Supporting Information

Amine Functionalized Bifunctional Co^{III} -NHC Complexes: Highly Effective Phosphine-Free Catalysts for the α -Alkylation of Nitriles

Biswaranjan Boity^a, Misba Siddique^a, and Arnab Rit^a*

^aDepartment of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India

Table of contents:

General exp	perimental details	S02
General procedure for the synthesis and characterization of ligands L_{1-2}		
General pro	cedure for the synthesis and characterization (NMR and ESI-MS data)	
of complexe	es 1a-d	S05-S14
Optimizatio	on studies and general procedure for the α -alkylation of nitriles	S14-S15
General pro	becedure for the α -alkylation of nitriles using in situ generated catalyst	S15
Procedure f	or the calculation of TON for the α-alkylation of nitriles	S15
General syn	thetic method for the α -alkylation of nitriles in large-scale	S16
Analytical of	data of isolated compounds	S16-S27
¹ H and ¹³ C{ ¹ H} NMR spectra of the isolated compounds		S28-S72
Kinetics study of the reaction with respect to nitrile and catalyst		S73-S75
Post-modification of 4a and 4f		S76-S79
General procedure for competitive experiments		S80-S81
Control experiments		S81-S82
i)	Effect of catalyst loading experiment	
ii)	Metal hydride trapping experiment	
iii)	Radical scavenger experiment	
iv)	Mercury-dropping experiment	
Detection of Cobalt amido complex A		S83-S85
General procedure for the deuterium labelling experiment		S85-S86
Calculation of P_H/P_D		S86
Crystallographic data		S87-S88
References		S 89

General experimental details

All experiments with metal complexes were performed using oven-dried glassware under an inert atmosphere using either standard Schlenk line or Glove box techniques. All solvents used for the synthesis were distilled, degassed by standard methods, and stored under inert atmosphere over 4 Å molecular sieves. All the ¹H and ¹³C{¹H} NMR spectra were recorded using Bruker 400 and 500 MHz FT-NMR spectrometers, referenced internally to the residual solvent signals. ESI-MS spectra were measured using an Agilent 6545A Q-TOF Mass spectrometer. Chemicals e.g. cobalt precursor, $[Co(Cp^*)Cl_2]_2$ and ligands L₁₋₂ were synthesized by modified procedure and L₃₋₄ according to the literature procedures.^{1,2} All other chemicals were procured from commercial sources and used as received.

General procedure for the synthesis of ligand L₁₋₂

Compound A₁₋₂ were synthesized following the reported procedure.¹ Following that A₁/A₂ (1 equiv.), Zn dust (10 equiv.), and NH₄Cl (5 equiv.) were taken in an RB flask followed by the addition of methanol slowly. Then the reaction mixture was refluxed at 70 °C for 12 h. After the completion of reaction, the reaction mixture was filtered through a pad of celite using methanol. The obtained filtrate was then concentrated ~ 1 mL and diethyl ether was then added to induce precipitation which after isolation followed by drying in vacuo provided the desired ligands L₁₋₂ as a hygroscopic orange colour solids in 90-94% yield.

Synthesis and characterization of ligands L1-2

Scheme S1: Synthesis of ligand L₁₋₂.

Ligand L₁: **L**₁ was synthesized according to the general procedure using 1.00 g of **A**₁, 2.20 g of Zn dust, and 0.89 g of NH₄Cl (yield: 0.84 g, 3.152 mmol, 94%). ¹H NMR (400 MHz, DMSO- d_6) δ 9.49 (s, 1H), 8.02 (s, 1H), 7.86 (s, 1H), 7.28-7.22 (m, 2H), 6.91 (d, *J* = 11.7 Hz, 1H), 6.67 (t, *J* = 7.8 Hz, 1H), 5.56 (s, 2H), 4.25 (q, *J* = 8.4 Hz, 2H), 1.50 (t, *J* = 8.0 Hz, 3H) ppm. ¹³C{¹H} NMR (101 MHz, DMSO- d_6) δ 143.8, 137.1, 131.1, 127.2, 123.8, 122.6, 119.8, 116.5, 116.0, 44.5, 14.7 ppm. MS (ESI, positive ions): *m/z* 188.1146 (calcd for [M-Br]⁺: *m/z* 188.1188)

Ligand L₂: L₂ was synthesized according to the general procedure using 0.20 g of **A**₂, 0.39 g of Zn dust, and 0.16 g of NH₄Cl (yield: 0.16 g, 0.543 mmol, 90%). ¹H NMR (400 MHz, DMSO*d*₆) δ 9.37 (s, 1H), 7.90 (s, 1H), 7.84 (s, 1H), 7.26 (t, *J* = 8.2 Hz, 1H), 7.19 (d, *J* = 7.6 Hz, 1H), 6.89 (d, *J* = 8.3 Hz, 1H), 6.68 (t, *J* = 7.9 Hz, 1H), 5.51 (s, 2H), 3.90 (s, 3H) ppm. ¹³C{¹H} NMR (101 MHz, DMSO-*d*₆) δ 143.8, 137.9, 131.2, 127.2, 124.0, 123.6, 119.6, 116.4, 116.0, 36.0 ppm. MS (ESI, positive ions): *m/z* 174.1028 (calcd for [M-I]⁺: *m/z* 174.1031)

Figure S1. ¹H NMR spectrum of L_1 in DMSO- d_6 . * indicates the solvent impurity of H_2O in DMSO- d_6 .

Figure S3. ¹H NMR spectrum of L₂ in DMSO- d_6 . * indicates the solvent impurity of H₂O in DMSO- d_6 .

Figure S4. ¹³C $\{^{1}H\}$ NMR spectrum of L₂ in DMSO-*d*₆.

General procedure for the synthesis of complexes

The ligand L₁₋₄ (1 equiv.) and Ag₂O (0.6 equiv.) were taken in a Schenk tube under an inert condition, dry acetonitrile was then added to it and the reaction mixture was stirred under dark at room temperature. After 12 h of reaction, metal precursor $[Co(Cp^*)Cl_2]_2$ (0.5 equiv.) was added and again stirred for 12 h at RT. The crude reaction mixture was first filtered through a small pad of celite which was followed by purification *via* column chromatography using DCM/methanol as eluent. The obtained compound was then concentrated and diethyl ether was added to precipitate the compound, which was isolated as a reddish-pink solid in 70-80% yield.

Scheme S2. Synthesis of various Co^{III}-NHC complexes *via* transmetalation strategy.

Complex 1a: Complex **1a** was synthesized following the general procedure using **L**₁ (250 mg, 0.932 mmol) and isolated as an air-stable reddish-pink solid. Yield: 371 mg (0.820 mmol, 88%). ¹H NMR (500 MHz, CDCl₃) δ 8.30-8.27 (m, 1H), 8.27 (s, *br*, 1H), 8.00 (d, *J* = 1.8 Hz, 1H), 7.69 (d, *J* = 1.9 Hz, 1H), 7.59 (d, *J* = 7.8 Hz, 1H), 7.35 (t, *J* = 7.1 Hz, 1H), 7.28 (d, *J* = 7.8 Hz, 1H), 4.44-4.37 (m, 1H), 4.25-4.19 (m, 1H), 3.63 (*br*, 1H), 1.36 (t, *J* = 7.2 Hz, 3H), 1.14 (s, 15H) ppm.¹³C {¹H} NMR (126 MHz, CDCl₃) δ 174.5, 133.6, 133.2, 127.6, 127.4, 125.4, 124.7, 122.6, 121.2, 94.7, 46.5, 16.7, 9.3 ppm. MS (ESI, positive ions): *m/z* 416.1341 (calcd for [M-Cl]⁺: *m/z* 416.1340).

Complex 1b: Complex **1b** was synthesized following the general procedure using **L**₂ (100 mg, 0.332 mmol) and isolated as an air-stable reddish-pink solid. Yield: 124 mg (0.282 mmol, 85%). ¹H NMR (400 MHz, CDCl₃) δ 8.38 (d, *J* = 7.7 Hz, 1H), 8.14 (s, *br*, 1H), 7.93 (s, 1H), 7.82 (s, 1H), 7.50 (d, *J* = 7.5 Hz, 1H), 7.33 (d, *J* = 6.1 Hz, 2H), 4.12 (s, 3H), 3.23 (s, *br*, 1H), 1.16 (s, 15H) ppm. ¹³C{¹H} NMR (126 MHz, CDCl₃) δ 134.1, 133.5, 128.8, 127.7, 127.1, 125.1, 121.7, 120.8, 94.7, 38.9, 9.3 ppm. MS (ESI, positive ions): *m/z* 402.1073 (calcd for [M-Cl]⁺: *m/z* 402.1147).

Complex 1c: Complex **1c** was synthesized following the general procedure using **L**₃ (100 mg, 0.393 mmol) and isolated as a hygroscopic reddish-pink solid. Yield: 148 mg (0.338 mmol, 86%). ¹H NMR (500 MHz, CDCl₃) δ 9.44 (s, 1H), 9.02 (d, *J* = 8.4 Hz, 1H), 8.84 (d, *J* = 5.8 Hz, 1H), 8.17 (t, *J* = 7.8 Hz, 1H), 7.56 (s, 1H), 7.45 (t, *J* = 7.26 Hz, 1H), 4.63-4.50 (m, 2H), 1.59 (t, *J* = 7.2 Hz, 3H), 1.39 (s, 15H) ppm. ¹³C{¹H} NMR (126 MHz, CDCl₃) δ 182.9, 153.9, 152.5, 142.9, 126.1, 123.5, 123.5, 115.2, 96.8, 46.6, 16.6, 10.1 ppm. MS (ESI, positive ions): *m/z* 402.1161 (calcd for [M-Cl]⁺: *m/z* 402.1147).

Complex 1d: Complex **1d** was synthesized following the general procedure using L₄ (100 mg, 0.299 mmol) and isolated as an air-stable reddish-pink solid. Yield: 112 mg (0.215 mmol, 72%). ¹H NMR (500 MHz, CDCl₃) δ 9.24 (s, 1H), 7.84 (d, *J* = 2.0 Hz, 1H), 7.71 (d, *J* = 8.5 Hz, 2H), 7.31 (d, *J* = 8.5 Hz, 2H), 7.21 (d, *J* = 1.8 Hz, 1H), 6.54 (d, J = 16.6 Hz, 1H), 5.38 (d, *J* = 16.6 Hz, 1H), 4.06 (s, 3H), 2.41 (s, 3H), 1.39 (s, 15H) ppm. ¹³C{¹H} NMR (126 MHz, CDCl₃) δ 169.3, 144.8, 140.6, 134.2, 130.6, 126.5, 125.7, 124.1, 120.9, 96.5, 44.7, 38.8, 21.3, 10.1 ppm. MS (ESI, positive ions): *m/z* 482.1706 (calcd for [M-Cl]⁺: *m/z* 482.1522). NMR spectra of the isolated complexes (1a-d)

Figure S5. ¹H NMR spectrum of 1a in CDCl₃. * indicates the solvent impurity of H_2O in CDCl₃.

