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1. Experimental Section

1.1 Preparation of Co-N-C materials

First, Co(NO3)2·6H2O (1.164 g) and PSS (200 mg) were dissolved in methanol (50 mL) 

and stirred for about half an hour. Second, a solution of 2-methylimidazole (1.32 g, 50 

mL methanol) was added to the Co solution. The resulting solution was aged for ~ 24 

h. Finally, purple powers were obtained and defined as PSS-ZIF-67. The A-Co-N-C 

material was obtained by pyrolyzing precursor PSS-ZIF-67 at 900 °C for 3 h under Ar. 

For comparison, common ZIF-67 nanoparticles with the large and small size of PSS-

ZIF-67 were prepared according to the method reported in the literature.1 The resulting 

materials, named Co-N-C and S-Co-N-C, were obtained with the same pyrolysis 

procedure. The precursor PSS-ZIF-67 was washed with water and methanol and then 

pyrolyzed in the same way to obtain A-Co-N-C-2.

1.2 Material Characterizations

X-ray diffraction (XRD) patterns of materials were obtained by an X-ray diffractometer 

(D8 Advance, Bruker). Morphologies of materials were obtained by scanning electron 

microscopy (SEM, SU8020, Hitachi) and transmission electron microscopy (TEM, 

JEM-2100, JEOL). Brunauer-Emmett-Teller (BET) surface areas of materials were 

obtained by a specific surface area analyzer (ASAP 2020, Micromeritics). The weight 

loss data of materials were obtained by a thermoanalyzer system 

(Q1000DSC+LNCS+FACS Q600SDT, TA Instruments). X-ray photoelectron 
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spectroscopy (XPS) spectra of materials were obtained by an X-ray photoelectron 

spectrometer (AXIS ULTRA, Kratos Analytical Ltd.).

1.3 Electrochemical measurements

1.3.1 ORR

Electrochemical ORR performance was obtained with an electrochemical workstation 

(CHI 760E) and measured in O2-saturated 0.1 M KOH. The rotating ring-disk electrode 

(RRDE; disk: 0.247 cm2; ring: 0.186 cm2) was selected as the working electrode. The 

RRDE was installed on a Pine Modulated Speed Rotator. Particularly, 20 µL of 

catalysts ink (4 mg of catalysts in 640 µL deionized water, 320 µL isopropanol and 40 

µL Nafion solution (5 wt%, DuPont)) was coated onto a RRDE electrode (catalyst 

loading: ~ 0.3 mg cm−2). Cyclic voltammogram (CV) data were at 0.05 V s−1. Linear 

sweep voltammogram (LSV) data were measured at 1600 rpm and 0.005 V s−1. Tafel 

slopes were calculated based on LSV data measured at 1600 rpm and 0.002 V s−1. The 

number of transfer electron (n) was calculated with equation 1 based on LSV data 

measured at 1600 rpm with RRDE.
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Here, id is the current obtained on the disk, ir is the current obtained on the ring, and N 

is the current collection efficiency of the ring electrode (~ 0.37). The production of 

hydrogen peroxide (%H2O2) can be calculated with equation 2.
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Under the same instrument and working electrode conditions as for the ORR test, the 

collection coefficient (N) was tested in 1M KNO3 and 2 mM K3Fe(CN)6 electrolyte. 

LSV data were measured at 1600 rpm and 0.005 V s−1. The following reactions occur 

on the disk and ring respectively2:

Disk: 3 4
6 6( ) ( )Fe CN e Fe CN   

Ring: 4 3
6 6( ) ( )Fe CN Fe CN e   

The formula for calculating N is as follows:

 (3)r

d

IN
I



According to test results of Fig. S1, it can be obtained that N = 0.37.

1.3.2 OER

Electrochemical OER performance was obtained with an electrochemical analyzer 

(CHI 630E). The glassy carbon (GC, 0.07 cm2) electrode was selected as the working 

electrode. Particularly, 5 μL of the above catalyst ink was coated onto the GC electrode. 

LSV data were measured in 1.0 M KOH at 0.01 V s−1 with iR compensation (100%). 

The overpotential (η, V) at 10 mA cm−2 can be calculated with equation 4.

