Electronic Supporting Information for

Stepwise and selective synthesis of chelating, multimetallic and mixed-metal π -diborene complexes

Dario Duwe,^{[a],[b]} Koushik Saha,^{[a],[b]} Lukas Endres,^{[a],[b]} Tobias Brückner,^{[a],[b]} Rian D. Dewhurst,^{[a],[b]} Maximilian Dietz,^{[a],[b]} Krzysztof Radacki,^{[a],[b]} Felipe Fantuzzi,^[c] and Holger Braunschweig*^{[a],[b]}

[a] Dario Duwe, Dr. Koushik Saha, Lukas Endres, Dr. Tobias Brückner, Dr. Rian D. Dewhurst, Dr. Maximilian Dietz, Dr. Krzysztof Radacki, Prof. Dr. Holger Braunschweig
Institute for Inorganic Chemistry,
Julius-Maximilians-Universität Würzburg
Am Hubland, 97074, Würzburg, Germany
[b] Dario Duwe, Dr. Koushik Saha, Lukas Endres, Dr. Tobias Brückner, Dr. Rian D. Dewhurst, Dr. Maximilian Dietz, Dr. Krzysztof Radacki, Prof. Dr. Holger Braunschweig
Institute for Sustainable Chemistry & Catalysis with Boron
Julius-Maximilians-Universität Würzburg
[c] Dr. Felipe Fantuzzi
School of Chemistry and Forensic Science
University of Kent

Canterbury, Park Wood Rd, CT2 7NH, United Kingdom.

Contents

Methods and materials	2
Synthetic procedures	3
NMR spectra of isolated compounds	10
UV-vis spectra	
X-ray crystallographic data	40
Computational details	44
References	64

Methods and materials

All manipulations were performed either under an atmosphere of dry argon or *in vacuo* using standard Schlenk line or glovebox techniques. Deuterated solvents were dried over molecular sieves and degassed by three freeze-pump-thaw cycles prior to use. All other solvents were distilled and degassed from appropriate drying agents. Both deuterated and non-deuterated solvents were stored under argon over activated 4 Å molecular sieves. Liquid-phase NMR spectra were acquired on a Bruker Avance 500 (¹H: 500.1 MHz, ¹¹B: 160.5 MHz, ¹³C: 125.8 MHz, ¹⁹F: 470.6 MHz, ³¹P: 202.5 MHz) or Bruker Avance 600 (¹H: 600.2 MHz, ¹¹B: 192.7 MHz, ¹³C: 150.9 MHz) spectrometer. Chemical shifts (δ)are reported in ppm and internally referenced to the carbon nuclei (¹³C{¹H}) (C₆D₆: 128.1, C₆D₅Br: 122.6) or residual protons (¹H) (C₆D₆: 7.16, C₆D₅Br: 7.30) of the solvent. Heteronuclei NMR spectra are referenced to external standards (¹¹B: BF₃·OEt₂, ¹⁹F: CFCl₃, ³¹P: 85% aq. H₃PO₄). Resonances are given as singlet (s), doublet (d), triplet (t), septet (sept), multiplet (m) or broad (br). High-resolution mass spectrometry (HRMS) data were obtained from a Thermo Scientific Exactive Plus spectrometer. UV-vis spectra were acquired on a METTLER TOLEDO UV-vis-Excellence UV5 spectrophotometer.

Solvents and reagents were purchased from Sigma-Aldrich, ABCR or Alfa Aesar. $B_2(SIDep)_2$,¹ [(SIDep)HB=B(2-C₅H₄N)(SIDep)] (1),² [Cu(C₆F₅)]₄,³ [AgCl(PPh₃)]⁴ and [AuCl(PPh₃)]⁵ were prepared according to literature procedures.

Synthetic procedures

Synthesis of [(SIDep)HB=B(2-C₅H₄N)(SIDep)][CuCl] (2-CuCl)

1 (20.0 mg, 26 μ mol, 1.00 equiv.) and [CuCl(SMe₂)] (2.6 mg, 26 μ mol, 1.00 equiv.) were combined in benzene (0.6 mL) and stirred at room temperature for 30 minutes. The volatiles were removed *in vacuo* and the residue was washed with *n*-hexane (1 mL). After drying under reduced pressure, the residue was extracted with benzene and by slow diffusion of *n*-pentane into the solution the product crystallized as orange blocks (10.6 mg, 12 μ mol, 46%), which were also suitable for X-ray diffractometry.

¹H{¹¹B} NMR (500.1 MHz, C₆D₆): $\delta = 8.36 - 8.34$ (m, 1H, H^{Pyr}), 7.28 - 7.22 (m, 4H, H^{Ar}), 7.08 - 7.05 (m, 2H, H^{Ar}), 7.01 - 7.00 (m, 2H, H^{Ar}), 6.88 - 6.84 (m, 4H, H^{Ar}), 6.31 - 6.25 (m, 2H, H^{Pyr}), 4.90 - 4.88 (m, 1H, H^{Pyr}), 3.33 - 3.19 (m, 4H, $CH_2^{Et} + NCH_2$), 3.15 - 3.11 (m, 2H, NCH₂), 3.05 - 3.00 (m, 2H, NCH₂), 2.98 - 2.84 (m, 6H, $CH_2^{Et} + NCH_2$), 2.70 - 2.53 (m, 7H, $CH_2^{Et} + NCH_2 + BH$), 2.19 (dq, ${}^2J_{HH} = 15.6$ Hz, ${}^3J_{HH} = 7.8$ Hz, 2H, CH_2^{Et}), 1.75 (dq, ${}^2J_{HH} = 15.4$ Hz, ${}^3J_{HH} = 7.7$ Hz, 2H, CH_2^{Et}), 1.34 - 1.32 (two overlapping t, ${}^3J_{HH} = 7.7$, 7.5 Hz, 12H, CH_3^{Et}), 1.26 (t, ${}^3J_{HH} = 7.6$ Hz, 6H, CH_3^{Et}), 0.99 (t, ${}^3J_{HH} = 7.8$ Hz, 6H, CH_3^{Et}) ppm.

¹³C{¹H} NMR (150.9 MHz, C₆D₆): $\delta = {}^{13}C{^{1}H}$ NMR (125.8 MHz, C₆D₆): $\delta = 191.8$ ($C^{Carbene}$), 185.7 ($C^{Carbene}$), 176.1 (C^{2-Pyr}), 145.5 (C^{Pyr}), 142.2 (C^{q}), 141.7 (C^{q}), 141.5 (C^{q}), 140.8 (C^{q}), 138.7 (C^{q}), 137.2 (C^{q}), 131.5 (C^{Pyr}), 128.3 (C^{Pyr}), 126.9 (C^{Ar}), 125.9 (C^{Ar}), 125.7 (C^{Ar}), 125.4 (C^{Ar}), 116.0 (C^{Pyr}), 50.8 (NCH₂), 50.6 (NCH₂), 24.5 (CH_2^{Et}), 24.3 (CH_2^{Et}), 23.9 (CH_2^{Et}), 23.2 (CH_2^{Et}), 14.1 (CH_3^{Et}), 13.7 (CH_3^{Et}), 13.5 (CH_3^{Et}) ppm.

¹¹B{¹H} NMR (160.5 MHz, C₆D₆): δ = 23.9 (NC*B*), 5.1 (*B*H) ppm.

HRMS(LIFDI): m/z ($C_{51}H_{65}B_2N_5CuCl$) = calc.: 867.4405, found: 867.4389.

UV-vis (C₆H₆): $\lambda_{max} = 437$ nm.

Synthesis of [(SIDep)HB=B(2-C5H4N)(SIDep)][CuCl]2 (3-CuCl)

Route a: 2-Cu (20.0 mg, 23 μ mol, 1.00 equiv.) and [CuCl(SMe₂)] (3.7 mg, 23 μ mol, 1.00 equiv.) were combined in benzene (0.6 mL) and stirred at room temperature for 30 minutes. The volatiles were removed *in vacuo* and the residue was washed with *n*-hexane (1 mL). After drying under reduced pressure, the residue was extracted with benzene and by slow diffusion of *n*-pentane into the solution the product crystallized as red blocks (11.7 mg, 12 μ mol, 46%).

Scheme S1 Alternative synthetic route for 3-CuCl.

Route b: 1 (20.0 mg, 26 μ mol, 1.00 equiv) and [CuCl(SMe₂)] (5.2 mg, 52 μ mol, 2.00 equiv) were combined in benzene (0.6 mL) and stirred at room temperature for 30 minutes. The volatiles were removed *in vacuo* and the residue was washed with *n*-hexane (1 mL). After drying under reduced pressure, the residue was extracted with benzene and by slow diffusion of *n*-pentane into the solution the product crystallized as red blocks (11.3 mg, 12 μ mol, 46%), which were also suitable for X-ray diffractometry.

¹H{¹¹B} NMR (500.1 MHz, C₆D₆): δ = 8.01 (m, 1H, H^{Pyr}), 6.96 – 6.90 (m, 4H, H^{Ar}), 6.83 (d, ${}^{3}J_{HH}$ = 7.5 Hz, 4H, H^{Ar}), 6.73 (d, ${}^{3}J_{HH}$ = 7.5 Hz, 4H, H^{Ar}), 6.00 – 5.98 (m, 1H, H^{Pyr}), 5.96 – 5.92 (m, 1H, H^{Pyr}), 5.50 – 5.49 (m, 1H, H^{Pyr}), 3.22 (dq, ${}^{2}J_{HH}$ = 15.4 Hz, ${}^{3}J_{HH}$ = 7.7 Hz, 4H, CH_{2}^{Et}), 3.12 – 3.06 (m, 4H, CH_{2}^{Et}), 2.99 (s, 4H, NC H_{2}), 2.92 (s, 4H, NC H_{2}), 2.69 – 2.59 (m, 8H, CH_{2}^{Et}), 1.34 (t, ${}^{3}J_{HH}$ = 7.5 Hz, 12H, CH_{3}^{Et}), 1.24 (t, ${}^{3}J_{HH}$ = 7.7 Hz, 12H, CH_{3}^{Et}) ppm. (*Note: The BH resonance could not be detected due to broadening.*)

¹³C{¹H} NMR (150.9 MHz, C₆D₆): $\delta = 185.0 (C^{Carbene}, identified by HMBC), 184.8 (C^{Carbene}, identified by HMBC), 173.4 (C^{2-Pyr}, identified by HMBC), 144.3 (CH^{Pyr}), 141.1 (C^q), 140.4 (C^q), 137.9 (C^q), 137.6 (C^q), 132.6 (C^{Ar}), 128.2 (C^{Ar}), 128.2 (C^{Ar}), 126.4 (C^{Ar}), 126.0 (C^{Ar}), 117.0 (C^{Pyr}), 51.9 (NCH₂), 51.1 (NCH₂), 25.1 (CH₂^{Et}), 24.8 (CH₂^{Et}), 14.0 (CH₃^{Et}), 13.6 (CH₃^{Et}) ppm.$

¹¹B{¹H} NMR (192.7 MHz, C₆D₆): δ = 10.2 (NC*B*), 0.0 (*B*H) ppm.

HRMS(LIFDI): m/z: calc.: 965.3359 (C₅₁H₆₅B₂N₅Cu₂Cl₂), 932.3683 (C₅₁H₆₅B₂N₅Cu₂Cl), found: 932.3661.

UV-vis (C₆H₆): λ_{max} = 355 nm (shoulder), 476 nm.

Synthesis of [(SIDep)HB=B(2-C₅H₄N)(SIDep)][(CuC₆F₅)]₂ (3-CuC₆F₅)

Scheme S2 Synthesis of 3-CuCl.

