Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2023

A Ru-catalyzed aminomethylation of arenes with O-tosylhydroxamates

Authors: Guobao Li, Tilo Lübken, Bernd Plietker*

Affiliations:

Professur für Organische Chemie I, Fakultät Chemie und Lebensmittelchemie, Technische Universität Dresden, Bergstraße 66, DE-01069 Dresden, Germany.

*Corresponding author. Email: bernd.plietker@tu-dresden.de.

Content

1.	General Remarks	S3
2.	Optimization	S5
3.	Preparation of substrates	S11
3.1.	General procedure (GP-1) for preparation of 2a , 4a-4c	S11
3.2.	General procedure (GP-2) for preparation of 5a-5d	S14
3.3.	Procedure for preparation of 2r	k not defined.
3.4.	General procedure (GP-3) for preparation of 3a-3r , 6a-6d	S18
3.5.	General procedure (GP-4) for preparation of 1t , 1u	S34
3.6.	Preparation of 1w	S36
3.7.	Preparation of 1v	S37
3.8.	Preparation of 3q-3u	S38
3.9.	Procedure for preparation of 3v	S41
3.10.	Scale-up reaction	S42
3.11.	Further transformation-Heck reaction	S43
3.12.	Further transformation-C-H activation	S44
3.13.	Further transformation-Bz removal	S45
4	References	S46
5.	¹ H-, ¹³ C-, ¹⁹ F- NMR Spectra	S48
6.	Chiral HPLC spectrums	S96
7	2D- (¹ H/ ¹ H- ¹ H/ ¹³ C-) NMR Spectra	\$100

1. General Remarks

The solvent compositions used are given as volume ratios. All solvents except H₂O, *n*-pentane, *n*-heptane, and EtOAc were distilled before use. The dried solvents DCM, diethyl ether, toluene, acetonitrile, and *n*-pentane were obtained from a solvent drying plant (SPS). THF used was distilled over sodium using benzophenone as an indicator. The solvents DMF, chloroform, MeOH, EtOH, triethylamine, 1,2-DCE, 1,4-dioxane, and DMSO, were distilled over suitable desiccants and stored under an inert atmosphere - unless explicitly marked otherwise. The reagents used were obtained from Sigma Aldrich, TCI, Alfa Aesar, Acros Organics, Fluka, Porphychem, abcr, BLD, and ChemPur and, unless otherwise stated, used without further purification. All water and air-sensitive reactions were performed under an inert N₂ or Ar atmosphere using standard Schlenk techniques. Glassware was dried by extensive heating under a high vacuum.

NMR spectra were recorded on a Bruker Avance II 300 spectrometer at 300 MHz (1 H NMR), 75 MHz (13 C NMR), 282 MHz (19 F NMR), a Bruker Ascend 400 spectrometer at 400 MHz (1 H NMR), 376 MHz (19 F NMR), 101 MHz (13 C NMR), a Bruker DRX 500 spectrometer at 500 MHz (1 H NMR), 126 MHz (13 C NMR), 202 MHz (31 P NMR), a Bruker Avance III 600 spectrometer at 600 MHz (1 H), 150 MHz (13 C NMR) or a Bruker 700 spectrometer at 700 MHz (1 H NMR), 176 MHz (13 C NMR). Chemical shifts are reported in ppm relative to tetramethylsilane. Residual solvent signals were used as reference. Coupling constants J are given in Hz. The following abbreviations are used in the analysis of NMR spectra: s = singlet, d = doublet, t = triplet, q = quartet, hept = heptet, sept = septet, These abbreviations are combined whenever more than one coupling is observed. IR spectra were measured on a Bruker Vector 22 FT-IR spectrometer in ATR mode. The measured values are given in reciprocal wavelength (cm $^{-1}$). The intensity of the observed peaks is given in parenthesis: s = strong, m = medium, w = weak. Mass spectra were measured using electrospray ionization on a Bruker micrOTOF-Q.

