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Experimental

The manipulations of air sensitive materials were carried out using Schlenk and glovebox
techniques under an atmosphere of dry nitrogen. Solvent was dried over Na-
benzophenone or activated using 3 A prior to use. Reaction glassware was place in an
oven at 200 °C prior to use and Krytox was used for all assembling of the glass joints.
Evaporation and concentration of the solvents were performed using a rotary evaporator
or under high vacuum and the solid compounds were dried in a vacuum oven for thermal
analysis. Flash column chromatography was carried out through 240-400 mesh silica gel,
and thin-layer chromatography (TLC) was carried out via silica gel F254-covered plastic
sheets, which were visualized under UV irradiation. Melting points (m.p.) were measured
using a MEL-TEMP Il melting point apparatus.

Solution nuclear magnetic resonance (NMR) spectra are referenced to tetramethylsilane
(*H, 3C), H3PO4 (3'P), and trichlorofluoromethane (*°F) on a Bruker AV-300, Bruker AV-
400, Bruker AV-500 spectrometer. Chemical shifts (8) are reported in ppm downfield
relative to the signals of the internal reference or residual solvent (CDCls o1 = 7.24 ppm,
Oc = 77.0 ppm; DMSO-ds &1 = 2.50 ppm, dc = 39.5 ppm). Coupling constants (J) are
given in Hz. With respect to the solid-state NMR, the 'H, °F, and 3'P Magic Angle
Spinning (MAS) NMR experiments were carried out on a Bruker Avance spectrometer
with a 16.4 T magnet (700.25 MHz *H, and 283.46 MHz 3P Larmor frequencies). These
experiments were conducted using a probe head for rotors of 2.5 mm diameter. The single
pulse 3P ssNMR with *H decoupling experiments were referenced against NHsH2PO4 at
0.81 ppm. *°F Hahn-echo ssNMR experiments were spinning speed synchronized to one
rotor period and referenced against PTFE (Teflon) at -123.1 ppm. The *H MAS NMR
experiments included background suppression.l! The chemical shift reference was
calculated from the 3P referencel? based on the IUPAC conversion factor.

The 3P SASSY NMR experiments follow the pulse sequence introduced by A. J.
Simpsont8l here applied to 3P nuclei. These experiments were conducted on a Bruker
Avance DSX/Tecmag NMR spectrometer with a 9.4 T magnet. The sample was filled into
liquid tight inserts spun in 4mm rotors. The *H— 3'P cross-polarization (CP) section with
CP contact time of 2.6 ms, and 30 ms high power Spinal-64 decoupling was followed by
low power Waltz decoupling (pulses 81 ps) for a total of 655 ms decoupling. The mobile,
not cross-polarizing component of the sequence used a 5.3 ps *3C single excitation pulse.
The data were acquired in two interleaved, differently phase cycled sets, that were added
or subtracted to obtain the solid and mobile components, respectively.

The 13C Magic Angle Spinning (MAS) NMR experiments were carried out on a Bruker
Avance DSX/Tecmag NMR spectrometer with a 9.4 T magnet (400.24 MHz 'H, 100.64
MHz 3C, Larmor frequencies) using a probe head for rotors of 4 mm diameter. The 3C
chemical shift scale was referened against the carbonyl resonance of glycine at 176.06
ppm. Infrared spectra were recorded on a Thermo Scientific Nicolet NXR 9650 FT-
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Infrared Spectrometer instrument equipped with a 1064 nm Nd:YVO4 laser and InGaAs
detector, on KBr plates or pellets.

Single crystal diffraction experiments were performed on two instruments. Samples 7 and
9 were analyzed using a Bruker D8 Venture diffractometer. Reflections were integrated
using the APEX 3 or 4 software suite (SAINT, SADABS) ! and solved using SHELXT !
and refined using SHELXL [ with or without the Olex2 software GUL.[l samples 5 and 6
were analyzed at 100(2) K on an XtaLAB Synergy-S, Dualflex, HyPix-6000HE
diffractometer using Cu Kq radiation (A = 1.5406 A). Crystal was mounted on nylon
CryoLoops with Paraton-N. The data collection and reduction were processed within
CrysAlisPro (Rigaku OD, 2019). A multiscan absorption correction was applied to the
collected reflections. Using OLEX2,!"! structures were solved with the SHELXT structure
solution program B! using intrinsic phasing and refined with the SHELXL refinement
package [6 using Least Squares minimization. All non-hydrogen atoms were refined
anisotropically, and the organic hydrogen atoms were generated geometrically.

C, H, and N elemental analyses was performed on an Elementar UniCube instrument
using acetanilide as calibration standards. Samples were sealed within tin capsules and
weighed immediately prior to combustion.

Electro-Spray lonization (ESI) mass spectra were obtained using a Bruker microTOF
instrument.

Powder X-ray diffraction (PXRD) was carried out via a Rigaku Ultima IV X-ray
diffractometer with CuKa radiation (I = 1.5406 A). The samples were placed on to a zero-
background silicon wafer and the spectra were collected at 3 counts/s for an hour.

