Electronic Supporting Information

Hierarchically porous aggregates of Co-N-C nanoparticles for oxygen electrocatalysis

Zuozhong Liang, ⁴ Jieling Zhang, ⁴ Haoquan Zheng,* and Rui Cao*

Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.

⁴These authors contributed equally.

*Corresponding E-mails: <u>zhenghaoquan@snnu.edu.cn</u>; <u>ruicao@snnu.edu.cn</u>.

1. Experimental Section

1.1 Preparation of Co-N-C materials

First, Co(NO₃)₂·6H₂O (1.164 g) and PSS (200 mg) were dissolved in methanol (50 mL) and stirred for about half an hour. Second, a solution of 2-methylimidazole (1.32 g, 50 mL methanol) was added to the Co solution. The resulting solution was aged for ~ 24 h. Finally, purple powers were obtained and defined as PSS-ZIF-67. The A-Co-N-C material was obtained by pyrolyzing precursor PSS-ZIF-67 at 900 °C for 3 h under Ar. For comparison, common ZIF-67 nanoparticles with the large and small size of PSS-ZIF-67 were prepared according to the method reported in the literature.¹ The resulting materials, named Co-N-C and S-Co-N-C, were obtained with the same pyrolysis procedure. The precursor PSS-ZIF-67 was washed with water and methanol and then pyrolyzed in the same way to obtain A-Co-N-C-2.

1.2 Material Characterizations

X-ray diffraction (XRD) patterns of materials were obtained by an X-ray diffractometer (D8 Advance, Bruker). Morphologies of materials were obtained by scanning electron microscopy (SEM, SU8020, Hitachi) and transmission electron microscopy (TEM, JEM-2100, JEOL). Brunauer-Emmett-Teller (BET) surface areas of materials were obtained by a specific surface area analyzer (ASAP 2020, Micromeritics). The weight by loss data of materials obtained thermoanalyzer were а system (Q1000DSC+LNCS+FACS Q600SDT, TA Instruments). X-ray photoelectron

spectroscopy (XPS) spectra of materials were obtained by an X-ray photoelectron spectrometer (AXIS ULTRA, Kratos Analytical Ltd.).

1.3 Electrochemical measurements

1.3.1 ORR

Electrochemical ORR performance was obtained with an electrochemical workstation (CHI 760E) and measured in O₂-saturated 0.1 M KOH. The rotating ring-disk electrode (RRDE; disk: 0.247 cm²; ring: 0.186 cm²) was selected as the working electrode. The RRDE was installed on a Pine Modulated Speed Rotator. Particularly, 20 μ L of catalysts ink (4 mg of catalysts in 640 μ L deionized water, 320 μ L isopropanol and 40 μ L Nafion solution (5 wt%, DuPont)) was coated onto a RRDE electrode (catalyst loading: ~ 0.3 mg cm⁻²). Cyclic voltammogram (CV) data were at 0.05 V s⁻¹. Linear sweep voltammogram (LSV) data were measured at 1600 rpm and 0.002 V s⁻¹. The number of transfer electron (*n*) was calculated with equation 1 based on LSV data measured at 1600 rpm with RRDE.

$$n = 4 \frac{i_d}{i_d + i_r / N}$$
(1)

Here, i_d is the current obtained on the disk, i_r is the current obtained on the ring, and N is the current collection efficiency of the ring electrode (~ 0.37). The production of hydrogen peroxide (%H₂O₂) can be calculated with equation 2.

$$^{\circ}H_2O_2 = 200 \frac{i_r / N}{i_d + i_r / N}$$
 (2).

Under the same instrument and working electrode conditions as for the ORR test, the collection coefficient (*N*) was tested in 1M KNO₃ and 2 mM K₃Fe(CN)₆ electrolyte. LSV data were measured at 1600 rpm and 0.005 V s⁻¹. The following reactions occur on the disk and ring respectively²:

Disk: $Fe(CN)_6^{3-} + e^- \rightarrow Fe(CN)_6^{4-}$

Ring: $Fe(CN)_6^{4-} \rightarrow Fe(CN)_6^{3-} + e^{-}$

The formula for calculating N is as follows:

$$N = \left| \frac{I_r}{I_d} \right|$$
(3)

According to test results of Fig. S1, it can be obtained that N = 0.37.

