found:

2,6-dimethyl-5-(p-tolylthio)pyrimidin-4-amine (3): yellow solid (43.6 $\mathrm{mg}, 89 \%$ yield), m.p. $131.9-132.8^{\circ} \mathrm{C} \cdot \mathbf{1}^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm})$ $7.02(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.92(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.08(\mathrm{br}, 2 \mathrm{H}), 2.47(\mathrm{~s}, 3 \mathrm{H})$, $2.44(\mathrm{~s}, 3 \mathrm{H}), 2.25(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}) 170.8$, $167.5,164.2,136.0,130.9,130.1,126.4,103.7,25.8,23.1,20.9$.

HR-MS (ESI) m/z: Calculated for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{~N}_{3} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{H}]^{+}: 246.1059$. Found: 246.1054.

5-((2,4-dimethylphenyl)thio)-2,6-dimethylpyrimidin-4-amine (4): yellow solid $\left(45.0 \mathrm{mg}, 87 \%\right.$ yield), m.p. $148.4-149.3^{\circ} \mathrm{C} .{ }^{\mathbf{1}} \mathbf{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 6.98(\mathrm{~s}, 1 \mathrm{H}), 6.82(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.52(\mathrm{~d}, J=8.0$ Hz, 1H), $5.86(\mathrm{br}, 2 \mathrm{H}), 2.48(\mathrm{~s}, 3 \mathrm{H}), 2.45(\mathrm{~s}, 3 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H}), 2.24(\mathrm{~s}, 3 \mathrm{H})$; ${ }^{13} \mathbf{C}$ NMR (125 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 171.0,167.3,164.4,135.4,135.2$, $131.5,129.9,127.6,124.3,102.9,25.6,23.0,20.7,19.8$.

HR-MS (ESI) m/z: Calculated for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{~N}_{3} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{H}]^{+}: 260.1216$. Found:
260.1210.

5-((4-methoxyphenyl)thio)-2,6-dimethylpyrimidin-4-amine (5): yellow solid (49.1 mg , 94% yield), m.p. $125.0-125.8^{\circ}{ }^{\circ} .^{1} \mathbf{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.02(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.77(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 5.99(\mathrm{br}, 2 \mathrm{H})$, 3.72 (s, 3H), 2.48 (s, 3H), 2.44 (s, 3H); ${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $170.4,167.2,164.2,158.5,128.7,125.1,115.1,104.8,55.4,25.7,23.1$. HRMS (ESI) m/z: [M + H] ${ }^{+}$Calculated for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{~N}_{3} \mathrm{OS}^{+}: 262.1009$; Found: 261.1013.

5-((4-fluoropheny)thio)-2,6-dimethylpyrimidin-4-amine (6): yellow solid ($40.8 \mathrm{mg}, 82 \%$ yield), m.p. $114.1-116.0^{\circ}{ }^{\circ} \mathbf{C}^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 7.01-6.97(\mathrm{~m}, 2 \mathrm{H}), 6.93-6.88(\mathrm{~m}, 2 \mathrm{H}), 6.05(\mathrm{br}, 2 \mathrm{H}), 2.50$ (s, 3H), $2.48(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm})$ 171.0, 167.7, 164.4, 161.5 (d, J=244.6 Hz), 129.8 (d, J= 3.1 Hz), $128.2(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}$), $116.6(\mathrm{~d}, \mathrm{~J}=22.1 \mathrm{~Hz}), 103.7,25.7,23.1 .{ }^{19} \mathbf{F}$ NMR $\left(471 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ (ppm) 116.1.

HR-MS (ESI) m/z: Calculated for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{FN}_{3} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{H}]^{+}: 250.0809$. Found: 250.0812.

5-((4-chlorophenyl)thio)-2,6-dimethylpyrimidin-4-amine (7): yellow solid ($44.5 \mathrm{mg}, 84 \%$ yield), m.p. $156.9-157.6{ }^{\circ} \mathrm{C} . \mathbf{}^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 7.21(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.96(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 5.66(\mathrm{br}$, $2 \mathrm{H}), 2.50(\mathrm{~s}, 3 \mathrm{H}), 2.48(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 174.3$, $168.4,161.7,137.3,131.9,129.5,125.1,104.1,26.7,20.5$.

HR-MS (ESI) m/z: Calculated for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{ClS}^{+}[\mathrm{M}+\mathrm{H}]^{+}$: 266.0513 . Found: 266.0509.