Thermogravimetric analyses (TGA) were performed with a Discovery TGA 5500 (TA
Instruments) using alumina sample pans. All TGA experiments were carried out with a
heating rate of 10 °C/min between 25 and 1000 °C in a nitrogen atmosphere (25 mL/min).
Differential scanning calorimetry (DSC) measurements were carried out using a DSC
Q2000 (TA Instruments) calibrated with indium using a heating rate of 10 °C/min in a
nitrogen atmosphere (50 mL/min) between -10 °C up to a temperature equivalent to a
total mass loss of 3 % from the TGA analysis. All DSC analyses were preceded by an
initial isotherm at 15 °C for 3 h to purge the sample from the remaining solvent.

Gas adsorption isotherm data were collected on a Micromeritics Smart VacPrep
instrument and the samples were thermally prepared for N2 adsorption. Samples were
initially heated to 45 °C (5 °C/min) for 90 min. Afterwards, the sample was heated at 60
°C for 600 min. From 70-100 °C the sample was heated for 300 minutes in 10 °C
increments. For samples dried under supercritical CO2, the samples were prepared as
previously described. Briefly, the pores of the sample were exchanged for ethanol by
soaking the material in ethanol followed by daily replacement of ethanol to remove any
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desorbed solvents. After the pores were fully exchanged (4 days), the sample was placed
in a Samdri-PVT-3D instrument (tousimis). The chamber was cooled to ~0 °C and the
sample chamber was filled with liquid CO2. Three times over the course of a day, the
chamber was exchanged with fresh liquid CO2. Afterwards, the sample was heated until
the pressure and temperature were above the supercritical pressure and temperature.
The CO2 was subsequently evaporated slowly overnight. After the samples were
prepared, the nitrogen gas adsorption isotherm was measured at 77 K and 278 K
respectively. A VWR water circulator was used to maintain 278 K. Samples were
measured on a Micromeritics 3Flex instrument with subsequent data analysis performed
using the associated software.

Methyl 4-aminobenzoate,® methyl 4-azidobenzoate, I 4-azido benzoic acid, ' and 4,4'-

diazido-2,2',3,3',5,5',6,6'"-octafluoro-1,1'-biphenyl 13 were prepared according to literature
procedures with minor modifications.
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Synthetic Procedures

Synthesis of methyl 4-aminobenzoate

O~_OH O._OMe

CH30H, HySO4

NH, NH,

4-Aminobenzoic acid (137.1 g/mol, 39.5 mmol, 5.42 g) was dissolved in methanol (30
mL). To this solution was added conc. H2SO4 (5 mL, 93.3 mmol) dropwise followed by
heating to reflux for 6 h. The reaction was monitored using TLC (hexanes/ethyl acetate,
50:50 v/v). Upon completion, the solvent was removed in vacuo and the crude product
was dissolved in EtOAc. Saturated NaHCO3s was added until no foam observed. Water
was added to this solution and the product was extracted using EtOAc (3x50 mL) followed
by drying over anhydrous Na>SO4 and filtering off the solids. The solvent was evaporated
under vacuum and afforded methyl 4-aminobenzoate as a light yellow solid (5.22 g, 34.5
mmol, 87%). Data are consistent with literature values.

IH NMR (300 MHz, CDCl3): & 7.86 (d, J = 8.6 Hz, 2H, Ar-H), 6.65 (d, J = 8.6 Hz, 2H, Ar-
H), 4.08 (s, 2H, NH2), 3.87 (s, 3H, CHa) ppm.

13C{1H} NMR (75 MHz, CDCl3): & 167.3 (s, -CO2), 151.0 (S, Car-NH2), 131.8 (s, Car), 119.9
(s, Car), 113.9 (s, Car-CO2), 51.7 (s, -OCHz) ppm.
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Synthesis of methyl 4-azidobenzoate

O.__OMe O.__OMe
1) t-BuONO
2) TMSN;
—_—
NH, N3

Methyl 4-aminobenzoate (151.2 g/mol, 6.50 mmol, 0.982 g) was dissolved in acetonitrile
(15 mL) and placed in an ice bath under N2 atmosphere. t-Butylnitrite (103.1 g/mol, 1.43
mL, 1.24 g, 12.0 mmol) was added dropwise using a syringe. It was followed by dropwise
addition of a dilute solution of trimethylsilyl azide (115.2 g/mol,1.07 mL, 0.937 g, 8.13
mmol) in acetonitrile (10 mL) and warming to room temperature. The reaction was
continued at rt and under N2 for 2 h. Completion of the reaction was monitored using TLC
(hexanes/ethyl acetate, 70:30 v/v). The solvent was evaporated in vacuo and column
chromatography was performed to isolate methyl 4-azidobenzoate as a light orange solid
(0.633 g, 3.57 mmol, 55%). Data are consistent with literature values. ©

1H NMR (300 MHz, CDCls): 8 8.04 (d, J = 8.8 Hz, 2H, Ar-H), 7.08 (d, J = 8.8 Hz, 2H, Ar-
H), 3.93 (s, 3H, CH3s) ppm.