1 (20.0 mg, 26 μ mol, 1.00 equiv) and [Cu(C₆F₅)]₄ (12.0 mg. 13 μ mol, 0.50 equiv) were dissolved in benzene (0.6 mL) and stirred at room temperature for 14 hours. The volatiles were removed *in vacuo* and the residue was washed with *n*-hexane (3 x 0.5 mL). The solid was dried *in vacuo* and after crystallization from toluene the product was obtained as red crystals (11.0 mg, 9 μ mol, 35%). Crystals suitable for x-ray diffractometry were obtained by slow evaporation of a saturated *n*-hexane solution.

¹H{¹¹B} NMR (500.1 MHz, C₆D₆): $\delta = 7.55$ (m, 1H, CH^{Pyr}), 6.93 (t, 2H, ³J_{HH} = 7.6 Hz, CH^{4-Ar}), 6.88 (t, 2H, ³J_{HH} = 7.6 Hz, CH^{4-Ar}), 6.73 (d, 4H, ³J_{HH} = 7.6 Hz, CH^{3-Ar}), 6.64 (d, 4H, ³J_{HH} = 7.6 Hz, CH^{3-Ar}), 6.48 – 6.46 (m, 1H, CH^{Pyr}), 6.19 – 6.16 (m, 1H, CH^{Pyr}), 5.92 – 5.90 (m, 1H, CH^{Pyr}), 2.94 (s, 4H, NCH₂), 2.93 (s, 4H, NCH₂), 2.66 – 2.38 (m, 16H, CH₂^{Et}), 1.04 – 1.00 (m, 24H, CH₃^{Et}) ppm. (*Note: The BH resonance could not be detected due to broadening.*)

¹³C{¹H} NMR (125.8 MHz, C₆D₆): $\delta = 204.1$ ($C^{Carbene}$, *identified by HMBC*), 185.8 ($C^{Carbene}$, *identified by HMBC*), 173.9 (C^{q-Pyr} , *identified by HMBC*), 150.0 (br, C₆F₅), 149.7 (br, C₆F₅), 148.2 (br, C₆F₅), 144.7 (C^{Pyr}), 141.8 (C^{2-Pyr}), 140.5 ($C^{Ortho-Ar}$), 140.0 ($C^{Ortho-Ar}$), 138.7 (C-N), 137.7 (C-N), 132.9 (C^{Pyr}), 128.2 ($C^{Para-Ar}$), 127.9 ($C^{Para-Ar}$), 126.1 ($C^{Meta-Ar}$), 125.9 ($C^{Meta-Ar}$), 52.2 (NCH₂), 51.2 (NCH₂), 24.6 (CH₂^{Et}), 24.5 (CH₂^{Et}), 13.1 (CH₃^{Et}) ppm. (*Note: Some signals are overlapped by the C₆D₆ signal.)*

¹¹B{¹H} NMR (160.5 MHz, C₆D₆): δ = 13.9 (NC*B*), 6.5 (*B*H) ppm.

¹⁹**F NMR** (470.6 MHz, C₆D₆): $\delta = -110.3$ (m, 4F, CF^{Ar}), -161.3 (m, 2F, CF^{Ar-Para}), -162.7 (m, 4F, CF^{Ar}) ppm.

HRMS(LIFDI): m/z (C₆₃H₆₅B₂N₅Cu₂F₁₀) = calc.: 1229.3853, found: 1229.3845.

UV/Vis (C₆H₆): $\lambda_{max} = 379$, 400 – 600 (br) nm.

Synthesis of [(SIDep)HB=B(2-C₅H₄N)(SIDep)][CuCl]₄ (4-Cu)

Route a: **3-CuCl**(15.0 mg, 15.5 µmol, 1.00 equiv) and [CuCl(SMe₂)] (7.5 mg, 46.5 µmol, 3.00 equiv) were combined in benzene (0.6 mL) and stirred at room temperature for 14 h. The excess [CuCl(SMe₂)] was removed by filtration of the suspension and after drying *in vacuo* the product was obtained as a yellow solid (10.2 mg, 8.7 µmol, 56%).

Scheme S3 Alternative synthetic route for 4-Cu.

Route b: 1 (10.0 mg, 13.0 µmol, 1.00 equiv) and [CuCl(SMe₂)] (10.5 mg. 65.0 µmol, 5.00 equiv) were dissolved in benzene (0.6 mL) and stirred at room temperature for 14 h. The excess [CuCl(SMe₂)] was removed by filtration of the suspension and after drying *in vacuo* the product was obtained as a yellow solid (8.5 mg, 7.3 µmol, 56%).

¹H{¹¹B} NMR (500.1 MHz, C₆D₆): $\delta = 8.62 - 8.61$ (m, 1H, CH^{Ar,2-pyr}), 6.98 - 6.91 (m, 2H, CH^{Ar}), 6.87 - 6.85 (m, 2H, CH^{Ar}), 6.79 - 6.77 (m, 4H, CH^{Ar}), 6.64 (br. s, 4H, CH^{Ar}), 6.21 - 6.20 (m, 1H, CH^{Ar,4-pyr}), 6.13 - 6.10 (m, 1H, CH^{Ar,3-pyr}), 5.90 - 5.88 (m 1H, CH^{Ar,5-pyr}), 3.20 (br. s, 1H, BH), 3.08 (br. s, 4H, NCH₂), 2.94 (br. s, 4H, CH₂^{Et}), 2.90 (br. s, 4H, NCH₂), 2.82 (br. s, 4H, CH₂^{Et}), 2.63 (br. s, 4H, CH₂^{Et}), 2.46 - 2.38 (m, 4H, CH₂^{Et}), 1.28 - 1.26 (m, 24H, CH₃^{Et}) ppm.

¹³C{¹H} NMR (125.8 MHz, C₆D₆): $\delta = 203.7 (C^{Carbene})$, 182.9 ($C^{Carbene}$), 170.8 (BC=N), 148.7 (CH^{Ar,2-} ^{pyr}), 141.6 (C^q), 140.2 (C^q), 137.0 (C^q), 136.6 (C^q), 132.6 (CH^{Ar,4-pyr}), 132.4 (CH^{Ar,3-pyr}), 129.2 (C^{Ar}), 129.2 (C^{Ar}), 128.8 (C^{Ar}), 126.4 (C^{Ar}), 120.3 (CH^{Ar,5-pyr}), 52.2 (NCH₂), 51.4 (NCH₂), 24.6 (CH₂^{Et}), 24.3 (CH₂^{Et}), 14.4 (CH₃^{Et}), 13.5 (CH₃^{Et}) ppm. (*Note: Some signals are overlapped by the C₆D₆ signal.*)

¹¹B{¹H} NMR (160.5 MHz, C₆D₆): δ = 16.5 (NC*B*), 0.3 (*B*H) ppm.

HRMS(LIFDI): m/z: calc.: 1165.1317 (C₅₁H₆₅B₂N₅Cu₄Cl₄), 1130.1623 (C₅₁H₆₅B₂N₅Cu₄Cl₃), 1030.2668 (C₅₁H₆₅B₂N₅Cu₃Cl₂), 932.3683 (C₅₁H₆₅B₂N₅Cu₂Cl), found: 1130.1592, 1030.2629, 932.3644.

UV/Vis (C₆H₆): $\lambda_{max} = 367, 400 - 600$ (br) nm.

Synthesis of [(SIDep)HB=B(2-C₅H₄N)(SIDep)][AgCl] (2-AgCl)

1 (15.0 mg, 22 μ mol, 1.00 equiv) and [AgCl(PPh₃)] (8.1 mg. 22 μ mol, 1.00 equiv) were dissolved in C₆D₆ (0.6 mL) and stirred at room temperature overnight. The volatiles were removed *in vacuo* and the residue was washed with *n*-hexane (3 x 0.5 mL). The solid was dried *in vacuo* and after crystallization from toluene the product was obtained as yellow crystals (10.7 mg, 12 μ mol, 54%), which were also suitable for X-ray diffractometry.

¹H{¹¹B} NMR (500.1 MHz, C₆D₆): $\delta = 8.34 - 8.33$ (m, 1H, H^{Pyr}), 7.27 - 7.21 (m, 4H, H^{Ar}), 7.08 (t, ³J_{HH} = 7.6 Hz, H^{Ar}), 7.00 - 6.99 (m, 2H, H^{Ar}), 6.91 - 6.89 (m, 2H, H^{Ar}), 6.83 - 6.81 (m, 2H, H^{Ar}), 6.31 - 6.28 (m, 1H, H^{Pyr}), 6.24 – 6.21 (m, 1H, H^{Pyr}), 5.02 – 5.00 (m, 1H, H^{Pyr}), 3.26 (dq, ${}^{2}J_{HH} = 15.0$ Hz, ${}^{3}J_{HH} = 7.5$ Hz, 2H, CH_{2}^{Et}), 3.19 – 3.01 (m, 6H, NC H_{2}), 2.92 – 2.84 (m, 4H, $CH_{2}^{Et} + NCH_{2}$), 2.77 (dq, ${}^{2}J_{HH} = 15.2$ Hz, ${}^{3}J_{HH} = 7.6$ Hz, 2H, CH_{2}^{Et}), 2.63 (dq, ${}^{2}J_{HH} = 15.2$ Hz, ${}^{3}J_{HH} = 7.6$ Hz, 2H, CH_{2}^{Et}), 2.55 – 2.44 (m, 4H, CH_{2}^{Et}), 2.18 (dq, ${}^{2}J_{HH} = 15.2$ Hz, ${}^{3}J_{HH} = 7.6$ Hz, 2H, CH_{2}^{Et}), 1.36 – 1.31 (m, 12H, CH_{3}^{Et}), 1.26 (t, ${}^{3}J_{HH} = 7.6$ Hz, 6H, CH_{3}^{Et}), 0.99 (t, ${}^{3}J_{HH} = 7.6$ Hz, 6H, CH_{3}^{Et}) ppm. (*Note: The BH resonance could not be detected due to broadening.*)

¹³C{¹H} NMR (125.8 MHz, C₆D₆): $\delta = 191.2 (C^{Carbene})$, 185.8 ($C^{Carbene}$, *identified by HMBC*), 174.4 (C^{q-Pyr} , *identified by HMBC*), 146.2 (C^{Pyr}), 142.1 (C^{q}), 141.7 (C^{q}), 141.2 (C^{q}), 140.7 (C^{q}), 138.3 (C^{q}), 137.0 (C^{q}), 131.3 (C^{Pyr}), 128.5 (C^{Pyr}), 126.9 (C^{Ar}), 126.0 (C^{Ar}), 125.9 (C^{Ar}), 125.6 (C^{Ar}), 116.2 (C^{Pyr}), 50.7 (NCH₂), 50.5 (NCH₂), 24.4 (CH₂^{Et}), 24.2 (CH₂^{Et}), 23.9 (CH₂^{Et}), 23.2 (CH₂^{Et}), 22.4 (CH₂^{Et}), 14.1 (CH₃^{Et}), 13.9 (CH₃^{Et}), 13.7 (CH₃^{Et}), 13.6 (CH₃^{Et}) ppm. (*Note: Some signals are overlapped by the C₆D₆ signal.*)

¹¹B{¹H} NMR (160.5 MHz, C_6D_6): δ [ppm] = 27.0 (NCB), 4.1 (BH).

HRMS(LIFDI): m/z (C₅₁H₆₅B₂N₅AgCl) = calc.: 913.4157, found: 913.4145.

UV/Vis (C₆H₆): $\lambda_{max} = 427$ nm.

Synthesis of [(SIDep)HB=B(2-C₅H₄N)(SIDep)][AuCl] (2-AuCl)

Route a: **1** (20.0 mg, 26 μ mol, 1.00 equiv) and [AuCl(PPh₃)] (12.9 mg, 26 μ mol, 1.00 equiv) were dissolved in C₆D₆ (0.6 mL) and stirred at room temperature overnight. The volatiles were removed *in vacuo* and the residue was washed with *n*-hexane (3 x 0.5 mL). The solid was dried *in vacuo* and after crystallization from toluene the product was obtained as yellow crystals (13 mg, 13 μ mol, 50%), which were also suitable for X-ray diffractometry.