Thin-layer chromatography was carried out on TLC aluminum foil (silica gel 60, F254) from Macherey-Nagel. UV light was used to detect the individual spots, and the TLC foils were treated with sulfuric KMnO₄ solution, or 10% molybdophosphoric acid solution in EtOH. Column chromatographic purifications were carried out on silica gel (0.040–0.063 mm, 230 – 400 mesh) from Macherey-Nagel, silica gel 60 (230-400 mesh) from Fluka or Alox (N). Some compounds were purified using semi-preparative High-performance liquid chromatography

(HPLC). The K-501 pump and the RI detector K-2400 from Knauer were used in connection with a column of the type VP 250/21 Nucleodur 100-5 C18 from Macherey-Nagel. Mixtures of ethyl acetate and petroleum ether or isohexane were used as eluents, and a flow rate of 10 mL/min was set.

High-resolution mass analysis was performed by Claudia Guttroff and analytic department of University of Stuttgart on the devices MAT 95 from Finnigan (EI) and micro-TOF-Q from Bruker (ESI). High-resolution mass analysis was also performed by Dr. Ingmar Bauer and Anne Jäger using an LC-MS coupling from Hewlett Packard (HPLC: 1100, mass detector: Esquire-LC, ESI).

Enantiomeric excess (ee) was measured on an Agilent HPLC 1100 Series system equipped with the Daicel Chiralpak column.

2. Optimization

Table S1. Screening of catalysts

entry	Catalyst	result ^[a]
1	trans-Ru(PNNP)PF ₆	30%
2	Ru(PPh ₃) ₂ (CO)HCl	13%
3	cis-Ru(PNNP)PF6	30%
5	Ru(NNNN)PF ₆	35%
6	$RuCl_3$	trace
7	$[Ru(p ext{-cymene})Cl_2]_2$	11%
8	$Ru(DMSO)_4Cl_2$	24%
9	$Ru(PMe)_3Cl_2$	trace
10	Ru(PPh ₃) ₃ Cl ₂	65%
11	$Ru(PPh_3)_3H_2$	trace
12	$Ru(P(4-ClPh)_3)_3Cl_2$	18%
13 ^[b]	Ru(PPh ₃) ₃ Cl ₂	72%
14 ^[b]	Ru(NNNN)PF6	47%
15 ^[b]	trans-Ru(PNNP)PF ₆	33%
16	Rh(PPh ₃) ₃ Cl	0%
17	$Pd(PPh_3)_2Cl_2$	0%

[a] Reaction condition: **1a** (0.1 mmol), **2a** (0.1 mmol), catalyst (5 mol%), in DCE (0.5 mL) at 100 °C for 18 h under air in a sealed tube. Yield is determined by GC analysis using dodecane as internal standard. [b] using 1.5 equiv **2a**.

Table S2. Screening of solvents

entry	solvent	result ^[a]
1	DCE	65%
2	THF	trace
3	DMF	n.r.
4	1,4-dioxane	trace
5	ArF_6	11%
6	DCM	38%
7	chloroform	32%
8	trifluorotoluene	16%.
9	fluorobenzene	18%
10	CCl ₄	n.d.
11	MeCN	trace
12	cyclohexane	trace
13	DMSO	n.r.
14	iso-propanol	trace
15	1,2-dichlorobenzene	35%
16	EtOAc	n.r.
17	acetone	n.r.
18 ^[b]	DCM	50%
19 ^[b]	THF	trace
20 ^[b]	ArF_6	12%

21 ^[b]	cyclohexane	trace
22 ^[c]	DCE	65%

[a] Reaction condition: **1a** (0.1 mmol), **2a** (0.1 mmol), Ru(PPh₃)₃Cl₂ (5 mol%), in solvent (0.5 mL) at 100 °C for 18 h under air in a sealed tube. Yield is determined by GC analysis using dodecane as internal standard. [b] using 1.5 equiv **2a**. [c] using dry DCE under Ar in a Schlenk tube.

Table S3. Screening of base

entry	base	result ^[a]
1	K ₂ CO ₃	trace
2	Cs_2CO_3	n.r.
3	Li ₂ CO ₃	n.r.
4	KHCO ₃	5%
5	KOAc	58%
6	K_3PO_4	n.r.
7	$\mathrm{Et}_{3}\mathrm{N}$	n.r.
8	none	65%

[a] Reaction condition: **1a** (0.1 mmol), **2a** (0.1 mmol), Ru(PPh₃)₃Cl₂ (5 mol%), base (1 equiv) in DCE (0.5 mL) at 100 °C for 18 h under air in a sealed tube. Yield is determined by GC analysis using dodecane as internal standard.