1.3.2 OER

Electrochemical OER performance was obtained with an electrochemical analyzer (CHI 630E). The glassy carbon (GC, 0.07 cm²) electrode was selected as the working electrode. Particularly, 5 μ L of the above catalyst ink was coated onto the GC electrode. LSV data were measured in 1.0 M KOH at 0.01 V s⁻¹ with *iR* compensation (100%). The overpotential (η , V) at 10 mA cm⁻² can be calculated with equation 4.

$$\eta = E_{Ag/AgCl} + (0.197 + 0.059 \times pH) - 1.23 \ (4)$$

Tafel slopes were calculated based on LSV data measured at 0.002 V s⁻¹. To compare the electrochemical surface area of catalysts, CV data were measured at 0.02, 0.04, 0.06, and 0.08 V s⁻¹ without *iR* compensation. Electrochemical impedance spectroscopy (EIS) results were obtained at 1.60 V (vs. RHE) from 0.1 to 1 mHz. To confirm the production of O₂ during the electrocatalytic process, LSV data of A-Co-N- C were measured with RRDE at 1600 rpm. Herein, the potential of the ring electrode was set at 0.4 V (vs. RHE). To obtain the Faraday efficiency (FE) of O_2 production, the controlled potential electrolysis of A-Co-N-C was carried out with the RRDE at 1600 rpm. Herein, potentials of ring and disk electrode were set at 0.4 V and 1.6 V (vs RHE), respectively. The FE can be calculated with equation 5.³

$$FE = 2\frac{i_r}{i_d / N}$$
(5)

The electrochemical double-layer capacitance (C_{dl}) was obtained by measuring CV curves in the non-Faraday region at different scan rates. C_{dl} was calculated by the following formula:

$$j = C_{dl} \times v \quad (6)$$

The ECSA value was calculated using the following formula⁴:

$$ECSA = \frac{C_{dl}}{C_s}$$
(7)

The $C_{\rm s}$ is the specific capacity, which is a parameter for Co-based materials.

1.3.3 Zn-air battery

The performance of a Zn-air battery constructed with catalysts was evaluated with an electrochemical workstation (CHI 660E). A Zn-air battery includes three parts: the anode, electrolyte, and cathode. The anode is a new polished Zn plate. The electrolyte is a mixed solution of KOH (6.0 M) and ZnCl₂ (0.2 M). The cathode was obtained by coating catalysts (0.50 mg cm⁻²) on a carbon cloth/gas diffusion layer hybrid electrode.

Fig. S1 Determination of the collection coefficient (N) of the RRDE by $[Fe(CN)_6]^{4-}$

oxidation.

Fig. S2 TGA of (a) PSS-ZIF-67 and (b) ZIF-67.

An obvious peak of derivative mass was observed at 500 °C for PSS-ZIF-67 compared with ZIF-67. The introduction of PSS makes the decomposition temperature earlier.

Fig. S3 XRD patterns of ZIF-67, PSS-ZIF-67, and calculated ZIF-67.

Fig. S4 N_2 adsorption and desorption curves of PSS-ZIF-67.

Fig. S5 Pore size distribution of PSS-ZIF-67.

Fig. S6 The CV curve of A-Co-N-C was measured in O_2 -saturated 0.1 M KOH.

Fig. S7 The CV curve of Co-N-C was measured in O_2 -saturated 0.1 M KOH.

Fig. S8 SEM image of ZIF-67 with small size (~ 100 nm).

Fig. S9 SEM image of S-Co-N-C obtained by calcining ZIF-67 with small size (~ 100

nm).

Fig. S10 LSV data of S-Co-N-C.

Fig. S11 LSV data of A-Co-N-C-2.

Fig. S12 Controlled potential electrolysis tests of A-Co-N-C and Pt/C measured at

0.66 V (vs RHE).

Fig. S13 Tafel plots of A-Co-N-C and Co-N-C for OER.

Fig. S14 CV data of A-Co-N-C (a) and Co-N-C (b) at scan rates of 0.02, 0.04, 0.06

and 0.08 V s⁻¹ for OER.