Scheme S4 Alternative synthetic route for 2-AuCl.

Route b: 2-CuCl (20.0 mg, 23 μ mol, 1.00 equiv) and [AuCl(PPh₃)] (11.4 mg, 23 μ mol, 1.00 equiv) were combined in benzene (0.6 mL) and stirred at room temperature for 30 minutes. The suspension was filtered, and all volatiles were removed *in vacuo*. The residue was washed with n-hexane (3 x 0.5 mL) and extracted with benzene. By slow diffusion of *n*-pentane into the solution the product crystallized as yellow crystals (10.0 mg, 10 μ mol, 43%).

¹H{¹¹B} NMR (500.1 MHz, C₆D₆): $\delta = 8.25 - 8.23$ (m, 1H, H^{Pyr}), 7.23 (t, ${}^{3}J_{HH} = 7.6$ Hz, 2H, H^{Ar}), 7.18 - 7.16 (m (*obstructed by solvent signal*), 1H, H^{Ar}), 7.04 (t, ${}^{3}J_{HH} = 7.6$ Hz, 2H, H^{Ar}), 6.94 (d,

 ${}^{3}J_{HH} = 7.4$ Hz, 2H, H^{Ar}), 6.89 (d, ${}^{3}J_{HH} = 7.2$ Hz, 2H, H^{Ar}), 6.79 (d, ${}^{3}J_{HH} = 7.2$ Hz, 2H, H^{Ar}), 6.62 – 6.61 (m, 2H, H^{Pyr}), 6.39 – 6.35 (m, 1H, H^{Pyr}), 3.21 – 3.16 (m, 2H, NCH₂), 3.14 – 3.06 (m, 2H, CH₂^{Et}), 3.04 – 2.90 (m, 8H, CH₂^{Et} + NCH₂), 2.77 (dq, ${}^{2}J_{HH} = 15.2$ Hz, ${}^{3}J_{HH} = 7.6$ Hz, 2H, CH_{2}^{Et}), 2.64 (dq, ${}^{2}J_{HH} = 15.0$ Hz, ${}^{3}J_{HH} = 7.0$ Hz, 2H, CH_{2}^{Et}), 2.51 – 2.31 (m, 6H, CH_{2}^{Et}), 2.16 (dq, ${}^{2}J_{HH} = 15.2$ Hz, ${}^{3}J_{HH} = 7.6$ Hz, 2H, CH_{3}^{Et}), 1.31 (t, ${}^{3}J_{HH} = 7.5$ Hz, 6H, CH_{3}^{Et}), 1.27 (t, ${}^{3}J_{HH} = 7.6$ Hz, 6H, CH_{3}^{Et}), 1.22 (t, ${}^{3}J_{HH} = 7.6$ Hz, 6H, CH_{3}^{Et}), 1.14 (t, ${}^{3}J_{HH} = 7.5$ Hz, 6H, CH_{3}^{Et}) ppm. (*Note: The BH resonance could not be detected due to broadening.*)

¹³C{¹H} NMR (125.8 MHz, C₆D₆): $\delta = 190.8$ (C^{Carbene}), 187.8 (C^{Carbene}), 176.1 (C^{q-Pyr}, *identified by HMBC*), 146.3 (C^{Pyr}), 141.2 (C^q), 141.2 (C^q), 141.1 (C^q), 140.5 (C^q), 138.0 (C^q), 137.2 (C^q), 130.8 (C^{Pyr}), 128.4 (C^{Pyr}), 126.5 (C^{Ar}), 126.1 (C^{Ar}), 125.8 (C^{Ar}), 125.5 (C^{Ar}), 116.7 (C^{Pyr}), 51.3 (NCH₂), 50.9 (NCH₂), 24.3 (CH₂^{Et}), 23.9 (CH₂^{Et}), 23.8 (CH₂^{Et}), 23.6 (CH₂^{Et}), 14.1 (CH₃^{Et}), 14.0 (CH₃^{Et}), 13.9 (CH₃^{Et}), 13.5 (CH₃^{Et}) ppm. (*Note: Some signals are overlapped by the* C₆D₆ *signal*.)

¹¹B{¹H} NMR (160.5 MHz, C₆D₆): δ = 15.0 (NC*B*), 6.3 (*B*H) ppm.

HRMS(LIFDI): m/z (C₅₁H₆₅B₂N₅AuCl) = calc.: 1001.4775, found: 1001.4749.

UV/Vis (C₆H₆): $\lambda_{max} = 400$ nm.

Synthesis of [(SIDep)HB=B(2-C₅H₄N)(SIDep)][AuBr] (2-AuBr)

1 (20.0 mg, 26 µmol, 1.00 equiv) and [AuBr(PCy₃)] (14.5 mg. 26 µmol, 1.00 equiv) were dissolved in C_6D_6 (0.6 mL) and stirred at room temperature for three days. The volatiles were removed *in vacuo* and the residue was washed with *n*-hexane until the green color of the washing phases faded. The solid was dried *in vacuo* and after crystallization from a toluene/*n*-hexane mixture (1/4 v/v) at -30 °C the product was obtained as yellow crystals (10 mg, 10 µmol, 38%). Crystals suitable for X-ray diffractometry were obtained by slow evaporation of a saturated toluene solution.

¹H {¹¹B} NMR (500.1 MHz, C₆D₆): $\delta = 8.24 - 8.22$ (m, 1H, H^{Pyr}), 7.22 (t, ${}^{3}J_{HH} = 7.7$ Hz, 2H, H^{Ar}), 7.17 - 7.16 (m (overlapped by C₆D₆ signal), H^{Ar}), 7.04 (t, ${}^{3}J_{HH} = 7.7$ Hz, 2H, H^{Ar}), 6.93 (d, ${}^{3}J_{HH} = 7.7$ Hz, 2H, H^{Ar}), 6.90 (d, ${}^{3}J_{HH} = 7.7$ Hz, 2H, H^{Ar}), 10, 6.80 (d, ${}^{3}J_{HH} = 7.7$ Hz, 2H, H^{Ar}), 6.62 - 6.60 (m, 2H, H^{Pyr}), 6.39 - 6.35 (m, 1H, H^{Pyr}), 3.19 - 3.12 (m, 4H, NC $H_2 + CH_2^{Et}$), 3.06 - 2.89 (m, 8H, NC $H_2 + CH_2^{Et}$), 2.77 (dq, ${}^{2}J_{HH} = 15.0$ Hz, ${}^{3}J_{HH} = 7.5$ Hz, 2H, CH_2^{Et}), 2.64 (dq, ${}^{2}J_{HH} = 15.0$ Hz, ${}^{3}J_{HH} = 7.5$ Hz, 2H, CH_2^{Et}), 2.49 - 2.40 (m, 4H, CH_2^{Et}), 2.34 (dq, ${}^{2}J_{HH} = 15.2$ Hz, ${}^{3}J_{HH} = 7.6$ Hz, 2H, CH_2^{Et}), 2.16 (dq, ${}^{2}J_{HH} = 15.2$ Hz, ${}^{3}J_{HH} = 7.6$ Hz, 2H, CH_2^{Et}), 1.31 (t, ${}^{3}J_{HH} = 7.5$ Hz, 6H, CH_3^{Et}), 1.27 (t, ${}^{3}J_{HH} = 7.5$ Hz, 6H, CH_3^{Et}), 1.23 (t, ${}^{3}J_{HH} = 7.6$ Hz, 6H, CH_3^{Et}), 1.15 (t, ${}^{3}J_{HH} = 7.6$ Hz, 6H, CH_3^{Et}) ppm. (*Note: The BH resonance could not be detected due to broadening.*)

¹³C{¹H} NMR (125.8 MHz, C₆D₆): δ = 190.5 (C^{Carbene}, *identified by HMBC*), 187.5 (C^{Carbene}, *identified by HMBC*), 175.9 (C^{q-Pyr}, *identified by HMBC*), 146.3 (C^{Pyr}), 141.2 (C^q), 141.1 (C^q), 141.0 (C^q), 140.5

(*C*^q), 138.0 (*C*^q), 137.3 (*C*^q), 131.0 (*C*^{Pyr}), 130.6 (*C*^{Pyr}), 128.4 (*C*^{Ar}), 128.2 (*C*^{Ar}), 126.5 (*C*^{Ar}), 126.1 (*C*^{Ar}), 125.8 (*C*^{Ar}), 125.5 (*C*^{Ar}), 116.7 (*C*^{Pyr}), 51.2 (NCH₂), 50.9 (NCH₂), 24.4 (*C*H₂^{Et}), 23.9 (*C*H₂^{Et}), 23.8 (*C*H₂^{Et}), 23.7 (*C*H₂^{Et}), 14.0 (*C*H₃^{Et}), 13.9 (*C*H₃^{Et}), 13.9 (*C*H₃^{Et}), 13.4 (*C*H₃^{Et}) ppm. (*Note: Some signals are overlapped by the C₆D₆ signal.)*

¹¹B{¹H} NMR (160.5 MHz, C₆D₆): δ = 15.5 (NC*B*), 6.6 (*B*H) ppm.

HRMS(LIFDI): m/z (C₅₁H₆₅B₂N₅AuBr) = calc.: 1046.4303, found: 1046.4269.

UV/Vis (C₆H₆): $\lambda_{max} = 401$ nm.

Synthesis of [(SIDep)HB=B(2-C₅H₄N)(SIDep)][AuCl][CuCl] (3-CuAu)

Route a: 2-AuCl (39.0 mg, 39 μ mol, 1.00 equiv) and [Cu(SMe₂)Cl] (6.3 mg, 20 μ mol, 1.00 equiv) were combined in benzene (0.6 mL) and stirred at room temperature for 30 minutes. The volatiles were removed *in vacuo* and the residue was washed with *n*-hexane (1 mL). After drying under reduced pressure, the residue was extracted with benzene and by slow diffusion of *n*-pentane into the solution the product crystallized as red needles (28.3 mg, 25 μ mol, 64%), which were also suitable for X-ray diffractometry.

Route b: 3-CuCl (20 mg, 21 μ mol, 1.00 equiv) and [AuCl(PPh₃)] (10.4 mg, 21 μ mol, 1.00 equiv) were combined in benzene (0.6 mL) and stirred at room temperature for 30 minutes. The suspension was filtered, and all volatiles were removed *in vacuo*. The residue was washed with n-hexane (3 x 0.5 mL) and extracted with benzene. By slow diffusion of *n*-pentane into the solution the product crystallized as red needles (12.1 mg, 11 μ mol, 52%).

¹H{¹¹B} NMR (600.2 MHz, C₆D₆): $\delta = 8.03 - 8.02$ (m, 1H, H^{Pyr}), 7.04 – 7.03 (m, 2H, H^{Ar}), 6.96 – 6.92 (m, 6H, H^{Ar}), 6.70 – 6.69 (m, 2H, H^{Ar}), 6.44 – 6.43 (m, 2H, H^{Ar}), 6.12 – 6.07 (m, 2H, H^{Pyr}), 5.74 – 5.73 (m, 1H, H^{Pyr}), 3.83 (dq, ²*J*_{*HH*} = 15.0 Hz, ³*J*_{*HH*} = 7.5 Hz, 2H, C*H*₂^{Et}), 3.42 (dq, ²*J*_{*HH*} = 15.2 Hz, ³*J*_{*HH*} = 7.6 Hz, 2H, C*H*₂^{Et}), 3.12 – 3.95 (m, 10H, C*H*₂^{Et} + NC*H*₂), 2.84 (br s, B*H*), 2.81 – 2.64 (m, 6H, C*H*₂^{Et}), 2.41 – 2.27 (m, 4H, C*H*₂^{Et}), 1.38 – 1.33 (two overlapping t, ³*J*_{*HH*} = 7.6 Hz, 7.6 Hz, 12H, C*H*₃^{Et}), 1.05 (t, ³*J*_{*HH*} = 7.5 Hz, 6H, C*H*₃^{Et}) ppm.