Table S4. Screening of amount of 2a

entry	amount of 2a	result ^[a]
1	1.0 equiv 2a	65%
2	1.5 equiv 2a	72%

3	2.0 equiv 2a	73%
4	2.5 equiv 2a	55%

[a] Reaction condition: **1a** (0.1 mmol), **2a** (x mmol), Ru(PPh₃)₃Cl₂ (5 mol%) in DCE (0.5 mL) at 100 °C for 18 h under air in a sealed tube. Yield is determined by GC analysis using dodecane as internal standard.

Table S5. Screening of amount of catalyst

entry	amount of cat. (mol%)	result ^[a]
1	0.50	15%
2	1.00	28%
3	2.50	41%
4	5.00	72%
5	7.50	66%

[a] Reaction condition: **1a** (0.1 mmol), **2a** (0.15 mmol), Ru(PPh₃)₃Cl₂ (5 mol%) in DCE (0.5 mL) at 100 °C for 18 h under air in a sealed tube. Yield is determined by GC analysis using dodecane as internal standard.

Table S6. Screening amount of solvent

entry	amount of DCE	result ^[a]
1	0.1 mL	38%
2	0.5 mL	72%
3	1.0 mL	55%
4	2.0 mL	28%

[a] Reaction condition: **1a** (0.1 mmol), **2a** (0.15 mmol), Ru(PPh₃)₃Cl₂ (5 mol%) in DCE (x mL) at 100 °C for 18 h under air in a sealed tube. Yield is determined by GC analysis using dodecane as internal standard.

Table S7. Screening temperature

entry	temp. (°C)	result ^[a]
1	40	trace
2	60	3%
3	80	13%
4	90	62%
5	100	72%
6	110	58%
7	130	18%

[a] Reaction condition: **1a** (0.1 mmol), **2a** (0.15 mmol), Ru(PPh₃)₃Cl₂ (5 mol%) in DCE (0.5 mL) at X °C for 18 h under air in a sealed tube. Yield is determined by GC analysis using dodecane as internal standard.

Table S8. Screening reaction time

entry	time	result ^[a]
1	1 h	64%
2	8 h	69%
3	18 h	72%
4	24 h	72%

[a] Reaction condition: **1a** (0.1 mmol), **2a** (0.15 mmol), Ru(PPh₃)₃Cl₂ (5 mol%) in DCE (0.5 mL) at 100 °C for X h under air in a sealed tube. Yield is determined by GC analysis using dodecane as internal standard.

Table S9. Screening additive

entry	amount of additive	result ^[a]
1.	PivOH (0.3 eq)	40%
2.	TsOH (0.3 eq)	45%
3.	MesCOOH (0.3 eq)	34%
4.	$AgNTf_2$ (0.2 eq)	trace
5.	AgOTf (0.2 eq)	12%
6.	$AgBF_4(0.2 eq)$	trace
7.	$AgPF_6(0.2 eq)$	trace
8.	4Å MS (100 mg)	n.r.
9.	TfOH (0.3 eq)	trace
10.	TFA (0.3 eq)	27%
11.	H ₂ O (1 eq)	41%
12.	AgOAc (0.5 eq)	n.r.
13.	Cu(OAc) ₂ (0.5 eq)	18%
14.	BQ (0.5 eq)	trace
15.	$K_2S_2O_8$ (0.5 eq)	28%
16.	O_2 (1 atm)	65%
17.	PCy ₃ (0.3 eq)	trace
18.	$P(4-MeOPh)_3 (0.2 eq)$	28%
19.	$P(4-FPh)_3 (0.2 eq)$	34%
20.	DPPE (0.2 eq)	10%
21.	Phen (0.2 eq)	20%

[a] Reaction condition: **1a** (0.1 mmol), **2a** (0.15 mmol), Ru(PPh₃)₃Cl₂ (5 mol%) and additive (X equiv) in DCE (0.5 mL) at 100 °C for 18 h under air in a sealed tube. Yield is determined by GC analysis using dodecane as internal standard.