Figure S6. ${}^{13}C{}^{1}H$ NMR spectrum of 1a in CDCl₃.

Figure S7. ¹H NMR spectrum of 1b in CDCl₃. * indicates the solvent impurity of H_2O in CDCl₃.

Figure S8. ${}^{13}C{}^{1}H$ NMR spectrum of 1b in CDCl₃.

Figure S9. ¹H NMR spectrum of 1c in CDCl₃. * indicates the solvent impurity of H_2O in CDCl₃.

Figure S10. $^{13}C{^{1}H}$ NMR spectrum of 1c in CDCl₃.

Figure S11. ¹H NMR spectrum of 1d in CDCl₃. * indicates the solvent impurity of H_2O in CDCl₃.

Figure S12. ${}^{13}C{}^{1}H$ NMR spectrum of 1d in CDCl₃.

Figure S13. Comparison of ¹H NMR spectrum of 1a in CDCl₃ without D₂O and with D₂O.

ESI-MS (positive-ion) spectra of the synthesized complexes (1a-d)

Figure S14. ESI-MS (positive ions) spectrum of the complex 1a.

Figure S15. ESI-MS (positive ions) spectrum of the complex 1b.

Figure S16. ESI-MS (positive ions) spectrum of the complex 1c.

Figure S17. ESI-MS (positive ions) spectrum of the complex 1d.

Optimization studies:

Screening of base^a

Entry	Cat.	Base	Conv.	Ratio
			(%)	(4a/4a')
1	1a	LiO ^t Bu	26	27/73
2	1 a	NaO ^t Bu	56	82/18
3	1a	KO ^t Bu	100	100/0
4	1a	CsOH	95	100/0
5	1 a	Cs ₂ CO ₃	82	76/24

^aReaction conditions: 2a (0.25 mmol), 3a (0.5 mmol), base (20 mol%), 1a (2 mol%) in toluene at 140 °C for 12 h. Conversion of 2a was determined by GC-MS using mesitylene as an internal standard.

Screening of alcohol equivalence^a

Entry	Alcohol equivalence	Conv. (%)	Ratio (4a/4a')
1	1	68	98/2
2	1.5	96	89/11
3	2	100	100/0

aReaction conditions: **2a** (0.25 mmol), **3a** (x equiv.), KO'Bu (20 mol%), **1a** (2 mol%) in toluene at 140 °C for 6 h. Conversion of **2a** was determined by GC-MS using mesitylene as an internal standard.

Screening of base equivalence^a

Entry	Base loading (x equiv.)	Conv. (%)	Ratio (4a/4a')
1	0.15	93	100/0
2	0.2	100	100/0
3	0.3	100	100/0

aReaction conditions: **2a** (0.25 mmol), **3a** (0.5 mmol), KO'Bu (x equiv.), **1a** (2 mol%) in toluene at 140 °C for 6 h. Conversion of **2a** was determined by GC-MS using mesitylene as an internal standard.

General procedure for the *a*-alkylation of nitriles using isolated catalyst

An oven-dried pressure tube was charged with catalyst **1a** (0.01 mmol, 2 mol %), KO'Bu (0.1 mmol, 20 mol%), nitrile (0.5 mmol), and alcohol (1 mmol) in toluene (1 mL). Then the reaction mixture was kept in a preheated oil bath at 140 °C. After completion of the reaction, the pressure tube was cooled to room temperature. The pure products were isolated using column chromatography with ethyl acetate and hexane as eluents.

General procedure for a-alkylation of nitriles using *in situ* generated catalyst

To a pressure tube, [Co(Cp*)Cl₂]₂ (0.002 mmol, 1 mol %), ligand (0.004 mmol, 2 mol%), KO'Bu (0.04 mmol, 20 mol%), were stirred in toluene (1 mL) at 80 °C for 1 h. Then, nitrile (0.2 mmol) and alcohol (0.4 mmol) were added and the reaction mixture was kept in a preheated oil bath at 140 °C for 6 h. After that, the pressure tube was cooled to room temperature. The progress of the reaction was monitored using GC-MS analysis.

Procedure for the calculation of TON for α-alkylation of nitriles

First the catalyst stock solution was prepared by dissolving the catalyst **1a** in dichloromethane solution. An oven dried pressure tube was charged with catalyst **1a** (0.01 mol%) and all the volatiles were dried in high vacuum. After that, KO'Bu (22 mg, 0.2 mmol), nitrile **2a** (117 mg, 1.0 mmol), and benzyl alcohol (216 mg, 2 mmol) were added under inert condition. Then the

reaction mixture was heated for 12 h at 140 °C and after completion of the reaction, small portion of aliquot was taken for GC-MS analysis. The data based on GC-MS analysis shows 64% conversion of nitrile with 55% selectivity towards product **4a** which gives TON of 5500 and TOF 458 h^{-1} .

General synthetic method for the α -alkylation of nitriles in large scale

An oven-dried pressure tube (25 mL) was charged with catalyst **1a** (0.1 mmol, 2 mol%), KO^tBu (1 mmol, 20 mol%), nitrile (5 mmol), and alcohol (10 mmol), followed by the addition of toluene (6 mL). Then, the tube was kept in an oil bath at 140 °C and heated for 6 h. After completion of the reaction, the desired product **4a** (81% yield) and **6a** (77% yield) were isolated by column chromatography with ethyl acetate and hexane as eluents.

Characterization data of isolated compounds:

2,3-diphenylpropanenitrile (**Compound-4a**):³ Following the general procedure, the titled compound was isolated as colourless liquid (92 mg, 0.44 mmol, 89% yield) using silica gel column chromatography (2-5% ethyl acetate in hexane). ¹H NMR (400 MHz, CDCl₃) δ 7.29-7.16 (m, 8H), 7.05 (d, *J* = 7.7 Hz, 2H), 3.91 (t, *J* = 7.4 Hz, 1H), 3.13-3.02 (m, 2H) ppm. ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 136.4, 135.3, 129.3, 129.1, 128.7, 128.3, 127.6, 127.5, 120.5, 42.3, 39.9 ppm.

2-phenyl-3-(*p***-tolyl)propanenitrile (Compound-4b):**³ Following the general procedure, the titled compound was isolated as colourless liquid (93 mg, 0.42 mmol, 84% yield) using silica gel column chromatography (2-5% ethyl acetate in hexane). ¹H NMR (400 MHz, CDCl₃) δ 7.29-7.23 (m, 3H), 7.19-7.15 (m, 2H), 7.02 (d, *J* = 8.1 Hz, 2H), 6.94 (d, *J* = 8.1 Hz, 2H), 3.88 (t, *J* = 7.5 Hz, 1H), 3.09-2.98 (m, 2H), 2.24 (s, 3H) ppm. ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 137.1, 135.4, 133.3, 129.4, 129.2, 129.1, 128.2, 127.6, 120.6, 41.9, 40.0, 21.2 ppm.

3-(4-isopropylphenyl)-2-phenylpropanenitrile (Compound-4c):⁴ Following the general procedure, the titled compound was isolated as white solid (100 mg, 0.40 mmol, 80% yield) using silica gel column chromatography (2-5% ethyl acetate in hexane). ¹H NMR (400 MHz, CDCl₃) δ 7.40-7.33 (m, 3H), 7.32-7.27 (m, 2H), 7.19-7.16 (m, 2H), 7.11-7.08 (m, 2H), 3.98 (dd, J = 8.7, 6.2 Hz, 1H), 3.19-3.08 (m, 2H), 2.93-2.86 (m, 1H), 1.25

 $(d, J = 7.0 \text{ Hz}, 6\text{H}) \text{ ppm.}^{13}\text{C}{^{1}\text{H}} \text{ NMR} (101 \text{ MHz}, \text{CDCl}_{3}) \delta 148.2, 135.6, 133.8, 129.2, 129.1, 128.3, 127.6, 126.8, 120.6, 42.0, 40.1, 33.9, 24.1 \text{ ppm.}$

3-(4-methoxyphenyl)-2-phenylpropanenitrile (Compound-4d):³ Following the general procedure, the titled compound was isolated as colourless liquid (89 mg, 0.37 mmol, 75% yield) using silica gel column chromatography (2-5% ethyl acetate in hexane). ¹H NMR (400 MHz, CDCl₃) δ 7.29-7.23 (m, 3H), 7.18-7.15 (m, 2H), 6.96 (d, *J* = 8.8 Hz, 2H), 6.74 (d, *J* = 8.8 Hz, 2H), 3.89-3.86 (m, 1H), 3.70 (s, 3H), 3.08-2.97 (m, 2H) ppm. ¹³C{¹H} NMR (101

MHz, CDCl₃) *δ* 159.0, 135.4, 130.4, 129.1, 128.4, 128.3, 127.6, 120.6, 114.1, 55.3, 41.5, 40.2 ppm.

3-(4-fluorophenyl)-2-phenylpropanenitrile (Compound-4e):³ Following the general procedure, the titled compound was isolated as white solid (99 mg, 0.44 mmol, 88% yield) using silica gel column chromatography (2-5% ethyl acetate in hexane).¹H NMR (500 MHz, CDCl₃) δ 7.29-7.24 (m, 3H), 7.17-7.14 (m, 2H), 7.00-6.97 (m, 2H), 6.91-6.86 (m, 2H), 3.89 (dd, *J* = 8.1, 6.4 Hz, 1H), 3.09-3.01 (m, 2H) ppm. ¹³C{¹H} NMR (126 MHz, CDCl₃) δ 163.3,

161.3, 135.0, 132.0, 132.0, 131.0, 130.9, 129.2, 128.4, 127.6, 120.3, 115.7, 115.5, 41.4, 39.9 ppm.

3-(4-chlorophenyl)-2-phenylpropanenitrile (Compound-4f):³ Following the general procedure, the titled compound was isolated as white solid (99 mg, 0.41 mmol, 82% yield) using silica gel column chromatography (2-5% ethyl acetate in hexane). ¹H NMR (400 MHz, CDCl₃) δ 7.36-7.34 (m, 3H), 7.26-7.22 (m, 4H), 7.03 (d, J = 8.4 Hz, 2H), 3.98 (t, J = 7.2 Hz, 1H), 3.18-3.08 (m, 2H) ppm. ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 134.9, 134.7, 133.5, 130.7, 129.2,

128.9, 128.5, 127.6, 120.2, 41.5, 39.7 ppm.