 (4)/ (0.197 0.059 ) 1.23Ag AgClE pH     

Tafel slopes were calculated based on LSV data measured at 0.002 V s−1. To compare 

the electrochemical surface area of catalysts, CV data were measured at 0.02, 0.04, 

0.06, and 0.08 V s1 without iR compensation. Electrochemical impedance 

spectroscopy (EIS) results were obtained at 1.60 V (vs. RHE) from 0.1 to 1 mHz. To 

confirm the production of O2 during the electrocatalytic process, LSV data of A-Co-N-
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C were measured with RRDE at 1600 rpm. Herein, the potential of the ring electrode 

was set at 0.4 V (vs. RHE). To obtain the Faraday efficiency (FE) of O2 production, the 

controlled potential electrolysis of A-Co-N-C was carried out with the RRDE at 1600 

rpm. Herein, potentials of ring and disk electrode were set at 0.4 V and 1.6 V (vs RHE), 

respectively. The FE can be calculated with equation 5.3 

 (5)2
/
r

d

iFE
i N



The electrochemical double-layer capacitance (Cdl) was obtained by measuring CV 

curves in the non-Faraday region at different scan rates. Cdl was calculated by the 

following formula:

 (6)dlj C v 

The ECSA value was calculated using the following formula4:

 (7)dl

s

CECSA
C



The Cs is the specific capacity, which is a parameter for Co-based materials.

1.3.3 Zn-air battery

The performance of a Zn-air battery constructed with catalysts was evaluated with an 

electrochemical workstation (CHI 660E). A Zn-air battery includes three parts: the 

anode, electrolyte, and cathode. The anode is a new polished Zn plate. The electrolyte 

is a mixed solution of KOH (6.0 M) and ZnCl2 (0.2 M). The cathode was obtained by 

coating catalysts (0.50 mg cm−2) on a carbon cloth/gas diffusion layer hybrid electrode.
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Fig. S1 Determination of the collection coefficient (N) of the RRDE by [Fe(CN)6]4− 

oxidation.
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Fig. S2 TGA of (a) PSS-ZIF-67 and (b) ZIF-67.

An obvious peak of derivative mass was observed at 500 °C for PSS-ZIF-67 compared 

with ZIF-67. The introduction of PSS makes the decomposition temperature earlier.
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Fig. S3 XRD patterns of ZIF-67, PSS-ZIF-67, and calculated ZIF-67.
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Fig. S4 N2 adsorption and desorption curves of PSS-ZIF-67.
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Fig. S5 Pore size distribution of PSS-ZIF-67.
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Fig. S6 The CV curve of A-Co-N-C was measured in O2-saturated 0.1 M KOH.
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Fig. S7 The CV curve of Co-N-C was measured in O2-saturated 0.1 M KOH.
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Fig. S8 SEM image of ZIF-67 with small size (~ 100 nm).
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Fig. S9 SEM image of S-Co-N-C obtained by calcining ZIF-67 with small size (~ 100 

nm).
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Fig. S10 LSV data of S-Co-N-C.
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Fig. S11 LSV data of A-Co-N-C-2.
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Fig. S12 Controlled potential electrolysis tests of A-Co-N-C and Pt/C measured at 

0.66 V (vs RHE).
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Fig. S13 Tafel plots of A-Co-N-C and Co-N-C for OER.
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Fig. S14 CV data of A-Co-N-C (a) and Co-N-C (b) at scan rates of 0.02, 0.04, 0.06 

and 0.08 V s−1 for OER.
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Fig. S15 I-t curves of A-Co-N-C measured with the RRDE in 0.1 M KOH.
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Fig. S16 Charge–discharge voltages at j = 10 mA cm−2.
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Fig. S17 SEM image of A-Co-N-C after several hours stability test.
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Fig. S18 Full survey XPS spectrum (a), XPS spectra of Co 2p (b), N 1s (c) and S 2p 

(d) for A-Co-N-C after several hours stability test. The SO4
2− become the dominate 

phase of S 2p due to the electrolysis.
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Table S1 Comparison of EIS for A-Co-N-C and Co-N-C.