5-((2-chlorophenyl)thio)-2,6-dimethylpyrimidin-4-amine (8): yellow solid (47.7 mg, 90% yield), m.p. $169.8-170.4{ }^{\circ} \mathrm{C} . \mathbf{}^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 7.37-7.34(\mathrm{dd}, J 1=4.0 \mathrm{~Hz}, J 2=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.10(\mathrm{~d}, J=$ $3.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.08(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.62-6.60(\mathrm{dd}, J 1=3.2 \mathrm{~Hz}, J 2=5.6$ $\mathrm{Hz}, 1 \mathrm{H}), 5.76(\mathrm{br}, 2 \mathrm{H}), 2.51(\mathrm{~s}, 3 \mathrm{H}), 2.48(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 171.7,168.1,164.9,133.6,131.6,130.0,127.5,126.7$,
125.3, 102.2, 25.7, 23.0.

HR-MS (ESI) m/z: Calculated for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{ClS}^{+}[\mathrm{M}+\mathrm{H}]^{+}$: 266.0513.
Found: 266.0516.

5-((4-bromophenyl)thio)-2,6-dimethylpyrimidin-4-amine (9): yellow solid ($53.1 \mathrm{mg}, 86 \%$ yield), m.p. $153.6-154.2^{\circ} \mathrm{C} .{ }^{1} \mathbf{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 7.31(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.56(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.12(\mathrm{br}$, 2H), $2.45(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}) 171.2,167.8$, 164.4, 133.9, 132.4, 127.4, 119.6, 102.5, 25.7, 23.1.

HR-MS (ESI) m/z: Calculated for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{BrS}^{+}[\mathrm{M}+\mathrm{H}]^{+}$: 310.0008. Found: 310.0012.

5-((3-bromophenyl)thio)-2,6-dimethylpyrimidin-4-amine (10): yellow solid ($51.3 \mathrm{mg}, 83 \%$ yield), m.p. $146.3-147.4^{\circ} \mathrm{C} .{ }^{1} \mathbf{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 7.23(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.13(\mathrm{~s}, 1 \mathrm{H}), 7.08-7.04(\mathrm{~m}, 1 \mathrm{H})$, $6.91(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.98(\mathrm{br}, 2 \mathrm{H}), 2.46(\mathrm{~s}, 3 \mathrm{H}), 2.45(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathbf{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 171.3,168.2,164.2,137.0,130.6,129.1,128.4$,
124.3, 123.4, 102.1, 25.8, 23.1.

HR-MS (ESI) m/z: Calculated for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{BrS}^{+}[\mathrm{M}+\mathrm{H}]^{+}$: 310.0008 . Found: 310.0006.

2,6-dimethyl-5-(naphthalen-2-ylthio)pyrimidin-4-amine (11): yellow solid ($24.7 \mathrm{mg}, 44 \%$ yield), m.p. $160.1-161.4^{\circ} \mathrm{C} .{ }^{1} \mathbf{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 7.75(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.72(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.64(\mathrm{~d}$, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.46-7.40(\mathrm{~m}, 2 \mathrm{H}), 7.39(\mathrm{~s}, 1 \mathrm{H}), 7.18(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H})$, 5.81 (br, 2H), $2.52(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm})$ 172.1, $167.8,164.4,133.8,131.9,131.7,129.2,127.8,127.0,126.9,125.8,124.44$, 123.7, 103.0, 27.1, 23.1.

HR-MS (ESI) m/z: Calculated for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{~N}_{3} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{H}]^{+}:$282.1059. Found: 282.1061.

2,6-dimethyl-5-(thiophen-2-ylthio)pyrimidin-4-amine (12): yellow solid ($41.8 \mathrm{mg}, 89 \%$ yield), m.p. $143.0-144.0^{\circ}{ }^{\circ} .^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 7.22(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.53(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.91-6.88$
$(\mathrm{dd}, J 1=3.2 \mathrm{~Hz}, J 2=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.08(\mathrm{br}, 2 \mathrm{H}), 2.60(\mathrm{~s}, 3 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}) ;$ ${ }^{13} \mathbf{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 169.8,167.3,163.7,133.8,130.8$, 128.2, 127.5, 106.1, 25.6, 23.2.

HR-MS (ESI) m/z: Calculated for $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{~N}_{3} \mathrm{~S}_{2}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}: 238.0467$. Found: 238.0464 .