13C{*H} NMR (75 MHz, CDClIs): & 165.8 (s, -CO2), 144.9 (s, Car-Nz3), 131.7 (s, Car), 126.0
(s, Car), 119.0 (s, Car-CO2), 47.3 (s, -OCH3s) ppm.
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Synthesis of 4-Azido benzoic acid

O._OH O~_OH

1) t-BUONO
2) TMSN3

R ———

NH, N3

4-Amino benzoic acid (137.1 g/mol, 1.82 mmol, 0.250 g) was dissolved in acetonitrile (4
mL) and was placed in an ice bath. t-Butylnitrite (103.1 g/mol, 0.4 mL, 0.352 g, 3.42 mmol)
was added dropwise using a syringe, followed by dropwise addition of a solution of
trimethylsilyl azide (115.2 g/mol, 0.3 mL, 0.263 g, 2.28 mmol) in ectonitrile (2 mL) and
warming to room temperature. The reaction was monitored using TLC (hexanes/ethyl
acetate, 40:60 v/v). After almost 1.5 h stirring and upon completion of the reaction, the
solvent was evaporated in vacuo and the product was purified and isolated using column
chromatography to obtain a light yellow solid (0.282 mg, 1.73 mmol, 95%). Data are
consistent with literature values. %

'H NMR (500 MHz, DMSO-d6): & 12.79 (s, 1H, -CO2H), 7.97 (d, J = 8.6 Hz, 2H, Ar-H),
7.23 (d, J = 8.7 Hz, 2H, Ar-H) ppm.

13C{*H} NMR (101 MHz, DMSO-d6): 5 167.0 (s, -CO2H), 144.4 (s, Car-N3), 131.7 (s, Car),
127.7 (s, Car), 119.6 (s, Car-CO2H) ppm.
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Synthesis of 4,4'-diazido-2,2',3,3',5,5',6,6'-octafluoro-1,1'-biphenyl

R FFR F F FF F
NaN3
F FF F F FF F

Perfluoro-1,1'-biphenyl (334.1 g/mol, 29.9 mmol, 10.0 g) was dissolved in DMF (50 mL)
in a round bottom flask at rt. NaNs (65.02 g/mol, 59.9 mmol, 3.90 g) was dissolved in DMF
(5 mL) and added portion-wise to the reaction flask under stirring which formed a milky
suspension. The progress of the reaction was monitored with TLC using hexanes as the
eluent. After 18 h and upon completion of the reaction water was added to the reaction
mixture and cooled down in an ice bath which led to precipitate formation. It was then
filtered using suction filtration to obtain a white solid as the product (10.1 g, 26.6 mmol,
93%). Data are consistent with literature values. 4

F{1H} NMR (377 MHz, CDCIl3): 3 —140.40 to —140.46 (m, 4F), -152.00 to -152.08 (m,
4F) ppm.

13C{1H} NMR (101 MHz, CDCls): & 144.43 (dd, YJcr = 256.2 Hz, 2Jcr = 13.2 Hz, Car-F),
140.71 (dd, YJcr = 253.6 Hz, 2Jcr = 15.46 Hz, Car-F), 122.05 (t, 2Jcr = 12.26 Hz, Car),
101.90 (t, 2Jcr = 15.95 Hz, Car-N3) ppm.
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Synthesis of Compound 5

\

TWNeNT ] \
N =N 2N, N—NI
] \ ] \

Inside a glovebox 1 (236.1 g/mol, 5.71 mmol, 1.35 g) and 4-azidobenzoic acid (163.1
g/mol, 12.6 mmol, 2.05 g) were added to a 100 mL Schlenk flask. THF (53 mL) was added
to this mixture and the reaction solution was stirred at 65 °C for 24 h which led to the
formation of light yellow precipitate. The reaction mixture was filtered, and the filtrate was
concentrated in vacuo to give a yellow solid. The solid was triturated with ethanol until the
supernatant was colorless. The white solid was dried in vacuum oven at 50 °C overnight
to afford compound 5 as a white solid (0.926 g, 1.83 mmol, 32%).

mp: 263-265 °C.

IR (KBr pellet, cm): 3050, 2965, 2937, 2899, 2663, 2555, 2126, 1919, 1681, 1595,
1554, 1515, 1461, 1376, 1310, 1290, 1203, 1169, 1130, 1095, 1055, 969, 851, 817, 773,
698, 672, 638 cm™.

'H NMR (500 MHz, DMSO-d6): & 12.27 (s, 2H, -CO2H), 7.72 (d, J = 8.5 Hz, 4H, Ar-H),
6.82 (d, J = 8.5 Hz, 4H, Ar-H), 2.91 (m, 18H, N-Me) ppm.

13C{*H} NMR (101 MHz, DMSO-d6): & 167.8 (s, -CO2H), 151.6 (apparent t, J = 3.90, Car),
131.2 (s, Car), 122.9 (apparent t, J = 7.53, Car), 121.4 (s, Car), 36.8 (apparent t, J = 1.92,
N-Me) ppm.

3P NMR (202 MHz, DMSO-d6): -4.12 (s, 4P, cage) ppm.

Elemental analysis: calc./expt. for C20H28NsO4P2: C — 47.43/47.60, H — 5.57/5.60, N —
22.13/22.04.

HRMS (ESI, negative mode): m/z calcd for Cz0H2s8NsO4P2 [M-H]" 505.1636, found:
505.1626, error: 2 ppm.

X-Ray (CCDC): 2297661.
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Synthesis of Compound 6

Compound 5 (506.4 g/mol, 0.249 mmol, 0.126 g) was added to a 20 mL vial followed by
the addition of 13.08 mL DMF. 3.520 mL of a 30.0 mg/mL stock solution of Zn(NO3)2.6H20
in DMF (prepared by dissolving 0.896 g Zn(NO3)2.6H20 in 29.8 mL DMF) was added to
the vial followed by 1.00 mL deionized water. The vial was capped, and the mixture was
swirled then sonicated for 5 min to afford a clear colorless solution. This solution was
divided into two 20 mL vials, sealed with Teflon tape and capped. The vials were placed
in a fitting aluminum block inside a preheated oven at 80 °C and heated for 4 days. The
light-yellow solution was decanted, and the colorless crystals were scraped off the vial by
spatula and further washed with 3x7 mL DMF. The crystals were soaked in 7 mL DMF
overnight then washed with 3x10 mL chloroform. Crystals floating on chloroform were
harvested by pipetting chloroform from the bottom of the vial and left drying under ambient
air overnight to afford large colorless crystals (0.115 g, 0.161 mmol, 65%).

