Electronic Supplementary Information

Metal-dependent activity control of a compact-sized 8-17 DNAzyme based on metal-mediated unnatural base pairing

Yusuke Takezawa,* Lingyun Hu, Takahiro Nakama and Mitsuhiko Shionoya*

Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan

Table of Contents

1.	Experimental methods	S2
2.	Supporting figures	S3
3.	Reference	S5

1. Experimental methods

Materials and equipment. All the natural DNA strands and 6-carboxyfluorescein (FAM)labeled substrates containing a riboadenosine (rA) were purchased from Japan Bio Service Co., Ltd. (Saitama, Japan) at HPLC purification grade. A DNAzyme strand (**DzIm**) containing a 4carboxyimidazole (\mathbf{Im}^{C}) nucleotides was synthesized on an automated DNA synthesizer and purified by reverse-phase HPLC according to the reported procedure.^[S1] The **DzIm** strand was characterized by matrix assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry on Autoflex III (Bruker) using a mixture of 3-hydroxypicolinic acid (3-HPA) and ammonium citrate as a matrix. Metal sources (CuSO4·5H₂O (99.5% purity), Hg(ClO4)2·3H₂O (99%), AgNO₃ (99.8%), Pb(OAc)2·3H₂O (99.9%)) were purchased from FUJIFILM Wako Pure Chemical Industries. Denaturing polyacrylamide gel electrophoresis (PAGE) was carried out with 20% polyacrylamide gel containing 7 M urea. The gels were imaged and analyzed using Gel Doc EZ Imager and Image Lab software (Bio-Rad).

RNA-cleaving reaction by Im^C-**modified DNAzyme (DzIm).** DNAzyme strands were annealed (85 °C \rightarrow 25 °C, 1.0 °C/min) in a reaction buffer (50 mM HEPES buffer (pH 7.5), 100 mM NaCl, 10 µM Pb(OAc)₂) in the absence or presence of CuSO₄ (1.0 equiv). The concentrations of Pb^{II} ions were set to 10 µM to reduce unintended interactions between Pb^{II} and **Im**^C nucleobases. The DNAzyme reactions were initiated by the addition of a FAM-labeled substrate strand. The final concentration of each component was as follows: [DNAzyme] = 1.0 µM, [substrate] = 10 µM, [CuSO₄] = 0 or 1.0 µM. After incubation at 25 °C, an aliquot of the sample solution was taken at the designated time points. The reaction was stopped by the addition of a loading buffer (5.25 M urea, 1.25 mM EDTA, 7.5% glycerol), and the mixtures were stored at -28 °C until the time course was completed. The cleavage of the substrate was analyzed by denaturing PAGE. The fractions of the cleaved substrate (*F*) were calculated as follows:

$$F(\%) = I_c / (I_c + I_u) \times 100$$

where I_c and I_u are the band intensities of the cleaved product and the uncleaved substrate, respectively. The apparent first-order rate constants (k_{obs}) were calculated from the initial reaction rates, which were determined from the time points when F was less than 20%.

RNA-cleaving reactions by DNAzymes DzT and DzC. DNAzyme strands were annealed (85 °C \rightarrow 25 °C, 1.0 °C/min) in a reaction buffer (50 mM HEPES buffer (pH 7.5), 100 mM NaNO₃, 10 μ M Pb(OAc)₂) in the absence or presence of Hg(ClO₄)₂ or AgNO₃ (1.0 equiv). Note that NaCl

was replaced with NaNO₃ in the standard reaction buffer to prevent the precipitation of HgCl₂ and AgCl. The following procedures are the same as that for **DzIm**. The final concentration of each component was as follows: [DNAzyme] = 1.0μ M, [substrate] = 10μ M, [Hg(ClO₄)₂] = [AgNO₃] = $0 \text{ or } 1.0 \mu$ M.

 Cu^{II} titration experiment with DzIm DNAzyme. The overall procedures are the same as the DNAzyme reactions described above. The final concentration of each component was as follows: [DNAzyme] = 1.0 μ M, [substrate] = 10 μ M, [CuSO₄] = 0, 0.5, 1.0, 2.0, or 3.0 μ M.

CD spectroscopy. The samples were prepared by combining an equimolar amount of the DNAzyme (8-17 DNAzyme or **DzIm**) and an uncleavable DNA substrate that contains a dA nucleotide instead of the scissile rA, and annealed prior to the measurements (85 °C \rightarrow 4 °C, 1.0 °C/min). The concentrations of each component were as follows: [DNAzyme] = 1.0 μ M, [substrate] = 1.0 μ M, [CuSO₄] = 0 or 3.0 μ M. The CD spectra were recorded on a JASCO J-820 spectropolarimeter with 10-time accumulation using a path length of 0.5 cm at 4 °C. The spectra were smoothed using a simple moving average smoothing program.

2. Supporting figures

Figure S1. MALDI-TOF mass spectrum of the synthesized Im^{C} -modified 8-17 DNAzyme (**DzIm**). Negative mode. Observed: 8561.32; calcd for $[M - H]^{-}$: 8560.33.

(a)

Figure S2. Denaturing polyacrylamide gel electrophoresis (PAGE) of the RNA-cleaving reactions (a) catalyzed by the **Im**^C-modified 8-17 DNAzyme (**DzIm**), (b) catalyzed by the original 8-17 DNAzyme, and (c) without DNAzymes. [DNAzyme] = 1.0μ M, [substrate] = 10μ M in 50 mM HEPES (pH 7.5), 100 mM NaCl, 0.01 mM Pb(OAc)₂, 25 °C. 20% polyacrylamide gel containing 7 M urea, detected by FAM fluorescence. The results are summarized in Fig. 3 in the main text.

Figure S3. CD spectra of 8-17 DNAzyme and **DzIm** in the presence of an uncleavable DNA substrate containing a dA instead of the scissile rA. [DNAzyme] = 1.0μ M, [DNA substrate] = 1.0μ M, [Cu^{II}] = 0 or 1.0μ M in 50 mM HEPES buffer (pH 7.5), 100 mM NaCl, 0.01 mM Pb(OAc)₂, l = 0.5 cm, 4 °C.

Figure S4. Molecular design of Hg^{II}- and Ag^I-responsive 8-17 DNAzymes containing a $T-Hg^{II}-T$ or a C-Ag^I-C base pair (**DzT** and **TzC**, respectively). rA = adenine ribonucleotide at the cleavage site. Plausible secondary structures for both active and inactive states are shown.

Figure S5. Denaturing polyacrylamide gel electrophoresis (PAGE) of the RNA-cleaving reactions catalyzed by the DNAzymes modified (a) with a T–T base pair (**DzT**) and (b) with a C–C base pair (**DzC**). [DNAzyme] = 1.0μ M, [substrate] = 10μ M in 50 mM HEPES (pH 7.5), 100 mM NaNO₃, 0.01 mM Pb(OAc)₂, 25 °C. 20% polyacrylamide gel containing 7 M urea, detected by FAM fluorescence. The results are summarized in Fig. 4b in the main text.

3. Reference

S1. Y. Takezawa, L. Hu, T. Nakama and M. Shionoya, Angew. Chem., Int. Ed., 2020, 59, 21488-21492.