2,6-dimethyl-5-((2-methylfuran-3-yl)thio)pyrimidin-4-amine (13): yellow solid (44.2 mg, 94\% yield), m.p. 142.6-143.2 ${ }^{\circ} \mathrm{C} . \mathbf{}^{\mathbf{1}} \mathbf{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 7.20(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.13(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H})$, $5.84(\mathrm{br}, 2 \mathrm{H}), 2.52(\mathrm{~s}, 3 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 169.5,166.8,164.0,152.5,141.4,113.2,109.6,106.1$, 25.7, 23.3, 12.2.

HR-MS (ESI) m/z: Calculated for $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{~N}_{3} \mathrm{OS}^{+}[\mathrm{M}+\mathrm{H}]^{+}: 236.0852$. Found: 236.0858 .

5-(cyclohexylselanyl)-2,6-dimethylpyrimidin-4-amine (14): yellow solid (25.1mg, 53\% yield), m.p. 151.5-152.4 ${ }^{\circ} \mathrm{C} .{ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz,
$\left.\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 5.79(\mathrm{br}, 2 \mathrm{H}), 2.86-2.81(\mathrm{~m}, 1 \mathrm{H}), 2.55(\mathrm{~s}, 3 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H})$, $1.87-1.85(\mathrm{~m}, 2 \mathrm{H}), 1.75-1.71(\mathrm{~m}, 2 \mathrm{H}), 1.39-1.32(\mathrm{~m}, 4 \mathrm{H}), 1.29-1.17(\mathrm{~m}$, $2 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}) 170.2,166.3,164.9,105.2$, 47.1, 32.9, 26.1, 25.6, 23.3, 23.2.

HR-MS (ESI) m/z: Calculated for $\mathrm{C}_{12} \mathrm{H}_{20} \mathrm{~N}_{3} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{H}]^{+}$: 238.1372 . Found: 238.1375.

5-(sec-butylthio)-2,6-dimethylpyrimidin-4-amine (15): yellow solid (24.9 mg, 59\% yield), m.p. $118.4-119.1{ }^{\circ} \mathbf{C}^{\mathbf{1}} \mathbf{~} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ (ppm) $6.17(\mathrm{br}, 2 \mathrm{H}), 2.91-2.83(\mathrm{~m}, 1 \mathrm{H}), 2.49(\mathrm{~s}, 3 \mathrm{H}), 2.38(\mathrm{~s}, 3 \mathrm{H}), 1.60-$ $1.42(\mathrm{~m}, 2 \mathrm{H}), 1.14(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.93(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 170.1,166.1,164.9,105.5,45.2,29.7,25.4$, 23.2, 20.4, 11.4.

HR-MS (ESI) m/z: Calculated for $\mathrm{C}_{10} \mathrm{H}_{18} \mathrm{~N}_{3} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{H}]^{+}: 212.1216$. Found: 212.1211.

2,6-dimethyl-5-(phenylselanyl)pyrimidin-4-amine (16): yellow solid
($53.0 \mathrm{mg}, 95 \%$ yield), m.p. $128.7-129.4^{\circ} \mathrm{C} . \mathbf{}^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ (ppm) 7.25-7.17 (m, 5H), $5.78(\mathrm{br}, 2 \mathrm{H}), 2.56(\mathrm{~s}, 3 \mathrm{H}), 2.48(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 170.6,167.7,164.2,129.8,129.6,128.9$, 126.7, 101.8, 25.5, 25.1.

HR-MS (ESI) m/z: Calculated for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{~N}_{3} \mathrm{Se}^{+}[\mathrm{M}+\mathrm{H}]^{+}: 280.0347$. Found: 280.0345 .

Structure of $\mathbf{1 6}$ was clearly determined by X -ray crystallographic analysis of its single crystal.

5-((4-(tert-butyl)phenyl)selanyl)-2,6-dimethylpyrimidin-4-amine (17): yellow solid ($61.6 \mathrm{mg}, 92 \%$ yield), m.p. $128.1-128.6^{\circ} \mathrm{C} . \mathbf{1}^{\mathbf{1}} \mathbf{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 7.27(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.15(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H})$, $5.60(\mathrm{br}, 2 \mathrm{H}), 2.60(\mathrm{~s}, 3 \mathrm{H}), 2.51(\mathrm{~s}, 3 \mathrm{H}), 1.29(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 170.7,167.7,164.2,150.1,129.0,126.8,126.2,102.2$, 34.5, 31.3, 25.7, 25.3.