¹³C{¹H,¹¹B} NMR (150.9 MHz, C₆D₆): $\delta = 185.5 (C^{Carbene})$, 184.0 ($C^{Carbene}$), 173.1 (C^{2-Pyr}), 145.5 (C^{Pyr}), 142.1 (C^{q}), 141.3 (C^{q}), 141.1 (C^{q}), 141.0 (C^{q}), 137.0 (C^{q}), 137.3 (C^{q}), 133.7 (C^{Pyr}), 128.8 (C^{Ar}), 128.5 (C^{Ar}), 128.4 (C^{Ar}), 127.3 (C^{Ar}), 126.6 (C^{Ar}), 126.5 (C^{Ar}), 126.4 (C^{Ar}), 117.7 (CH^{Pyr}), 52.2 (NCH₂), 51.6 (NCH₂), 26.3 (CH_2^{Et}), 25.4 (CH_2^{Et}), 25.2 (CH_2^{Et}), 24.1 (CH_2^{Et}), 14.9 (CH_3^{Et}), 14.5 (CH_3^{Et}), 14.3 (CH_3^{Et}), 14.1 (CH_3^{Et}) ppm.

¹¹B{¹H} NMR (192.7 MHz, C₆D₆): δ = 4.7 (NC*B*), -3.4 (*B*H) ppm.

UV-vis (C₆H₆): $\lambda_{max} = 446$ nm.

NMR spectra of isolated compounds

Fig. S1 ${}^{1}H{}^{11}B$ NMR spectrum of 2-CuCl in C₆D₆.

Fig. S4 ${}^{1}H{}^{11}B{}$ NMR spectrum of 3-CuCl in C₆D₆.

Fig. S7 ${}^{1}H{}^{11}B{}$ NMR spectrum of 4-Cu in C₆D₆.

Fig. S9 $^{11}B{}^{1}H$ NMR spectrum of 4-Cu in C₆D₆.

Fig. S10 ${}^{1}H{}^{11}B{}$ NMR spectrum of 3-CuC₆F₅ in C₆D₆.

Fig. S11 ${}^{13}C{}^{1}H$ NMR spectrum of 3-CuC₆F₅ in C₆D₆.

Fig. S12 $^{11}B{}^{1}H{}$ NMR spectrum of 3-CuC₆F₅ in C₆D₆.

Fig. S13 ¹⁹F NMR spectrum of $3-CuC_6F_5$ in C_6D_6 .

Fig. S14 ¹⁹F VT NMR spectrum of **3-CuC₆F**₅ in Toluene- d_8 .

Fig. S15 ${}^{1}H{}^{11}B{}$ NMR spectrum of 2-AgCl in C₆D₆.

Fig. S18 ${}^{1}H{}^{11}B{}$ NMR spectrum of 2-AuCl in C₆D₆.

Fig. S19 $^{13}C\{^{1}H\}$ NMR spectrum of 2-AuCl in C₆D₆.

Fig. S21 ${}^{1}H{}^{11}B{}$ NMR spectrum of 2-AuBr in C₆D₆.

Fig. S22 $^{13}C{^{1}H}$ NMR spectrum of 2-AuBr in C₆D₆.

Fig. S23 $^{11}B{}^{1}H{}$ NMR spectrum of 2-AuBr in C₆D₆.

Fig. S24 ${}^{1}H{}^{11}B{}$ NMR spectrum of 3-CuAu in C₆D₆.

UV-vis spectra

Fig. S27 UV-vis spectrum of 2-CuCl in C₆H₆.

Fig. S28 UV-vis spectrum of 3-CuCl in C₆H₆.

Fig. S29 UV-vis spectrum of 4-Cu in C₆H₆.

Fig. S30 UV-vis spectrum of 3-CuC₆F₅ in C₆H₆.

Fig. S31 UV-vis spectrum of 2-AgCl in C₆H₆.

Fig. S32 UV-vis spectrum of 2-AuCl in C₆H₆.

Fig. S33 UV-vis spectrum of 2-AuBr in C₆H₆.

Fig. S34 UV-vis spectrum of 3-CuAu in C₆H₆.

X-ray crystallographic data

The crystal data of **4-Cu**, **2-AuCl**, **2-AuBr** and **3-CuAu** were collected on a Bruker D8 Quest diffractometer with a CMOS area detector and multi-layer mirror monochromated $Mo_{\kappa\alpha}$ radiation. The crystal data of **3-CuC₆F**₅ were collected on a Bruker X8-APEX II diffractometer with a CCD area detector and multi-layer mirror monochromated $Mo_{\kappa\alpha}$ radiation. The crystal data of **2-AuCl**, **2-CuCl** and **3-CuCl** was collected on a *XtaLAB Synergy Dualflex HyPix* diffractometer with a Hybrid Pixel array detector and multi-layer mirror monochromated $Cu_{\kappa\alpha}$ radiation. The structures were solved using the intrinsic phasing method,⁶ refined with the ShelXL program⁷ and expanded using Fourier techniques. All non-hydrogen atoms were refined anisotropically. Hydrogen atoms were included in structure factor calculations. Crystallographic data have been deposited with the Cambridge Crystallographic Data Center (CCDC numbers: 2290304 (**2-CuCl**), 2290303 (**3-CuCl**), 2290301 (**3-CuC₆F**₅), 2290307 (**4-Cu**), 2290309 (**2-AgCl**), 2290306 (**2-AuCl**), 2290302 (**2-AuBr**), 2290308 (**3-CuAu**)). These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif

Fig. S35 Crystallographically-derived structure of $3-CuC_6F_5$. Ellipsoids are shown at the 50% probability level. Aryl groups of the NHC units and all hydrogen atoms except that bound to the boron are omitted for clarity.

Special refinement details for 2-CuCl: All hydrogen atoms except H2_1 were assigned to idealized positions. The coordinates of H2_1 were refined freely. Crystal data for 2-CuCl: $C_{51}H_{65}B_2ClCuN_5$, $M_r = 868.69$, red block, $0.250 \times 0.130 \times 0.090$ mm³, monoclinic space group $P2_1/c$, a = 13.70400(10) Å,

b = 13.75780(10) Å, c = 24.4253(2) Å, $\alpha = 90^{\circ}$, $\beta = 101.3180(10)^{\circ}$, $\gamma = 90^{\circ}$, V = 4515.51(6) Å³, Z = 4, $\rho_{calcd} = 1.278 \text{ g} \cdot \text{cm}^{-3}$, $\mu = 1.531 \text{ mm}^{-1}$, F(000) = 1848, T = 100(2) K, $R_I = 0.0383$, $wR_2 = 0.0910$, 9291 independent reflections $[2\theta \le 150.656^{\circ}]$ and 553 parameters.

Special refinement details for 3-CuCl: All hydrogen atoms except H2_1 were assigned to idealized positions. The coordinates of H2_1 were refined freely. The displacement parameters of atoms of the residues PYR were restrained to the same value with similarity restraint SIMU. The 1–2 and 1–3 distances in PYR residues were restrained to the same values with SAME. Crystal data for 3-CuCl: C₅₁H₆₃B₂Cl₂Cu₂N₅, M_r = 965.66, red block, 0.310×0.130×0.070 mm³, monoclinic space group $P2_1/c$, a = 18.1438(2) Å, b = 11.81800(10) Å, c = 23.6127(2) Å, $\alpha = 90^{\circ}$, $\beta = 112.1500(10)^{\circ}$, $\gamma = 90^{\circ}$, V = 4689.46(8) Å³, Z = 4, $\rho_{calcd} = 1.368$ g·cm⁻³, $\mu = 2.473$ mm⁻¹, F(000) = 2024, T = 100(2) K, $R_1 = 0.0581$, $wR_2 = 0.1333$, 8530 independent reflections [2 $\theta \le 136.48^{\circ}$] and 625 parameters.

Special refinement details for 4-Cu: All hydrogen atoms except H1 and H2 were assigned to idealized positions. The coordinates of H1 and H2 were refined freely. The unit cell contains 2.2381 benzene molecules, which were treated as a diffuse contribution to the overall scattering without specific atom positions by SQUEEZE/PLATON.⁸ The displacement parameters of atoms of the disordered [CuCl₂] moieties were restrained to the same value with similarity restraint SIMU and RIGU. The distances between atoms of the disordered [CuCl₂] moieties were restrained during refinement to the same value with the SADI restraint. Crystal data for 4-Cu: $C_{63}H_{64}B_2Cl_4Cu_4N_5[+2.2381(C_6H_6)]$, $M_r = 1408.2$, $P\overline{1}$, a = 15.0923(11) Å, orange block, $0.156 \times 0.089 \times 0.078 \text{ mm}^3$, triclinic space group b = 17.1901(14) Å, c = 25.434(2) Å, $\alpha = 102.384(3)^{\circ}$, $\beta = 91.280(2)^{\circ}$, $\gamma = 90.589(3)^{\circ}$, $V = 6442.7(9) \text{ Å}^3$, Z = 4, $\rho_{calcd} = 1.452 \text{ g} \cdot \text{cm}^{-3}$, $\mu = 1.515 \text{ mm}^{-1}$, F(000) = 2920, T = 293(2) K, $R_1 = 0.1387$, $wR_2 = 0.2759$, 25361 independent reflections [2 $\theta \leq 52.044^\circ$] and 1293 parameters.

Special refinement details for 3-CuC₆F₅: All hydrogen atoms except H2_1 were assigned to idealized positions. The coordinates of H2_1 were refined freely. One diethylphenyl moiety showed disorder. The atomic displacement parameters (ADPs) of overlapping atoms from different PARTs (C1, C2, C3, C4, C5, C6, C7, C8, C9, C10 of RESIs 11/111) were restrained using similarity restraint SIMU and rigid body restraint RIGU. The N5_7-C1_11 and The N5_7-C1_111 distances between the imidazole and the diethylphenyl moieties were restrained using same distance restraint SADI. Crystal data for 3-CuC₆F₅: C₆₃H₆₅B₂Cu₂F₁₀N₅, $M_r = 1230.90$, red plate, $0.418 \times 0.248 \times 0.15$ mm³, triclinic space group P $\overline{1}$, a = 11.432(4) Å, b = 14.578(7) Å, c = 17.780(5) Å, $a = 93.226(16)^\circ$, $\beta = 107.118(10)^\circ$, $\gamma = 94.524(14)^\circ$, V = 2813.3(18) Å³, Z = 2, $\rho_{calcd} = 1.453$ g·cm⁻³, $\mu = 0.835$ mm⁻¹, F(000) = 1272, T = 100(2) K, $R_I = 0.1118$, $wR^2 = 0.1480$, 11078 independent reflections [2 $\theta \le 52.042^\circ$] and 819 parameters.

