Supporting Information

# Reversing the Stereoselectivity of Intramolecular [2+2] Photocycloaddition Utilizing Cucurbit[8]uril as a Molecular Flask

Xujun Qiu, <sup>a</sup> Jasmin Seibert, <sup>a</sup> Olaf Fuhr, <sup>b,c</sup> Frank Biedermann, <sup>\*b</sup> and Stefan Bräse <sup>\* a,d</sup>

<sup>a</sup> Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT), Kaiserstraße 12, 76131 Karlsruhe, Germany. E-mail: <u>braese@kit.edu</u>.

<sup>b</sup> Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Kaiserstraße 12, 76131 Karlsruhe, Germany. E-mail: <u>frank.biedermann@kit.edu</u>.

<sup>c</sup> Karlsruhe Nano Micro Facility (KNMFi), Karlsruhe Institute of Technology (KIT), Kaiserstraße 12, 76131 Karlsruhe, Germany.

<sup>d</sup> Institute of Biological and Chemical Systems – Functional Molecular Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), Kaiserstraße 12, 76131 Karlsruhe, Germany.

\* Corresponding author

## **Table of Contents**

| 1. | General Remarks                                              | 1  |
|----|--------------------------------------------------------------|----|
| 2. | Synthetic Procedures                                         | 3  |
| 3. | Additional Spectra                                           | 6  |
| 4. | Competitive binding assay for binding constant determination | 24 |
| 5. | References                                                   | 27 |

## 1. General Remarks

#### **Materials and Methods**

The starting materials, solvents, and reagents were purchased from ABCR, ACROS, ALFA AESAR, APOLLO SCIENTIFIC, CARBOLUTION, CHEMPUR, FLUKA, FLUOROCHEM, MERCK, RIEDEL-DE HAËN, SIGMA ALDRICH, STREM, TCI, or THERMO FISHER SCIENTIFIC and used without further purification unless stated otherwise.

Solvents of technical quality were purified by distillation or with the solvent purification system MB SPS5 (acetonitrile, dichloromethane, diethyl ether) from MBRAUN. Solvents of *p.a.* quality were purchased from ACROS, FISHER SCIENTIFIC, SIGMA ALDRICH, Roth, or RIEDEL-DE HAËN and were used without further purification.

Flat-bottom crimp neck vials from ChromaGlobe with aluminum crimp caps were used for certain reactions.

Solvents were evaporated under reduced pressure at 45 °C using a rotary evaporator. For solvent mixtures, each solvent was measured volumetrically.

Flash column chromatography was performed using MERCK silica 60 ( $0.040 \times 0.063$  mm, 230–400 mesh ASTM) and quartz sand (glowed and purified with hydrochloric acid).

#### **Reaction Monitoring**

All reactions were monitored by thin-layer chromatography (TLC) using silica-coated aluminum plates (MERCK, silica 60, F254). UV active compounds were detected with a UV lamp at 254 nm and 366 nm excitation.

GC-MS (gas chromatography-mass spectrometry) measurements were performed on an AGILENT TECHNOLOGIES model 6890N (electron impact ionization), equipped with an AGILENT 19091S-433 column (5% phenyl methyl siloxane, 30 m, 0.25 µm) and a 5975B VL MSD detector with a turbopump. Helium was used as a carrier gas.

#### Nuclear Magnetic Resonance Spectroscopy (NMR)

NMR spectra were recorded on a BRUKER Avance 500 NMR instrument at 500 MHz for <sup>1</sup>H NMR and 126 MHz for <sup>13</sup>C NMR. The NMR spectra were recorded at room temperature in deuterated solvents acquired from EURISOTOP, SIGMA ALDRICH, or DEUTERO.

#### Infrared Spectroscopy (IR)

The infrared spectra were recorded with a BRUKER, Alpha P instrument. All samples were measured by attenuated total reflection (ATR). The positions of the absorption bands are given in wavenumbers  $\tilde{v}$  in cm<sup>-1</sup> and were measured in the range from 3600 cm<sup>-1</sup> to 500 cm<sup>-1</sup>.

Characterization of the absorption bands was done in dependence of the absorption strength with the following abbreviations: vs (very strong, 0-9%), s (strong, 10-39%), m (medium, 40-69%), w (weak, 70-89%), vw (very weak, 90-100%).

#### **Mass Spectrometry (MS)**

APCI (atmospheric pressure chemical ionization) and ESI (electrospray ionization) experiments were recorded on a Q-Exactive (Orbitrap) mass spectrometer (THERMO FISHER SCIENTIFIC, San Jose, CA, USA) equipped with a HESI II probe to record high resolution. The tolerated error is  $\pm 5$  ppm of the molecular mass. The spectra were interpreted by molecular peaks [M]<sup>+</sup>, or peaks of protonated molecules [M+H]<sup>+</sup> and characteristic fragment peaks and indicated with their mass-to-charge ratio (*m/z*) and intensity in percent, relative to the base peak (100%).

#### Photoreactions

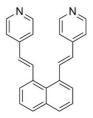
Photoreactions were performed in a standard photoreactor LZC-4X equipped with 14 UVA (365 nm) lamps, six top lamps, and eight side lamps. The reaction mixture was loaded in a four-face quartz cuvette with stirring on, which was placed in the middle of the photoreactor.

#### Preparative Reversed-Phase High-Performance Liquid Chromatography (RP-HPLC)

Preparative Reversed-Phase High-Performance Liquid Chromatography (RP-HPLC) was performed on the Puriflash<sup>M</sup> 4125 system from Interchim. A VDSpher<sup>®</sup> C18-M-SE precolumn (10 µm, 40 x 16 mm) followed by a VDSPher<sup>®</sup> C18-M-SE separation column (10 µm, 250 x 20 mm, VDS Optilab) was used as the stationary phase. A linear gradient of acetonitrile and double distilled water supplemented with 0.1% trifluoroacetic acid (TFA) at a flow rate of 15 mL/min served as the mobile phase.

#### **Crystallographic Information**

Single crystals of  $C_{32}H_{34}Cl_2N_2O_4$  (4) were obtained by slowly evaporating aqueous solution of 4. A suitable crystal was selected and studied on a Stoe StadiVari diffractometer with Dectris Eiger 4M detector at 180 K using Ga-K $\alpha$  radiation ( $\lambda = 1.34143$  Å) generated by a Excilium Metal-Jet D2 X-ray source. Using Olex2<sup>1</sup> the structure was solved with the ShelXT<sup>2</sup> structure solution program using Intrinsic Phasing and refined with the ShelXL<sup>3</sup> refinement package using Least Squares minimization. Refinement was performed with anisotropic temperature factors for all non-hydrogen atoms; hydrogen atoms were calculated on idealized positions. Crystallographic data and structure refinement details are summerized in table S1.


Crystallographic data for compound **4** reported in this paper have been deposited with the Cambridge Crystallographic Data Centre as supplementary information no. CCDC-2309696. Copies of the data can be obtained free of charge from <a href="https://www.ccdc.cam.ac.uk/structures/">https://www.ccdc.cam.ac.uk/structures/</a>.

## 2. Synthetic Procedures

#### **Diiodonaphthalene**<sup>4</sup>

1,8-Diaminonaphthalene (2.00 g, 12.6 mmol, 1.00 equiv.) was suspended in 6.9 M sulfuric acid (24.0 mL) and cooled to -20 °C. A solution of sodium nitrite (2.62 g, 37.9 mmol, 2.00 equiv.) in water (10.0 mL) was added dropwise. During this process, the temperature was kept below -15 °C. Subsequently, a solution of potassium iodide (12.6 g, 75.6 mmol, 3.00 equiv.) in water (12.0 mL) was added at the same temperature. If required, small amounts of sulfuric acid were added to avoid freezing of the solution. The mixture was heated to 80 °C and stirred for 30 min. Then, the solution was cooled to 0 °C and adjusted to pH=10 by adding a concentrated sodium hydroxide solution. The black precipitate was filtered off, ground, and extracted five times with 10.0 mL of DCM. The combined organic layers were washed with 10 % hydrochloric acid, a saturated aqueous sodium thiosulfate solution, dilute aqueous sodium hydroxide, dried over magnesium sulfate, and concentrated in a vacuum. The resulting brown residue was recrystallized from hexane to afford the product diiodonaphthalene (2.20 g, 5.79 mmol, 46%). The results of the analysis are consistent with the literature.<sup>4</sup>

#### 1,8-bis[(E)-2-(4-pyridyl)ethenyl]naphthalene



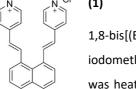
1,8-bis[(E)-2-(4-pyridyl)ethenyl]naphthalene was synthesized with the method reported from literature<sup>5</sup>. To an oven-dried flask, diiodonaphtalene (1.00 g, 2.63 mmol, 1.00 equiv.), 4-vinylpyridine (1.12 mL,1.11 g, 10.5 mmol, 4.00 equiv.), palladium(II)acetate (11.8 mg, 0.05 mmol, 0.02 equiv.), tri-o-tolylphosphine (32.0 mg, 0.11 mmol, 0.04 equiv.), triethylamine (2.0 mL), and acetonitrile (25 mL) were added. The flask was charged with argon, sealed, heated to

90 °C, and stirred for 48 h. Subsequently, the flask was removed from heat and cooled at room temperature. The mixture was poured into cold water, and the precipitate was collected via vacuum filtration. The resulting solid was purified through column chromatography on a silica column using DCM: MeOH=10:1 as mobile phase to obtain product 1,8-bis[(E)-2-(4-pyridyl)ethenyl]naphthalene as a yellow solid (0.59 g, 1.76 mmol, 67%).

<sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>, ppm)  $\delta$  = 8.47–8.42 (m, 4H,  $H_{Ar}$ ), 8.14 (d, J = 15.9 Hz, 2H,  $H_{vinyl}$ ), 7.88 (dd, J = 8.1, 1.3 Hz, 2H,  $H_{Ar}$ ), 7.66 (dt, J = 7.1, 1.1 Hz, 2H,  $H_{Ar}$ ), 7.52 (dd, J = 8.2, 7.1 Hz, 2H,  $H_{Ar}$ ), 7.25–7.23 (m, 4H,  $H_{Ar}$ ), 6.88 (d, J = 15.9 Hz, 2H,  $H_{vinyl}$ ).

<sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>, ppm)  $\delta$  = 150.4 (4C,  $C_{Ar}$ ), 144.4 (2C,  $C_{Ar}$ ), 136.6 (2C,  $C_{vinyl}$ ), 135.7 (2C,  $C_{Ar}$ ), 134.8 (2C,  $C_{Ar}$ ), 129.9 (2C,  $C_{Ar}$ ), 127.6 (2C,  $C_{Ar}$ ), 127.1 (2C,  $C_{vinyl}$ ), 126.1 (2C,  $C_{Ar}$ ), 120.9 (4C,  $C_{Ar}$ ).

ESI-MS for  $[C_{24}H_{19}N_2]^+$ : Calc. m/z = 335.1543, found m/z = 335.1542.


IR (ATR, cm<sup>-1</sup>)  $\tilde{v}$  = 3397 (s), 3325 (m), 2997 (m), 2996 (m), 2993 (m), 2968 (vs), 2965 (vs), 2956 (vs), 2935 (vs), 2892 (s), 2885 (s), 2884 (s), 2883 (s), 2877 (s), 2874 (s), 2872 (s), 2870 (s), 2868 (s), 2792 (vs), 2780 (s), 2759 (vs), 2679 (vs), 1616 (m), 1421 (s), 1419 (m), 1165 (s), 1161 (s), 1153 (s), 1152 (s), 1131 (s), 1128 (s), 1121 (s), 1087 (s), 1034 (s) cm<sup>-1</sup>.

Additional information on the chemical synthesis is available via the Chemotion repository:

## https://dx.doi.org/10.14272/reaction/SA-FUHFF-UHFFFADPSC-DVJQLQKAHJ-UHFFFADPSC-NUHFF-NJMCZ-NUHFF-ZZZ

Additional information on the analysis of the target compound is available *via* the Chemotion repository: <u>https://dx.doi.org/10.14272/DVJQLQKAHJQNJU-FIFLTTCUSA-N.1</u>

## 4,4'-((1E,1'E)-naphthalene-1,8-diylbis(ethene-2,1-diyl))bis(1-methylpyridin-1-ium) chloride (1)



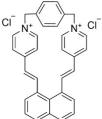
1,8-bis[(E)-2-(4-pyridyl)ethenyl]naphthalene (0.10 g, 0.30 mmol, 1.00 equiv.) and iodomethane (0.17 g, 1.20 mmol, 4.00 equiv.) were suspended in DMF (10 mL), the mixture was heated at 50  $^{\circ}$ C for 16 hours. After cooling down, the precipitation was collected and

washed with acetone several times. The solid was dissolved in water (500 mL), and AgCl (0.17 g, 1.20 mmol, 4.00 equiv.) was added. The mixture was stirred at 25 °C for 5 days. After filtration, the water was evaporated and the desired product 4,4'-((1E,1'E)-naphthalene-1,8-diylbis(ethene-2,1-diyl))bis(1-methylpyridin-1-ium) chloride was obtained as a light yellow powder (0.12 g, 0.28 mmol, 92%).

<sup>1</sup>H NMR (500 MHz, D<sub>2</sub>O, ppm)  $\delta$  = 8.46 (d, J = 6.4 Hz, 4H, H<sub>Ar</sub>), 8.21 (d, J = 16.0 Hz, 2H, H<sub>vinyl</sub>), 8.02 (d, J = 8.2 Hz, 2H, H<sub>Ar</sub>), 7.84 (d, J = 6.5 Hz, 4H, H<sub>Ar</sub>), 7.80 (d, J = 7.2 Hz, 2H, H<sub>Ar</sub>), 7.63 (t, J = 7.7 Hz, 2H, H<sub>Ar</sub>), 7.15 (d, J = 16.0 Hz, 2H, H<sub>vinyl</sub>), 4.25 (s, 6H, CH<sub>3</sub>).

<sup>13</sup>C NMR (126 MHz, D<sub>2</sub>O, ppm) δ = 152.9 (2C,  $C_{Ar}$ ), 144.4 (4C,  $C_{Ar}$ ), 142.9 (2C,  $C_{vinyl}$ ), 134.2 (1C,  $C_{Ar}$ ), 133.8 (2C,  $C_{Ar}$ ), 131.1 (2C,  $C_{Ar}$ ), 129.6 (1C,  $C_{Ar}$ ), 128.8 (2C,  $C_{Ar}$ ), 126.4 (2C,  $C_{Ar}$ ), 124.1 (2C,  $C_{vinyl}$ ), 123.6 (4C,  $C_{Ar}$ ), 47.0 (2C,  $CH_3$ ).

ESI-MS for  $[C_{26}H_{24}N_2]^{2+}$ : Calc. m/z = 182.0964, found m/z = 182.0965.


IR (ATR,  $\tilde{v}$ ) = 3424 (vs), 3420 (vs), 3417 (vs), 3414 (vs), 3413 (vs), 3412 (vs), 3410 (vs), 3406 (vs), 3404 (vs), 3402 (vs), 3401 (vs), 3396 (vs), 3391 (vs), 3389 (vs), 3387 (vs), 3384 (vs), 3382 (vs), 3380 (vs), 3378 (vs), 3376 (vs), 3373 (vs), 3370 (vs), 3368 (vs), 3364 (vs), 3363 (vs), 3361 (vs), 3359 (vs), 3356 (vs), 3354 (vs), 3353 (vs), 3351 (vs), 3350 (vs), 3348 (vs), 3347 (vs), 3345 (vs), 3343 (vs), 3341 (vs), 3340 (vs), 3338 (vs), 3336 (vs), 3333 (vs), 3329 (vs), 3326 (vs), 3325 (vs), 3321 (vs), 3319 (vs), 3315 (vs), 3313 (vs), 3311 (vs), 3307 (vs), 3305 (vs), 3303 (vs), 3302 (vs), 3200 (vs), 3298 (vs), 3296 (vs), 3293 (vs), 3291 (vs), 3288 (vs), 3287 (vs), 3286 (vs), 3284 (vs), 3283 (vs), 3252 (vs), 3277 (vs), 3274 (vs), 3272 (vs), 3264 (vs), 3263 (vs), 3261 (vs), 3258 (vs), 3254 (vs), 3252 (vs), 3247 (vs), 3245 (vs), 3244 (vs), 3241 (vs), 3238 (vs), 3233 (vs), 3231 (vs), 3231 (vs), 3227 (vs), 3226 (vs), 3222 (vs), 3221 (vs), 3218 (vs), 3215 (vs), 3213 (vs), 3212 (vs), 3209 (vs), 3209 (vs), 3295 (vs), 1621 (vs), 1616 (vs), 1614 (vs) cm<sup>-1</sup>.

Additional information on the chemical synthesis is available *via* the Chemotion repository:

https://dx.doi.org/10.14272/reaction/SA-FUHFF-UHFFFADPSC-VIRCVYOPUF-UHFFFADPSC-NUHFF-LGEIA-NUHFF-ZZZ

Additional information on the analysis of the target compound is available *via* the Chemotion repository: <u>https://dx.doi.org/10.14272/VIRCVYOPUFMLML-JDDKLYJPSA-L.1</u>