3-(4-bromophenyl)-2-phenylpropanenitrile (Compound-4g):³ Following the general

procedure, the titled compound was isolated as white solid (112 mg, 0.39 mmol, 78% yield) using silica gel column chromatography (2-5% ethyl acetate in hexane). ¹H NMR (400 MHz, CDCl₃) δ 7.41 (d, J = 7.9 Hz, 2H), 7.36-7.34 (m, 3H), 7.25-7.22 (m, 2H), 6.98 (d, J = 7.8 Hz, 2H), 3.98 (t, J = 7.1 Hz, 1H), 3.17-3.07 (t, J = 6.1 Hz, 2H)

ppm. ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 135.2, 134.8, 131.8, 131.1, 129.2, 128.5, 127.6, 121.6, 120.2, 41.6, 39.6 ppm.

2-phenyl-3-(o-tolyl)propanenitrile (Compound-4h):⁴ Following the general procedure, the

titled compound was isolated as colourless liquid (76 mg, 0.36 mmol, 72% yield) using silica gel column chromatography (2-5% ethyl acetate in hexane). ¹H NMR (400 MHz, CDCl₃) δ 7.39-7.34 (m, 3H), 7.30-7.27 (m, 2H), 7.19-7.14 (m, 4H), 3.97 (dd, *J* = 8.7, 6.5 Hz, 1H), 3.27-3.11 (m,

2H), 2.24 (s, 3H) ppm. ¹³C{¹H} NMR (101 MHz, CDCl₃) *δ* 136.4, 135.6, 134.8, 130.7, 130.2, 129.2, 128.4, 127.7, 127.5, 126.4, 120.6, 39.6, 38.9, 19.4 ppm.

3-(2-bromophenyl)-2-phenylpropanenitrile (**Compound-4i**):⁵ Following the general procedure, the titled compound was isolated as white solid (107 mg, 0.37 mmol, 75% yield) using silica gel column chromatography (2-5% ethyl acetate in hexane). ¹H NMR (400 MHz, CDCl₃) δ 7.59 (d, J = 7.7 Hz, 1H), 7.39-7.35 (m, 6H), 7.19-7.15 m, 2H), 4.21 (t, J = 7.4 Hz, 1H), 3.33-3.19 (m, 2H) ppm. ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 136.4, 136.0, 135.4, 133.2, 132.1, 129.5, 129.3, 128.5, 128.0, 127.4, 124.6, 120.2, 43.0, 37.9 ppm.

3-(3,4-dimethoxyphenyl)-2-phenylpropanenitrile (Compound-4j):⁶ Following the general procedure, the titled compound was isolated as white solid (96 mg, 0.36 mmol, 72% yield) using silica gel column chromatography (2-5% ethyl acetate in hexane). ¹H NMR (500 MHz, CDCl₃) δ 7.37-7.30 (m, 3H), 7.25-7.23 (m, 2H), 6.78 (d, *J* = 8.1 Hz, 1H), 6.69 (dd, *J* = 8.2, 2.1 Hz, 1H), 6.52 (d, *J* = 2.1 Hz, 1H), 3.98 (m, 1H), 3.85 (s,

3H), 3.76 (s, 3H), 3.16-3.06 (m, 2H) ppm. ${}^{13}C{}^{1}H$ NMR (101 MHz, CDCl₃) δ 148.9, 148.5, 135.3, 129.1, 128.8, 128.3, 127.7, 121.6, 120.6, 112.6, 111.3, 56.0, 55.9, 41.9, 40.0 ppm.

3-(3-chlorophenyl)-2-phenylpropanenitrile (Compound-4k):⁷ Following the general procedure, the titled compound was isolated as white solid (104 mg, 0.43 mmol, 86% yield) using silica gel column chromatography (2-5% ethyl acetate in hexane). ¹H NMR (400 MHz, CDCl₃) δ 7.40-7.34 (m, 3H), 7.28-7.26 (m, 2H), 7.25-7.23 (m, 2H), 7.11 (t, *J* = 2.0 Hz, 1H), 7.04-7.02 (m, 1H), 4.02-3.98 (m, 1H), 3.20-3.08 (m, 2H) ppm. ¹³C{¹H} NMR (101 MHz,

CDCl₃) δ 138.3, 134.9, 134.5, 130.0, 129.5, 129.3, 128.6, 127.8, 127.6, 120.1, 41.9, 39.6 ppm.

3-(4-(methylthio)phenyl)-2-phenylpropanenitrile (Compound-4l): Following the general

procedure, the titled compound was isolated as colourless liquid (99 mg, 0.39 mmol, 78% yield) using silica gel column chromatography (2-5% ethyl acetate in hexane). ¹H NMR (400 MHz, CDCl₃) δ 7.40-7.34 (m, 3H), 7.27 (s, 2H), 7.19 (d, *J* = 8.3 Hz, 2H), 7.06 (d, *J* = 8.3 Hz, 2H), 3.99 (t, *J* = 7.3 Hz, 1H), 3.19-3.08 (m, 2H), 2.48 (s, 3H) ppm.

¹³C{¹H} NMR (101 MHz, CDCl₃) δ 137.7, 135.2, 133.1, 129.8, 129.2, 128.4, 127.6, 126.8, 120.4, 41.8, 39.9, 15.9 ppm.

3-(4-(dimethylamino)phenyl)-2-phenylpropanenitrile (Compound-4m):⁵ Following the

general procedure, the titled compound was isolated as yellow solid (88 mg, 0.35 mmol, 70% yield) using silica gel column chromatography (2-5% ethyl acetate in hexane). ¹H NMR (500 MHz, CDCl₃) δ 7.37-7.31 (m, 3H), 7.28 (d, *J* = 1.8 Hz, 2H), 7.01 (d, *J* = 8.9 Hz, 2H), 6.66 (d, *J* = 8.7 Hz, 2H), 3.93 (dd, *J* = 8.4, 6.4 Hz, 1H), 3.13-3.03 (m, 2H),

2.93 (s, 6H) ppm. ¹³C{¹H} NMR (126 MHz, CDCl₃) *δ* 150.0, 135.8, 130.0, 129.1, 128.2, 127.7, 124.2, 120.9, 112.8, 41.6, 40.7, 40.5 ppm.

2-phenyl-3-(4-(trifluoromethyl)phenyl)propanenitrile (Compound-4n):⁵ Following the

CF₃

general procedure, the titled compound was isolated as orange colour solid (103 mg, 0.37 mmol, 75% yield) using silica gel column chromatography (2-5% ethyl acetate in hexane). ¹H NMR (400 MHz, CDCl₃) δ 7.55 (d, *J* = 8.1 Hz, 2H), 7.40-7.33 (m, 3H), 7.25-7.23 (m,

4H), 4.04 (t, J = 7.2 Hz, 1H), 3.28-3.18 (m, 2H) ppm. ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 134.7, 129.8, 129.3, 128.6, 127.6, 125.7, 125.7, 120.0, 41.9, 39.5 ppm.

3-(naphthalen-1-yl)-2-phenylpropanenitrile (Compound-4o):³ Following the general procedure, the titled compound was isolated as colourless liquid (111 mg, 0.43 mmol, 86% yield) using silica gel column chromatography (2-5% ethyl acetate in hexane). ¹H NMR (400 MHz, CDCl₃) δ 7.94 (dd, *J* = 15.0, 8.1 Hz, 2H), 7.82 (d, *J* = 8.2 Hz, 1H), 7.60 -7.52 (m, 2H), 7.43 -7.32 (m, 7H), 4.19 (t, *J* = 7.7 Hz, 1H), 3.70-3.59 (m, 2H) ppm. ¹³C{¹H} NMR (101

MHz, CDCl₃) *δ* 135.7, 134.1, 132.3, 131.4, 129.4, 129.2, 128.4, 128.4, 128.2, 127.5, 126.7, 125.9, 125.6, 122.7, 39.7, 38.9 ppm.

3-(naphthalen-2-yl)-2-phenylpropanenitrile (Compound-4p):⁴ Following the general

procedure, the titled compound was isolated as white solid (105 mg, 0.41 mmol, 82% yield) using silica gel column chromatography (2-5% ethyl acetate in hexane). ¹H NMR (400 MHz, CDCl₃) δ 7.73-7.67 (m, 3H), 7.51 (s, 1H), 7.38-7.37 (m, 2H), 7.24 (m, s, 3H), 7.20-7.13 (m,

3H), 4.00 (t, J = 7.1 Hz, 1H), 3.29-3.17 (m, 2H) ppm. ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 135.3, 133.8, 133.5, 132.7, 129.2, 128.4, 128.3, 128.2, 127.8, 127.8, 127.6, 127.2, 126.3, 126.1, 120.5, 42.4, 39.8 ppm.

3-(benzo[d][1,3]dioxol-4-yl)-2-phenylpropanenitrile (**Compound-4q**):⁴ Following the general procedure, the titled compound was isolated as colourless liquid (99 mg, 0.39 mmol,

79% yield) using silica gel column chromatography (2-5% ethyl acetate in hexane). ¹H NMR (400 MHz, CDCl₃) δ 7.39-7.33 (m, 3H), 7.27 (d, *J* = 7.8 Hz, 2H), 6.73 (d, *J* = 7.8 Hz, 1H), 6.62-6.58 (m, 2H), 5.95 (s, 2H), 3.95 (t, *J* = 7.2 Hz, 1H), 3.10-3.06 (m, 2H) ppm. ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 147.9, 147.0, 135.2, 130.0, 129.1, 128.3, 127.6, 122.6, 120.5, 109.6,

108.5, 101.2, 42.1, 40.1 ppm.

2-phenyl-3-(thiophen-2-yl)propanenitrile (**Compound-4r**):³ Following the general procedure, the titled compound was isolated as colourless liquid (79 mg, 0.37 mmol, 74%)

yield) using silica gel column chromatography (2-5% ethyl acetate in hexane). ¹H NMR (400 MHz, CDCl₃) δ 7.40-7.28 (m, 5H), 7.18 (d, J = 5.3 Hz, 1H), 6.95-6.92 (m, 1H), 6.86 (d, J = 3.8 Hz, 1H), 4.05 (t, J = 7.1 Hz, 1H), 3.48-3.33 (m, 2H) ppm. ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 138.0,

134.9, 129.2, 128.5, 127.6, 127.2, 127.1, 125.0, 120.2, 40.2, 36.3 ppm.

2,5-diphenylpenta-2,4-dienenitrile (**Compound-4s**):³ Following the general procedure, the titled compound was isolated as white solid (83 mg, 0.36 mmol, 72% yield) using silica gel column chromatography (2-5% ethyl acetate in hexane). ¹H NMR (500 MHz, CDCl₃) δ 7.65-7.63 (m, 2H), 7.56 (d, *J* = 8.1 Hz, 2H), 7.43-7.35 (m, 8H), 7.06-7.01 (m, 1H) ppm. ¹³C{¹H} NMR (126 MHz, CDCl₃) δ 141.7, 141.4, 136.0, 133.5, 129.7, 129.3,

129.2, 129.1, 127.7, 125.8, 125.4, 117.1, 113.4 ppm.