HR-MS (ESI) m/z: Calculated for $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{~N}_{3} \mathrm{Se}^{+}[\mathrm{M}+\mathrm{H}]^{+}: 336.0973$. Found: 336.0975.

2,6-dimethyl-5-(p-tolylselanyl)pyrimidin-4-amine (18): yellow solid (54.5mg, 93\% yield), m.p. $139.5-140.3{ }^{\circ} \mathrm{C} . \mathbf{}^{\mathbf{H}} \mathbf{H}$ NMR (400 MHz, CDCl_{3}) δ (ppm) $7.08(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.01(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.91(\mathrm{br}, 2 \mathrm{H}), 2.54$ $(\mathrm{s}, 3 \mathrm{H}), 2.45(\mathrm{~s}, 3 \mathrm{H}), 2.26(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathbf{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm})$ $170.5,167.6,164.3,136.8,130.4,129.4,126.0,102.4,25.6,25.2,21.0$. HR-MS (ESI) m/z: Calculated for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{~N}_{3} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{H}]^{+}$: 294.0504. Found: 294.0502.

5-((4-bromophenyl)selanyl)-2,6-dimethylpyrimidin-4-amine
(19): yellow solid ($61.4 \mathrm{mg}, 86 \%$ yield), m.p. $156.6-157.5{ }^{\circ} \mathrm{C} . \mathbf{1}^{\mathbf{1}} \mathbf{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 7.30(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.41(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H})$, 5.63 (br, 2H), $2.55(\mathrm{~s}, 3 \mathrm{H}), 2.49(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta$ (ppm) 170.8, 168.2, 164.1, 132.7, 130.5, 128.9, 120.8, 101.5, 25.7, 25.2.

HR-MS (ESI) m/z: Calculated for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{BrN}_{3} \mathrm{Se}^{+}[\mathrm{M}+\mathrm{H}]^{+}: 357.9453$. Found: 357.9456.

5-((4-chlorophenyl)selanyl)-2,6-dimethylpyrimidin-4-amine (20): yellow solid ($55.1 \mathrm{mg}, 88 \%$ yield), m.p. $157.9-158.8{ }^{\circ} \mathrm{C} . \mathbf{1}^{\mathbf{1}} \mathbf{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 7.13(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.06(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H})$, $6.06(\mathrm{br}, 2 \mathrm{H}), 2.50(\mathrm{~s}, 3 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ (ppm) 170.8, 167.9, 164.3, 132.8, 130.2, 129.7, 128.2, 101.7, 25.5, 25.2.

HR-MS (ESI) m/z: Calculated for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{ClN}_{3} \mathrm{Se}^{+}[\mathrm{M}+\mathrm{H}]^{+}: 313.9958$. Found: 313.9963.

5-((2-chlorophenyl)selanyl)-2,6-dimethylpyrimidin-4-amine yellow solid ($53.8 \mathrm{mg}, 86 \%$ yield), m.p. $167.8-168.2{ }^{\circ} \mathrm{C} . \mathbf{1}^{\mathbf{H}} \mathbf{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 7.34(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.14-7.11(\mathrm{dd}, J 1=6.0 \mathrm{~Hz}$, $J 2=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.07-7.04(\mathrm{dd}, J 1=6.0 \mathrm{~Hz}, J 2=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.70(\mathrm{~d}, J=$ $7.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.74(\mathrm{br}, 2 \mathrm{H}), 2.54(\mathrm{~s}, 3 \mathrm{H}), 2.50(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 171.7,168.5,164.6,133.3,130.2,129.9,127.8,127.8$, 127.5, 100.4, 25.7, 25.1.

HR-MS (ESI) m/z: Calculated for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{ClN}_{3} \mathrm{Se}^{+}[\mathrm{M}+\mathrm{H}]^{+}: 313.9958$.

Found: 313.9956.

6-methyl-2-phenyl-5-(p-tolylthio)pyrimidin-4-amine (22): yellow solid ($55.3 \mathrm{mg}, 90 \%$ yield), m.p. $131.2-131.7^{\circ} \mathrm{C} .{ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ (ppm) 8.43 (d, $J=5.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.48-7.47(\mathrm{~m}, 3 \mathrm{H}), 7.08(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H})$, $7.04(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.86(\mathrm{br}, 2 \mathrm{H}), 2.66(\mathrm{~s}, 3 \mathrm{H}), 2.31(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm})$ 171.2, 164.6, 163.7, 137.7, 136.0, 131.2, 130.7, 130.2, 128.5, 128.5, 126.6, 104.7, 23.6, 21.1.