Fig. S15 I-t curves of A-Co-N-C measured with the RRDE in 0.1 M KOH.

Fig. S16 Charge–discharge voltages at j = 10 mA cm⁻².

Fig. S17 SEM image of A-Co-N-C after several hours stability test.

Fig. S18 Full survey XPS spectrum (a), XPS spectra of Co 2p (b), N 1s (c) and S 2p (d) for A-Co-N-C after several hours stability test. The SO₄²⁻ become the dominate phase of S 2p due to the electrolysis.

Table S1 Comparison of EIS for A-Co-N-C and Co-N-C.

Catalysts	$R2/\Omega$
A-Co-N-C	43.88
Co-N-C	172.6

The R_2 of A–Co–N–C is 43.88 Ω , which is much smaller than that of Co–N–C (172.6

Ω).

		ORR	OER	
Catalysts	Synthesis methods	$E_{1/2}$	overpotential	References
		(mV)	$(mV)(j_{10})$	
A-Co-N-C	pyrolysis with PSS	875	334	This work
SSM/Co ₄ N/CoNC	in situ grown	833	270	5
Onion-like carbon/Co-N- C	pyrolysis with P123	855	344	4
N/P-C-CoP-850	gelatinized guar gum 825		306	6
CoNC-NB ₂	self-catalyzed chemical vapor deposition	880	350	7
Co/Co-N-C	electrochemical deposition and pyrolyzation strategy	690	400	8
MoC/Co-N-C-600	pyrolysis with MoC	865	370	9
	low-energy pulsed-laser irradiation			
Co ₃ O _{4-X} doped graphene	technique and a hydrothermal	829	327	10
	method			
Mn/Co-N-C-0.02-800	pyrolysis	800	430	11
NiS ₂ @Co-N-C/CNF	high-temperature carbonization and hydrothermal method	800	300	12
FeCo/Co-N-C	one-step annealing method	860	380	13
Pt _{SA} -PtCo NCs/N-CNTs-	melamine-orientation-induced and	860	252	14
900	pyrolysis	800		
Co/Co-N-C	Sandwich-like confinement pyrolysis route	850	-	15
G-CoNOC	-CoNOC Graphene quantum dots (GQDs)		-	16
chemical vapor deposition		850	_	17

Table S2 Comparison of the synthesis methods, ORR and OER performance of A-

Co-N-C and other similar materials.

process

Co@NG-800	hydrometallurgical method	850	-	18
Co-N-C/CNTsHS	spray-drying	870	-	19
Co-N ₃ -C	pyrolysis of CNT-inserted ZIFs	891	-	20
Co-NCS-2	ultrasonication-assisted strategy	900	-	21
Co-SAs/N-C/rGO	spatial-isolation strategy	840	-	22
Ru/Co-N-C-800	pyrolyzing and acid etching	-	276	23

Catalysts	Electrolytes	∆(charge– discharge)E (mV)	Durability (h)	Peak power density (mW cm ⁻²)	References
A-Co-N-C	6 M KOH, 0.2 M Zn(Ac) ₂	0.85	25	240	This work
NiCo-N-C	6 M KOH, 0.2 M Zn(Ac) ₂	0.8	140	163	24
Co porphyrin@ZIF-67	6 M KOH, 0.2 M Zn(Ac) ₂	0.85	112	220	25
Co/Co-N-C	6 M KOH, 0.1 M Zn(Ac) ₂	0.82	330	132	26
Onion-like carbon/Co-N-C	6 M KOH, 0.1 M ZnCl ₂	0.8	105	238	27
$Co-N_{4-x}-C_x$	6 M KOH	0.8	60	184	28
Zn,Co-N _x -C-S _y	KOH/ZnAc (0.1:0.02 M) solid polymer electrolyte	-	-	150	29
PdMo	6 M KOH,	0.7	116	154	30
bimetallene/C	0.2 M Zn(Ac) ₂	0.7	-		
NiCo ₂ O ₄ /N-	6 M KOH,	0.8	15	103	31
graphene CoFe ₂₀ @carbon cages	0.1 M ZnCl ₂ 6 M KOH, 0.2 M Zn(Ac) ₂	1	130	190	32
Co@N-C	6 M KOH, 0.2 M Zn(Ac) ₂	0.53	120	105	33

Table S3 Comparison of peak power densities of Zn-air batteries constructed with A-Co-N-C and other reported catalysts.