Special refinement details for 2-AgCI: All hydrogen atoms except H1_1 were assigned to idealized positions. The coordinates of H1_1 were refined freely. The displacement parameters of atoms C1_8 and C1_18 were constrained to the same value with EADP keyword. The coordinates of atoms C1_8 and C1_18 were constrained to the same value. The displacement parameters of atoms C1_10 to C6_10, C1_8 to N6_18, C1_7 to C10_17, C1_6 to C10_16, C1_5 to C10_15 and C1_4 to C10_14 were restrained to the same value with SAME. Reflections [-4 0 4] and [0 0 6] were omitted. **Crystal data for 2-AgCI:** $C_{60}H_{74}AgB_2CIN_5$, $M_r = 1030.18$, yellow block, $0.094 \times 0.076 \times 0.060$ mm³, monoclinic space group *I2/a*, *a* = 23.88640(10) Å, *b* = 12.68250(10) Å, *c* = 36.1057(2) Å, *a* = 90°, β = 95.5220(10)°, γ = 90°, V = 10887.08(12) Å³, Z = 8, $\rho_{calcd} = 1.257$ g·cm⁻³, μ = 3.735 mm⁻¹, *F*(000) = 4344, *T* = 99.99(11) K, *R_I* = 0.0396, *wR_2* = 0.0988, 11200 independent reflections [20

Special refinement details for 2-AuCl: All hydrogen atoms except H1 1 were assigned to idealized positions. The coordinates of H1 1 were refined freely. The displacement parameters of atoms C1 7 to C7 7 and C1 17 to C7 17 were restrained to the same value with similarity restraint SIMU. The displacement parameters of atoms C1 8 to C2 18 were restrained to the same value with similarity restraint SIMU. The distances between atoms C1 8, C2 8, C1 18, C2 18, C6 4 were restrained during refinement to the same value with the SADI restraint. The Uii displacement parameters of atoms C2 8 and C2 18 were restrained with ISOR keyword to approximate isotropic behavior. The displacement parameters of atoms C1 5 and C1 15 were constrained to the same value with keyword EADP. The coordinates of atoms C1 5 and C1 15 were constrained to the same position. The displacement parameters of atoms C1 5 to C6 15 were restrained to the same value with similarity restraint SIMU. The atomic displacement parameters of atoms C1 5 to C6 15 were restrained with RIGU keyword in ShelXL input. The 1-2 and 1-3 distances of residues 8 and 18 were restrained to the same values with SAME. The following reflections were omitted as they were covered by the beamstop: [1 0 0], [0 1 1], $[0\ 2\ 1], [1\ 1\ 1], [-1\ 1\ 1]$. Crystal data for 2-AuCl: C₁₂₃H₁₅₄Au₂B₄Cl₂N₁₀, $M_r = 2280.63$, yellow block, $0.245 \times 0.204 \times 0.174 \text{ mm}^3$, monoclinic space group $P2_1/c$, a = 13.643(3) Å, b = 21.105(5) Å, c = 19.074(5) Å, $\beta = 91.484(7)^{\circ}$, V = 5490(2) Å³, Z = 2, $\rho_{calcd} = 1.380$ g·cm⁻³, $\mu = 2.772$ mm⁻¹, $F(000) = 2348, T = 100(2) \text{ K}, R_1 = 0.0424, wR^2 = 0.0788, 15405 \text{ independent reflections } [20 \le 59.24^\circ]$ and 689 parameters.

Special refinement details for 2-AuBr: All hydrogen atoms except H1_1 were assigned to idealized positions. The coordinates of H1_1 were refined freely. The displacement parameters of atoms C1_2 and C1_12 were constrained to the same value with the keyword EADP. The coordinates of atoms C1_2 and C1_12 were constrained to the same value. The displacement parameters of atoms C1_2 to C6_12, C1_9 to C2_19, C1_10 to C2_110, BR4_11 to BR4_111 and C1_13 to C7_13 were restrained to the

same value with similarity restraint SIMU. The U_{ii} displacement parameters of atoms BR4_11 and BR4_111 were restrained with keyword ISOR to approximate isotropic behavior. The distances between atoms C1_9 and C38_1, C1_19 and C38_1, C1_9 and C2_9, C1_19 and C2_19 were restrained during refinement to the same value. The 1–2 and 1–3 distances in the pyridyl group were restrained to the same values with SAME. **Crystal data for 2-AuBr:** C₁₀₉H₁₃₈Au₂B₄Br₂N₁₀, $M_r = 2185.28$, yellow block, 0.362×0.359×0.228 mm³, monoclinic space group $P2_1/n$, a = 12.547(6) Å, b = 18.489(8) Å, c = 21.362(8) Å, $a = 90^\circ$, $\beta = 93.295(13)^\circ$, $\gamma = 90^\circ$, V = 4947(4) Å³, Z = 2, $\rho_{calcd} = 1.467$ g·cm⁻³, $\mu =$ mm⁻¹, F(000) = 2220, T = 100(2) K, $R_I = 0.0516$, $wR_2 = 0.0753$, 9121 independent reflections [2 $\theta \le 50.902^\circ$] and 662 parameters.

Special refinement details for 3-CuAu: Refined as a two-component inversion twin. The BASF parameter was refined to 24.9%. The displacement parameters of atoms of the residues ET and disordered DEP and BENZ residues were restrained to the same value with similarity restraint SIMU. The 1–2 and 1–3 distances in disordered DEP residue were restrained to the same values with SAME. The 1–2 distances in disordered ET residues were restrained to the same values with SADI. The atom distances in disordered benzene fragments were fitted with the AFIX 66 keyword. Crystal data for 3-CuAu: C₁₂₀H₁₄₈Au₂B₄Cl₄Cu₂N₁₀, $M_r = 2436.53$, red block, $0.290 \times 0.242 \times 0.121$ mm³, monoclinic space group *Cc*, *a* = 35.642(9) Å, *b* = 11.768(3) Å, *c* = 26.907(7) Å, $\alpha = 90^{\circ}$, $\beta = 101.525(12)^{\circ}$, $\gamma = 90^{\circ}$, V = 11058(5) Å³, *Z* = 4, $\rho_{calcd} = 1.463$ g·cm⁻³, $\mu = 3.175$ mm⁻¹, *F*(000) = 4968, *T* = 100(2) K, $R_I = 0.0326$, $wR_2 = 0.0744$, Flack parameter = 0.249(6), 19946 independent reflections [2 $\theta \le 50.698^{\circ}$] and 1411 parameters.

Computational details

All calculations were carried out using the Gaussian 16, Revision C.01,⁹ the ADF 2019.304,^{10,11} and the ORCA 5.0.3¹² quantum chemistry program packages. Geometry optimizations for **2-AuCl**, **3-AuCl**, **3-AuCl**, **3-AuCu**, **3-CuAu**, and **3-CuCl** were performed at the ω B97X-D¹³/Def2-SVP¹⁴ level of theory. The optimized geometries were determined as minima on their respective potential energy surfaces through vibrational frequency calculations, which confirmed the presence of only positive eigenvalues in the Hessian matrices.

To analyze the bonding situations in the various systems Mayer Bond Orders $(MBOs)^{15}$ were obtained at the ω B97X-D/Def2-TZVP¹⁴ level of theory. For these calculations, the Multiwfn 3.8¹⁶ tool was used. A further evaluation of the bonding situation took place through the calculations based on the intrinsic bond orbital $(IBO)^{17}$ method at the ω B97X-D/Def2-TZVP level of theory. For the calculations and graphical representations of the IBO method, the IBOView software, version v20211019-RevA,^{17, 18} was used. Further bonding investigations of **2-AuCl** were performed by the energy decomposition analysis with the natural orbitals for chemical valence (EDA-NOCV)¹⁹⁻²¹ method at the PBE0-D3^{22, 23}/TZ2P²⁴ level of theory. The main results are displayed in Table S1. To take the relativistic effect into account the EDA-NOCV calculations of **2-AuCl** were performed with the zeroth-order regular approximation (ZORA).^{25, 26}

Table S1. Orbital interactions of the EDA-NOCV analysis of **2-AuCl** calculated at the PBE0-D3/TZ2P level of theory. The chosen fragments are (SIDep)HB=B(2-C₅H₄N)(SIDep) and AuCl (electron-sharing (B=B)–Au bond) and (SIDep)HB=B(2-C₅H₄N)(SIDep)⁻ and AuCl⁺ (dative (B=B)⁻–Au⁺ bond). Energy terms are given in kcal mol⁻¹. For ΔV_{elstat} , ΔE_{disp} , and ΔE_{orb} , the percentage weighting of the total attractive interaction is given. For ΔE_{orb-n} the given percentage weighting is with respect to the total orbital interaction ΔE_{oi} .

	2-AuCl	
	Electron-sharing (B=B)–Au bond	Dative (B=B) ⁻ -Au ⁺ bond
ΔE_{int}	-102.74	-379.42
ΔE_{Pauli}	209.79	206.99
ΔV_{elstat}	-211.47 (67.7%)	-290.46 (49.5%)l
ΔE_{disp}	-14.71 (4.7%)	-14.71 (2.5%)
ΔE_{orb}	-86.34 (27.6%)	-281.23 (48.0%)
ΔE_{orb-1}	-45.51 (52.7%)	-163.80 (58.2%)
ΔE_{orb-2}	-17.16 (19.9%)	-62.82 (22.3%)
ΔE_{orb-3}	-5.71 (6.6%)	-14.21 (5.1%)
$\Delta E_{orb-rest}$	-17.96 (20.8%)	-40.40 (14.4%)

Table S2. Mayer bond orders (MBOs) for 2-AuCl, 3-AuCl, 3-AuCu, 3-CuAu, and 3-CuCl at the ω B97X-D/Def2-TZVP level of theory.

	2-AuCl	3-AuCl	3-AuCu	3-CuAu	3-CuCl
B1–Au	0.46	0.30 / 0.12	0.25	0.33	_
B2–Au	0.20	0.14 / 0.51	0.23	0.32	_
B1–Cu	_	_	0.37	0.32	0.29 / 0.40
B2–Cu	_	_	0.34	0.30	0.41 / 0.31

Cartesian Coordinates

Complex 2-AuCl, ωB97X-D/Def2-SVP

Geometry of the ground state

Energy = -2899.74855620 E_h

В	-0.926569000	0.252041000	0.128785000
Au	0.646101000	1.138122000	-1.244705000
Cl	1.429283000	2.469775000	-3.072112000
В	0.490592000	-0.563908000	0.206339000
Н	-1.836428000	-0.079123000	-0.599321000
С	-1.552140000	1.186436000	1.243457000
N	-1.160370000	2.374717000	1.737110000
С	-2.176405000	2.976684000	2.601867000
Н	-2.678294000	3.799020000	2.064826000
Н	-1.726289000	3.395255000	3.511663000
N	-2.718296000	0.857248000	1.834609000
С	-3.107513000	1.803324000	2.876545000
Н	-2.942001000	1.358626000	3.872438000
Н	-4.173354000	2.059782000	2.791163000
С	-0.093261000	3.204253000	1.266170000
С	-0.269052000	3.919956000	0.068413000
С	0.784268000	4.731954000	-0.355665000
Н	0.714398000	5.259189000	-1.305971000
С	1.944287000	4.840280000	0.402366000
Н	2.764949000	5.464615000	0.043282000
С	2.070262000	4.164464000	1.611595000
Н	2.983435000	4.280712000	2.196212000
С	1.045913000	3.336989000	2.074816000
С	-1.554315000	3.782440000	-0.724960000
Н	-2.395590000	4.138880000	-0.103550000
Н	-1.745217000	2.709539000	-0.889860000
С	-1.581528000	4.484511000	-2.074841000
Н	-2.539658000	4.290481000	-2.579289000
Н	-1.472755000	5.575562000	-1.974950000
Н	-0.772970000	4.106307000	-2.718946000
С	1.125207000	2.606202000	3.398275000