3-phenyl-2-(p-tolyl)propanenitrile (Compound-4t):⁴ Following the general procedure, the titled compound was isolated as colourless liquid (104 mg, 0.40 mmol, 81% yield) using silica

gel column chromatography (2-5% ethyl acetate in hexane. ¹H NMR (400 MHz, CDCl₃) δ 7.87-7.80 (m, 3H), 7.75 (s, 1H), 7.53-7.51 (m, 2H), 7.36 (d, *J* = 8.6 Hz, 1H), 7.32-7.28 (m, 3H), 7.17 (d, *J* = 7.5 Hz, 2H), 4.18 (t, *J* = 7.1 Hz, 1H), 3.32-3.21 (m, 2H) ppm. ¹³C{¹H}

NMR (101 MHz, CDCl₃) *δ* 136.4, 133.3, 133.0, 132.6, 129.4, 129.1, 128.8, 128.0, 127.9, 127.6, 126.8, 126.8, 126.7, 125.1, 120.5, 42.2, 40.1 ppm.

2-(naphthalen-2-yl)-3-phenylpropanenitrile (Compound-4u):⁹ Following the general procedure, the titled compound was isolated as colourless liquid (81 mg, 0.36 mmol, 73% yield) using silica gel column chromatography (2-5% ethyl acetate in hexane). ¹H NMR (500 MHz, CDCl₃) δ 7.33-7.27 (m, 3H), 7.19-7.15 (m, 6H), 3.97 (dd, J = 8.5, 6.4 Hz, 1H), 3.21-3.10 (m, 2H),

2.36 (s, 3H) ppm. ¹³C{¹H} NMR (126 MHz, CDCl₃) *δ* 138.1, 136.6, 132.4, 129.8, 129.3, 128.7, 127.4, 120.6, 42.3, 39.5, 21.2 ppm.

2-(4-methoxyphenyl)-3-(p-tolyl)propanenitrile (Compound-4v):⁴ Following the general

procedure, the titled compound was isolated as colourless liquid (98 mg, 0.38 mmol, 78% yield) using silica gel column chromatography (2-5% ethyl acetate in hexane). ¹H NMR (500 MHz, CDCl₃) δ 7.18 (d, J = 8.7 Hz, 2H), 7.11 (d, J = 7.9 Hz, 2H), 7.03 (d, J = 8.1 Hz, 2H), 6.88 (d, J = 8.9 Hz, 2H), 3.93 (dd, J = 8.3, 6.5 Hz, 1H), 3.81 (s, 3H), 3.16-3.05

(m, 2H), 2.33 (s, 3H) ppm. ${}^{13}C{}^{1}H$ NMR (101 MHz, CDCl₃) δ 159.5, 137.0, 133.5, 129.4, 129.2, 128.7, 127.8, 120.8, 55.4, 42.0, 39.2, 21.2 ppm.

2-(4-chlorophenyl)-3-phenylpropanenitrile (Compound-4w):⁴ Following the general procedure, the titled compound was isolated as white solid (96 mg, 0.4 mmol, 80% yield) using silica gel column chromatography (2-5% ethyl acetate in hexane). ¹H NMR (400 MHz, CDCl₃) δ 7.26-7.19 (m, 5H), 7.09 (d, *J* = 10.9 Hz, 2H), 7.03 (d, *J* = 7.5 Hz, 2H), 3.91 (t, *J* = 7.3 Hz, 100 MHz, CDCl₃) δ 7.26-7.19 (m, 5H), 7.09 (d, *J* = 10.9 Hz, 2H), 7.03 (d, *J* = 7.5 Hz, 2H), 3.91 (t, *J* = 7.3 Hz, 100 MHz, CDCl₃) δ 7.26-7.19 (m, 5H), 7.09 (d, *J* = 10.9 Hz, 2H), 7.03 (d, *J* = 7.5 Hz, 2H), 3.91 (t, *J* = 7.3 Hz, 100 MHz, CDCl₃) δ 7.26-7.19 (m, 5H), 7.09 (d, *J* = 10.9 Hz, 2H), 7.03 (d, *J* = 7.5 Hz, 2H), 3.91 (t, *J* = 7.3 Hz, 100 MHz, CDCl₃) δ 7.26-7.19 (m, 5H), 7.09 (d, *J* = 10.9 Hz, 2H), 7.03 (d, *J* = 7.5 Hz, 2H), 7.03 Hz, 100 MHz, CDCl₃) δ 7.26-7.19 (m, 5H), 7.09 (d, *J* = 10.9 Hz, 2H), 7.03 (d, *J* = 7.5 Hz, 2H), 7.04 Hz, 100 MHz, 100 M

1H), 3.14-3.00 (m, 2H) ppm. ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 135.9, 134.4, 133.7, 129.4, 129.3, 129.0, 128.9, 127.7, 120.1, 42.1, 39.3 ppm.

2-(naphthalen-2-yl)pentanenitrile (Compound-6a):¹⁰ Following the general procedure, the

titled compound was isolated as pale yellow liquid (86 mg, 0.41 mmol, 82% yield) using silica gel column chromatography (2-5% ethyl acetate in hexane). ¹H NMR (500 MHz, CDCl₃) δ 7.87-7.82 (m, 4H), 7.54-7.49

(m, 2H), 7.41 (dd, J = 8.5, 2.0 Hz, 1H), 3.96 (dd, J = 8.5, 6.3 Hz, 1H), 2.05-1.90 (m, 2H), 1.57-1.49 (m, 2H), 0.98 (t, J = 7.4 Hz, 3H) ppm. ¹³C{¹H} NMR (126 MHz, CDCl₃) δ 133.5, 133.0, 129.2, 128.0, 127.9, 126.8, 126.6, 126.4, 125.0, 121.0, 37.9, 37.5, 20.4, 13.5 ppm.

2-(naphthalen-2-yl)hexanenitrile (Compound-6b): Following the general procedure, the titled compound was isolated as pale yellow liquid (89 mg, 0.40 mmol, 80% yield) using silica gel column chromatography (2-5% ethyl acetate in hexane).¹H NMR (400 MHz, CDCl₃) δ 7.88-7.82 (m, 4H), 7.55-7.50 (m, 2H), 7.41 (d, J = 8.4 Hz, 1H), 3.95 (t, J = 8.7 Hz, 1H),

2.03-1.92 (m, 2H), 1.53-1.48 (m, 2H), 1.45-1.37 (m, 2H), 0.91 (t, J = 6.4 Hz, 3H) ppm. ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 133.4, 133.4, 132.9, 129.1, 128.0, 127.8, 126.8, 126.6, 126.4, 124.9, 121.1, 37.7, 35.6, 29.2, 22.2, 13.9 ppm.

2-(naphthalen-2-yl)octanenitrile (Compound-6c):¹¹ Following the general procedure, the titled compound was isolated as pale yellow liquid 111 mg, 0.44 mmol, 88% yield) using silica

gel column chromatography (2-5% ethyl acetate in hexane). ¹H NMR (400 MHz, CDCl₃) δ 7.88-7.82 (m, 4H), 7.52-7.51 (m, 2H), 7.41 (d, *J* = 8.3 Hz, 1H), 3.95 (t, *J* = 7.0 Hz, 1H), 2.02-1.94 (m,

2H), 1.54-1.49 (m, 2H), 1.35-1.29 (m, 6H), 0.88 (s, 3H) ppm. ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 133.4, 133.4, 132.9, 129.1, 128.0, 127.8, 126.8, 126.5, 126.4, 124.9, 121.1, 37.7, 35.9, 31.6, 28.8, 27.1, 22.6, 14.1 ppm.

2-phenyldodecanenitrile (Compound-6d): Following the general procedure, the titled compound was isolated as pale-yellow liquid (100 mg, 0.39 mmol, 78% yield) using silica gel column chromatography (2-5% ethyl acetate in hexane). ¹H NMR (500 MHz, CDCl₃)

δ 7.40-7.36 (m, 2H), 7.34-7.30 (m, 3H), 3.78-7.75 (m, 1H), 1.96-1.82 (m, 2H), 1.53-1.40 (m, 2H), 1.26 (*br*, 14H), 0.88 (t, *J* = 7.0 Hz, 3H) ppm. ¹³C{¹H} NMR (126 MHz, CDCl₃) δ 136.2, 129.2, 128.1, 127.3, 121.1, 37.7, 37.5, 36.0, 32.0, 29.6, 29.6, 29.4, 29.1, 27.2, 22.8, 14.2 ppm.

2-(p-tolyl)hexanenitrile (Compound-6e): Following the general procedure, the titled compound was isolated as pale colourless liquid (66 mg, 0.35 mmol, 71% yield) using silica gel column chromatography (2-5% ethyl acetate in hexane). ¹H NMR (500 MHz, CDCl₃) δ 7.20 (q, *J* = 8.2 Hz, 4H), 3.75-3.72 (m, 1H), 2.35 (s, 3H), 1.95-1.81 (m, 2H), 1.52-1.33 (m, 4H), 0.91 (t, *J* = 7.2 Hz, 3H) ppm. ¹³C{¹H} NMR (126 MHz, CDCl₃) δ 137.9, 133.2, 129.8, 127.2, 121.2, 37.1, 35.7, 29.2, 22.2, 21.1, 13.9 ppm. HRMS (ESI) *m/z*: [M+Na]⁺ Calcd for C₁₃H₁₇NNa 210.1259; Found 210.1248.

2-(4-chlorophenyl)hexanenitrile (Compound-6f): Following the general procedure, the

titled compound was isolated as pale colourless liquid (79 mg, 0.38 mmol, 76% yield) using silica gel column chromatography (2-5% ethyl acetate in hexane). ¹H NMR (500 MHz, CDCl₃) δ 7.36-7.34 (m, *J* = 8.5

Hz, 2H), 7.27 (s, *br*, 1H), 7.25 (s, *br*, 1H), 3.76-3.73 (m, 1H), 1.95-1.80 (m, 2H), 1.50-1.32 (m, 4H), 0.91 (t, J = 7.2 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 134.7, 134.2, 129.4, 128.7, 120.6, 37.0, 35.6, 29.2, 22.2, 13.9 ppm.