## (6E,9E)-1,5(1,4)-dipyridin-1-iuma-8(1,8)-naphthalena-3(1,4)-benzenacyclodecaphane-6,9-diene-11,51-diium chloride (4)

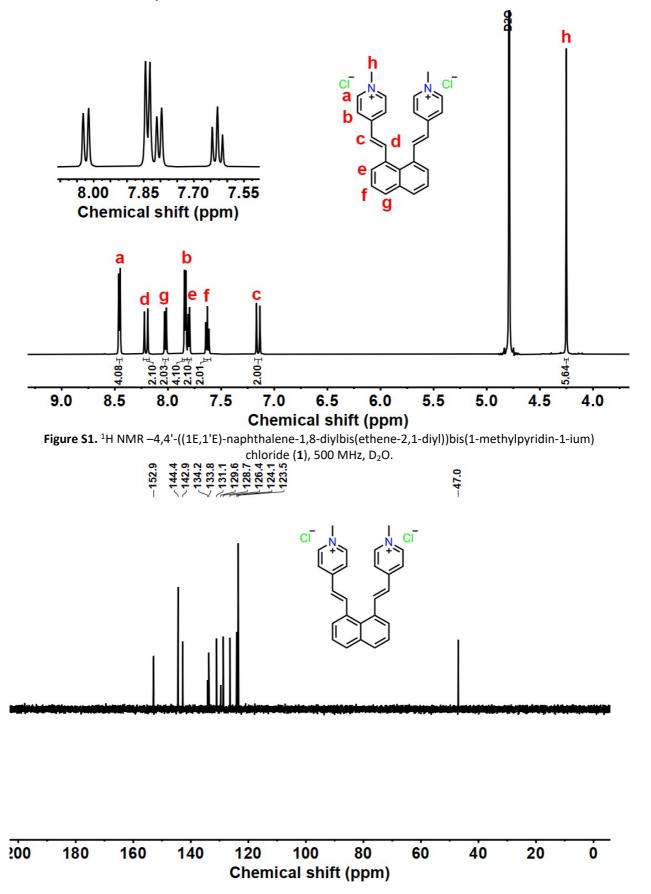


1,8-bis[(E)-2-(4-pyridyl)ethenyl]naphthalene (100 mg, 0.30 mmol, 1.00 equiv.), 1,4bis(bromomethyl)benzene (78.9 mg, 0.30 mmol, 1.00 equiv.), and Tetra-n-butylammonium iodide (11.1 mg, 0.30 mmol, 0.10 equiv.) were suspended in DMF (10 mL), the mixture was heated at 50 °C for 16 hours. After cooling down, the precipitation was collected and washed with acetone several times. The solid was dissolved in water (500 mL) and AgCl

(0.17 g, 1.20 mmol, 4.00 equiv.) was added. The mixture was stirred at 25 °C for 5 days. After filtration, the water was evaporated, and the desired product (6E,9E)-1,5(1,4)-dipyridin-1-iuma-8(1,8)-naphthalena-3(1,4)-benzenacyclodecaphane-6,9-diene-11,51-diium chloride was obtained as a yellow powder (96.0 mg, 0.18 mmol, 63%).

<sup>1</sup>H NMR (500 MHz, D<sub>2</sub>O, ppm)  $\delta$  = 8.54 (d, *J* = 6.6 Hz, 4H, *H*<sub>Ar</sub>), 8.05 (d, *J* = 8.2 Hz, 2H, *H*<sub>Ar</sub>), 8.02 (d, *J* = 15.7 Hz, 2H, *H*<sub>vinyl</sub>), 7.82 (d, *J* = 7.2 Hz, 2H, *H*<sub>Ar</sub>), 7.71 (d, *J* = 6.6 Hz, 4H, *H*<sub>Ar</sub>), 7.64 (d, *J* = 7.8 Hz, 2H, *H*<sub>Ar</sub>), 7.62 (s, 4H, *H*<sub>Ar</sub>), 7.20 (d, *J* = 15.7 Hz, 2H, *H*<sub>vinyl</sub>), 5.67 (s, 4H, *CH*<sub>2</sub>).

<sup>13</sup>C NMR (126 MHz, D<sub>2</sub>O, ppm)  $\delta$  = 153.9 (2C, *C*<sub>Ar</sub>), 143.2 (2C, *C*<sub>vinyl</sub>), 143.0 (4C, *C*<sub>Ar</sub>), 138.3 (2C, *C*<sub>Ar</sub>), 134.2 (1C, *C*<sub>Ar</sub>), 133.8 (2C, *C*<sub>Ar</sub>), 131.3 (2C, *C*<sub>Ar</sub>), 130.0 (1C, *C*<sub>Ar</sub>), 129.9 (4C, *C*<sub>Ar</sub>), 129.1 (2C, *C*<sub>Ar</sub>), 126.4 (2C, *C*<sub>Ar</sub>), 124.1 (4C, *C*<sub>Ar</sub>), 123.3 (2C, *C*<sub>vinyl</sub>), 64.4 (2C, *C*<sub>H<sub>2</sub></sub>).


ESI-MS for  $[C_{32}H_{26}N_2]^{2+}$ : Calc. m/z = 219.1043, found m/z = 219.1040.

IR (ATR,  $\tilde{v}$ ) = 3994 (s), 3987 (s), 3979 (s), 3972 (s), 3966 (s), 3959 (s), 3951 (s), 3945 (s), 3935 (s), 3929 (s), 3921 (s), 3914 (s), 3908 (s), 3896 (s), 3889 (s), 3882 (s), 3877 (s), 3871 (s), 3867 (s), 3859 (s), 3850 (s), 3842 (s), 3832 (s), 3825 (s), 3818 (s), 3813 (s), 3804 (s), 3798 (s), 3793 (s), 3787 (s), 3776 (s), 3768 (s), 3762 (s), 3756 (s), 3747 (s), 3741 (s), 3729 (s), 3720 (s), 3716 (s), 3707 (s), 3699 (s), 3686 (s), 3672 (s), 3666 (s), 3653 (s), 3645 (s), 3625 (s), 3616 (s), 3605 (s), 3598 (s), 3584 (s), 3571 (s), 3563 (s), 3557 (s), 3538 (s), 3451 (vs), 3440 (vs), 3360 (vs), 3344 (vs), 3333 (vs), 3326 (vs), 3319 (vs), 3263 (vs), 3164 (vs), 3123 (vs), 3091 (vs), 3086 (vs), 3027 (vs), 3000 (vs), 2965 (vs), 2953 (vs), 2942 (vs), 2878 (s), 2772 (s), 2765 (s), 2714 (m), 2685 (m), 2645 (m), 2610 (m), 1679 (m), 1638 (vs), 1616 (vs), 1565 (m), 1517 (s), 1474 (m), 1197 (s), 1148 (s), 1127 (m), 779 (m) cm<sup>-1</sup>. Additional information on the chemical synthesis is available *via* the Chemotion repository:

https://dx.doi.org/10.14272/reaction/SA-FUHFF-UHFFFADPSC-ZJSPYAOOLG-UHFFFADPSC-NUHFF-LGTAG-NUHFF-ZZZ

Additional information on the analysis of the target compound is available *via* the Chemotion repository: https://dx.doi.org/10.14272/ZJSPYAOOLGYBTI-VCHVFRDLSA-L.1

## 3. Additional Spectra

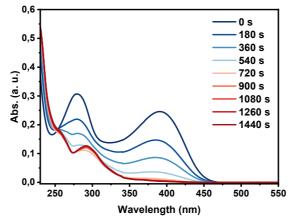
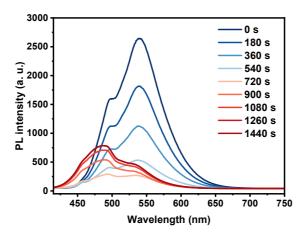
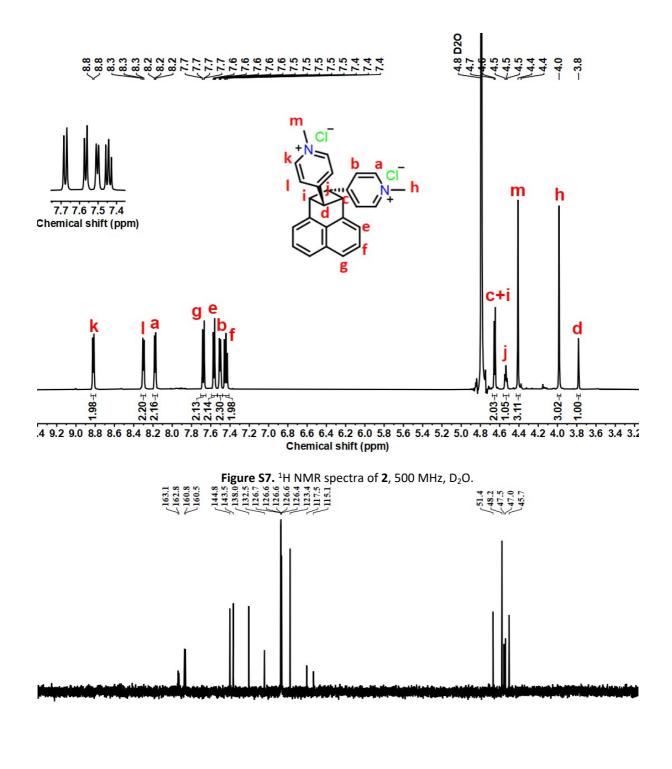