Η	1.122311000	1.523379000	3.202591000
Н	0.198231000	2.794818000	3.964043000
С	2.305437000	2.967892000	4.288999000
Н	2.264731000	2.388608000	5.222879000
Н	3.266070000	2.737194000	3.807511000
Н	2.303939000	4.037718000	4.550917000
С	-3.569596000	-0.258414000	1.576189000
С	-4.589936000	-0.094332000	0.617724000
С	-5.560222000	-1.089651000	0.522767000
Η	-6.369976000	-0.991638000	-0.201050000
С	-5.504099000	-2.221619000	1.334823000
Η	-6.275947000	-2.989772000	1.247370000
С	-4.456698000	-2.390411000	2.229156000
Η	-4.400410000	-3.294659000	2.841522000
С	-3.469643000	-1.406969000	2.369969000
С	-4.578145000	1.126996000	-0.273927000
Η	-3.595641000	1.152500000	-0.773189000
Η	-4.608642000	2.034334000	0.354279000
С	-5.671727000	1.197950000	-1.328828000
Η	-5.550653000	2.105902000	-1.936760000
Η	-5.620373000	0.334716000	-2.009531000
Η	-6.678547000	1.225649000	-0.883894000
С	-2.358483000	-1.590268000	3.374750000
Η	-1.580784000	-0.832575000	3.208322000
Η	-1.878095000	-2.563396000	3.178747000
С	-2.829593000	-1.545839000	4.829372000
Η	-1.983031000	-1.680351000	5.518912000
Η	-3.309151000	-0.583633000	5.066031000
Η	-3.565376000	-2.336786000	5.039585000
С	0.821217000	-1.684796000	-0.898778000
Ν	-0.030890000	-2.203722000	-1.811691000
С	0.652505000	-2.972182000	-2.851685000
Η	0.623034000	-2.428266000	-3.809281000
Η	0.152007000	-3.940476000	-2.996685000
N	2.042340000	-2.207979000	-1.146251000
С	2.068393000	-3.098992000	-2.301354000
Η	2.323153000	-4.125242000	-1.987030000

Η	2.835798000	-2.766768000	-3.015793000
С	-1.457284000	-2.190908000	-1.864331000
С	-2.095172000	-1.473667000	-2.887737000
С	-3.474157000	-1.650034000	-3.049364000
Н	-3.990485000	-1.107753000	-3.845095000
С	-4.189448000	-2.503164000	-2.219970000
Н	-5.263091000	-2.639579000	-2.368209000
С	-3.541174000	-3.167949000	-1.182733000
Н	-4.109552000	-3.811421000	-0.508706000
С	-2.171647000	-3.016615000	-0.976869000
С	-1.348264000	-0.494925000	-3.765749000
Н	-1.287955000	-0.892413000	-4.794173000
Η	-0.315707000	-0.392194000	-3.405068000
С	-1.971698000	0.901473000	-3.791941000
Н	-1.291001000	1.605340000	-4.290681000
Н	-2.943774000	0.918315000	-4.308115000
Н	-2.118173000	1.267287000	-2.764624000
С	-1.501851000	-3.715511000	0.183540000
Η	-0.845569000	-2.995920000	0.699057000
Η	-2.285213000	-3.981679000	0.909992000
С	-0.716886000	-4.973612000	-0.187855000
Η	-0.308037000	-5.458550000	0.711625000
Η	-1.357334000	-5.702226000	-0.707715000
Η	0.132972000	-4.742180000	-0.845203000
С	3.270851000	-2.019287000	-0.440434000
С	3.547625000	-2.876582000	0.642005000
С	4.774424000	-2.735331000	1.288260000
Η	5.016580000	-3.366285000	2.144208000
С	5.702455000	-1.790404000	0.852056000
Η	6.659234000	-1.693024000	1.370226000
С	5.411847000	-0.968146000	-0.226541000
Η	6.137505000	-0.218554000	-0.551494000
С	4.185508000	-1.061821000	-0.894367000
С	2.521200000	-3.906094000	1.062927000
Η	2.412315000	-4.648329000	0.252582000
Η	1.541083000	-3.410947000	1.132835000
С	2.799870000	-4.633757000	2.369574000

Η	1.974875000	-5.322289000	2.604592000
Η	3.723607000	-5.230293000	2.323024000
Н	2.895432000	-3.923264000	3.204732000
Η	2.847958000	-0.295735000	-2.390197000
Η	5.869917000	0.018954000	-2.925397000
Η	4.839506000	-1.226316000	-3.658211000
С	3.872032000	-0.127110000	-2.034060000
Η	3.860317000	0.900847000	-1.638974000
С	4.834687000	-0.216836000	-3.216109000
Η	4.531852000	0.498134000	-3.994461000
Ν	2.605361000	0.330429000	1.343146000
С	3.467212000	0.385048000	2.350020000
С	2.184129000	-1.115153000	3.684375000
Η	2.005782000	-1.678282000	4.604685000
С	1.283808000	-1.182407000	2.624432000
Η	0.391613000	-1.806577000	2.699530000
С	1.516419000	-0.460731000	1.439516000
С	3.315983000	-0.319143000	3.545081000
Н	4.060786000	-0.234399000	4.338522000
Н	4.341147000	1.030783000	2.201371000

Complex 3-AuCl, ωB97X-D/Def2-SVP

Geometry of the ground state

Energy = -3494.48788129 E_h

В	-0.800696000	-0.254475000	-0.050726000
В	0.777256000	0.178163000	0.234087000
Cu	-0.160308000	-0.445492000	2.017783000
Cl	0.000403000	-1.502858000	3.927587000
Cu	0.237376000	0.433800000	-1.833368000
Cl	1.302756000	1.214737000	-3.599658000
С	-1.130523000	-1.839894000	-0.059467000
Ν	-2.326671000	-2.391221000	0.248472000
С	-2.288212000	-3.851488000	0.282945000
Н	-2.910181000	-4.266847000	-0.527359000
Η	-2.688602000	-4.217223000	1.239151000
С	-0.803418000	-4.146202000	0.112134000
Н	-0.341618000	-4.479643000	1.053966000

Η	-0.586992000	-4.895237000	-0.661777000
N	-0.257591000	-2.844803000	-0.275532000
С	1.534666000	1.563461000	0.281962000
N	2.882884000	1.614311000	0.284844000
С	3.377087000	2.968213000	0.041745000
Η	3.684240000	3.070590000	-1.010958000
Η	4.240672000	3.188335000	0.683752000
С	2.151601000	3.813460000	0.352340000
Η	2.174948000	4.255375000	1.364822000
Η	1.995728000	4.623059000	-0.371504000
N	1.070680000	2.830744000	0.274032000
С	-2.021397000	0.683470000	-0.519628000
С	-3.050247000	1.273810000	0.222942000
С	-3.991149000	2.129435000	-1.815054000
Η	-4.756226000	2.682889000	-2.362158000
С	-2.914078000	1.564790000	-2.486954000
Η	-2.793181000	1.673971000	-3.569559000
N	-1.970148000	0.864532000	-1.857729000
С	-3.616385000	-1.775174000	0.318536000
С	-4.187162000	-1.501249000	1.567982000
С	-5.484644000	-0.973589000	1.588802000
Η	-5.952008000	-0.748441000	2.550418000
С	-6.183502000	-0.744315000	0.412952000
Η	-7.194532000	-0.332443000	0.450494000
С	-5.607263000	-1.052984000	-0.818055000
Η	-6.173219000	-0.874016000	-1.732582000
С	-4.322129000	-1.585157000	-0.890046000
С	1.040075000	-2.817729000	-0.880349000
С	1.142310000	-2.587503000	-2.264306000
С	2.410377000	-2.647493000	-2.845858000
Η	2.510754000	-2.433865000	-3.912247000
С	3.531524000	-2.965926000	-2.087796000
Η	4.515326000	-3.013873000	-2.560141000
С	3.402977000	-3.199521000	-0.724607000
Η	4.287792000	-3.415266000	-0.122375000
С	2.162171000	-3.111919000	-0.091206000
С	4.617105000	0.135889000	-0.606593000

С	3.825883000	0.553247000	0.474230000
С	5.661631000	-0.759992000	-0.350241000
Н	6.288146000	-1.088990000	-1.183623000
С	5.889598000	-1.254831000	0.925934000
Η	6.705141000	-1.959153000	1.105283000
С	5.058383000	-0.868702000	1.974663000
Η	5.216586000	-1.275561000	2.976673000
С	4.022094000	0.044778000	1.774362000
С	-0.251675000	3.310116000	0.506472000
С	-0.775486000	3.258379000	1.815080000
С	-1.989347000	3.907213000	2.066882000
Η	-2.396979000	3.905683000	3.079549000
С	-2.653375000	4.586944000	1.053119000
Η	-3.592342000	5.101653000	1.268460000
С	-2.127121000	4.610695000	-0.233560000
Η	-2.664235000	5.129400000	-1.031481000
С	-0.919724000	3.974087000	-0.534911000
С	-3.460596000	-1.749090000	2.868983000
Η	-2.459085000	-2.162240000	2.686654000
Η	-4.017123000	-2.513883000	3.437332000
С	-3.303764000	-0.497475000	3.730717000
Η	-2.735978000	-0.734697000	4.639959000
Η	-4.274057000	-0.060481000	4.012994000
Η	-2.723889000	0.266481000	3.191809000
С	-3.676382000	-1.944706000	-2.209566000
Η	-3.427411000	-3.019022000	-2.203541000
Η	-2.712959000	-1.420318000	-2.274156000
С	-4.479795000	-1.628871000	-3.462023000
Η	-3.905701000	-1.910077000	-4.356549000
Η	-4.699043000	-0.552873000	-3.534915000
Η	-5.434441000	-2.176241000	-3.493104000
С	-0.055591000	-2.320678000	-3.145502000
Η	-0.749840000	-1.621681000	-2.655571000
Η	0.292942000	-1.789435000	-4.042585000
С	-0.810614000	-3.586959000	-3.548236000
Η	-1.648187000	-3.345378000	-4.219798000
Η	-1.227754000	-4.106247000	-2.671987000

Η	-0.147465000	-4.293915000	-4.069273000
С	2.082744000	-3.272905000	1.407717000
Н	1.102044000	-2.954086000	1.784508000
Н	2.794892000	-2.561935000	1.855051000
С	2.402669000	-4.682113000	1.905012000
Η	2.314124000	-4.728987000	3.000161000
Η	3.425154000	-4.985570000	1.632107000
Η	1.717120000	-5.430284000	1.476080000
С	4.365705000	0.596379000	-2.019473000
Η	4.274104000	-0.301156000	-2.650781000
Η	3.383420000	1.078400000	-2.107333000
С	5.459243000	1.499572000	-2.589939000
Η	5.196309000	1.811388000	-3.611172000
Η	6.433714000	0.987949000	-2.629233000
Η	5.596545000	2.408745000	-1.983270000
С	3.169774000	0.468211000	2.945443000
Η	2.110784000	0.485102000	2.652226000
Η	3.224618000	-0.308879000	3.721442000
С	3.567760000	1.815691000	3.546996000
Η	2.929148000	2.060991000	4.408678000
Η	3.467901000	2.632719000	2.816221000
Η	4.613695000	1.805239000	3.889012000
С	-0.039476000	2.561064000	2.886790000
Η	1.036711000	2.449493000	2.735788000
С	-0.570646000	2.039202000	3.996789000
Η	-1.643185000	2.076701000	4.204220000
Η	0.049556000	1.505729000	4.719007000
С	-0.369052000	4.028098000	-1.939452000
Η	0.469613000	3.328670000	-2.056572000
Η	-1.144222000	3.648519000	-2.623074000
С	0.044863000	5.430023000	-2.388631000
Η	0.444811000	5.397627000	-3.412311000
Η	0.823498000	5.856479000	-1.736644000
Η	-0.804477000	6.130577000	-2.377971000
Η	1.608236000	-0.685450000	0.380326000
Η	-3.070034000	1.156564000	1.305510000
С	-4.046618000	1.986269000	-0.427886000