3. Preparation of substrates

3.1. General procedure (GP-1) for preparation of 2a, 4a-4c

Step 1: NaHCO₃ (4.2 g, 50 mmol, 2.5 equiv) was added to a solution of MeNHOH·HCl (1.8 g, 22 mmol, 1.1 equiv) in DCM (140 mL) at room temperature. Then the mixture was cooled to 0 °C and a solution of benzoyl chloride (2.8 g, 20 mmol, 1.0 equiv) in DCM (70 mL) was added. The resulting reaction mixture was stirred overnight at room temperature and filtered off the insoluble precipitate. The filtrate was washed with water 3 times, then the organic layers were dried (Na₂SO₄) and evaporated *in vacuo* to afford the crude compound as a light yellow oil, which was used without further purification.^[1]

Step 2: Corresponding acyl chloride or anhydride (5.5 mmol, 1.1 equiv) and Et₃N (0.76 g, 7.5 mmol, 1.5 equiv) were added to a solution of *N*-hydroxy-*N*-methylbenzamide (0.75 g, 5 mmol, 1 equiv) in DCM (50 mL) at 0 °C. The resulting reaction mixture was stirred at room temperature overnight. The solvent was removed *in vacuo* and the crude mixture was purified by flash column chromatography on silica gel isohexane/EtOAc (v/v=7:1) to obtain the product.^[2]

According to GP-1, N-hydroxy-N-methylbenzamide (5.0 mmol, 0.75 g), Et₃N (7.5 mmol, 1.05 mL), TsCl (5.5 mmol, 1.05 g) in DCM (50 mL) afforded 2a as a white solid after purification on silica gel (isohexanes: EtOAc = 7:1). Reaction time: 12 h.

N-methyl-N-(tosyloxy)benzamide

Yield: 1.14 g (3.75 mmol, 75%).

Physical State: white solid.

R_f Value: 0.25 (isohexane/EtOAc -5/1).

¹**H NMR** (300 MHz, CDCl₃) δ 7.58 (d, J = 8.3 Hz, 2H), 7.42 – 7.22 (m, 5H), 7.14 (d, J = 8.1 Hz, 2H), 3.52 (s, 3H), 2.37 (s, 3H).

¹³C NMR (75 MHz, CDCl₃) δ 171.21, 146.18, 132.47, 131.39, 130.22, 129.79, 129.21, 128.47, 128.10, 40.53, 21.81.

IR (ATR in CDCl₃) v2948 (s), 1722 (s), 1453 (s), 1282(s), 1159 (s), 1028 (m), 812 (w), 715 (m) cm⁻¹.

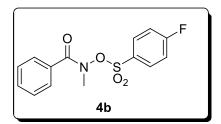
HRMS (ESI MS) calcd for $C_{15}H_{16}NO_4$ [M+H⁺]: 306.0795, found: 306.0801.

According to GP-1, N-hydroxy-N-methylbenzamide (2.0 mmol, 0.30 g), Et₃N (3.0 mmol, 0.42 mL), 4-methoxybenzenesulfonyl chloride (2.2 mmol, 0.45 g) in DCM (20 mL) afforded 4a as a white solid after purification on silica gel (isohexanes: EtOAc = 7:1). Reaction time: 12 h.

N-(((4-methoxyphenyl)sulfonyl)oxy)-*N*-methylbenzamide

Yield: 534 mg (1.7 mmol, 83%).

Physical State: white solid.


R_f Value: 0.25 (isohexane/EtOAc -5/1).

¹**H NMR** (300 MHz, CDCl₃) δ 7.64 – 7.55 (m, 2H), 7.42 – 7.20 (m, 5H), 6.81 – 6.73 (m, 2H), 6.82 – 6.72 (m, 2H), 3.80 (s, 3H), 3.52 (s, 3H).

¹³C NMR (75 MHz, CDCl₃) δ 171.17, 164.71, 132.66, 131.58, 131.38, 128.56, 128.19, 124.30, 114.47, 55.87, 40.42.

IR (ATR in CDCl₃) v3063 (m), 2948 (w), 1703 (s), 1595 (s), 1498 (m), 1379 (m), 1192 (s), 1025 (m), 894 (m), 808 (w), 715 (m) cm⁻¹.

HRMS (ESI MS) calcd for $C_{15}H_{16}NO_5S$ [M+H⁺]: 322.0744, found: 322.0751.