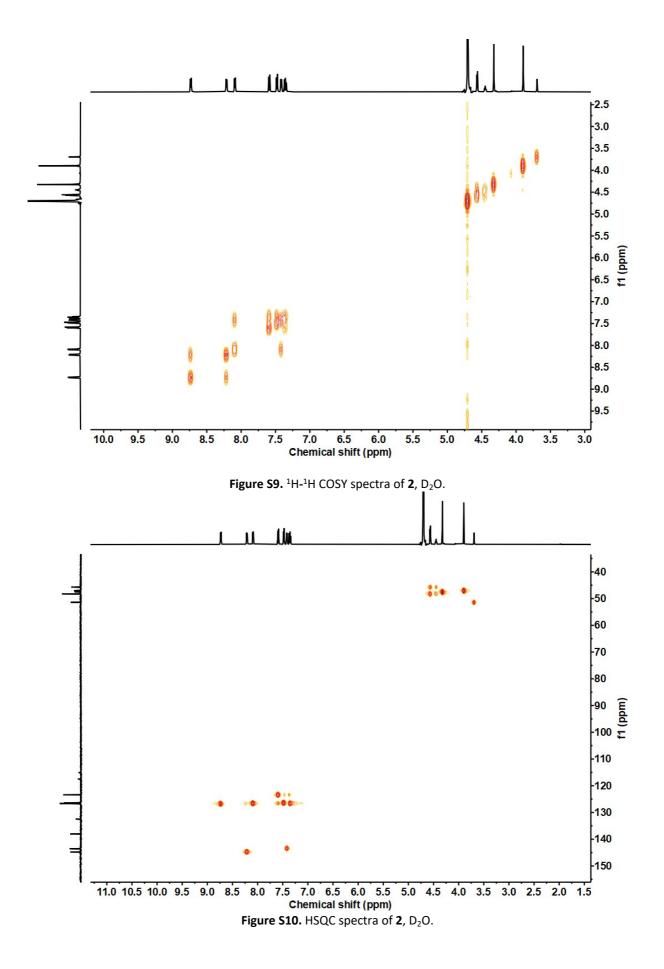


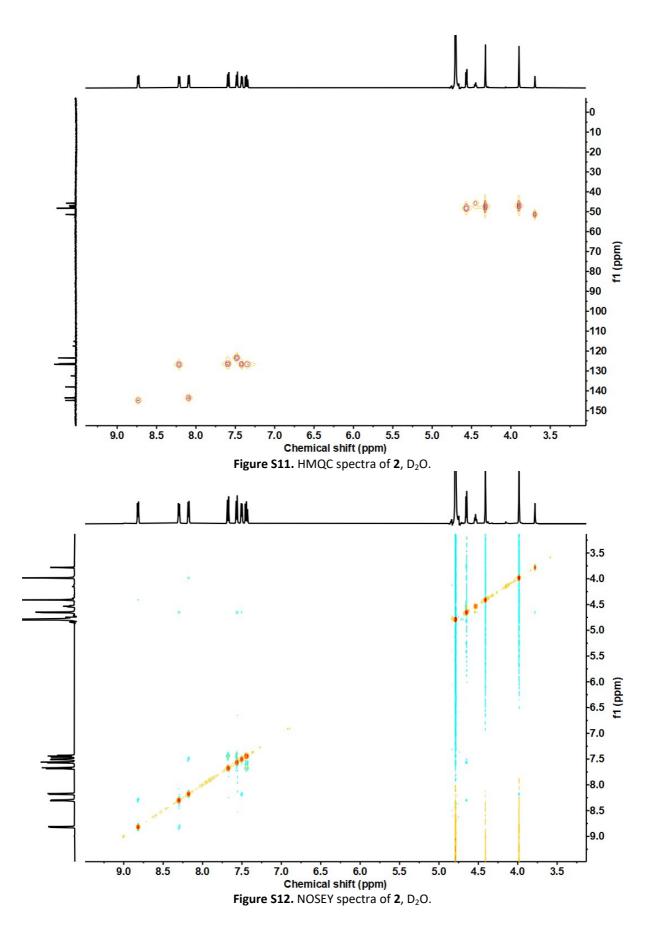
**Figure S2.** <sup>13</sup>C NMR –4,4'-((1E,1'E)-naphthalene-1,8-diylbis(ethene-2,1-diyl))bis(1-methylpyridin-1-ium) chloride (**1**), 126 MHz, D<sub>2</sub>O.

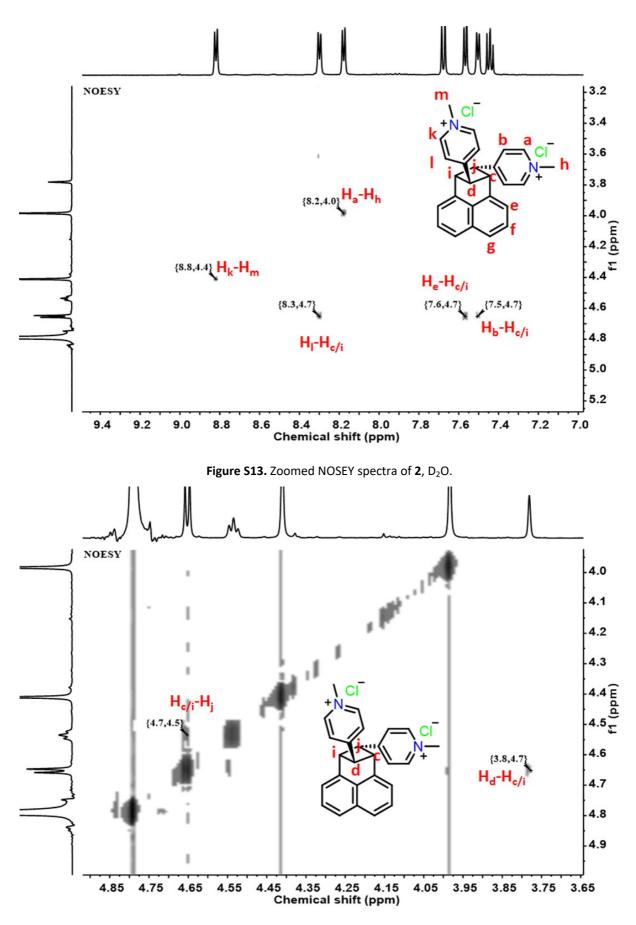
.6 9.4 9.2 9.0 8.8 8.6 8.4 8.2 8.0 7.8 7.6 7.4 7.2 7.0 6.8 6.6 6.4 6.2 6.0 5.8 5.6 5.4 5.2 5.0 4.8 4.6 4.4 4.2 4.0 3.8 3.6 3.4 Chemical shift (ppm)

Figure S4. <sup>1</sup>H NMR spectra of photolysis of 1 (0.5 mM) after different reaction times, 500 MHz, D<sub>2</sub>O.

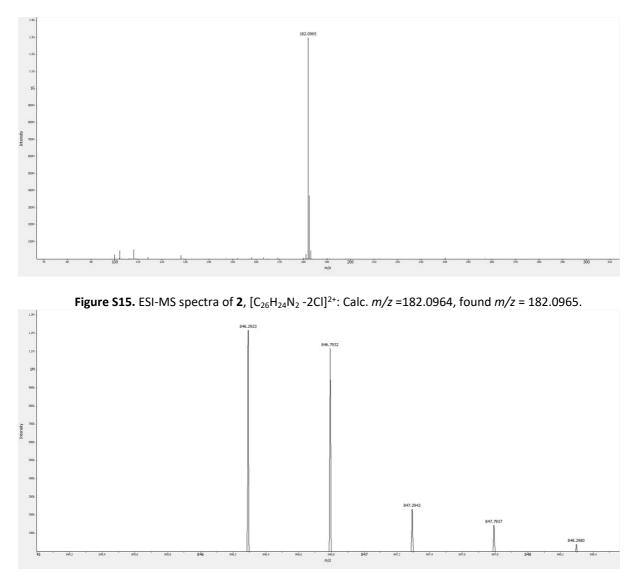






Figure S5. UV spectra of photolysis of 1 (0.5 mM) after different reaction times in Milli Q water at 25 °C. The reaction mixture was diluted with Milli Q water to  $2 \times 10^{-4}$  M for UV measurement.





**Figure S6.** Emission spectra ( $\lambda_{exc}$ = 394 nm) of photolysis of **1** (0.5 mM) after different reaction times in Milli Q water at 25 °C. The reaction mixture was diluted with Milli Q water to 2×10<sup>-4</sup> M for emission measurement.




210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 C Chemical shift (ppm) Figure S8. <sup>13</sup>C NMR spectra of **2**, 126 MHz, D<sub>2</sub>O.











**Figure S16.** HRESI-MS spectra of **1**•CB8 (1:1), HRESI-MS(m/z): [M-2CI]<sup>2+</sup>, calc. for C<sub>74</sub>H<sub>72</sub>N<sub>34</sub>O<sub>16</sub><sup>2+</sup>, 846.2928, 846.7944, 847.2961, 847.7946, 848.2982; found 846.2923, 846.7932, 847.2943, 847.7937, 848.2980.

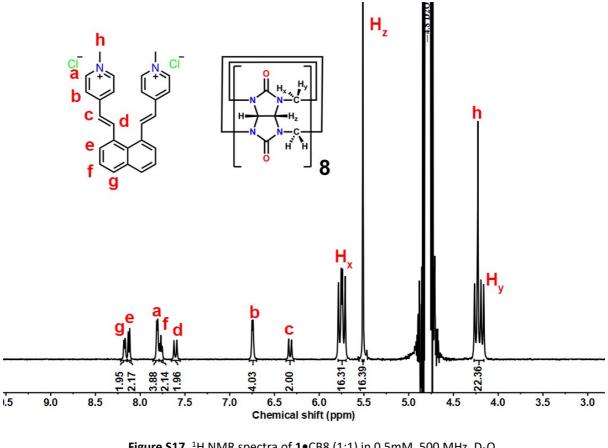
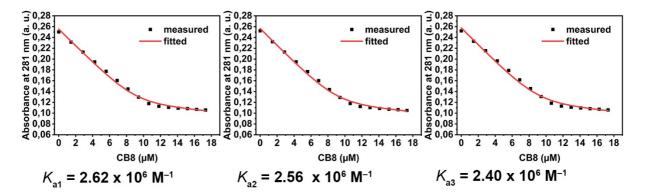




Figure S17. <sup>1</sup>H NMR spectra of 1•CB8 (1:1) in 0.5mM, 500 MHz, D<sub>2</sub>O.