HR-MS (ESI) m/z: Calculated for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{~N}_{3} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{H}]^{+}: 308.1216$. Found: 308.1217.

6-methyl-2-(p-tolyl)-5-(p-tolylthio)pyrimidin-4-amine (23): yellow solid ($45.6 \mathrm{mg}, 71 \%$ yield), m.p. $130.0-130.6^{\circ} \mathrm{C} .{ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 8.32(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.29(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.10(\mathrm{~d}$, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.04(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.66(\mathrm{br}, 2 \mathrm{H}), 2.65(\mathrm{~s}, 3 \mathrm{H}), 2.45$ (s, 3H), $2.33(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}) 171.2,164.5$, 163.7, 140.9, 135.9, 134.9, 131.2, 130.2, 129.2, 128.3, 126.4, 104.2, 23.5, 21.6, 21.0.

HR-MS (ESI) m/z: Calculated for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{~N}_{3} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{H}]^{+}: 322.1372$. Found:

2-([1,1'-biphenyl]-4-yl)-6-methyl-5-(p-tolylthio)pyrimidin-4-amine (24): white solid ($49.0 \mathrm{mg}, 64 \%$ yield), m.p. $153.5-154.2{ }^{\circ} \mathrm{C} . \mathbf{}^{\mathbf{1}} \mathbf{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 8.46(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.70(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H})$, $7.68(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.47(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.37(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, $7.07(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.02(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.59(\mathrm{br}, 2 \mathrm{H}), 2.64(\mathrm{~s}, 3 \mathrm{H})$, $2.30(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 171.2,164.4,163.4$, $143.3,140.7,136.6,136.0,131.1,130.2,128.9,128.8,127.7,127.2,127.1$, 126.5, 23.5, 21.0.

HR-MS (ESI) m/z: Calculated for $\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{~N}_{3} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{H}]^{+}: 384.1529$. Found: 384.1532.

2-(4-fluorophenyl)-6-methyl-5-(p-tolylthio)pyrimidin-4-amine (25): yellow solid ($23.4 \mathrm{mg}, 36 \%$ yield), m.p. $146.2-147.4{ }^{\circ} \mathrm{C} . \mathbf{1}^{\mathbf{H}} \mathbf{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm})$ 8.41-8.38(m, 2H), 7.14-7.10 (m, 2H), $7.06(\mathrm{~d}, J=$ $8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.00(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.58(\mathrm{br}, 2 \mathrm{H}), 2.60(\mathrm{~s}, 3 \mathrm{H}), 2.29(\mathrm{~s}$, $3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 171.2,164.7(\mathrm{~d}, \mathrm{~J}=248.8 \mathrm{~Hz})$, $164.4,162.7,136.1,133.8(\mathrm{~d}, \mathrm{~J}=3.0 \mathrm{~Hz}), 133.2,131.0,130.5(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz})$,
130.2, 126.5, 120.1, 115.3 (d, J=21.4 Hz), 104.6, 23.5, 21.0. ${ }^{19}$ F NMR ($471 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}) 62.6$.

HR-MS (ESI) m/z: Calculated for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{FN}_{3} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{H}]^{+}: 326.1122$. Found: 326.1125 .

6-methyl-5-(p-tolylthio)-2-(4-(trifluoromethyl)phenyl)pyrimidin-4amine (26): yellow solid (45.0 mg , 60% yield), m.p. $145.9-146.5^{\circ} \mathrm{C} . \mathbf{}^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}) 8.50(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.70(\mathrm{~d}, J=8.4$ $\mathrm{Hz}, 2 \mathrm{H}), 7.08$ (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.02$ (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}$), 5.66 (br, 2H), $2.63(\mathrm{~s}, 3 \mathrm{H}), 2.30(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm})$ 171.3, $164.4,162.2,141.0,139.7,136.3,132.1(\mathrm{~d}, \mathrm{~J}=32.0 \mathrm{~Hz})$ 130.7, 130.2, 127.6 (q, J= 274.5 Hz), 125.3 (q, J= $=37.7 \mathrm{~Hz}$), 122.9, 105.7, 23.5, 21.0. ${ }^{19}$ F NMR ($471 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm})$ 110.5.