2-(naphthalen-2-yl)icos-11-enenitrile (Compound-6g): Following the general procedure,

the titled compound was isolated as pale colourless liquid (117 mg, 0.42 mmol, 85% yield) using silica gel column chromatography (2-5% ethyl acetate in hexane). ¹H NMR (500 MHz, CDCl₃) δ 7.87-7.81 (m, 4H), 7.54-7.49

(m, 2H), 7.41 (dd, J = 8.4, 2.3 Hz, 1H), 5.39-532 (m, 2H), 3.94 (dd, J = 8.6, 6.2 Hz, 1H), 2.03-1.94 (m, 6H), 1.55-1.49 (m, 2H), 1.37-1.28 (m, 22H), 0.91-0.88 (m, 3H) ppm. ¹³C{¹H} NMR (126 MHz, CDCl₃) δ 133.5, 133.5, 132.9, 130.1, 129.9, 129.1, 128.0, 127.8, 126.8, 126.6, 126.4, 124.9, 121.0, 37.7, 35.9, 29.9, 29.8, 29.8, 29.6, 29.6, 29.5, 29.4, 29.4, 29.3, 29.3, 29.1, 27.4, 27.3, 27.2, 22.8, 14.2 ppm. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₃₀H₄₃NH 418.3474; Found 418.3454.

5,9-dimethyl-2-(naphthalen-2-yl)dec-8-enenitrile-2-(naphthalen-2-yl)octanenitrile

(Compound-6h): Following the general procedure, the titled compound was isolated as pale

yellow liquid (127 mg, 0.41 mmol, 83% yield) using silica gel column chromatography (2-5% ethyl acetate in hexane). ¹H NMR (400 MHz, CDCl₃) δ 7.89-7.82 (m, 4H), 7.55-7.49 (m, 2H), 7.41 (d, *J* = 8.7 Hz, 1H), 5.07 (t, *J* = 8.0 Hz, 1H), 3.94-3.89 (m, 1H), 2.02-1.90 (m, 4H), 1.68 (s, 3H), 1.58 (s, 3H), 1.48 (s, 2H), 1.34-1.26 (m, 2H), 1.17-1.12 (m, 1H), 0.89 (d, *J* = 6.8 Hz, 3H) ppm. ¹³C{¹H} NMR (101 MHz,

CDCl₃) δ 133.4, 132.9, 131.5, 129.1, 128.0, 127.8, 126.8, 126.6, 126.4, 126.4, 124.9, 124.6, 121.1, 121.1, 37.9, 36.9, 36.7, 34.3, 33.6, 33.5, 32.1, 25.8, 25.5, 25.5, 19.5, 19.4, 17.8 ppm. HRMS (ESI) *m/z*: [M+Na]⁺ Calcd for C₂₂H₂₇NNa 328.2041; Found 328.2025.

2-(naphthalen-2-yl)pentanenitrile (Compound-6i):¹⁰ Following the general procedure, the titled compound was isolated as pale yellow liquid (65 mg, 0.31 mmol, 62% yield) using silica gel column chromatography (2-5% ethyl acetate in hexane). ¹H NMR (400 MHz, CDCl₃) δ 7.87-7.82 (m, 4H), 7.53-7.49 (m, 2H), 7.40 (dd, J = 8.6, 2.0 Hz, 1H), 3.96 (dd, J = 8.5, 6.3 Hz, 1H), 2.06-1.90 (m, 2H), 1.61-1.58 (m, 1H), 1.53-1.49 (m, 1H), 0.98 (t, J = 7.4 Hz, 3H) ppm. ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 133.4, 132.9, 129.2, 128.0, 127.9, 126.8, 126.6, 126.4, 125.0, 121.1, 37.9, 37.5, 20.5, 13.6 ppm.

2-(3-methoxyphenyl)pentanenitrile (Compound-6j): Following the general procedure, the titled compound was isolated as pale yellow liquid (71 mg, 0.37 mmol, 75% yield) using silica gel column chromatography (2-5% ethyl acetate in hexane). ¹H NMR (400 MHz, CDCl₃) δ 7.31-7.28 (m, 1H), 6.92-6.84 (m, 3H), 3.82 (s, 3H), 3.73 (dd, *J* = 8.5, 6.3 Hz, 1H), 1.97-1.81 (m, 2H), 1.52-1.34 (m, 4H), 0.91 (t, *J* = 7.27 Hz, 3H) ppm. ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 160.2, 137.7, 130.2, 121.0, 119.7, 113.4, 113.2, 55.5, 37.5, 35.7, 29.3, 22.2, 13.9 ppm. HRMS (ESI)

m/z: [M+NH₄]⁺ Calcd for C₁₃H₁₇NONH₄ 221.1654; Found 221.1653.

3-cyclohexyl-2-(naphthalen-2-yl)propanenitrile (Compound-6k): Following the general

procedure, the titled compound was isolated as colourless liquid (92 mg, 0.35 mmol, 70% yield) using silica gel column chromatography (2-5% ethyl acetate in hexane). ¹H NMR (500 MHz, CDCl₃) δ 7.87-7.81 (m, 4H), 7.54-7.49 (m, 2H), 7.42-7.39 (m, 1H), 7.26 (s, 1H), 4.02

(dd, J = 9.8, 6.2 Hz, 1H), 1.98-1.94 (m, 1H), 1.88-186 (m, 1H), 1.80-1.67 (m, 5H), 1.59-1.58 (m, 1H), 1.31-1.28 (m, 1H), 1.23-1.14 (m, 2H), 1.04-0.96 (m, 2H) ppm. ¹³C{¹H} NMR (126 MHz, CDCl₃) δ 134.0, 133.6, 133.0, 129.2, 128.0, 127.9, 126.8, 126.6, 126.3, 125.0, 121.2, 43.7, 35.5, 35.2, 33.5, 32.6, 26.5, 26.1, 26.0 ppm. HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₁₉H₂₁NNa 286.1572; Found 286.1558.

2-cyclopentyl-2-phenylacetonitrile (Compound-6l):¹² Following the general procedure, the titled compound was isolated as colourless liquid (74 mg, 0.4 mmol, 80% yield) using silica gel column chromatography (2-5% ethyl acetate in hexane). ¹H NMR (400 MHz, CDCl₃) δ 7.39-7.31 (m, 5H), 3.71 (d, *J* = 7.7 Hz, 1H), 2.31 (q, *J* = 6.8 Hz, 1H), 1.88-1.83 (m, 1H), 1.73-1.69 (m, 3H), 1.58-1.44 (m, 2H), 1.20 1 24 (m, 1H) mm ¹³C(¹H) δ 126 0 120 0 128 0 127 7 120 7 45 4 42 6 21 1 20 4

1.39-1.34 (m, 1H) ppm. ¹³C{¹H} δ 136.0, 129.0, 128.0, 127.7, 120.7, 45.4, 42.6, 31.1, 30.4, 25.0, 24.9 ppm.

2-cyclopentyl-2-(p-tolyl)acetonitrile (Compound-6m):¹² Following the general procedure, the titled compound was isolated as colourless liquid (46 mg, 0.38 mmol, 76% yield) using silica gel column chromatography (2-5% ethyl acetate in hexane). ¹H NMR (500 MHz, CDCl₃) δ 7.21-7.16 (m, 4H), 3.67 (d, *J* = 7.7 Hz, 1H), 2.35 (s, 3H), 2.31-2.27 (m, 1H), 1.88-1.82 (m, 1H), 1.74-1.69 (m, 3H), 1.59-1.49 (m, 3H), 1.37-1.30 (m, 1H) ppm. ¹³C{¹H} NMR (126 MHz, CDCl₃) δ 137.8,

133.0, 129.6, 127.6, 120.8, 45.3, 42.2, 31.0, 30.3, 25.0, 24.9, 21.1 ppm.

2-(4-chlorophenyl)-2-cyclopentylacetonitrile (Compound-6n):¹² Following the general procedure, the titled compound was isolated as white solid (87 mg, 0.39 mmol, 79% yield) using silica gel column chromatography (2-5% ethyl acetate in hexane). ¹H NMR (500 MHz, CDCl₃) δ 7.35-7.33 (m, 2H), 7.27-7.26 (m, 1H), 7.25-7.24 (m, 1H), 3.69 (d, *J* = 7.8 Hz, 1H), 2.31-2.23 (m,

1H), 1.87-1.81 (m, 1H), 1.72-1.67 (m, 3H), 1.61-1.54 (m, 2H), 1.51-1.44 (m, 1H), 1.37-1.28 (m, 1H) ppm. ¹³C{¹H} NMR (126 MHz, CDCl₃) δ 134.5, 134.1, 129.3, 129.1, 120.2, 45.3, 42.1, 31.1, 30.3, 25.0, 24.9 ppm.

2-cyclopentyl-2-(naphthalen-2-yl)acetonitrile (Compound-60): Following the general

procedure, the titled compound was isolated as white solid (92 mg, 0.39 mmol, 78% yield) using silica gel column chromatography (2-5% ethyl acetate in hexane). ¹H NMR (400 MHz, CDCl₃) δ 7.87-7.80 (m, 3H), 7.80 (s, 1H), 7.53-7.50 (m, 2H), 7.42 (d, *J* = 8.4 Hz, 1H), 3.89 (d, *J* = 7.7 Hz,

1H), 2.47-2.38 (m, 1H), 1.90-1.84 (m, 1H), 1.75-1.68 (m, 3H), 1.62-1.53 (m, 3H), 1.43-1.38 (m, 1H) ppm. ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 133.4, 133.3, 132.9, 129.0, 128.0, 127.8, 126.7, 126.5, 125.3, 120.7, 45.3, 42.7, 31.1, 30.4, 25.1, 25.0 ppm.

2-cyclohexyl-2-(naphthalen-2-yl)acetonitrile (Compound-6p):¹² Following the general

procedure, the titled compound was isolated as colourless liquid (92 mg, 0.37 mmol, 74% yield) using silica gel column chromatography (2-5% ethyl acetate in hexane). ¹H NMR (500 MHz, CDCl₃) δ 7.86-7.83 (m, 3H), 7.78 (s, 1H), 7.54-7.48 (m, 2H), 7.38-7.36 (m, 1H), 3.80 (d, *J* = 6.6

Hz, 1H), 1.88-1.84 (m, 1H), 1.76-1.67 (m, 3H), 1.60-1.58 (m, 2H), 1.23-1.19 (m, 5H) ppm. $^{13}C{^{1}H}$ NMR (126 MHz, CDCl₃) δ 133.4, 133.0, 132.2, 128.9, 128.0, 127.9, 127.3, 126.8, 126.6, 125.6, 120.2, 44.7, 42.9, 31.5, 29.8, 26.1, 26.0, 26.0 ppm.

2-(naphthalen-2-yl)hexanenitrile (Compound-6q): Following the general procedure, the

titled compound was isolated as pale yellow liquid (71 mg, 0.32 mmol, 65% yield) using silica gel column chromatography (2-5% ethyl acetate in hexane).¹H NMR (400 MHz, CDCl₃) δ 7.88-7.82 (m, 4H), 7.54-7.49 (m, 2H), 7.41 (dd, *J* = 8.6, 2.0 Hz, 1H), 3.94 (m,

1H), 2.03-1.96 (m, 2H), 1.53-1.48 (m, 1H), 1.42-1.35 (m, 1H), 0.92 (t, J = 7.2 Hz, 3H) ppm. ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 133.5, 133.4, 132.9, 132.9, 129.1, 128.0, 127.8, 126.8, 126.6, 126.4, 124.9, 121.1, 37.7, 35.6, 29.3, 22.2, 13.9 ppm.