Average  $K_{a}$  = (2.53 ± 0.11) x 10<sup>6</sup> M<sup>-1</sup>

Figure S18. UV absorbance changes of 1 at 281 nm upon increasing the concentration of CB8 in Milli Q water. The binding constant value was determined by a non-linear curve fitting. The black squares represent acquired data. The fitting according to the 1:1 model is shown as a red line. The error was calculated from 3 replica experiments as the standard deviation. The binding properties can be found at https://suprabank.org/interactions/9355.

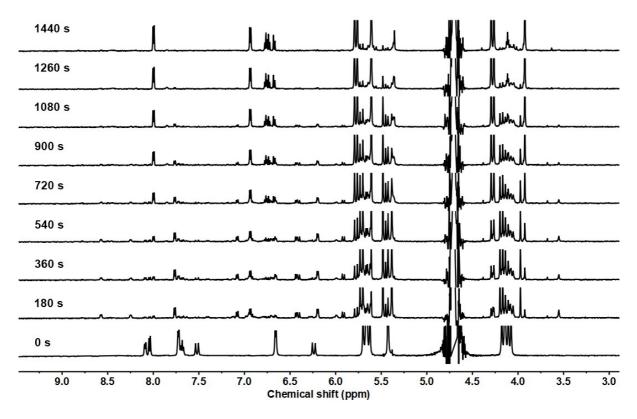
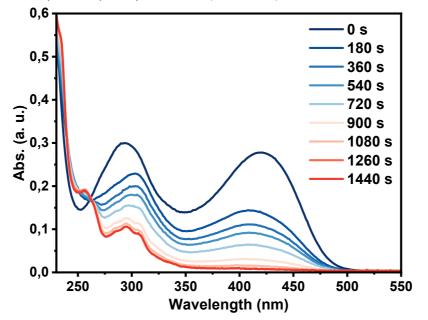
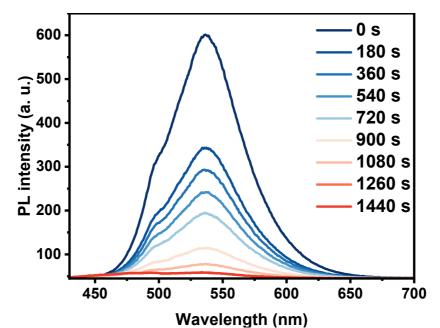





Figure S19. <sup>1</sup>H NMR spectra of photolysis of 1•CB8 (1:1, 0.5mM) after different reaction, 500 MHz, D<sub>2</sub>O.



**Figure S20.** UV spectra of photolysis of **1**•CB8 (1:1, 0.5 mM) after different reaction times in Milli Q water at 25 °C. The reaction mixture was diluted with Milli Q water to 2×10<sup>-4</sup> M for UV measurement.



**Figure S21.** Emission spectra ( $\lambda_{exc}$ = 410 nm) of photolysis of **1**•CB8 (1:1, 0.5 mM) after different reaction times in Milli Q water at 25 °C. The reaction mixture was diluted with Milli Q water to 2×10<sup>-4</sup> M for UV measurement.

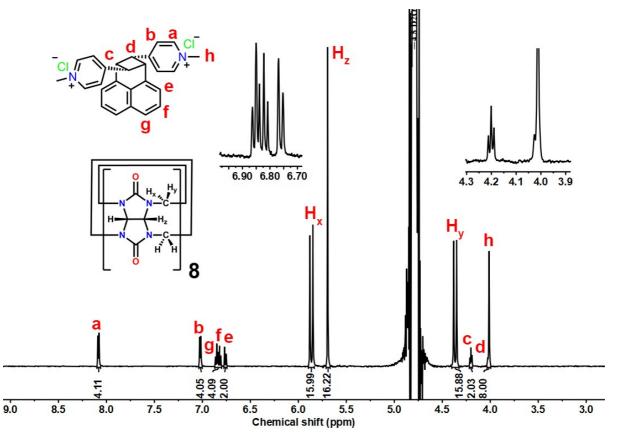
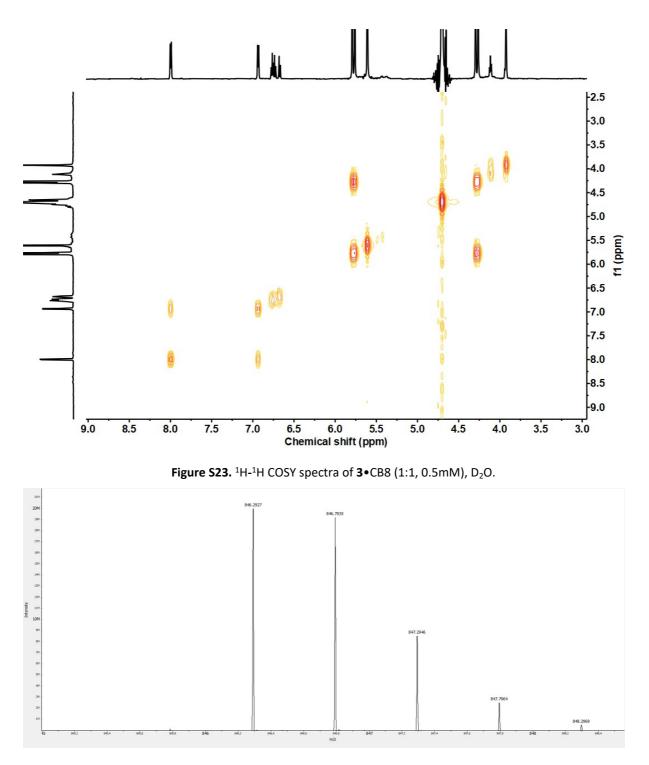
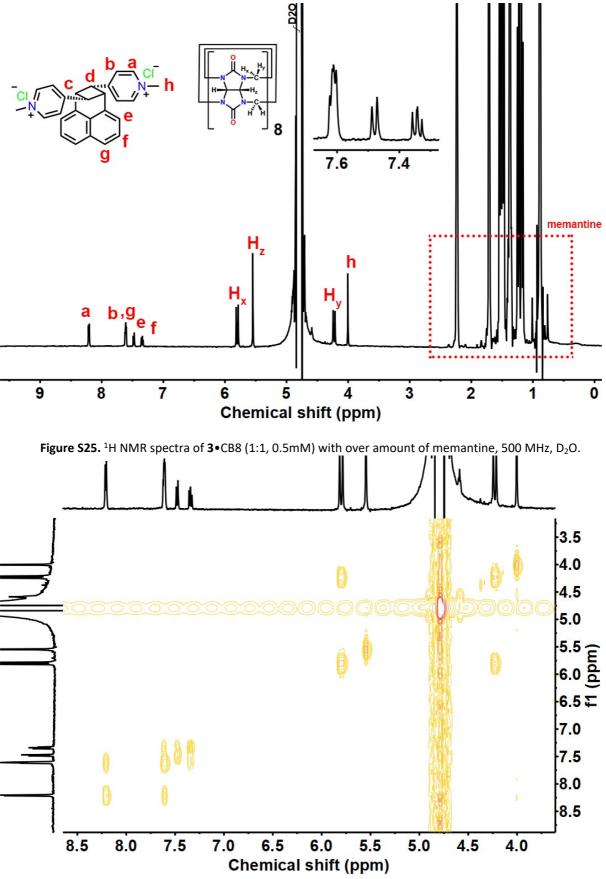
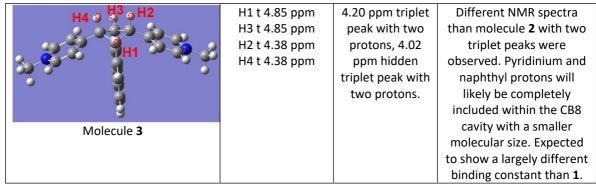
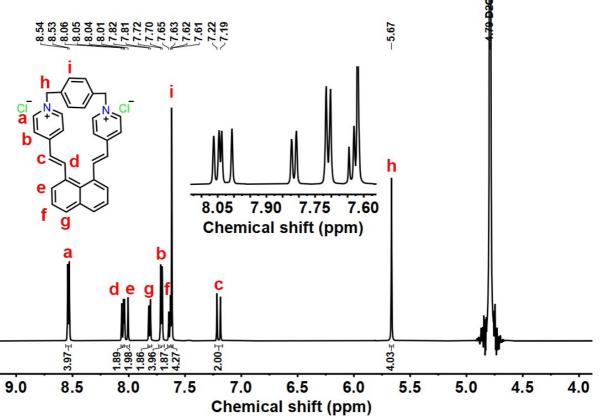



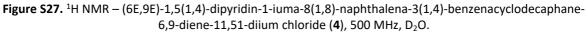

Figure S22. <sup>1</sup>H NMR spectra of 3•CB8 (1:1, 0.5mM), 500 MHz, D<sub>2</sub>O.