According to GP-1, N-hydroxy-N-methylbenzamide (2.0 mmol, 0.30 g), Et₃N (3.0 mmol, 0.42 mL), 4-fluorobenzenesulfonyl chloride (2.2 mmol, 0.43 g) in DCM (20 mL) afforded 4b as a white solid after purification on silica gel (isohexanes: EtOAc = 7:1). Reaction time: 12 h.

N-(((4-fluorophenyl)sulfonyl)oxy)-*N*-methylbenzamide

Yield: 420 mg (1.4 mmol, 70%).

Physical State: white solid.

R_f Value: 0.25 (isohexane/EtOAc -5/1).

¹**H NMR** (300 MHz, CDCl₃) δ 7.78 – 7.70 (m, 2H), 7.45 – 7.40 (m, 1H), 7.36 – 7.28 (m, 4H), 7.07 – 6.98 (m, 2H), 3.57 (s, 3H).

¹³C NMR (75 MHz, CDCl₃) δ 171.24, 166.49 (d, *J* = 258.7 Hz), 132.35, 132.30, 132.16, 131.68, 128.49, 128.38, 128.06, 116.63 (d, *J* = 22.9 Hz), 40.89.

 19 **F**{ 1 **H**} **NMR** (282 MHz, CDCl₃) δ -100.80.

IR (ATR in CDCl₃) v3075 (m), 2981 (w), 1699 (s), 1591 (s), 1386 (m), 1192 (s), 1021 (m), 838 (w), 711 (m) cm⁻¹.

HRMS (ESI MS) calcd for $C_{14}H_{13}FNO_4S$ [M+H⁺]: 310.0549, found: 310.0548.

$$\begin{array}{c|c}
 & CF_3 \\
 & O_2 \\
 & 4c
\end{array}$$

According to GP-1, N-hydroxy-N-methylbenzamide (2.0 mmol, 0.30 g), Et₃N (3.0 mmol, 0.42 mL), 4-trifluoromethylbenzenesulfonyl chloride (2.2 mmol, 0.54 g) in DCM (20 mL) afforded 4c as a white solid after purification on silica gel (isohexanes: EtOAc = 7:1). Reaction time: 12 h.

N-methyl-*N*-(((4-(trifluoromethyl)phenyl)sulfonyl)oxy)benzamide

Yield: 580 mg (1.6 mmol, 80%).

Physical State: white solid.

 R_f Value: 0.25 (isohexane/EtOAc – 5/1).

¹**H NMR** (300 MHz, CDCl₃) δ 7.83 (d, J = 8.0 Hz, 2H), 7.60 (d, J = 8.1 Hz, 2H), 7.45 – 7.23 (m, 5H), 3.60 (s, 3H).

¹³C NMR (75 MHz, CDCl₃) δ 171.18, 136.98, 136.20 (q, J = 33.3 Hz), 132.10, 131.70, 129.76, 128.42, 128.40, 126.22 (q, J = 3.7 Hz), 122.94 (q, J = 271.5 Hz), 40.90.

¹⁹**F**{¹**H**} **NMR** (282 MHz, CDCl₃) δ -63.49.

IR (ATR in CDCl₃) v3071 (s), 1707 (s), 1431 (w), 1334 (s), 1174 (s), 1133 (s), 1066 (m), 842 (w), 719 (m) cm⁻¹.

HRMS (ESI MS) calcd for $C_{15}H_{13}F_3NO_4S$ [M+H⁺]: 360.0517, found: 360.0519.

3.2. General procedure (GP-2) for preparation of 5a-5d

Step 1: NaHCO₃ (4.2 g, 50 mmol, 2.5 equiv) was added to a solution of MeNHOH·HCl (1.8 g, 22 mmol, 1.1 equiv) in DCM (140 mL) at room temperature. Then the mixture was cooled to 0 °C and a solution of corresponding acyl chloride or anhydride (20 mmol, 1.0 equiv) in DCM (70 mL) was added. The resulting reaction mixture was stirred overnight at room temperature and filtered off the insoluble precipitate. The filtrate was washed with water 3 times, then the organic layers were dried (Na₂SO₄) and evaporated *in vacuo* to afford the crude compound as a light yellow oil, which was used without further purification.¹