2-phenyl-3-(p-tolyl)butanenitrile (Compound-6r): Following the general procedure, the titled compound was isolated as colourless liquid (83 mg, 0.35 mmol, 71% yield) using silica

gel column chromatography (2-5% ethyl acetate in hexane). ¹H NMR (500 MHz, CDCl₃) δ 7.31-7.30 (m, 3H), 7.13-7.08 (m, 2H), 7.10-7.08 (m, 2H), 7.01-6.99 (m, 2H), 3.92 (d, *J* = 7.2 Hz, 1H), 3.23-3.16 (m, 1H), 2.32 (s, 3H), 1.35 (d, *J* = 7.0 Hz, 3H) ppm. ¹³C{¹H} NMR (126 MHz, CDCl₃) δ

138.2, 137.2, 134.5, 129.3, 128.8, 128.4, 128.2, 127.8, 120.2, 45.8, 44.7, 21.2, 19.1 ppm. HRMS (ESI) *m/z*: [M+NH₄]⁺ Calcd for C₁₇H₁₇NNH₄ 253.1705; Found 253.1701.

2,3-di-p-tolylbutanenitrile (Compound-6s): Following the general procedure, the titled

compound was isolated as white solid (82 mg, 0.33 mmol, 66% yield) using silica gel column chromatography (2-5% ethyl acetate in hexane). ¹H NMR (400 MHz, CDCl₃) δ 7.12-7.09 (m, 4H), 7.02-7.00 (m, 4H), 3.87 (d, J = 7.3 Hz, 1H), 3.22-3.15 (m, 1H), 2.34-2.33 (m, 6H), 1.32 (d, J = 7.1 Hz, 3H) ppm. ${}^{13}C{}^{1}H$ NMR (101 MHz, CDCl₃) δ 138.3, 138.0, 137.1,

131.4, 129.4, 129.2, 128.2, 127.7, 120.4, 45.4, 44.6, 21.2, 19.0 ppm. HRMS (ESI) m/z: [M+NH₄]⁺ Calcd for C₁₈H₁₉NNH₄ 267.1861; Found 267.1861.

2-(4-chlorophenyl)-3-(p-tolyl)butanenitrile (Compound-6t): Following the general

procedure, the titled compound was isolated as white solid (92 mg, 0.34 mmol, yield) using silica gel column chromatography (2-5% ethyl acetate in hexane). ¹H NMR (400 MHz, CDCl₃) δ 7.31-7.27 (m, 2H), 7.09 (d, J = 8.3 Hz, 2H), 7.03-6.95 (m, 4H), 3.93 (d, J = 4.2 Hz, 1H), 3.20-3.16 (m, 1H), 2.32 (s, 3H), 1.37 (d, J = 7.0 Hz, 3H) ppm. ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 137.5,

137.4, 134.2, 132.9, 129.7, 129.3, 129.0, 127.8, 119.7, 45.1, 44.5, 21.2, 18.9 ppm.

3-(4-methoxyphenyl)-2-(p-tolyl)butanenitrile (Compound-6u): Following the general procedure, the titled compound was isolated as colourless liquid (85 mg, 0.32 mmol, 68 % yield) using silica gel column chromatography (2-5% ethyl acetate in hexane). ¹H NMR (500 MHz, CDCl₃) δ 7.23-7.28 (m, 3H), 7.19-7.18 (m, 2H), 7.08 (d, J = 8.7 Hz, 2H), 6.82 (d, J = 8.7 Hz, 2H), 3.92 (d, J = 6.4 Hz, 1H), 3.78 (s, 3H), 3.19-3.14 (m, 1H), 1.44 (d, J = 7.0 Hz, 3H) ppm. ¹³C{¹H} NMR (126 MHz, CDCl₃) δ 158.9, 134.9, 134.0, 128.8, 128.6, 128.1, 128.1, 119.9, 114.1, 55.4, 46.3, 44.4, 17.5 ppm. HRMS (ESI) *m/z*: [M+NH₄]⁺ Calcd for C₁₇H₁₇NONH₄ 269.1654; Found 269.1650.

2,3-diphenylpent-2-enenitrile (Compound-6v):^{13a} Following the general procedure, the titled compound was isolated as yellow liquid (72 mg, 0.31 mmol, 64% yield) using silica gel column chromatography (2-5% ethyl acetate in hexane). ¹H NMR (400 MHz, CDCl₃) δ 7.26-7.23 (m, 4H), 7.17-7.04 (m, 6H), 3.01-2.94 (m, 2H), CN 1.09 (t, J = 7.6 Hz, 3H) ppm. ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 161.5, 137.9,

133.9, 129.6, 128.6, 128.4, 128.1, 119.0, 111.4, 32.5, 12.8 ppm HRMS (ESI) m/z: [M+Na]⁺ Calcd C₁₇H₁₅NNa 256.1102; Found 256.1116.

¹H and ¹³C{¹H} NMR spectra of the isolated compounds from catalytic reactions

Figure S19. ¹³C{¹H} NMR spectrum of 4a in CDCl₃.

Figure S21. ¹³C{¹H} NMR spectrum of 4b in CDCl₃.

Figure S22. ¹H NMR spectrum of 4c in CDCl₃. * indicates the solvent impurity of H₂O.

Figure S23. ¹³C{¹H} NMR spectrum of 4c in CDCl₃.

Figure S25. ¹³C{¹H} NMR spectrum of 4d in CDCl₃.

 7.128

 7.128

 7.127

 7.127

 7.127

 7.127

 7.127

 7.127

 7.128

 7.127

 7.127

 7.127

 7.127

 7.127

 7.127

 7.127

 7.127

 7.127

 7.127

 7.127

 7.125

 7.125

 7.125

 7.125

 7.125

 7.125

 7.125

 7.125

 7.125

 7.125

 7.125

 7.125

 7.125

 7.125

 7.125

 7.125

 7.125

 7.125

 7.125

 7.125

 7.125

 7.125

 7.125

 7.125

 7.125

 7.125

 7.125

 7.125

 7.125

 7.125

 7.125

Figure S26. ¹H NMR spectrum of 4e in CDCl₃. * indicates the solvent impurity of H₂O.

Figure S27. ¹³C{¹H} NMR spectrum of 4e in CDCl₃.

Figure S29. ${}^{13}C{}^{1}H$ NMR spectrum of 4f in CDCl₃.

Figure S30. ¹H NMR spectrum of 4g in CDCl₃. * indicates the solvent impurity of H₂O.

Figure S31. ¹³C{¹H} NMR spectrum of 4g in CDCl₃.

Figure S33. ${}^{13}C{}^{1}H$ NMR spectrum of 4h in CDCl₃.

Figure S34. ¹H NMR spectrum of 4i in CDCl₃. * indicates the solvent impurity of H₂O.

Figure S35. ${}^{13}C{}^{1}H$ NMR spectrum of 4i in CDCl₃.

Figure S37. ¹³C{¹H} NMR spectrum of 4j in CDCl₃.

Figure S38. ¹H NMR spectrum of 4k in CDCl₃. * indicates the solvent impurity of H₂O.

Figure S39. ¹³C{¹H} NMR spectrum of 4k in CDCl₃.

Figure S40. ¹H NMR spectrum of 4l in CDCl₃. * indicates the solvent impurity of H₂O.

Figure S41. ${}^{13}C{}^{1}H$ NMR spectrum of 4l in CDCl₃.

Figure S42. ¹H NMR spectrum of 4m in CDCl₃. * indicates the solvent impurity of H₂O.

Figure S43. ¹³C{¹H} NMR spectrum of 4m in CDCl₃.

Figure S44. ¹H NMR spectrum of 4n in CDCl₃. * indicates the solvent impurity of H₂O.

Figure S45. ¹³C{¹H} NMR spectrum of 4n in CDCl₃.

Figure S47. ¹³C{¹H} NMR spectrum of 4O in CDCl₃.

 4.02

 4.02

 3.98

 3.29

 3.26

 3.27

 3.26

 3.27

 3.28

 3.219

 3.17

Figure S48. ¹H NMR spectrum of 4p in CDCl₃.

Figure S49. ¹³C{¹H} NMR spectrum of 4q in CDCl₃.

Figure S51. ¹³C{¹H} NMR spectrum of 4q in CDCl₃.

Figure S53. ${}^{13}C{}^{1}H$ NMR spectrum of 4r in CDCl₃.

Figure S54. ¹H NMR spectrum of 4s in CDCl₃.

Figure S55. ${}^{13}C{}^{1}H$ NMR spectrum of 4s in CDCl₃.

Figure S57. ¹³C{¹H} NMR spectrum of 4t in CDCl₃.

Figure S58. ¹H NMR spectrum of 4u in CDCl₃. * indicates the solvent impurity of H₂O.

Figure S59. ${}^{13}C{}^{1}H$ NMR spectrum of 4u in CDCl₃.

Figure S60. ¹H NMR spectrum of 4v in CDCl₃.

Figure S61. ${}^{13}C{}^{1}H$ NMR spectrum of 4v in CDCl₃.

Figure S62. ¹H NMR spectrum of 4w in CDCl₃. * indicates the solvent impurity of H₂O.

Figure S63. $^{13}C{^{1}H}$ NMR spectrum of 4w in CDCl₃.

 3.9

 3.9

 3.9

 3.9

 3.9

 3.9

 3.9

 3.9

 3.9

 3.9

 3.9

 3.9

 3.9

 3.9

 3.9

 3.9

 3.9

 3.9

 3.9

 3.9

 3.9

 3.9

 3.9

 3.9

 3.9

 3.9

 3.9

 3.9

 3.9

 3.9

 3.9

 3.9

 3.9

 3.9

 3.9

 3.9

 3.9

 3.9

 3.9

 3.9

 3.9

 3.9

 3.9

 3.9

 3.9

 3.9

 3.9

 3.9

 3.9

 3.9

 3.9

 3.9

 3.9

 3

Figure S64. ¹H NMR spectrum of 6a in CDCl₃.

Figure S65. ¹³C{¹H} NMR spectrum of 6a in CDCl₃.

Figure S66. ¹H NMR spectrum of 6b in CDCl₃. * indicates the solvent impurity of H₂O.

Figure S67. ¹³C{¹H} NMR spectrum of 6b in CDCl₃.

Figure S68. ¹H NMR spectrum of 6c in CDCl₃. * indicates the solvent impurity of H₂O.