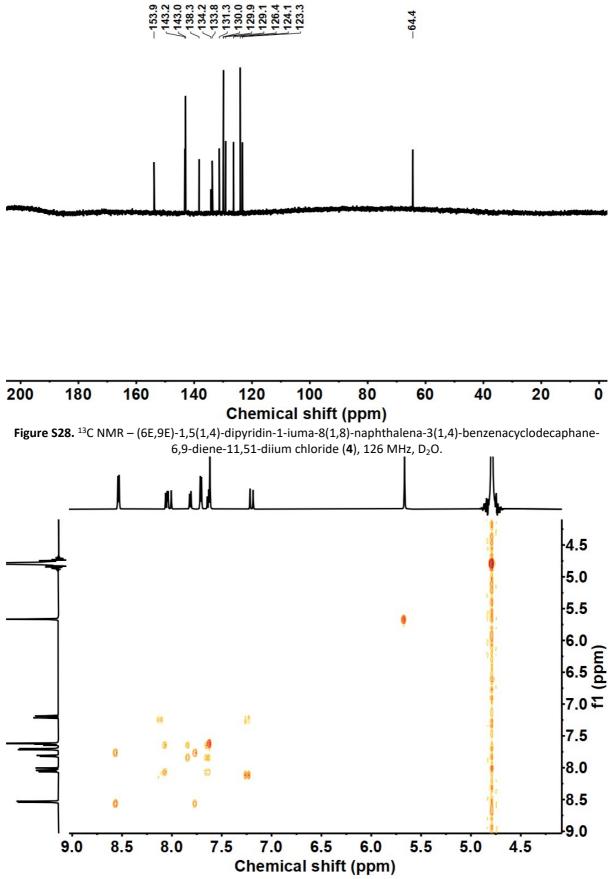


**Figure S24.** ESI-MS spectra of **3**•CB8 (1:1), HRESI-MS(m/z): [M-2Cl]<sup>2+</sup>, calc. for C<sub>74</sub>H<sub>72</sub>N<sub>34</sub>O<sub>16</sub><sup>2+</sup>, 846.2928, 846.7944, 847.2961, 847.7946, 848.2963; found 846.2927, 846.7935, 847.2946, 847.7964, 848.2969.

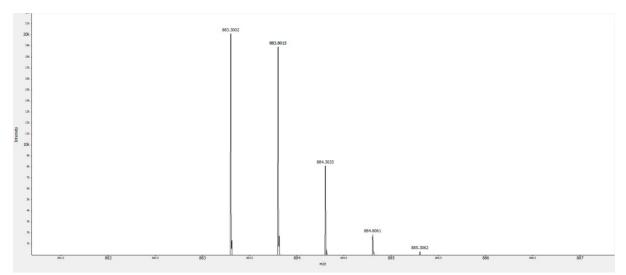





Figure S26. <sup>1</sup>H-<sup>1</sup>H COSY spectra of **3**•CB8 (1:1, 0.5mM) with over amount of memantine, D<sub>2</sub>O.

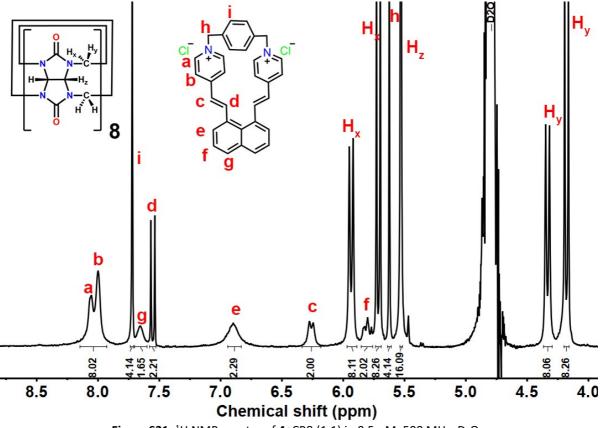

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | t the computated NN |                | <b>2</b>                       |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|----------------|--------------------------------|--|
| 3D structure <sup>a</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Predicted NMR       | Observed NMR   | Comment                        |  |
| 84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | H1 s 4.56 ppm       |                | Not fit to the NMR             |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | H3 s 4.49 ppm       |                | observed                       |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | H2 s 4.56 ppm       |                |                                |  |
| H2 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | H4 s 4.49 ppm       |                |                                |  |
| H10 8-H3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                     |                |                                |  |
| H4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                     |                |                                |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                |                                |  |
| a de la constante de la consta |                     |                |                                |  |
| 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                     |                |                                |  |
| 43 .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | H1 dd 5.04 ppm      |                | Not fit to the NMR             |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | H3 dd 4.53 ppm      |                | observed                       |  |
| a de la companya de l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | H2 dd 4.74 ppm      |                |                                |  |
| H2 H4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | H4 dd 3.93 ppm      |                |                                |  |
| H1 🔍 🐎 H3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                     |                |                                |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                |                                |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                |                                |  |
| <u></u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                     |                |                                |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                |                                |  |
| 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | H1 d 5.28 ppm       |                | Not fit to the NMR             |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | H3 d 5.00 ppm       |                | observed                       |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | H2 d 5.28 ppm       |                |                                |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | H4 d 5.00 ppm       |                |                                |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                |                                |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                |                                |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                |                                |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                |                                |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                |                                |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | H1 t 4.42 ppm       |                | Similar size compared          |  |
| ್ವಿ ಮೊ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | H3 t 4.42 ppm       |                | with <b>1</b> , pyridinium and |  |
| a a a a a a a a a a a a a a a a a a a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | H2 t 4.22 ppm       |                | naphthyl protons are not       |  |
| 🦇 up 🍯                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | H4 t 4.22 ppm       |                | likely to be completely        |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                | included within the CB8        |  |
| H40 0 0H2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                     |                | cavity. The binding            |  |
| SS FT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                     |                | constant should be similar     |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                | to <b>1</b> .                  |  |
| ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                     |                |                                |  |
| 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | H1 s 4.17 ppm       | 4.66 ppm, 4.65 | One singlet peak refers to     |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | H3 dd 4.65 ppm      | ppm doublet    | H4, one triplet peak refers    |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | H2 d 4.16 ppm       | peak with two  | to H2, and one doublet         |  |
| A T H3 H2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | H4 d 4.22 ppm       | protons, 4.53  | peak refers to H1 and H3.      |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     | ppm triplet    | Expected to show a             |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     | peak with one  | largely different binding      |  |
| H4 JH1 A 2 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                     | proton, 3.78   | constant than 1.               |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     | ppm with one   |                                |  |
| <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                     | proton.        |                                |  |
| <b>X</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                     |                |                                |  |
| Molecule <b>2</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                     |                |                                |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                |                                |  |


#### Table S1 summary of the computated NMR predication

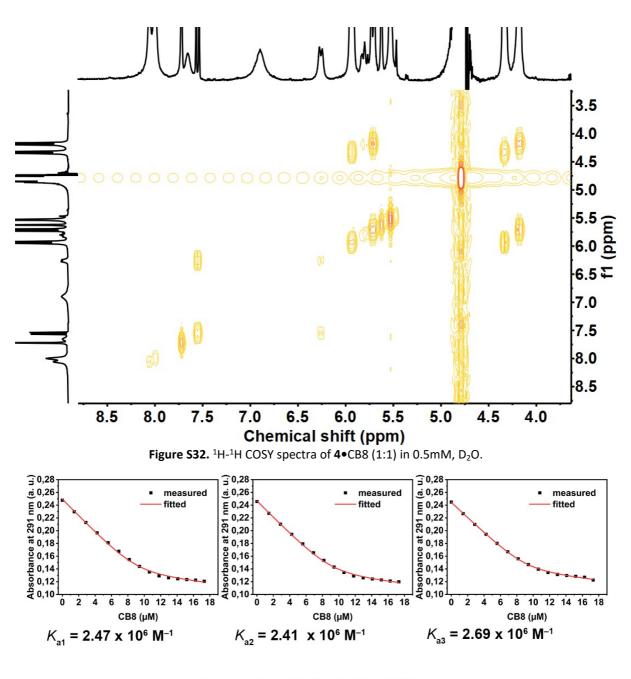



a: The computation was perfored using  $\omega$ B97X-D 6-31G\* method.





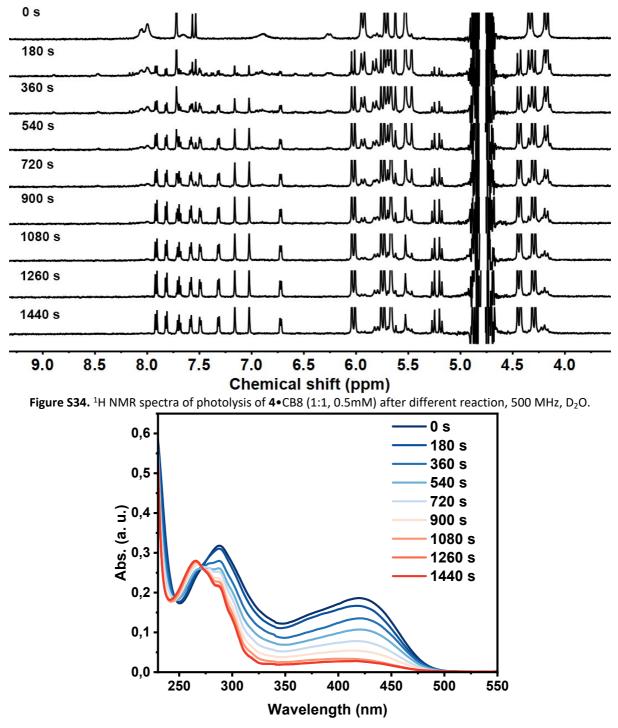




**Figure S29.** <sup>1</sup>H-<sup>1</sup>H COSY – (6E,9E)-1,5(1,4)-dipyridin-1-iuma-8(1,8)-naphthalena-3(1,4)-benzenacyclodecaphane-6,9-diene-11,51-diium chloride (**4**), D<sub>2</sub>O.