Decomposition onset points (TGA): 5% decomposition at 239.5 °C.

IR (KBr pellet, cmt): 3408, 3060, 2958, 2933, 2896, 2797, 1664, 1621, 1597, 1515,
1375, 1202, 1174, 1142, 1094, 972, 855, 675.

H ssNMR: & 7.8 (Ar-H), 6.6 (Ar-H), 4.4 (N-Me), 2.6- 1.7 (N-Me) ppm.
31p ssNMR: & 1.8 (sharp, cage), -1.0 (sharp, cage) ppm.

13C ssNMR: 5 171.1, 165.9, 161.9, 150.7, 130.5, 123.9, 119.5, 107.8, 40.7, 38.2, 36.1,
31.2 ppm.

Elemental analysis: calc./expt. for Cs2HsoZn2N20012P4: C — 43.62/43.5, H — 5.63/5.41, N
—19.56/19.48.
X-ray (CCDC): 22976509.

S11



Synthesis of Compound 7

Compound 5 (506.4 g/mol, 0.249 mmol, 0.126 g) was added to a 20 mL vial followed by
the addition of 13.57 mL DMF. 3.21 mL of a stock solution of 15.08 mg/mL CoClz in DMF
(prepared by dissolving 0.448 g CoClz in 29.7 mL DMF) was added to the vial followed
by 1.00 mL deionized water. The vial was capped, and the mixture was swirled then
sonicated for 5 min to afford a clear colorless solution. This solution was divided into two
20 mL vials, sealed with Teflon tape and capped. The vials were placed in a fitting
aluminum block inside a preheated oven at 80 °C and heated for 4 days. The clear blue
solution was decanted, and the dark blue crystals were scraped off the vial by spatula
and further washed with 3x7 mL DMF. The crystals were soaked in 7 mL DMF overnight
then washed with 3x10 mL chloroform. Crystals floating on chloroform were harvested by
pipetting chloroform from the bottom of the vial and left drying under ambient air overnight
to afford large dark blue crystals (0.0976 g, 0.136 mmol, 55%).

It is noteworthy that compound 7 is paramagnetic. This leads to very broad lines
as can be seen in 'H and 3'P NMR spectra, figures S20-S21.

Decomposition onset points (TGA): 5% decomposition at 251.1 °C.

IR (KBr pellet, cmt): 3424, 3059, 2959, 2933, 2896, 2796, 2554, 1918, 1598, 1516,
1373, 1202, 1171, 1094, 973, 855, 721, 675.

'H ssNMR: & 38.3, 1.3 pm.

Elemental analysis: calc./expt. for Cs2HgoC02N20012P4: C — 44.01/43.63, H — 5.68/5.37,
N —19.74/19.57.
X-ray (CCDC): 2294196 and 2294197.
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Synthesis of Compound 8

@] OH
N — -
—
| / N3
TN | 5
/ \I\ /// N
SNTSN N

HO 0]
HO I
N\ P
0//\\@ ]
A BTSN
/ / O
SN ISSNT
N 8 OH
O OH

Inside a glovebox, 2 (298.1 g/mol, 0.033 mmol, 0.010 g) and 4-azidobenzoic acid (163.1
g/mol, 0.151 mmol, 0.024 g) were dissolved in THF (0.7 mL) to form a clear yellow solution
and transferred to an NMR tube. The NMR tube was then placed in an oil bath at 100 °C
and stirred for 2 days. The emergence of N2 bubbles as well as formation of some orange
precipitate was observed during the first few hours. Finally, acetonitrile was added to
crash out crude product as an orange solid (8) (0.002 g, 0.002 mmol, 7.0%).

Despite several trials to improve the yield of the reaction and scale up the synthesis,
satisfactory results were not obtained. Compound 8 was therefore only characterized in-

situ by NMR spectroscopy.

'H NMR (300 MHz, DMSO-de): 8 12.43 (s, 4H, -CO2H), 7.81 (d, J = 8.4 Hz, Ar-H), (d, J =
8.4 Hz, 8H, Ar-H), 3.07-3.14 (m, 18H, N-Me) ppm.
31P NMR (122 MHz, DMSO-de): -10.33 (s, 4P, cage) ppm.
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Synthesis of Compound 9

MeO O
(0] OMe

N P N MeO AN /”\ -

< 3 ]

_.|\fil //| T O)\Q\N\TT / ‘

/_pNTy 4N /NN 0

N=". ™=N SN h~N—

2 N g OMe

(e} OMe

Inside a glovebox, 2 (298.1 g/mol, 0.335 mmol, 0.100 g) and methyl 4-azidobenzoate
(177.2 g/mol, 1.34 mmol, 0.238 g) were added to 38 mL pressure tube equipped with a
threaded PTFE cap. THF (15 mL) was added to form a clear colorless solution and formed
N2 bubbles during the first few hours. The pressure tube was placed in an oil bath at 100
°C and stirred for 19 h to form a yellow clear solution. The progress of the reaction was
monitored using TLC (hexanes/ethyl acetate, 70:30 v/v). Upon completion, the reaction
solution was concentrated in vacuo and the residue was subjected to silica flash column
chromatography to afford compound 9 as a white solid (0.250 g, 0.279 mmol, 83%).

mp: 175.9-177.6 °C.