Complex 3-AuCu, @B97X-D/Def2-SVP

Geometry of the ground state

Energy = -4999.04528793 E_h

В	-0.815465000	-0.279037000	0.006711000
В	0.746027000	0.352573000	0.280238000
Cu	-0.390673000	0.477685000	2.015997000
Cl	-0.495396000	0.932093000	4.124435000
Au	0.615138000	-0.556862000	-1.709955000
Cl	1.442356000	-1.156016000	-3.837814000
С	-1.172540000	-1.716059000	0.716168000
N	-2.389673000	-2.060450000	1.196229000
С	-2.354789000	-3.280034000	2.003950000
Н	-3.152782000	-3.965868000	1.685791000
Н	-2.519920000	-3.028437000	3.063660000
С	-0.957037000	-3.815023000	1.738593000
Н	-0.401410000	-4.047126000	2.657479000
Н	-0.950012000	-4.712872000	1.100538000
Ν	-0.316838000	-2.709581000	1.028932000
С	1.455808000	1.750183000	-0.025787000
N	2.785962000	1.875604000	0.118929000
С	3.291074000	3.138125000	-0.418888000
Н	3.826802000	2.951217000	-1.363865000
Н	3.992921000	3.603306000	0.286502000
С	2.010354000	3.937206000	-0.621587000
Н	1.856792000	4.712386000	0.148113000
Н	1.947562000	4.414031000	-1.609177000
N	0.973066000	2.910754000	-0.489382000
С	-2.090906000	0.443947000	-0.674622000
С	-2.963187000	1.294260000	0.021092000
С	-4.334364000	1.457843000	-1.932377000
Н	-5.213519000	1.823098000	-2.466459000
С	-3.399682000	0.651834000	-2.573170000
Н	-3.526821000	0.384783000	-3.628926000
Ν	-2.323025000	0.155593000	-1.968262000
С	-3.691439000	-1.541802000	0.902816000

С	-4.389033000	-0.830554000	1.889351000
С	-5.704371000	-0.451977000	1.603590000
Η	-6.273667000	0.112952000	2.343843000
С	-6.293246000	-0.778225000	0.388779000
Н	-7.319997000	-0.468277000	0.181779000
С	-5.585514000	-1.502200000	-0.567256000
Η	-6.065852000	-1.753157000	-1.513530000
С	-4.275583000	-1.914479000	-0.323436000
С	1.041486000	-2.922267000	0.631847000
С	1.303137000	-3.490600000	-0.626512000
С	2.639058000	-3.699039000	-0.981985000
Η	2.863468000	-4.086801000	-1.978237000
С	3.667618000	-3.396771000	-0.098892000
Η	4.707003000	-3.552764000	-0.396135000
С	3.376919000	-2.894902000	1.165247000
Η	4.187168000	-2.657566000	1.856966000
С	2.061795000	-2.644636000	1.554545000
С	4.533973000	0.222700000	-0.288977000
С	3.745602000	0.941081000	0.622263000
С	5.618604000	-0.502834000	0.217039000
Η	6.249429000	-1.065953000	-0.475139000
С	5.889626000	-0.530280000	1.578227000
Η	6.743239000	-1.098442000	1.954877000
С	5.050970000	0.137080000	2.468667000
Η	5.240054000	0.080049000	3.543647000
С	3.964354000	0.885843000	2.012246000
С	-0.370961000	3.344553000	-0.694252000
С	-1.020238000	3.991314000	0.374457000
С	-2.229775000	4.642132000	0.114526000
Η	-2.761961000	5.125197000	0.936510000
С	-2.763022000	4.651548000	-1.169842000
Η	-3.710469000	5.160215000	-1.360810000
С	-2.116148000	3.984386000	-2.203359000
Η	-2.560478000	3.968204000	-3.201327000
С	-0.903734000	3.320558000	-1.990846000
С	-3.742170000	-0.475675000	3.208465000
Н	-2.649012000	-0.532030000	3.110348000

Η	-4.013313000	-1.243574000	3.955549000
С	-4.095254000	0.902103000	3.761415000
Н	-3.458088000	1.123787000	4.627868000
Н	-5.147422000	0.973630000	4.075750000
Н	-3.909461000	1.687714000	3.013182000
С	-3.481386000	-2.735274000	-1.315745000
Н	-3.122739000	-3.648461000	-0.807961000
Н	-2.579915000	-2.164862000	-1.591981000
С	-4.204160000	-3.121099000	-2.596953000
Η	-3.538624000	-3.716858000	-3.237490000
Η	-4.498013000	-2.229356000	-3.170927000
Н	-5.109024000	-3.717566000	-2.402161000
С	0.217347000	-3.909423000	-1.590636000
Η	-0.731166000	-3.417652000	-1.338398000
Н	0.488834000	-3.538593000	-2.591054000
С	0.016461000	-5.425649000	-1.643169000
Н	-0.775509000	-5.687364000	-2.360852000
Н	-0.265677000	-5.838519000	-0.661713000
Η	0.938418000	-5.937423000	-1.957868000
С	1.786214000	-2.081210000	2.928550000
Η	0.747204000	-1.732273000	3.008071000
Η	2.402307000	-1.178799000	3.058357000
С	2.087503000	-3.058204000	4.065036000
Η	1.865036000	-2.595036000	5.037435000
Η	3.145842000	-3.360552000	4.065297000
Η	1.487132000	-3.977926000	3.981065000
С	4.225182000	0.183557000	-1.765900000
Η	3.977874000	-0.856488000	-2.033741000
Η	3.301812000	0.738896000	-1.976209000
С	5.345715000	0.692608000	-2.670391000
Η	5.038258000	0.620653000	-3.723421000
Η	6.269448000	0.106487000	-2.550115000
Η	5.595676000	1.744084000	-2.455672000
С	3.044278000	1.562372000	3.002035000
Η	2.002060000	1.283410000	2.785266000
Η	3.245952000	1.135125000	3.995808000
С	3.143211000	3.084475000	3.099414000

Η	2.518383000	3.441792000	3.930587000
Н	2.777038000	3.583267000	2.191200000
Η	4.178297000	3.413097000	3.279892000
С	-0.434398000	3.975086000	1.731314000
Н	0.069640000	3.053772000	2.041871000
С	-0.505355000	4.977389000	2.611103000
Η	-0.981876000	5.931825000	2.367188000
Η	-0.088388000	4.862725000	3.613931000
С	-0.197790000	2.643708000	-3.139619000
Η	0.652590000	2.058434000	-2.766337000
Η	-0.883365000	1.899136000	-3.573234000
С	0.281776000	3.606546000	-4.225331000
Η	0.785421000	3.051071000	-5.029438000
Η	0.994419000	4.345232000	-3.825106000
Н	-0.553214000	4.167066000	-4.672806000
Η	1.559465000	-0.303206000	0.890577000
Η	-2.749658000	1.544930000	1.062914000
С	-4.100868000	1.788677000	-0.599567000
Н	-4.794828000	2.429673000	-0.051438000

Complex 3-CuAu, **wB97X-D/Def2-SVP**

Geometry of the ground state

Energy = -4999.03621526 E_h

В	0.778221000	-0.272664000	0.209205000
В	-0.845864000	0.161600000	-0.009365000
Au	0.171759000	-0.223257000	-1.958038000
Cl	0.091081000	-0.676876000	-4.284897000
Cu	-0.239670000	0.263416000	2.057862000
Cl	-1.349091000	0.746360000	3.900928000
С	1.174872000	-1.856133000	0.182050000
N	2.393753000	-2.341029000	-0.135911000
С	2.407544000	-3.795568000	-0.279766000
Η	3.065297000	-4.246290000	0.481169000
Н	2.798127000	-4.071151000	-1.269981000
С	0.938539000	-4.163388000	-0.098962000
Η	0.475425000	-4.499622000	-1.039293000
Н	0.767350000	-4.939606000	0.659498000

Ν	0.338754000	-2.898859000	0.326044000
С	-1.617342000	1.558105000	0.010406000
N	-2.964885000	1.579151000	0.010626000
С	-3.493268000	2.907238000	0.317651000
Н	-3.816038000	2.944605000	1.370231000
Н	-4.355468000	3.140039000	-0.321203000
С	-2.284937000	3.794036000	0.064171000
Н	-2.314061000	4.300137000	-0.917186000
Н	-2.141757000	4.557894000	0.838737000
N	-1.182420000	2.830582000	0.084307000
С	1.977172000	0.671303000	0.720469000
С	2.955512000	1.354868000	-0.010685000
С	3.945243000	2.074156000	2.056270000
Η	4.713519000	2.607133000	2.618922000
С	2.910631000	1.426246000	2.717940000
Η	2.827332000	1.448460000	3.809376000
N	1.964254000	0.746338000	2.068472000
С	3.659375000	-1.673009000	-0.156891000
С	4.228069000	-1.295843000	-1.381560000
С	5.501761000	-0.715896000	-1.351202000
Η	5.969053000	-0.401686000	-2.286352000
С	6.180037000	-0.539222000	-0.153366000
Η	7.172895000	-0.083732000	-0.152443000
С	5.607497000	-0.950593000	1.048042000
Η	6.157858000	-0.809963000	1.978659000
С	4.342903000	-1.535518000	1.069848000
С	-0.978404000	-2.934359000	0.881725000
С	-1.126398000	-2.806647000	2.273828000
С	-2.413050000	-2.915898000	2.805160000
Η	-2.552346000	-2.780198000	3.879762000
С	-3.504799000	-3.177225000	1.984933000
Η	-4.504388000	-3.261938000	2.417196000
С	-3.330943000	-3.300999000	0.611936000
Η	-4.196199000	-3.462608000	-0.034106000
С	-2.069520000	-3.164365000	0.031037000
С	-4.656760000	-0.007987000	0.784559000
С	-3.886033000	0.517349000	-0.262699000

С	-5.679064000	-0.907190000	0.460060000
Н	-6.291233000	-1.321142000	1.265796000
С	-5.903228000	-1.299037000	-0.852467000
Н	-6.700596000	-2.008543000	-1.085353000
С	-5.094353000	-0.800621000	-1.871168000
Н	-5.253504000	-1.122477000	-2.903506000
С	-4.082705000	0.122827000	-1.601253000
С	0.133256000	3.374960000	-0.022630000
С	0.687666000	3.569457000	-1.304909000
С	1.882294000	4.293235000	-1.400771000
Н	2.315446000	4.483032000	-2.384275000
С	2.496653000	4.806460000	-0.266408000
Η	3.422100000	5.378799000	-0.361531000
С	1.935151000	4.597126000	0.988086000
Η	2.428060000	4.994453000	1.878654000
С	0.742243000	3.885410000	1.136304000
С	3.515411000	-1.509907000	-2.697375000
Η	2.460646000	-1.755151000	-2.510712000
Н	3.950483000	-2.398347000	-3.188797000
С	3.575182000	-0.326113000	-3.660296000
Н	2.934592000	-0.522180000	-4.529972000
Η	4.597674000	-0.122616000	-4.012060000
Н	3.185780000	0.586052000	-3.182773000
С	3.695114000	-2.005773000	2.353720000
Η	3.461347000	-3.080005000	2.264455000
Η	2.723893000	-1.499810000	2.450415000
С	4.487737000	-1.774864000	3.631226000
Η	3.917380000	-2.138540000	4.497893000
Η	4.684807000	-0.704027000	3.791479000
Η	5.453943000	-2.302491000	3.621893000
С	0.040499000	-2.581446000	3.207467000
Η	0.738536000	-1.844837000	2.781416000
Η	-0.344664000	-2.105260000	4.119987000
С	0.806401000	-3.855019000	3.563179000
Η	1.607289000	-3.637094000	4.285676000
Η	1.276217000	-4.310490000	2.678344000
Η	0.139024000	-4.607393000	4.010055000