Figure S69. ${}^{13}C{}^{1}H$ NMR spectrum of 6c in CDCl₃.

Figure S71. ¹³C{¹H} NMR spectrum of 6d in CDCl₃.

Figure S72. ¹H NMR spectrum of 6e in CDCl₃.

Figure S73. ¹³C{¹H} NMR spectrum of 6e in CDCl₃.

Figure S75. ¹³C{¹H} NMR spectrum of 6f in CDCl₃.

Figure S76. ¹H NMR spectrum of 6g in CDCl₃.

Figure S77. ${}^{13}C{}^{1}H$ NMR spectrum of 6g in CDCl₃.

Figure S79. ¹³C{¹H} NMR spectrum of 6h in CDCl₃.

Figure S81. ¹³C{¹H} NMR spectrum of 6i in CDCl₃.

Figure S82. ¹H NMR spectrum of 6j in CDCl₃. * indicates the solvent impurity of H₂O.

Figure S83. ¹³C{¹H} NMR spectrum of 6j in CDCl₃.

Figure S84. ¹H NMR spectrum of 6k in CDCl₃. * indicates the solvent impurity of H₂O.

Figure S85. ¹³C{¹H} NMR spectrum of 6k in CDCl₃.

Figure S87. ¹³C{¹H} NMR spectrum of 6l in CDCl₃.

Figure S89. ¹³C{¹H} NMR spectrum of 6m in CDCl₃.

Figure S91. ¹³C{¹H} NMR spectrum of 6n in CDCl₃.

Figure S92. ¹H NMR spectrum of 60 in CDCl₃.

Figure S93. ¹³C{¹H} NMR spectrum of 60 in CDCl₃.

Figure S95. ¹³C{¹H} NMR spectrum of 6p in CDCl₃.

Figure S97. ${}^{13}C{}^{1}H$ NMR spectrum of 6q in CDCl₃.

Figure S99. ¹³C{¹H} NMR spectrum of 6r in CDCl₃.

Figure S100. ¹³C{¹H} NMR spectrum of 6s in CDCl₃. * indicates the solvent impurity of H_2O .

Figure S101. ¹³C{¹H} NMR spectrum of 6s in CDCl₃.

Figure S102. ¹H NMR spectrum of 6t in CDCl₃. * indicates the solvent impurity of H₂O.

Figure S103. ¹³C{¹H} NMR spectrum of 6t in CDCl₃.

Figure S104. ¹H NMR spectrum of 6u in CDCl₃. * indicates the solvent impurity of H₂O.

Figure S105. ¹³C{¹H} NMR spectrum of 6u in CDCl₃.

Figure S107. ${}^{13}C{}^{1}H$ NMR spectrum of 6v in CDCl₃.
Kinetics study of the reaction with respect to nitrile and catalyst:

Figure S108. Time-dependent reaction profile for the present α -alkylation of nitriles

Rate and order determination with respect to phenylacetonitrile (1a):

To determine the order of the reaction on 1a, the initial rates at different initial concentrations of 1a were recorded. To an oven dried pressure tube (25 mL), 3a (0.4 mmol, 2 eq.), Co-1a catalyst (2 mol%), KO'Bu (30 mol%), specific amount of 2a and toluene (2 mL) were added. The reaction mixture was then kept for stirring at 140 °C. At regular intervals (30 min, 45 min, 60 min, 75 min, and 90 min) the reaction mixture was cooled to ambient temperature and an aliquot of mixture was taken in a GC vial. The GC sample was diluted with methanol and subjected to gas chromatographic analysis. The concentration of the products was determined from the conversion obtaineed from GC analysis. The data was used to plot the concentration of the product (M) vs time (min.) plot (Figure S109, a). The rate of reaction at different initial concentration of 2a is given in (Table S1) and used to plot the log(rate) vs log(conc.) plot (Figure S109, b) to determine the order of reaction with respect to phenylacetonitrile 2a.

Experiment	Initial conc. of 2a (M)	Initial rate [M/min]
1	0.0001	6.284×10^{-7}
2	0.00015	9.228×10^{-7}
3	0.0002	$1.546 imes 10^{-6}$
4	0.00025	$1.786 imes 10^{-6}$
5	0.0003	$2.050 imes 10^{-6}$

Table S1. Rate of the reaction at different initial concentration of (2a).

Figure S109. (a) Concentration versus time plot at various concentrations of (2a). (b) log(rate) versus log(conc.) graph of (1a).

Rate order determination with respect to catalyst 1a

To determine the order of the reaction with respect to catalyst, the initial rates at different initial concentrations of catalyst were recorded. To an oven dried pressure tube (25 mL), **2a** (0.4 mmol, 1 eq.), benzyl alcohol **3a** (0.8 mmol, 2 eq.), KO'Bu (20 mol %), specific amount of catalyst **1a** and toluene (2 mL) were added under inert condition. The reaction mixture was kept for stirring at 140 °C. At regular intervals (30 min, 45 min, 60 min, 75 min, and 90 min) the reaction mixture was cooled to ambient temperature and an aliquot of mixture was taken in a GC vial. The GC sample was diluted with methanol and subjected to gas chromatographic analysis. The conversion of the products was determined. The data was used to plot the

concentration of the product (M) *vs* time (min.) plot (Figure S110, a). The rate of reaction at different initial concentration of catalyst is given in (Table S2) and used to plot the log(rate) *vs* log(conc.) plot (Figure S110, b) to determine the order of reaction with respect to catalyst.

Experiment	Initial conc. of catalyst 1a (M)	Initial rate [M/min]
1	0.000004	2.600×10^{-6}
2	0.000006	$2.630 imes 10^{-6}$
3	0.000008	$2.806 imes 10^{-6}$
4	0.00001	$2.846 imes 10^{-6}$
5	0.000012	$2.960 imes 10^{-6}$

Table S2. Rate of the reaction at different initial concentration of catalyst.

Figure S110. (a) Concentration versus time plot at various concentrations of catalyst. (b) log(rate) versus log(conc.) graph of catalyst.

Post-modification of 4a and 4f (Scheme S3)

Procedure for synthesis of the compound 7 from 4a^{13b}

To a reaction tube, **4a** (0.25mmol, 52 mg), hydrogen peroxide (56.0 μ L, 0.55 mmol; 30% (w/w) solution in water) and potassium carbonate (5.2 mg, 0.04 mmol) were taken in dry dimethyl sulfoxide (0.5 mL) at 0 °C under an atmosphere of nitrogen. The resulting solution was allowed to warm slowly to room temperature and stirred for 12 hours. After the completion, the reaction mixture was quenched by the addition of water and extracted with ethyl acetate. The organic layers were dried (MgSO₄), filtered and concentrated. The pure products **7** (white solid, 48 mg, 0.21 mmol) were isolated using column chromatography with ethyl acetate and hexane as eluents.

Figure S111. ¹H NMR spectrum of 7 in CDCl₃.

Procedure for synthesis of the compound 8 from 4a^{13b}

To a reaction tube, **4a** and **4f** (0.25mmol), concentrated H_2SO_4 (1.0 mL), H_2O (1.0 mL) and acetic acid (0.5mL) was refluxed for 12 h. Then the mixture was quenched with 2.0mL of H_2O and diluted with DCM (4 mL). The mixture was stirred another 30 min at room temperature, then it was extracted with ethyl acetate and water work up, dried (MgSO₄), filtered, and concentrated. The pure products **8** and **9** were isolated respectively using column chromatography with ethyl acetate and hexane as eluents.

Figure S114. ¹³C{¹H} NMR spectrum of 8 in CDCl₃.

Figure S116. ¹³C{¹H} NMR spectrum of 9 in CDCl₃.

General procedure for competitive experiments (Scheme S4):

(a) α -alkylation of phenyleneacetonitrile (3a) with primary aromatic and primary aliphatic alcohol:

An oven-dried pressure tube (25 mL) was charged with phenyleneacetonitrile **3a** (0.25 mmol), benzyl alcohol (0.25 mmol), n-butanol (0.25 mmol), KO'Bu (0.05 mmol, 20 mol%), and catalyst **1a** (0.005 mmol, 2 mol%), followed by the addition of toluene (1 mL). Then, the tube was kept in a preheated oil bath at 140 °C and heated for 6 h. After that, the pressure tube was taken out and cooled to room temperature. The progress of the reaction was monitored using GC-MS analysis.

(b) α -alkylation of phenyleneacetonitrile (3a) with primary aromatic and secondary alcohol:

An oven-dried pressure tube (25 mL) was charged with phenyleneacetonitrile **3a** (0.25 mmol), benzyl alcohol (0.25 mmol), cyclobutanol (0.25 mmol), KO^tBu (0.05 mmol, 20 mol%), and catalyst **1a** (0.005 mmol, 2 mol%), followed by the addition of toluene (1 mL). Then, the tube was kept in a preheated oil bath at 140 °C and heated for 6 h. After that, the pressure tube was taken out and cooled to room temperature. The progress of the reaction was monitored using GC-MS analysis.

(c) α -alkylation of phenyleneacetonitrile (3a) with primary aliphatic and secondary alcohol:

An oven-dried pressure tube (25 mL) was charged with phenyleneacetonitrile **3a** (0.25 mmol), n-butanol (0.25 mmol), cyclobutanol (0.25 mmol), KO'Bu (0.05 mmol, 20 mol%), and catalyst **1a** (0.005 mmol, 2 mol%), followed by the addition of toluene (1 mL). Then, the tube was kept in a preheated oil bath at 140 °C and heated for 6 h/12h. After that, the pressure tube was taken out and cooled to room temperature. The progress of the reaction was monitored using GC-MS analysis.

Control experiments

Comparison of catalytic activity of 1a vs 1c/1d towards secondary alcohol:

Three oven-dried pressure tubes (25 mL) were charged with phenylene acetonitrile **3a** (0.2 mmol), cyclopentanol (0.4 mmol), KO'Bu (0.04 mmol, 20 mol%), and catalyst **1a/1c/1d** (0.004 mmol, 2 mol%) separately, followed by the addition of toluene (1 mL). Then, the tubes were kept parallelly in a preheated oil bath at 140 °C and heated for 6 h. After that, the pressure tubes were taken out and cooled to room temperature. The progress of the reaction was monitored using GC-MS.

Metal hydride trapping experiment:

An oven-dried pressure tube was charged with catalyst **1a** (0.005 mmol, 2 mol%), KO^{*t*}Bu (0.05 mmol, 20 mol%), nitrile (0.25 mmol), alcohol (0.5 mmol), and trityl PF₆ (0.01 mmol) in toluene (1 mL). Then the reaction mixture was kept in a preheated oil bath at 140 °C for 6 h. After that, the pressure tube was taken out and cooled to room temperature. The progress of the reaction was monitored using GC-MS analysis.