**Figure S30.** HRESI-MS spectra of **4**•CB8 (1:1), HRESI-MS(m/z): [M-2Cl]<sup>2+</sup>, calc. for C<sub>80</sub>H<sub>74</sub>N<sub>34</sub>O<sub>16</sub><sup>2+</sup>, 883.3006, 883.8022, 884.3039, 884.8064, 885.3060; found 883.3002, 883.8015, 884.3033, 884.8061, 885.3062.







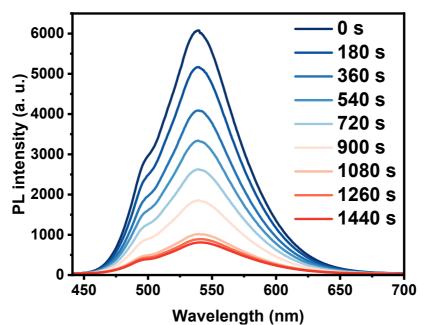
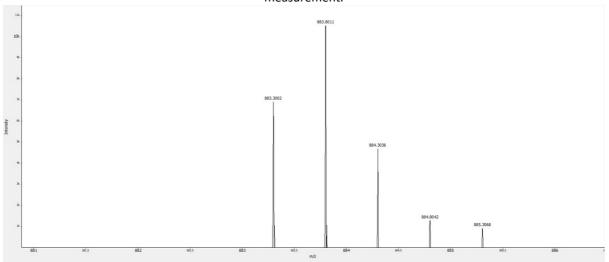
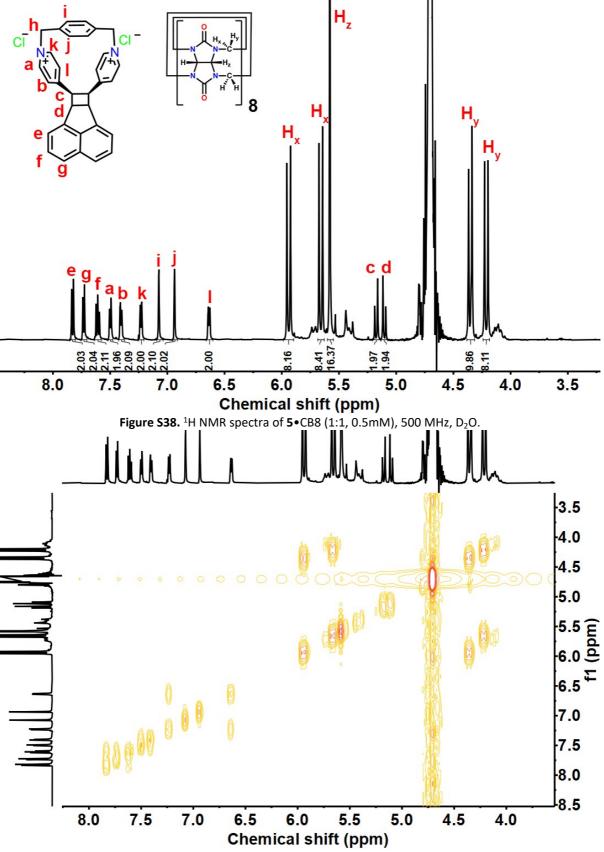


Average  $K_a = (2.52 \pm 0.15) \times 10^6 \text{ M}^{-1}$ 

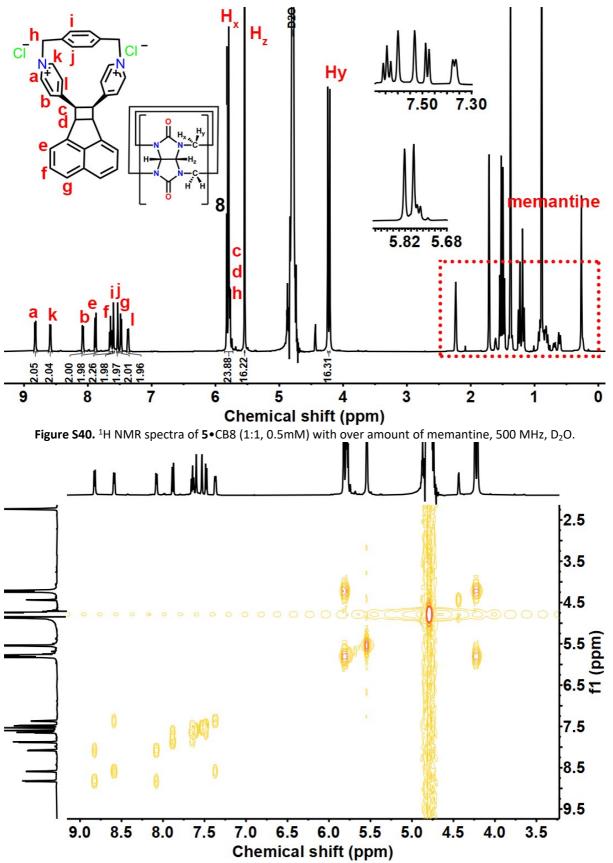
Figure S33. UV absorbance changes of 4 at 291 nm upon increasing the concentration of CB8 in Milli Q water.
 The binding constant value was determined by a non-linear curve fitting. The black squares represent acquired data. The fitting according to a 1:1 model is shown as a red line. The error was calculated from 3 replica experiments as the standard deviation. The binding properties can be found at


https://suprabank.org/interactions/9354.




**Figure S35.** UV spectra of photolysis of **4**•CB8 (1:1, 0.5 mM) after different reaction times in Milli Q water at 25 °C. The reaction mixture was diluted with Milli Q water to 2×10<sup>-4</sup> M for UV measurement.




**Figure S36.** Emission spectra ( $\lambda_{exc}$ = 421 nm) of photolysis of **4**•CB8 (1:1, 0.5 mM) after different reaction times in Milli Q water at 25 °C. The reaction mixture was diluted with Milli Q water to 2×10<sup>-4</sup> M for UV measurement.



**Figure S37.** HRESI-MS spectra of **5**•CB8 (1:1), HRESI-MS(m/z): [M-2Cl]<sup>2+</sup>, calc. for C<sub>80</sub>H<sub>74</sub>N<sub>34</sub>O<sub>16</sub><sup>2+</sup>, 883.3006, 883.8022, 884.3039, 884.8064, 885.3060; found 883.3002, 883.8011, 884.3036, 884.8042, 885.3068.







**Figure S41.** <sup>1</sup>H-<sup>1</sup>H COSY spectra of **5**•CB8 (1:1, 0.5mM) with over amount of memantine,  $D_2O$ .

### 4. Competitive binding assay for binding constant determination

The binding constant determination using the method which was reported in the literature<sup>6</sup>. The method was based on the competitive binding assay (CBA), in which memantine hydrochloride was utilized as a competitive guest whose binding constant with cucurbit[8]uril  $K_{CB8:Mem}$ = (4.3 ± 1.1) × 10<sup>11</sup> M<sup>-1</sup> was reported.<sup>6</sup>

| $K_{rel} = \frac{[CB8 \bullet 3][Mem]_{free}}{[CB8 \bullet Mem][3]_{free}}$ | Eq.1 |
|-----------------------------------------------------------------------------|------|
| [CB8] <sub>Total</sub> = 0.5023 mM = [CB8• <b>3</b> ] + [CB8•Mem]           | Eq.2 |
| [Mem] <sub>Total</sub> = 4.6348 mM = [Mem] <sub>free</sub> + [CB8•Mem]      | Eq.3 |

$$[\mathbf{3}]_{\text{Total}} = 0.5011 \text{ mM} = [\mathbf{3}]_{\text{free}} + [CB8 \cdot \mathbf{3}]$$
 Eq.4

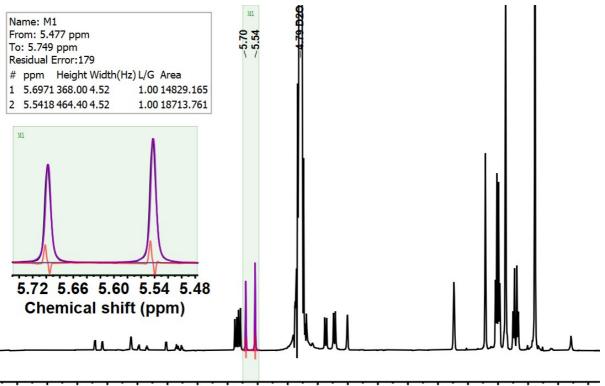
The interaction of **3** and memantine with cucurbit[8]uril  $K_{rel}$  was determined by equation 1. The equilibrium of CB[8] (0.5023 mM), Mem (4.6348 mM), and **3** were attained in the D<sub>2</sub>O, where two similar proportions peaks with 5.54ppm [CB8•Mem] and 5.70ppm [CB8•**3**] chemical shift in NMR spectra were observed. The relative concentration of [CB8•**3**] was calculated as 0.1430 mM by integrating the relative resonances in the NMR spectra. Then, equation 2 allows us to calculate the [CB8•Mem] as 0.3593 mM, which was substituted in equation 3 to calculate [Mem]<sub>free</sub> as 4.2755 mM. With the same method, [**3**]<sub>free</sub> was calculated as 0.3581 mM using equation 4.