Step 2: TsCl (1.05 g, 5.5 mmol, 1.1 equiv) and Et₃N (0.76 g, 7.5 mmol, 1.5 equiv) were added to a solution of N-hydroxy-N-protected amide (5 mmol, 1 equiv) in DCM (50 mL) at 0 °C. The resulting reaction mixture was stirred at room temperature overnight. The solvent was removed *in vacuo* and the crude mixture was purified by flash column chromatography on silica gel isohexane/EtOAc (v/v=7:1) to obtain the product.²

N-hydroxy-N-methyl-(4-methoxyl)benzamide was obtained according to modified procedure (GP-2, step 1). According to GP-2, N-hydroxy-N-methyl-(4-methoxyl)benzamide (5 mmol, 0.91 g), Et₃N (7.5 mmol, 1.05 mL), TsCl (5.5 mmol, 1.05 g) in DCM (50 mL) afforded 5a as a white solid after purification on silica gel (isohexanes: EtOAc = 7:1). Reaction time: 12 h.

4-methoxy-N-methyl-N-(tosyloxy)benzamide

Yield: 1.44 g (3.95 mmol, 79%).

Physical State: white solid.

R_f Value: 0.25 (isohexane/EtOAc -5/1).

¹**H NMR** (300 MHz, CDCl₃) δ 7.62 (d, J = 8.2 Hz, 2H), 7.33 (d, J = 8.7 Hz, 2H), 7.14 (d, J = 8.1 Hz, 2H), 6.75 (d, J = 8.7 Hz, 2H), 3.79 (s, 3H), 3.46 (s, 3H), 2.34 (s, 3H).

¹³C NMR (75 MHz, CDCl₃) δ 171.02, 162.21, 146.04, 130.67, 130.38, 129.64, 129.10, 124.28, 113.37, 55.42, 40.99, 21.72.

IR (ATR in CDCl₃) v3015 (s), 2952 (s), 2840 (m), 1710 (s), 1602 (s), 1513 (m), 1435 (s), 1252 (s), 1167 (s), 1103 (s), 1028 (w), 846 (m), 767 (m) cm⁻¹.

HRMS (ESI MS) calcd for $C_{16}H_{18}NO_5S$ [M+H⁺]: 366.0906, found: 366.0910.

N-hydroxy-N-methyl-(4-fluoro)benzamide was obtained according to modified procedure (GP-2, step 1). According to GP-2, N-hydroxy-N-(4-fluoro)benzamide (5 mmol, 0.85 g), Et₃N (7.5 mmol, 1.05 mL), TsCl (5.5 mmol, 1.05 g) in DCM (50 mL) afforded 5b as a white solid after purification on silica gel (isohexanes: EtOAc = 7:1). Reaction time: 12 h.

4-fluoro-N-methyl-N-(tosyloxy)benzamide

Yield: 1.16 g (3.60 mmol, 72%).

Physical State: white solid.

 R_f Value: 0.25 (isohexane/EtOAc – 5/1).

¹**H NMR** (300 MHz, CDCl₃) δ 7.60 – 7.52 (m, 2H), 7.40 – 7.32 (m, 2H), 7.16 (d, J = 8.1 Hz, 2H), 6.99 – 6.89 (m, 2H), 3.54 (s, 3H), 2.39 (s, 3H).

¹³C NMR (75 MHz, CDCl₃) δ 170.05, 164.40 (d, J = 252.8 Hz), 146.42, 131.10 (d, J = 8.9 Hz), 130.25, 129.84, 129.21, 128.60 (d, J = 3.4 Hz), 115.20 (d, J = 21.9 Hz), 40.21, 21.85.

¹⁹**F**{¹**H**} **NMR** (282 MHz, CDCl₃) δ -107.92.

IR (ATR in CDCl₃) *v*3172 (s), 3063 (s), 1722 (s), 1602 (m), 1453 (m), 1282 (s), 1155 (s), 1036 (m), 812 (w), 685 (m) cm⁻¹.

HRMS (ESI MS) calcd for C₁₅H₁₅FNO₄S [M+H⁺]: 324.0706, found: 324.0708.