IR (NaCl plates, cm™): 3034, 2990, 2948, 1714, 1599, 1560, 1513, 1434, 1380,1306,
1273, 1170, 1094, 1033, 966, 900, 854, 822, 771, 700, 675.

IH NMR (400 MHz, CDCls): 8 7.94 (d, J = 8.4 Hz, 8H, Ar-H), 6.94 (d, J = 8.5 Hz, 8H, Ar-
H), 3.90 (s, 12H, O-Me), 3.17-3.23 (m, 18H, N-Me) ppm.

13C{'H} NMR (101 MHz, CDCI3): 8 167.0 (s, -CO2), 149.7 (s, Car), 131.3 (s, Car), 123.0-
122.8 (m, Car), 122.4 (s, Car), 51.8 (s, O-Me), 33.1 (s, N-Me) ppm.

3P NMR (162 MHz, CDClIs): -11.35 (s, 4P, cage) ppm.

Elemental analysis: calc./expt. for CssHasN10OsP4: C — 51.01/50.66, H — 5.18/5.17, N —
15.65/15.45.

HRMS (ESI, positive mode): m/z calcd for CssHasN100sP4 [M+Na]*: 917.2343,
found:917.2320, error: 2.5 ppm.

X-Ray (CCDC) : 2290656.
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Attempted basic hydrolysis of compound 9:

To a solution of compound 9 (894.7 g/mol, 0.032 mmol, 0.029 g) in THF/H,O (4 mL, 3:1 v/v)
equipped with stir bar was added KOH (0.171 mmol, 0.010 g). The reaction mixture stirred at 70
°C for 2 h followed by heating to 87 °C for 48 h. Gradually, the formation of an orange
solution was observed. The solution was acidified using acetic acid, washed with water,
and extracted with EtOAc. The organic layer was concentrated in vacuo. The progress of
the reaction and the final crude product were monitored via TLC and 3P NMR
spectroscopy (Figure S50) which showed a mixture of byproducts and the unconsumed
compound 9 as the major material. Addition of more KOH did not result in formation of
compound 8, suggesting the observed peaks correspond to side-products rather than
intermediates.

Attempted acidic hydrolysis of compound 9:

To a solution of compound 9 (894.7 g/mol, 0.011 mmol, 0.010 g) in THF (1.5 mL) was
added 1.0 M HCI (0.5 mL). The mixture was transferred to an NMR tube and heated to
reflux for 2 h. The reaction was monitored using 3'P NMR spectroscopy (Figure S51)
which indicated the decomposition of the starting material under acidic condition.

Attempted ZnBr; catalyzed hydrolysis of compound 9:

To a solution of compound 9 (894.7 g/mol, 0.029 mmol, 0.026 g) in DCM (5mL) equipped with stir
bar was added ZnBr, (0.58 mmol, 0.130 g). The mixture stirred at room temperature for 24 h.
The cloudy solution was then treated with H20 (20 mL) and stirred for 2h. Following this
step, the reaction mixture was heated to 50 °C and stirred at this temperature for 48 h.
The progress of the reaction was monitored via TLC and crude 3P NMR which indicated
only the unconsumed starting material exists.
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Synthesis of compound 10

N

N3

F F
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Procedure for solution and film synthesis:

Figure S1. Film made by drop casting the viscous solution of 10 on a Teflon mold.

Inside a glovebox, 2 (298.1 g/mol, 0.248 mmol, 0.0740 g) and 4,4'-Diazido-
2,2'3,3',5,5',6,6'-octafluoro-1,1"-biphenyl (380.2 g/mol, 0.499 mmol, 0.190 g) were added
to 25 mL pressure tube equipped with a threaded PTFE cap. THF (9.60 mL) was added
to obtain a clear yellow solution. The reaction vessel was capped and stirred at room
temperature overnight, followed by heating to 60 °C in an oil bath for four days with
stirring. A pale yellow slightly cloudy solution was obtained (10). Volatiles were removed
under vacuum while stirring the solution to obtain a 2 mL clear light yellow highly viscous
solution. This viscous solution was used for drop-casting on a Teflon mold (Figure S1).
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Procedure for gel synthesis:
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Figure S2. a) Gel formed in the vial. b) Swelling of the gel in THF (THF removed from the
vial after swelling).

Inside a glovebox, 2 (298.2 g/mol, 0.294 mmol, 0.0878 g) and 4,4-Diazido-
2,2'3,3',5,5',6,6'-octafluoro-1,1"-biphenyl (380.2 g/mol, 0.589 mmol, 0.224 g) were added
to a4 Drvial. THF (3.75 mL) was added to obtain a clear yellow solution (nitrogen bubbles
emerge immediately). The vial was capped and left for two days at room temperature in
the glove box without stirring upon which a yellow clear gel was obtained (10) (Figure
S2. a). Volatiles were removed under vacuum to obtain a yellow hard solid. The solid
material was soaked in THF overnight to obtain a soft gel again (Figure S2. b). Similarly,
this gel swells in dichloromethane and ethanol. The gel was washed by repeating the
swelling two more times and replacing the THF with fresh THF in each round. Finally, the
gel was dried under vacuum for two days at ambient temperature to obtain a hard solid.
The solid was crushed with a mortar and pestle for analysis by 3'P{*H}, 1°F, and *H solid-
state NMR spectroscopy.