Co@Co-N-C	6 M KOH	-	-	155	34
(Co,Fe) ₃ N	6 M KOH,	0.85	300	234	25
	0.2 M Zn(Ac) ₂	0.85			55
CoFe-N-C	6 M KOH,	0.8	267	203	36
	0.2 M Zn(Ac) ₂	0.0			50
Co/CoO@Co-N-C	6 M KOH,	0.86	11	157	37
	0.2 M Zn(Ac) ₂	0.00			51

References

- Y. Wang, B. Wang, H. Yuan, Z. Liang, Z. Huang, Y. Zhou, W. Zhang, H. Zheng and R. Cao, J. Energy Chem., 2021, 58, 391-396.
- 2. R. Zhou, Y. Zheng, M. Jaroniec and S.-Z. Qiao, ACS Catal., 2016, 6, 4720-4728.
- S. Anantharaj, S. R. Ede, K. Sakthikumar, K. Karthick, S. Mishra and S. Kundu, ACS Catal., 2016, 6, 8069-8097.
- Z. Liang, N. Kong, C. Yang, W. Zhang, H. Zheng, H. Lin and R. Cao, Angew. Chem. Int. Ed., 2021, 60, 12759-12764.
- T. Liu, S. Zhao, Y. Wang, J. Yu, Y. Dai, J. Wang, X. Sun, K. Liu and M. Ni, *Small*, 2022, 18, 2105887.
- L. Lin, H. Sun, X. Yuan, Y. Gu, Q. Mu, P. Qi, T. Yan, L. Zhang, Y. Peng and Z. Deng, *Chem. Eng. J.*, 2022, 428, 131225.
- H. Luo, W.-J. Jiang, S. Niu, X. Zhang, Y. Zhang, L.-P. Yuan, C. He and J.-S. Hu, Small, 2020, 16, 2001171.
- P. Yu, L. Wang, F. Sun, Y. Xie, X. Liu, J. Ma, X. Wang, C. Tian, J. Li and H. Fu, *Adv. Mater.*, 2019, **31**, 1901666.
- J. Liu, Y. Guo, X.-Z. Fu, J.-L. Luo and C. Zhi, *Green Energy Environ.*, 2023, 8, 459-469.
- 10. J. Qin, Z. Liu, D. Wu and J. Yang, Appl. Catal. B, 2020, 278, 119300.
- L. Wei, L. Qiu, Y. Liu, J. Zhang, D. Yuan and L. Wang, ACS Sustain. Chem. Eng., 2019, 7, 14180-14188.
- Y. Ruan, H. Xu, H. Lei, W. Xue, T. Wang, S. Song, Y. Yu, G.-R. Zhang and D. Mei, *Inorg. Chem. Front.*, 2023, 10, 2370-2379.
- J. Zhong, Z. Zhu, Q. Xu, L. Peng, K. Luo and D. Yuan, *Energy Fuels*, 2023, 37, 13489-13497.
- W. Chen, X. Zhu, W. Wei, H. Chen, T. Dong, R. Wang, M. Liu, K. Ostrikov, P. Peng and S.-Q. Zang, *Small*, 2023, 19, 2304294.
- S. Wang, Q. He, C. Wang, H. Jiang, C. Wu, S. Chen, G. Zhang and L. Song, *Small*, 2018, 14, 1800128.