The R2 of A–Co–N–C is 43.88 Ω, which is much smaller than that of Co–N–C (172.6 

Ω).

Catalysts R2/Ω

A-Co-N-C 43.88

Co-N-C 172.6
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Table S2 Comparison of the synthesis methods, ORR and OER performance of A-

Co-N-C and other similar materials.

Catalysts Synthesis methods

ORR

E1/2

(mV)

OER 

overpotential 

(mV) (j10)

References

A-Co-N-C pyrolysis with PSS 875 334 This work

SSM/Co4N/CoNC in situ grown 833 270 5

Onion-like carbon/Co-N-

C
pyrolysis with P123 855 344 4

N/P-C-CoP-850 gelatinized guar gum 825 306 6

CoNC-NB2

self-catalyzed chemical vapor 

deposition
880 350 7

Co/Co-N-C
electrochemical deposition and 

pyrolyzation strategy
690 400 8

MoC/Co-N-C-600 pyrolysis with MoC 865 370 9

Co3O4-X doped graphene 

low-energy pulsed-laser irradiation 

technique and a hydrothermal 

method

829 327 10

Mn/Co-N-C-0.02-800 pyrolysis 800 430 11

NiS2@Co-N-C/CNF
high-temperature carbonization and 

hydrothermal method
800 300 12

FeCo/Co-N-C one-step annealing method 860 380 13

PtSA-PtCo NCs/N-CNTs-

900

melamine-orientation-induced and 

pyrolysis
860 252 14

Co/Co-N-C
Sandwich-like confinement 

pyrolysis route
850 - 15

G-CoNOC
Graphene quantum dots (GQDs) 

functionalization
880 - 16

CoNCI-0.5
chemical vapor deposition 

850 - 17
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process

Co@NG-800 hydrometallurgical method 850 - 18

Co-N-C/CNTsHS spray-drying 870 - 19

Co-N3-C pyrolysis of CNT-inserted ZIFs 891 - 20

Co-NCS-2 ultrasonication-assisted strategy 900 - 21

Co-SAs/N-C/rGO spatial-isolation strategy 840 - 22

Ru/Co-N-C-800 pyrolyzing and acid etching - 276 23
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Table S3 Comparison of peak power densities of Zn-air batteries constructed with A-

Co-N-C and other reported catalysts.

Catalysts Electrolytes

Δ(charge–

discharge)E 

(mV)

Durability 

(h)

Peak 

power 

density 

(mW cm–2)

References

A-Co-N-C
6 M KOH, 

0.2 M Zn(Ac)2

0.85 25 240 This work

NiCo-N-C
6 M KOH, 

0.2 M Zn(Ac)2

0.8 140 163 24

Co 

porphyrin@ZIF-67

6 M KOH, 

0.2 M Zn(Ac)2

0.85 112 220 25

Co/Co-N-C
6 M KOH, 

0.1 M Zn(Ac)2

0.82 330 132 26

Onion-like 

carbon/Co-N-C

6 M KOH, 

0.1 M ZnCl2

0.8 105 238 27

Co-N4−x-Cx 6 M KOH 0.8 60 184 28

Zn,Co-Nx-C-Sy

KOH/ZnAc 

(0.1:0.02 M)

solid polymer 

electrolyte

- - 150 29

PdMo 

bimetallene/C

6 M KOH, 

0.2 M Zn(Ac)2

0.7 116 154 30

NiCo2O4/N-

graphene

6 M KOH, 

0.1 M ZnCl2

0.8 15 103 31

CoFe20@carbon 

cages

6 M KOH, 

0.2 M Zn(Ac)2

1 130 190 32

Co@N-C
6 M KOH, 

0.2 M Zn(Ac)2

0.53 120 105 33
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Co@Co-N-C 6 M KOH - - 155 34

(Co,Fe)3N
6 M KOH, 

0.2 M Zn(Ac)2

0.85 300 234 35

CoFe-N-C
6 M KOH, 

0.2 M Zn(Ac)2

0.8 267 203 36

Co/CoO@Co-N-C
6 M KOH, 

0.2 M Zn(Ac)2

0.86 11 157 37
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