Decomposition onset points (TGA): 5% decomposition at 267.4 °C.

IR (NaCl plate, cm™): 3668, 3439, 2953, 2893, 2827, 2537, 2393, 2123, 1777, 1648,
1480, 1322, 1219, 1034, 966, 870, 721, 676.

'H ssNMR: & 3.1 (N-Me) ppm. The peak at 1.3 ppm corresponds to residual THF.
31p ssNMR: & 2.2 to-12.2 (broad, cage) ppm.
F ssNMR: & -144.2 (sharp, Ar-F), -155.1 (sharp, Ar-F) ppm.
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Synthesis of compound 12

N3
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F @ F A
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NUN=LSN THF, 60 °C, 2-5 d

11 W - N2

Figure S3. a) Reaction solution, b) concentrated viscous solution, c¢) film made by drop
casting the viscous solution on a Teflon mold.

Procedure for solution and film synthesis:

Inside a glovebox, 11 (382.3 g/mol, 0.253 mmol, 0.0967 g) and 4,4'-Diazido-
2,2'3,3',5,5',6,6'-octafluoro-1,1"-biphenyl (380.2 g/mol, 0.507 mmol, 0.193 g) were added
to a 25 mL pressure tube equipped with a threaded PTFE cap. THF (9.70 mL) was added
to obtain a clear yellow solution then the reaction vessel was capped and heated to 60
°C in an oil bath for five days with stirring. A pale-yellow clear solution was obtained (12)
(Figure S3. a). Volatiles were removed under vacuum when stirring the solution to obtain
a 1 mL clear yellow viscous solution (Figure S3. b). This viscous solution was used for
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making films by drop-casting on a Teflon mold (Figure S3. c). 3'P{*H} and °F NMR
spectra of the polymer solution are shown.

Procedure for gel synthesis:

(a) ) (b)

Figure S4. a) Gel formed in the reaction vessel, b) swelling of the gel in THF (THF
removed from the vial after swelling)

Inside a glovebox, 11 (382.3 g/mol, 0.267 mmol, 0.102 g) and 4,4'-Diazido-
2,2'3,3',5,5',6,6'-octafluoro-1,1"-biphenyl (380.2 g/mol, 0.535 mmol, 0.203 g, 2.00 equ.)
were added to 25 mL pressure tube equipped with a threaded PTFE cap. THF (3.40 mL)
was added to obtain a clear yellow solution then the reaction vessel was capped and
heated to 60 °C in an oven for two days, without stirring. A light-yellow clear gel was
obtained (12) (Figure S4. a). Volatiles were removed under vacuum to obtain yellow hard
solid. The solid material was soaked in THF overnight to obtain a soft gel again. This gel
can absorb 500-600% (w/w) THF by swelling (Figure S4. b). Similarly, this gel swells in
dichloromethane, acetone, ethyl acetate, DMF, diethyl ether, dioxane, toluene, and
xylene. The gel was washed by repeating the swelling two more times and replacing the
THF with fresh THF in each round. Finally, the gel was dried under vacuum for two days
at ambient temperature to obtain a hard solid. The solid was crushed with a mortar and
pestle for analysis by '°F, 3P, and 'H solid-state NMR spectroscopy.

Decomposition onset points (TGA): 5% decomposition at 357.9 °C.

IR (NaCl plate, cmt): 3406, 2979, 2936, 2875, 2536, 2470, 2394, 2122, 1647, 1530,
1479, 1382, 1315, 1217, 1165, 1054, 965, 930, 884, 772, 720, 672, 634.
H ssNMR: & 3.2 (N-Me), 1.3 (N-Me) ppm.
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31p ssNMR: & 66.2 (sharp, cage), 2.6 to -9.7 (broad, cage) ppm.
F ssNMR: 8 -144.1 (sharp, Ar-F), -154.9 (sharp, Ar-F) ppm.
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NMR Spectra
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Figure S5. 'H NMR spectrum (300 MHz, CDClz) of methyl 4-aminobenzoate.
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Figure S6. 13C{*H} NMR spectrum (75 MHz, CDCIz) of methyl 4-aminobenzoate.
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Figure S7. *H NMR spectrum (300 MHz, CDCIz) of methyl 4-azidobenzoate.
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Figure S8. 13C{*H} NMR spectrum (75 MHz, CDCIs) of methyl 4-azidobenzoate.
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Figure S9. *H NMR spectrum (500 MHz, DMSO-d6) of 4-Azido benzoic acid.
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Figure S12. 3C{*H} NMR spectrum (101 MHz, CDCI3z) of monomer 4,4'-diazido-
2,2',3,3',5,5',6,6'-octafluoro-1,1'-biphenyl in CDCls.
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Figure S13. 'H NMR spectrum (500 MHz, DMSO-d6) of 5.
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Figure S14. 13C{*H} NMR spectrum (101 MHz, DMSO-d6) of 5.
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Figure S15. 31P NMR spectrum (202 MHz, DMSO-d6) of 5.
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Figure S16. Solid state *H MAS NMR spectrum of 6 at 20 kHz MAS. Unlabelled peaks
are spinning sidebands.
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Figure S17. Solid state 3P MAS NMR spectrum of 6 at 20 kHz MAS. Unlabelled peaks
are spinning sidebands.
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Figure S19. 13C CP/MAS NMR spectra showing spinning speed comparison of 6. The
bottom trace shows the addition of the three top spectra.
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Figure S20. Solid state 'H MAS NMR spectrum of 7 at 10 kHz MAS. Paramagnetic
sample.
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Figure S24. 'H NMR spectrum (400 MHz, CDCIs) of 9.
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Figure S25. 13C{*H} NMR spectrum (101 MHz, CDCIs) of 9.
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Figure S26. 1P NMR spectrum (CDCls, 162 MHz) of 9.
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Figure S27. Solid state *H MAS NMR spectrum of 10 at 20 kHz MAS. Unlabelled peaks
are spinning sidebands.
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Figure S28. Solid state 3P MAS NMR spectrum of 10. Unlabelled peaks are spinning
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Figure S29. Solid state 1°F MAS NMR spectrum of 10. Unlabelled peaks are spinning
sidebands