- D. Geng, Y. Huang, S. Yuan, Y. Jiang, H. Ren, S. Zhang, Z. Liu, J. Feng, T. Wei and Z. Fan, *Small*, 2023, 19, 2207227.
- Z. Chen, S. Zhang, J. Zhao, H. Zhang, J. Wang, Q. Dong, W. Zhang, X. Han and W. Hu, *Chem. Eng. J.*, 2023, 462, 142030.
- K. Serbara Bejigo, K. Bhunia, J. Kim, C. Lee, S. Back and S.-J. Kim, *J. Energy Chem.*, 2023, 82, 148-157.
- C. Zhang, G. Chen, R. Zhang, Z. Wu, C. Xu, H. Man and R. Che, *Carbon*, 2021, 178, 310-319.
- H. Xu, H. Jia, H. Li, J. Liu, X. Gao, J. Zhang, M. Liu, D. Sun, S. Chou, F. Fang and R. Wu, *Appl. Catal.*, *B*, 2021, **297**, 120390.
- C. Shi, Y. Liu, R. Qi, J. Li, J. Zhu, R. Yu, S. Li, X. Hong, J. Wu, S. Xi, L. Zhou and L. Mai, *Nano Energy*, 2021, 87, 106153.
- L. Li, N. Li, J. Xia, S. Zhou, X. Qian, F. Yin, G. He and H. Chen, *J. Mater. Chem.* A, 2023, 11, 2291-2301.
- C. Rong, X. Shen, Y. Wang, L. Thomsen, T. Zhao, Y. Li, X. Lu, R. Amal and C. Zhao, *Adv. Mater.*, 2022, 34, 2110103.
- F. Wang, Y. Xu, Y. Wang, Z. Liang, R. Zhang, Y. Wang, H. Zhang, W. Zhang, R. Cao and H. Zheng, *Chem. Commun.*, 2021, 57, 8190-8193.
- Z. Liang, H. Guo, G. Zhou, K. Guo, B. Wang, H. Lei, W. Zhang, H. Zheng, U.-P. Apfel and R. Cao, *Angew. Chem. Int. Ed.*, 2021, 60, 8472-8476.
- P. Yu, L. Wang, F. Sun, Y. Xie, X. Liu, J. Ma, X. Wang, C. Tian, J. Li and H. Fu, *Adv. Mater.*, 2019, **31**, 1901666.
- Z. Liang, N. Kong, C. Yang, W. Zhang, H. Zheng, H. Lin and R. Cao, Angew. Chem. Int. Ed., 2021, 60, 12759-12764.
- 28. Q. Yang, Y. Jia, F. Wei, L. Zhuang, D. Yang, J. Liu, X. Wang, S. Lin, P. Yuan and X. Yao, *Angew. Chem. Int. Ed.*, 2020, **59**, 6122-6127.
- D. Liu, B. Wang, H. Li, S. Huang, M. Liu, J. Wang, Q. Wang, J. Zhang and Y. Zhao, *Nano Energy*, 2019, 58, 277-283.
- M. Luo, Z. Zhao, Y. Zhang, Y. Sun, Y. Xing, F. Lv, Y. Yang, X. Zhang, S. Hwang,
 Y. Qin, J.-Y. Ma, F. Lin, D. Su, G. Lu and S. Guo, *Nature*, 2019, 574, 81-85.

- X.-R. Wang, J.-Y. Liu, Z.-W. Liu, W.-C. Wang, J. Luo, X.-P. Han, X.-W. Du, S.-Z. Qiao and J. Yang, *Adv. Mater.*, 2018, **30**, 1800005.
- 32. C.-C. Hou, L. Zou and Q. Xu, Adv. Mater., 2019, 31, 1904689.
- 33. M. Zhang, Q. Dai, H. Zheng, M. Chen and L. Dai, Adv. Mater., 2018, 30, 1705431.
- H. Luo, W.-J. Jiang, C. Lin, W. Dong, S. Niu, L.-B. Huang, X. Zhang, Z. Wei and J.-S. Hu, *Chem. Commun.*, 2018, 54, 8190-8193.
- Y.-P. Deng, Y. Jiang, R. Liang, S.-J. Zhang, D. Luo, Y. Hu, X. Wang, J.-T. Li, A. Yu and Z. Chen, *Nat. Commun.*, 2020, 11, 1952.
- X. Liu, L. Wang, P. Yu, C. Tian, F. Sun, J. Ma, W. Li and H. Fu, Angew. Chem. Int. Ed., 2018, 57, 16166-16170.
- X. Zhang, R. Liu, Y. Zang, G. Liu, G. Wang, Y. Zhang, H. Zhang and H. Zhao, *Chem. Commun.*, 2016, **52**, 5946-5949.