The  $K_{\rm rel}$  value was calculated by substitution of [CB8•3], [3]<sub>free</sub>, [CB8•Mem], and [Mem]<sub>free</sub> into equation 1, which was obtained as 4.7518. Substitution of  $K_{\rm CB8•Mem} = (4.3 \pm 1.1) \times 10^{11} \, \text{M}^{-1}$  and  $K_{\rm rel}$  in equation 5 to obtain  $K_{\rm CB8•Mem}$  = 2.04 × 10<sup>12</sup> M<sup>-1</sup> (equation 6). The uncertainty of  $\sigma K_{\rm CB8\cdot3}$  can be calculated by equation 7, where  $\sigma (K_{\rm CB8•Mem})/\sigma K_{\rm CB8•Mem} = 0.1006$  and  $\sigma (K_{\rm rel})/\sigma K_{\rm rel} = 0.10$  [Note that we are using the even more conservative 10% error in this analysis] to give the percent error in  $K_{\rm CB8•3}$  equation 8. Substituting equation 6 into equation 9 gives  $\sigma K_{\rm CB8•3}$  as 0.29 × 10<sup>12</sup> M<sup>-1</sup>, which was finally combined into equation 10 to give the final binding constant  $K_{\rm CB8•3} = (2.04 \pm 0.29) \times 10^{12} \, \text{M}^{-1}$ .

$$K_{CB8•3} = (K_{CB8•Mem})(K_{rel})$$
Eq.5

$$K_{CB8+3} = 2.04 \times 10^{12} \,\mathrm{M}^{-1}$$
 Eq.6

$$\frac{\sigma K_{CB8\bullet3}}{(K_{CB8\bullet3})^2} = \left(\frac{\sigma K_{CB8\bulletMem}}{(K_{CB8\bulletMem})^2} + \left(\frac{\sigma K_{rel}}{(K_{rel})^2}\right)^2\right)$$
Eq.7


 $\sigma K_{CB8\bullet3}$ 

 $\pi V$ 

$$K_{CB8*3} = 0.1418 (14.18\%)$$
 Eq.8

$$OK_{CB8*3} = 0.1418 \times (2.04 \times 10^{12} \,\text{M}^{-1}) = 0.29 \times 10^{12} \,\text{M}^{-1}$$
 Eq.9

$$K_{CB8•3} = (2.04 \pm 0.29) \times 10^{12} \,\mathrm{M}^{-1}.$$
 Eq.10



## 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 Chemical shift (ppm)

Figure S42. <sup>1</sup>H NMR spectra were used in the competitive binding assay determination of  $K_{rel}$  value for [CB8•3] and [CB8•Mem]. [CB8]<sub>Total</sub> = 0.5023 mM, [Mem]<sub>Total</sub> = 4.6348 mM, [**3**]<sub>Total</sub> = 0.5011 mM, 500 MHz, D<sub>2</sub>O.

## 5. X-Ray Diffractometry

Single crystals of  $C_{32}H_{34}Cl_2N_2O_4$  (4) were obtained by slowly evaporating aqueous solution of 4. A suitable crystal was selected and studied on a Stoe StadiVari diffractometer. The crystal was kept at 180 K during data collection. Using Olex<sup>24</sup>, the structure was solved with the ShelXT<sup>5</sup> structure solution program using Intrinsic Phasing and refined with the ShelXL<sup>6</sup> refinement package using Least Squares minimisation.

**Crystal Data** for  $C_{32}H_{34}Cl_2N_2O_4$  (*M* =581.51 g/mol): orthorhombic, space group  $P2_12_12_1$  (no. 19), *a* = 10.2222(3) Å, *b* = 10.4342(4) Å, *c* = 27.3088(11) Å, *V* = 2912.77(18) Å<sup>3</sup>, *Z* = 4, *T* = 180 K,  $\mu$ (GaK $\alpha$ ) = 1.516 mm<sup>-1</sup>, *Dcalc* = 1.326 g/cm<sup>3</sup>, 18886 reflections measured (7.892° ≤ 2 $\Theta$  ≤ 124.976°), 6909 unique ( $R_{int}$  = 0.0147,  $R_{sigma}$  = 0.0131) which were used in all calculations. The final  $R_1$  was 0.0692 (I > 2 $\sigma$ (I)) and  $wR_2$  was 0.1850 (all data).

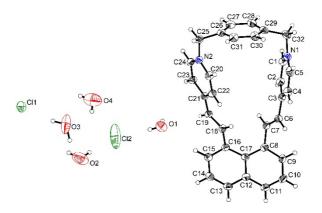



Figure S43. Molecular structure of  $4{\cdot}4H_2O$  (displacement parameters are drawn at a 50 % probability level).

| Table S2 Crystallographic | data and structure | e refinement details of <b>4</b> ·4H <sub>2</sub> | о. |
|---------------------------|--------------------|---------------------------------------------------|----|
|                           |                    | <u>-</u>                                          | -  |

| Compound                                    | <b>4</b> ·4H <sub>2</sub> O                                                   |
|---------------------------------------------|-------------------------------------------------------------------------------|
| Empirical formula                           | C <sub>32</sub> H <sub>34</sub> Cl <sub>2</sub> N <sub>2</sub> O <sub>4</sub> |
| Formula weight                              | 581.51                                                                        |
| Temperature/K                               | 180                                                                           |
| Crystal system                              | orthorhombic                                                                  |
| Space group                                 | P2 <sub>1</sub> 2 <sub>1</sub> 2 <sub>1</sub>                                 |
| a/Å                                         | 10.2222(3)                                                                    |
| b/Å                                         | 10.4342(4)                                                                    |
| c/Å                                         | 27.3088(11)                                                                   |
| α/°                                         | 90                                                                            |
| β/°                                         | 90                                                                            |
| γ/°                                         | 90                                                                            |
| Volume/ų                                    | 2912.77(18)                                                                   |
| Z                                           | 4                                                                             |
| $\rho_{calc}g/cm^3$                         | 1.326                                                                         |
| µ/mm⁻¹                                      | 1.516                                                                         |
| F(000)                                      | 1224.0                                                                        |
| Crystal size/mm <sup>3</sup>                | $0.15 \times 0.13 \times 0.11$                                                |
| Radiation                                   | GaKα (λ = 1.34143)                                                            |
| 20 range for data collection/°              | 7.892 to 124.976                                                              |
| Index ranges                                | $-13 \le h \le 5, -13 \le k \le 11, -33 \le l \le 36$                         |
| Reflections collected                       | 18886                                                                         |
| Independent reflections                     | 6909 [R <sub>int</sub> = 0.0147, R <sub>sigma</sub> = 0.0131]                 |
| Indep. refl. with I≥2σ (I)                  | 6647                                                                          |
| Data/restraints/parameters                  | 6909/0/388                                                                    |
| Goodness-of-fit on F <sup>2</sup>           | 1.041                                                                         |
| Final R indexes [I≥2σ (I)]                  | $R_1 = 0.0692$ , w $R_2 = 0.1833$                                             |
| Final R indexes [all data]                  | $R_1 = 0.0710$ , $wR_2 = 0.1850$                                              |
| Largest diff. peak/hole / e Å <sup>-3</sup> | 1.77/–1.36                                                                    |
| Flack parameter                             | 0.022(6)                                                                      |
| CCDC number                                 | 2309696                                                                       |

## 6. References

1. Dolomanov, O.V., Bourhis, L.J., Gildea, R.J, Howard, J.A.K. & Puschmann, H. (2009), J. Appl. Cryst. 42, 339-341.

- 2. Sheldrick, G.M. (2015). Acta Cryst. A71, 3-8.
- 3. Sheldrick, G.M. (2015). Acta Cryst. C71, 3-8.
- 4. J. R. Suresh, G. Whitener, G. Theumer, D. J. Bröcher, I. Bauer, W. Massa and H.-J. Knölker, *Chemistry A European Journal*, 2019, **25**, 13759-13765.
- 5. S. J. Lord, H.-l. D. Lee, R. Samuel, R. Weber, N. Liu, N. R. Conley, M. A. Thompson, R. J. Twieg and W. E. Moerner, *The Journal of Physical Chemistry B*, 2010, **114**, 14157-14167.
- 6. D. Sigwalt, M. Šekutor, L. Cao, P. Y. Zavalij, J. Hostaš, H. Ajani, P. Hobza, K. Mlinarić-Majerski, R. Glaser and L. Isaacs, *Journal of the American Chemical Society*, 2017, **139**, 3249-3258.