545



T | T T T | T T T | | T T | |
70 60 50 40 30 20 10 0 10 20 -30 -40 -50 ppm

Figure S30. Solid state TH MAS NMR spectrum of 12. Unlabelled peaks are spinning
sidebands.
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Figure S31. Solid state 3P MAS NMR spectrum of 12. Unlabelled peaks are spinning
sidebands.
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Figure S32. Solid state 1°F MAS NMR spectrum of 12. Unlabelled peaks are spinning
sidebands.
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Figure S33. Solid (top) and Mobile (bottom) components of the 3P SASSY NMR

experiment of 12.
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Mass Spectra

Mass Spectrum SmartFormula Report

Analysis Info

Analysis Name D:AData\Xiao\Sept 01 2023000002 d
Method Xiao all 1.m

Sample Name P2-linker neg

Comment

Acquisition Date 2023-09-01 1:52:21 PM
Operator X
Instrument compact 8255754 20059

Acquisition Parameter

Source Type ESI lon Polarity Negative Set Mebulizer 0.5 Bar
Focus Mot active Set Capillary 3500 v Set Dry Heater 180 °C
Scan Begin 50 mfz Set End Plate Offset -500 vV Set Dry Gas 4.0 Fmin
Scan End 1500 miz Set Charging Voltage 2000 v Set Divert Valve Source
Set Corona 0 nA Set APCI Heater 0°C
Meas. m/z lon Formula mfz e [ppm]
505.1626 CZUH2?N804F'2| 505.1636 20
Intens. -MS, 0.8-1.7min #45-97|
x104
505:1626
&
4.
2] 506.1655
507.1679
0 505.6643
501 502 503 504 505 506 507 508 509 510 miz

Figure S34. High resolution ESI-MS spectrum of ion [5-H].
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IMass Spectrum SmartFormula Report

Analysis Info Acquisition Date 2023-06-23 3:09:42 PM
Analysis Name DAData\Xiao\WJune 23 2023000005.d
Method Xiao all 1.m Operator X
Sample Name MF4-1-10 Instrument compact 825575420059
Comment
Acquisition Parameter
Source Type ESI lon Polarity Positive Set Nebulizer 0.5 Bar
Focus Mot active Set Capillary 3500 v Set Dry Heater 180 *C
Scan Begin 50 miz Set End Plate Offset -500 v Set Dry Gas 4.0 Imin
Scan End 1500 mfz Set Charging Voltage 2000 v Set Divert Valve Source
Set Corona 0 nA Set APCI Heater 0°C
Meas. m/z  lon Formula mfz  err [ppm]
917.2320 C38H46N10NaOBP4  917.2343 25
Intens. | +MS, 0.6-2.4min #37-131]
X105
1 9172320
2.0
1.5
E 918.2354
1.0
0.5
- 919.2386
] 917.7365 /\
00 T T T T T VAR T T T T T
915.0 M55 916.0 916.5 917.0 75 918.0 9185 919.0 9185 miz

Figure S35. High resolution ESI-MS spectrum of ion [9+Na]*.
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IR Spectra

— vL'6lI6L

— EL'9%IT

JBRUKER

ovi

H
W T T T T

08 09 oy
[%] souepwsuel |

0L 0

o
-~
o
o
o

3000 2500 2000 1500 1000 500
Wavenumber cm-1

3500

pooo

Figure S36. Infrared spectrum (KBr pellet) of 5.
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Figure S37. Infrared spectrum (KBr pellet) of 6.
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Figure S38. Infrared spectrum (KBr pellet) of 7.
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Figure S39. Infrared spectrum (KBr plate) of 9.
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X-ray Single Crystallographic Analysis

Table S1. Crystallographic data and structure refinement of compound 5.