Radical scavenger experiment: An oven-dried pressure tube was charged with catalyst **1a** (0.005 mmol, 2 mol %), KO^tBu (0.05 mmol, 20 mol%), nitrile (0.25 mmol), alcohol (0.5 mmol), and TEMPO/BHT (0.75 mmol) in toluene (1 mL). Then the reaction mixture was kept

in a preheated oil bath at 140 °C for 6 h. After that, the pressure tube was taken out and cooled to room temperature. The progress of the reaction was monitored using GC-MS analysis.

Mercury dropping experiment: An oven-dried pressure tube was charged with catalyst **1a** (0.005 mmol, 2 mol %), KO^tBu (0.05 mmol, 20 mol%), nitrile (0.25 mmol), alcohol (0.5 mmol), and mercury (0.5 mmol) in toluene (1 mL). After that, the pressure tube was taken out and cooled to room temperature. The progress of the reaction was monitored using GC-MS analysis.

Detection of Cobalt amido complex A

In an inert condition J Young® NMR tube was charged with complex **1a** followed by C_6D_6 . It was found that the complex **1a** is insoluble in C_6D_6 . However, after adding 2 equiv. of base KO'Bu and sonicated for 10 min, the colourless solution turned to dark brown which was further subjected to ¹H NMR and ESI-MS analysis.

Figure S117. ESI-MS (positive ions) spectrum of the above reaction mixture.

Figure S118. ¹H NMR spectrum of the above reaction mixture in C₆D₆.

Catalytic activity of A (Scheme S6)

Using isolated catalyst, A: complex 1a (1 equiv.) was taken in an oven dried Schlenk tube and toluene was added to it. Complex 1a was insoluble in toluene. After that KO'Bu (2 equiv.) was added which generated the cobalt amido complex A, accompanied by the change of a colourless solution to a dark brown solution. The reaction mixture was then stirred for 30 min at room temperature. Finally, all the volatiles were removed in high vacuum and complex A was isolated as solid after work up with dry hexane (formation was confirmed with NMR analysis). The active catalyst A was then used for the α -alkylation of nitrile under our standard reaction conditions which showed 100% conversion of 2a to 4a.

Reaction conditions: **2a** (0.2 mmol), **3a** (0.4 mmol), KO'Bu (20 mol%), **A** (2 mol%) in toluene at 140 °C for 6 h. Conversion of **2a** was determined by GC-MS using mesitylene as an internal standard.

In-situ generated A (in benzene solvent):

An oven-dried pressure tube was charged with catalyst **1a** (0.004 mmol, 2 mol %), KO'Bu (0.04 mmol, 20 mol%) in benzene (1 mL) and stirred 20 min at room temperature to generate the active catalyst **A** (we have previously confirmed its formation with NMR and mass analysis, page S83-S84). After that nitrile **2a** (0.2 mmol), and alcohol **3a** (0.4 mmol) were added to the reaction mixture and kept in a preheated oil bath at 140 °C for 6 h. After completion of the reaction, a small portion of aliquot was taken for GC-MS analysis.

Reaction conditions: **2a** (0.2 mmol), **3a** (0.4 mmol), KO'Bu (20 mol%), **1a** (2 mol%) in benzene at 140 °C for 6 h. Conversion of **2a** was determined by GC-MS using mesitylene as an internal standard.

Deuterium incorporation experiment

The deuterium incorporation experiment was carried out following the general procedure of α -alkylation of nitrile using **2a** (0.1 mmol) and (98% D) benzyl alcohol (0.2 mmol). After the completion of the reaction, the reaction mixture was filtered over a short pad of silica and the pad was washed with methanol. Then the obtained filtrate was concentrated and dissolved in CDCl₃. An equivalent amount of internal standard mesitylene (0.1 mmol) was added to this and resultant solution was subjected to ¹H NMR analysis. Conversion was calculated by ¹H-NMR integration value.

Figure S119. ¹H NMR spectrum of the reaction mixture in CDCl₃.

Conversion	was c	calculated by	y ¹ H-NMR inte	gration value	
				Ha]
	<u>a</u> .	1 0	7 10 [011]	2 00 1111	0.14

		Ha	H _b
Signal δ	7.13 [2H]	3.99 [1H]	3.14 [2H]
Integral Value	2.00	1.00	0.13
Calculated	-	-	$\{(2-0.13)/2\} \times 100 =$
ratio			93.5%

Calculation of P_H/P_D :

By considering individual reaction for the formation of $(4\mathbf{a}-d_2)$ deuterated and $(4\mathbf{a})$ nondeuterated product, P_H/P_D was calculated.

Deuterium incorporation in the product using 98% of $3a \cdot d_2 = 93.5\%$ Deuterium incorporation in the product for 100% of $3a \cdot d_2 = (93.5/98) *100\% = 95.4\%$ Total product (deuterated $4a \cdot d_2 +$ non deuterated 4a) yield = 81% Therefore, yield of the total deuterated product = (95.4 * 81)/100 = 77.2%Yield of product for non-deuterated reaction = 100% (GC-MS yield) Hence, $P_H/P_D = 100/77.2 = 1.29$

Single crystal X-ray Crystallography

Single crystal X-ray diffraction data were collected on a Bruker AXS Kappa Apex II equipped with a CCD detector (for 1a). The compound was measured using MoK α radiation ($\lambda = 0.71073$ Å). Crystals were selected using a polarizing optical microscope and then mounted in a crystalmounting loop using Paraton oil. The mounted crystal was then placed on a goniometer head and the crystal was centered with the help of a video microscope. The automatic cell determination routine, with 24/36 frames (10 sec exposure time per frame) at two/three different orientations of the detector, respectively was employed to collect reflections for unit cell determination. The collected reflections were indexed using inbuilt APEX software^{14a} to obtain unit cell parameters. Further, intensity data for structure determination were collected through an optimized strategy, which gave an average 4-fold redundancy for the reflections. The program Bruker-SAINT^[14b] was used for integrating the frames and multi-scan absorption correction was applied using the program SADABS.^{14c} The structure was solved by SHELXS-97^[14d] and refined by full-matrix least squares techniques on F² using SHELXL^{14e} computer program incorporated in WinGX^{14f} system. The non-hydrogen atoms were refined anisotropically. All hydrogen atoms were fixed at chemically meaningful positions and riding model refinement was applied. The graphical representations were performed using the program Mercury.^{14g} The crystal data (CCDC No. 2298764) and refinement details are summarized in Table S3.

Compound	Complex 1a		
CCDC No.	2298764		
Empirical formula	$C_{21}H_{28}Cl_2CoN_3$		
Formula weight	452.29		
Temperature	296(2) K		
Crystal system	Monoclinic		
Space group	P21/n		
a (Å)	10.4791(3)		
b (Å)	15.9525(4)		
c (Å)	12.9626(3)		
α (°)	90		
β (°)	99.6049(14)		
γ (°)	90		
V (Å ³)	2136.55(10)		
Z	4		
D calc (Mg/m ³)	1.406		
F (000)	944		
μ (mm ⁻¹)	1.064		
θ Range (°)	2.042 to 24.998		
Crystal size (mm)	0.160 x 0.120 x 0.100		
No. of total reflns collected	16720		
No. of unique reflns $[I > 2\sigma(I)]$	3765		
Data/restraints/ parameters	3765 / 0 / 258		
Goodness-of-fit on F ²	1.022		
Final R indices $[I > 2\sigma(I)]$	0.0314, 0.0726		
R indices (all data)	0.0457, 0.0802		

 Table S3. Crystallographic data for the complex 1a

References

- 1. E. Jansen, L. S. Jongbloed, D. S. Tromp, M. Lutz, B. Bruin, C. J. Elsevier, *ChemSusChem*, 2013, **6**, 1737–1744.
- a) S. N. R. Donthireddy, P. M. Illam, A. Rit, *Inorg. Chem.*, 2020, 59, 1835–1847; b) S. Bauri, S. Kumar, A. Rit, *Adv. Synth. Catal.*, 2023, 365, 2385–2391.
- 3. R. R. Putta, S. Chun, S. B. Lee, J. Hong, S. H. Choi, D.-C. Oh, S. Hong, *J. Org. Chem.*, 2022, **87**, 16378–16389.
- 4. K. Paudel, S. Xu, K. Ding, J. Org. Chem., 2020, 85, 14980-14988.
- 5. B. Arslan, S. Gülcemal, *Dalton Trans.*, 2021, **50**, 1788–1796.
- J. C. Borghs, M. A. Tran, J. Sklyaruk, M. Rueping, O. El-Sepelgy, J. Org. Chem., 2019, 84, 7927–7935.
- 7. K. Bera, A. Mukherjee, *Chem Asian J.*, 2023, 18, e202300157.
- 8. A. K. Bains, Y. Ankit, D. Adhikari, Org. Lett., 2021, 23, 2019–2023.
- 9. S. Bera, A. Bera, D. Banerjee, *Chem. Commun.*, 2020, **56**, 6850–6853.
- 10. A. Jana, C. B. Reddy, B. Maji, ACS Catal., 2018, 8, 9226–9231.
- 11. A. M. Davies, Z.-Y. Li, C. R. J. Stephenson, N. K. Szymczak, ACS Catal., 2022, 12, 6729–6736.
- 12. S. Panda, R. Saha, S. Sethi, R. Ghosh, B. Bagh, J. Org. Chem., 2020, 85, 15610-15621.
- I. M., giewicz, P. Dybowski, A. Skowron'ska, *Tetrahedron*, 2003, **59**, 6057–6066. b) C. Li,
 L. Bai, M.-T. Ge, A.-B. Xia, Y. Wang, Y.-R. Qiu, D.-Q. Xu, *New J. Chem.*, 2021, **45**, 15200–15204.
- a) Bruker AXS APEX Inc., 5465 east Cheryl Parkway, Madison, WI53711; b) Bruker-SAINT V8.40B, 2016. c) SADABS-2016/2-Bruker AXS area detector scaling and absorption correction. L. Krause, R. Herbst-Irmer, G. M. Sheldrick, D. Stalke, *J. Appl. Cryst.*, 2015, 48, 3–10. d) G. M. Sheldrick, "SHELXS-97 and SHELXL-97, Program for Crystal Structure Solution and Refinement," University of Gottingen, Gottingen, 1997. e) G. M. Sheldrick (2015) Crystal structure refinement with SHELXL, *Acta Cryst.*, 2015, C71, 3–8. f) WingX, An integrated system of windows programs for the solution, Refinement and Analysis of Single crystal diffraction data, L. J. Farrugia, *J. appl. Cryst.*, 2012, 45, 849–854. g) C. F. Macrae, P. R. Edgington, P. McCabe, E. Pidcock, G. P. Shields, R. Taylor, M. Towler, J. van de Streek, *J. Appl. Cryst.*, 2006, 39, 453–457.