HR-MS (ESI) m/z: Calculated for $\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{~F}_{3} \mathrm{~N}_{3} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{H}]^{+}$: 376.1090. Found: 376.1091.

6-methyl-2-(thiophen-2-yl)-5-(p-tolylthio)pyrimidin-4-amine (27): yellow solid ($55.1 \mathrm{mg}, 88 \%$ yield), m.p. $138.5-138.8^{\circ} \mathrm{C} . \mathbf{}^{\mathbf{}} \mathbf{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 7.94(\mathrm{~d}, J=0.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.12-7.10(\mathrm{dd}, J 1=4.0 \mathrm{~Hz}$,
$J 2=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.06(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.99(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.66(\mathrm{br}$, 2H), $2.57(\mathrm{~s}, 3 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (125 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 171.3$, $164.2,160.2,143.4,136.0,131.1,130.1,129.8,129.1,128.1,126.4,104.0$, 23.3, 21.0.

HR-MS (ESI) m/z: Calculated for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{~N}_{3} \mathrm{~S}_{2}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}: 314.0780$. Found: 314.0783.

2-cyclohexyl-6-methyl-5-(p-tolylthio)pyrimidin-4-amine (28) : white solid (21.3 mg, 34\% yield), m.p. 133.6-134.4 ${ }^{\circ} \mathrm{C} . \mathbf{}^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 7.06(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.96(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.48(\mathrm{br}$, $2 \mathrm{H}), 2.64(\mathrm{t}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.52(\mathrm{~s}, 3 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H}), 1.95(\mathrm{~d}, J=12.4$ $\mathrm{Hz}, 2 \mathrm{H}), 1.83(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.62-1.53(\mathrm{~m}, 2 \mathrm{H}), 1.42-1.25(\mathrm{~m}, 4 \mathrm{H})$; ${ }^{13} \mathbf{C}$ NMR (125 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 174.0,170.6,164.3,136.0,131.1$, $130.1,126.5,103.7,47.3,32.0,26.2,26.0,23.1,21.0$.

HR-MS (ESI) m/z: Calculated for $\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{~N}_{3} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{H}]^{+}: 314.1685$. Found: 314.1683.

5-((4-methoxyphenyl)thio)-6-phenyl-2-(thiophen-2-yl)pyrimidin-4-
amine (29) : white solid (34 mg, 43\% yield), m.p. 210.0-210.2 ${ }^{\circ} \mathrm{C} . \mathbf{}^{\mathbf{1}} \mathbf{H} \mathbf{N M R}$
$\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 8.01(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.71(\mathrm{~d}, J=5.6 \mathrm{~Hz}$, $2 \mathrm{H}), 7.45(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.43-7.38(\mathrm{~m}, 3 \mathrm{H}), 7.13-7.11(\mathrm{dd}, J 1=4.0 \mathrm{~Hz}$, $J 2=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.01(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.77(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 5.70(\mathrm{br}$, $2 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm})$ 169.7, 164.7, $160.2,158.6,143.3,138.5,130.0,129.5,129.5,129.4,128.7,128.1,127.8$, 125.6, 115.1, 104.2, 55.4.

HR-MS (ESI) m/z: Calculated for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{~N}_{3} \mathrm{~S}_{2}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}: 391.0813$. Found: 391.0817.

6. ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR and ${ }^{19} \mathrm{~F}$ NMR spectra

Compound (1)

Compound (2)

Compound (3)

Compound (4)

Compound (5)

Compound (6)

Compound (7)

Compound (8)

Compound (9)

Compound (10)

Compound (11)

Compound (12)

Compound (13)

Compound (14)

Compound (15)

Compound (16)

Compound (17)

Compound (18)

Compound (19)

Compound (20)

Compound (21)

Compound (22)

Compound (23)

Compound (24)

Compound (25)

Compound (26)

Compound (27)

Compound (28)

Compound (29)

7. References

1. A. Alam, Y. Takaguchi and S. Tsuboi, Synthetic Commun., 2005, 35, 1329.
2. Y.-T. Ma, C. Lin, X.-B. Huang, M.-C. Liu, Y.-B. Zhou and H.-Y. Wu, Chem. Соттип., 2022, 58, 6550.