Empirical formula Ci5H188NsO2P
Formula weight 332.12
Temperature/K 99.9(3)

Crystal system triclinic

Space group P-1

alA 9.04350(15)

b/A 10.15596(16)

c/A 10.73364(12)

a/® 108.6532(12)

p/° 99.9637(12)

y/° 113.6479(16)
Volume/A3 802.40(3)

Z 0.5

Pcaicg/cm? 1.375

u/mm-?t 1.673

F(000) 349.6

Crystal size/mm? 0.2x0.2x0.2
Radiation Cu Ka (A =1.54184)
20 range for data collection/°9.2728 to 158.4802
Index ranges -11<h<11,-12<k<12,-13<1<13
Reflections collected 26957

Independent reflections 3431 [Rint = 0.0605, Rsigma = 0.084]
Data/restraints/parameters  3431/42/330

Goodness-of-fit on F? 1.000

Final R indexes [I>=20 (I)] Ri1=0.0447, wR> = 0.1097

Final R indexes [all data] R; = 0.0486, wR, = 0.1126
Largest diff. peak/hole / e A 0.30/-0.52
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Table S2. Crystallographic data and structure refinement of compound 6.

Empirical formula Cs2HgoN20012P4ZnN2
Formula weight 1431.98
Temperature/K 200.00

Crystal system monoclinic

Space group P2i/n

alA 17.7137(4)

b/A 10.1405(2)

c/A 18.5083(4)

a/® 90

p/° 92.4670(10)

y/° 90

Volume/A3 3321.49(12)

z 2

Pcacg/cm? 1.432

u/mm-?t 2.405

F(000) 1496.0

Crystal size/mm? 0.09 x 0.03 x 0.02
Radiation CuKa (A = 1.54178)
20 range for data collection/° 6.764 to 140.138
Index ranges 21<h<21,-12<k<12,-22<1<21
Reflections collected 48110

Independent reflections 6237 [Rint = 0.0709, Rsigma = 0.0386]
Data/restraints/parameters  6237/294/530

Goodness-of-fit on F2 1.664

Final R indexes [I>=20 (I)] Ri1=0.1352, wR; =0.3327

Final R indexes [all data] R1 =0.1846, wR; = 0.4196

Largest diff. peak/hole / e A= 5.79/-0.83
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Table S3. Crystallographic data and structure refinement of compound 7.

Empirical formula C23H33C0oNgOsP2
Formula weight 636.45
Temperature/K 150.00

Crystal system monoclinic

Space group P2i/n

alA 12.2983(7)

b/A 10.2366(5)

c/A 22.8341(12)

a/® 90

p/° 94.766(2)

y/° 90

Volume/A3 2864.7(3)

z 4

pcalcglcm3 1.476

u/mm- 0.762

F(000) 1324.0

Crystal size/mm? 0.14 x 0.11 x 0.03
Radiation MoKa (A = 0.71073)
20 range for data collection/° 3.904 to 52.038
Index ranges -15<h<15,-12<k<12,-28<1<28
Reflections collected 79685

Independent reflections 5643 [Rint = 0.1306, Rsigma = 0.0543]
Data/restraints/parameters  5643/107/513

Goodness-of-fit on F2 1.137

Final R indexes [I>=20 (I)] Ri1=0.0671, wR> = 0.1400

Final R indexes [all data] R1 =0.1134, wR; = 0.1611

Largest diff. peak/hole / e A= 0.68/-0.81
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Table S4. Crystallographic data and structure refinement of compound 9.

Empirical formula C3sHasN1008P4
Formula weight 894.73
Temperature/K 150.00

Crystal system triclinic

Space group P-1

alA 9.9127(3)

b/A 12.0311(4)

c/A 17.7893(7)

a/° 96.0190(10)

p/° 99.7040(10)

y/° 95.5610(10)
Volume/A3 2065.42(12)

VA 2

Pcaicg/cm?® 1.439

u/mm-?t 0.248

F(000) 936.0

Crystal size/mm? 0.4x0.1x0.1
Radiation MoKa (A = 0.71073)
20 range for data collection/° 3.904 to 63.016
Index ranges -14<h<14,-17<k<17,-26<1<26
Reflections collected 142913
Independent reflections 13734 [Rint = 0.0517, Rsigma = 0.0315]
Data/restraints/parameters  13734/0/551
Goodness-of-fit on F? 1.183

Final R indexes [I>=20 (I)] R:=0.0564, wR2 = 0.1368
Final R indexes [all data] R; =0.0798, wR, = 0.1692
Largest diff. peak/hole / e A 1.08/-0.56
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Figure S42. Photographs of isolated crystals of 6 and 7.

Figure S43. Two views of the triply interpenetrated structures of 6 and 7.
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Figure S44. Two views of the molecular structure of 9 in the solid state. Hydrogen atoms
have been omitted for clarity. Ellipsoids are drawn at the 50% probability level.
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PXRD Analysis

(a)
(b)
5 10 15 20 25 30 35
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Figure S45. (a) Experimental, (b) simulated PXRD patterns of compound (6).
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Figure S46. (a) Experimental, (b) simulated PXRD patterns of compound (7).
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Thermal Analysis (DSC/TGA)
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Figure S47. DSC thermograms (first heating and cooling cycle) for compounds 6, 7, 10,

and 12.
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Figure S48. DSC thermograms (second heating and cooling cycle) for compounds 10

and 12.
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Figure S49. Thermogravimetric analysis of 6, 7, 10, and 12.
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Additional figures added during revision
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Figure S50. 3P NMR spectrum for the attempted basic hydrolysis of compound 9 with
KOH. No evidence of compound 8 was detected and addition of more KOH and prolonged
reaction time did not lead to formation of 8.
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Figure S51. 31P NMR spectrum for the attempted acidic hydrolysis of compound 9 with
HCIl and water. No evidence of compound 8 was detected.
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