С	-1.936730000	-3.198866000	-1.473290000
Η	-0.930685000	-2.877087000	-1.775507000
Н	-2.611809000	-2.430159000	-1.882407000
С	-2.267089000	-4.552371000	-2.100734000
Η	-2.154896000	-4.507698000	-3.193807000
Н	-3.300934000	-4.857986000	-1.878858000
Η	-1.605057000	-5.347243000	-1.721757000
С	-4.404771000	0.345698000	2.227696000
Η	-4.284768000	-0.594569000	2.787611000
Н	-3.433683000	0.843674000	2.345579000
С	-5.514921000	1.174958000	2.873288000
Н	-5.253672000	1.409259000	3.915460000
Н	-6.477121000	0.639223000	2.874854000
Н	-5.676419000	2.126481000	2.342220000
С	-3.257053000	0.678123000	-2.735757000
Н	-2.200253000	0.727513000	-2.439829000
Н	-3.278314000	-0.035880000	-3.571742000
С	-3.710605000	2.050051000	-3.233519000
Н	-3.090348000	2.373376000	-4.082541000
Н	-3.623773000	2.817858000	-2.449973000
Н	-4.760397000	2.030687000	-3.563622000
С	0.007713000	3.054369000	-2.508804000
Н	-1.050594000	2.803318000	-2.398436000
С	0.579003000	2.832581000	-3.695848000
Η	1.644196000	3.002471000	-3.873881000
Η	0.007603000	2.402552000	-4.519466000
С	0.134194000	3.720640000	2.507490000
Н	-0.698149000	3.006025000	2.484985000
Н	0.882517000	3.250588000	3.163739000
С	-0.328361000	5.033664000	3.139975000
Н	-0.770425000	4.840749000	4.128041000
Н	-1.088388000	5.539366000	2.523423000
Н	0.504501000	5.741395000	3.272217000
Η	-1.698826000	-0.685825000	-0.076746000
Η	2.930146000	1.318418000	-1.099921000
С	3.954087000	2.044045000	0.660168000
Η	4.736813000	2.560876000	0.100819000

Complex 3-CuCl, ωB97X-D/Def2-SVP

Geometry of the ground state

Energy = -6503.59332055 E_h

В	-0.798479000	-0.335076000	-0.033085000
В	0.823489000	0.334943000	0.112243000
Au	-0.461322000	1.069987000	1.743273000
Cl	-0.734652000	2.265018000	3.751093000
Au	0.667956000	-1.002493000	-1.623054000
Cl	1.548074000	-2.059845000	-3.539716000
С	-1.183292000	-1.630497000	0.918074000
N	-2.419046000	-1.887917000	1.396508000
С	-2.420587000	-2.923254000	2.430134000
Н	-3.195002000	-3.672960000	2.213732000
Н	-2.647091000	-2.469459000	3.407944000
С	-1.005703000	-3.474685000	2.350762000
Н	-0.493810000	-3.497135000	3.322938000
Н	-0.957894000	-4.486028000	1.917622000
N	-0.339875000	-2.530318000	1.455394000
С	1.575090000	1.585627000	-0.555321000
N	2.907519000	1.707491000	-0.434300000
С	3.450754000	2.769552000	-1.280868000
Н	3.983370000	2.326295000	-2.137840000
Н	4.164258000	3.384534000	-0.715891000
С	2.194145000	3.521901000	-1.700449000
Н	2.062877000	4.479373000	-1.167981000
Н	2.147407000	3.720519000	-2.779889000
N	1.127267000	2.597739000	-1.310918000
С	-2.042143000	0.171350000	-0.946991000
С	-2.971973000	1.148876000	-0.561769000
С	-4.198539000	0.757902000	-2.580925000
Н	-5.038530000	0.947877000	-3.251662000
С	-3.213728000	-0.163238000	-2.920253000
Н	-3.259031000	-0.702611000	-3.873645000
N	-2.182225000	-0.452599000	-2.131609000
С	-3.704782000	-1.440437000	0.953140000
С	-4.426049000	-0.523370000	1.730074000

С	-5.723543000	-0.207420000	1.315608000
Η	-6.309704000	0.513927000	1.887246000
С	-6.274526000	-0.794598000	0.183932000
Н	-7.288050000	-0.530560000	-0.126191000
С	-5.546791000	-1.722666000	-0.556159000
Н	-5.998526000	-2.177562000	-1.438211000
С	-4.252273000	-2.077369000	-0.177398000
С	1.032093000	-2.810787000	1.158896000
С	1.333917000	-3.644747000	0.068707000
С	2.680485000	-3.918624000	-0.188199000
Н	2.937223000	-4.519628000	-1.063481000
С	3.679878000	-3.417868000	0.636023000
Н	4.728268000	-3.629470000	0.414508000
С	3.349133000	-2.645376000	1.744244000
Η	4.137212000	-2.251184000	2.388316000
С	2.022100000	-2.325508000	2.026786000
С	4.632302000	-0.015477000	-0.343802000
С	3.834022000	0.924064000	0.324879000
С	5.688481000	-0.597131000	0.367036000
Η	6.329034000	-1.325496000	-0.136320000
С	5.916813000	-0.280040000	1.699233000
Η	6.747067000	-0.742998000	2.237381000
С	5.063888000	0.601132000	2.361036000
Н	5.217789000	0.818067000	3.421142000
С	4.009261000	1.222693000	1.689846000
С	-0.205205000	2.975814000	-1.656573000
С	-0.878961000	3.883419000	-0.814530000
С	-2.101913000	4.399418000	-1.257870000
Η	-2.663310000	5.079643000	-0.615258000
С	-2.612352000	4.046243000	-2.499755000
Η	-3.568149000	4.458328000	-2.830510000
С	-1.927685000	3.149738000	-3.312529000
Η	-2.348889000	2.860574000	-4.278038000
С	-0.709259000	2.597378000	-2.910952000
С	-3.823834000	0.104172000	2.966174000
Η	-2.727490000	0.053002000	2.895686000
Η	-4.094310000	-0.510142000	3.844045000

С	-4.226317000	1.551941000	3.226946000
Н	-3.617741000	1.964089000	4.042441000
Н	-5.288032000	1.649744000	3.499121000
Н	-4.039790000	2.177045000	2.340461000
С	-3.435897000	-3.106809000	-0.927847000
Н	-3.117776000	-3.889954000	-0.216543000
Н	-2.511721000	-2.621596000	-1.280525000
С	-4.113782000	-3.758178000	-2.123253000
Н	-3.433906000	-4.485152000	-2.589571000
Н	-4.370429000	-3.011288000	-2.889566000
Н	-5.035513000	-4.290413000	-1.841188000
С	0.279649000	-4.274625000	-0.812095000
Η	-0.680843000	-3.756681000	-0.691447000
Н	0.573897000	-4.116458000	-1.861128000
С	0.097317000	-5.771583000	-0.551472000
Н	-0.672511000	-6.190070000	-1.217026000
Н	-0.205474000	-5.976052000	0.487704000
Н	1.032661000	-6.322658000	-0.731248000
С	1.698625000	-1.473630000	3.230898000
Н	0.645749000	-1.161329000	3.201830000
Н	2.279541000	-0.541195000	3.159043000
С	2.001522000	-2.158754000	4.563278000
Η	1.747413000	-1.497150000	5.404302000
Η	3.067103000	-2.420843000	4.648157000
Η	1.427138000	-3.091641000	4.678474000
С	4.356383000	-0.437834000	-1.766231000
Η	4.090041000	-1.507208000	-1.754860000
Η	3.450159000	0.055220000	-2.140913000
С	5.507740000	-0.206521000	-2.742521000
Η	5.219899000	-0.547509000	-3.747232000
Η	6.414063000	-0.757214000	-2.448059000
Η	5.779407000	0.859469000	-2.805633000
С	3.079126000	2.151633000	2.434097000
Η	2.037735000	1.876110000	2.209424000
Η	3.198130000	1.964542000	3.511641000
С	3.267896000	3.645379000	2.173216000
Н	2.589692000	4.223347000	2.817413000

Η	3.033166000	3.915542000	1.133695000
Η	4.300221000	3.965355000	2.381842000
С	-0.294859000	4.276625000	0.482730000
Н	0.519788000	3.650437000	0.853748000
С	-0.679542000	5.299122000	1.251027000
Н	-1.477589000	5.989065000	0.964239000
Н	-0.208566000	5.461511000	2.222026000
С	0.034814000	1.663921000	-3.833928000
Н	0.909311000	1.243036000	-3.321855000
Н	-0.611854000	0.798345000	-4.046070000
С	0.479478000	2.313845000	-5.143853000
Н	1.016052000	1.582469000	-5.765166000
Н	1.152435000	3.167491000	-4.964123000
Н	-0.375644000	2.688940000	-5.726455000
Н	1.652065000	-0.221957000	0.789189000
Н	-2.841010000	1.671462000	0.387735000
С	-4.065085000	1.429874000	-1.368719000
Н	-4.802533000	2.172665000	-1.056693000

References

- 1. M. Arrowsmith, J. Böhnke, H. Braunschweig, M. A. Celik, T. Dellermann and K. Hammond, *Chem. Eur. J.*, 2016, **22**, 17169-17172.
- 2. T. Brückner, B. Ritschel, J. O. C. Jimenez-Halla, F. Fantuzzi, D. Duwe, C. Markl, R. D. Dewhurst, M. Dietz and H. Braunschweig, *Angew. Chem. Int. Ed.*, 2023, **62**, e202213284.
- 3. S. C. H. Heaney, *Organometallic Complexes of Copper*, Georg Thieme Verlag KG, Stuttgart, 1st. Edition edn., 2004.
- 4. M. Halim, R. D. Kennedy, M. Suzuki, S. I. Khan, P. L. Diaconescu and Y. Rubin, *J. Am. Chem. Soc.*, 2011, **133**, 6841-6851.
- 5. M.-Z. Wang, M.-K. Wong and C.-M. Che, Chem. Eur. J., 2008, 14, 8353-8364.
- 6. G. Sheldrick, Acta Cryst. A, 2015, 71, 3-8.
- 7. G. Sheldrick, Acta Cryst. A, 2008, 64, 112-122.
- 8. A. Spek, Acta Cryst. C, 2015, 71, 9-18.
- 9. M. J. Frisch et al., Gaussian 16 Rev. C.01, Wallingford, CT, 2016.
- 10. G. te Velde, F. M. Bickelhaupt, E. J. Baerends, C. Fonseca Guerra, S. J. A. van Gisbergen, J. G. Snijders and T. Ziegler, *J. Comput. Chem.*, 2001, **22**, 931-967.
- 11. E. J. Baerends et al., *ADF 2019.304*, SCM, Theoretical Chemistry, Vrije Universiteit, Amsterdam, The Netherlands.
- 12. F. Neese, F. Wennmohs, U. Becker and C. Riplinger, J. Chem. Phys., 2020, 152, 224108.
- 13. J.-D. Chai and M. Head-Gordon, Phys. Chem. Chem. Phys., 2008, 10, 6615-6620.
- 14. F. Weigend and R. Ahlrichs, Phys. Chem. Chem. Phys., 2005, 7, 3297-3305.
- 15. I. Mayer, J. Comput. Chem., 2007, 28, 204-221.
- 16. T. Lu and F. Chen, J. Comput. Chem., 2012, 33, 580-592.
- 17. G. Knizia, J. Chem. Theory Comput., 2013, 9, 4834-4843.
- 18. G. Knizia and J. E. M. N. Klein, Angew. Chem. Int. Ed., 2015, 54, 5518-5522.
- 19. T. Ziegler and A. Rauk, Inorg. Chem., 1979, 18, 1558-1565.
- 20. T. Ziegler and A. Rauk, Inorg. Chem., 1979, 18, 1755-1759.
- 21. M. P. Mitoraj, A. Michalak and T. Ziegler, J. Chem. Theory Comput., 2009, 5, 962-975.
- 22. C. Adamo and V. Barone, J. Chem. Phys., 1999, 110, 6158-6170.
- 23. S. Grimme, J. Antony, S. Ehrlich and H. Krieg, J. Chem. Phys., 2010, 132, 154104.
- 24. E. Van Lenthe and E. J. Baerends, J. Comput. Chem., 2003, 24, 1142-1156.
- 25. E. v. Lenthe, E. J. Baerends and J. G. Snijders, J. Chem. Phys., 1993, 99, 4597-4610.
- 26. E. van Lenthe, E. J. Baerends and J. G. Snijders, J. Chem. Phys., 1994, 101, 9783-9792.