N-hydroxy-*N*-methyl-(4-trifluoromethyl)benzamide was obtained according to modified procedure (GP-2, step 1). According to GP-2, *N*-hydroxy-*N*-methyl-(4-trifluoromethyl)benzamide (5 mmol, 1.10 g), Et₃N (7.5 mmol, 1.05 mL), TsCl (5.5 mmol, 1.05

g) in DCM (50 mL) afforded 5c as a white solid after purification on silica gel (isohexanes: EtOAc = 7:1). Reaction time: 12 h.

N-methyl-N-(tosyloxy)-4-(trifluoromethyl)benzamide

Yield: 1.44 g (3.8 mmol, 76%).

Physical State: white solid.

 R_f Value: 0.25 (isohexane/EtOAc – 5/1).

¹**H NMR** (300 MHz, CDCl₃) δ 7.46 (t, J = 7.9 Hz, 4H), 7.39 (d, J = 8.2 Hz, 2H), 7.09 (d, J = 8.1 Hz, 2H), 3.59 (s, 3H), 2.37 (s, 3H).

¹³C NMR (75 MHz, CDCl₃) δ 169.50, 146.60, 135.97, 132.62 (q, J = 32.8 Hz), 129.97, 129.92, 129.07, 128.88, 124.85 (q, J = 3.8 Hz), 123.60 (q, J = 270.7 Hz), 39.55, 21.74.

¹⁹**F**{¹**H**} **NMR** (282 MHz, CDCl₃) δ -63.15.

IR (ATR in CDCl₃) v3168 (s), 3063 (s), 1725 (s), 1453 (s), 1326 (m), 1155 (s), 1036 (w), 1010 (w), 812 (s), 689 (m) cm⁻¹.

HRMS (ESI MS) calcd for $C_{16}H_{15}F_3NO_4S$ [M+H⁺]: 374.0668, found: 374.0666.

N-hydroxy-*N*-methyl-Cbz-amide was obtained according to modified procedure (GP-2, step 1). According to GP-2, *N*-hydroxy-*N*-Cbz amide (5 mmol, 0.90 g), Et₃N (7.5 mmol, 1.05 mL), TsCl (5.5 mmol, 1.05 g) in DCM (50 mL) afforded 5d as a white solid after purification on silica gel (isohexanes: EtOAc = 7:1). Reaction time: 12 h.

benzyl methyl(tosyloxy)carbamate

Yield: 1.42 g (4.25 mmol, 85%).

Physical State: white solid.

R_f Value: 0.25 (isohexane/EtOAc -5/1).

¹**H NMR** (300 MHz, CDCl₃) δ 7.77 (d, J = 8.4 Hz, 2H), 7.33 (dd, J = 4.9, 1.8 Hz, 3H), 7.17 (d, J = 8.6 Hz, 4H), 4.90 (s, 2H), 3.30 (s, 3H), 2.39 (s, 3H).

¹³C NMR (75 MHz, CDCl₃) δ 157.37, 145.89, 134.91, 130.89, 129.65, 128.63, 128.59, 128.31, 68.93, 40.48, 21.94.

IR (ATR in CDCl₃) *v*3000 (s), 2952 (s), 2855 (s), 1729(s), 1457 (w), 1379 (s), 1308 (m), 1177 (s), 816 (s), 752 (m) cm⁻¹.

HRMS (ESI MS) calcd for $C_{16}H_{18}NO_5S$ [M+H⁺]: 366.0906, found: 366.0908.

3.3. General procedure (GP-3) for preparation of 3a-3r, 6a-6d

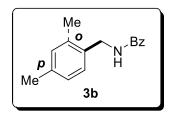
A mixture of **1** (0.2 mmol), *N*-protected-*N*-methyl-hydroxylamine **2** (0.3 mmol), Ru(PPh₃)₃Cl₂ (5 mol%), and 1 mL DCE in a 15 mL sealed glass vial was heated at 100 °C under air with vigorous stirring for 18 hours. The reaction mixture was cooled to room temperature, and diluted with ethyl acetate and filtered through celite. The filtrate was concentrated *in vacuo* and purified by column chromatography on silica gel (isohexane/EA = 10/1 to 5/1) to give the corresponding product.

According to GP-3, mesitylene (0.2 mmol, 24.0 mg), N-methyl-N-(tosyloxy)benzamide (0.3 mmol, 91.5 mg) and Ru(PPh₃)₃Cl₂ (5 mol%, 9.6 mg) in DCE (1 mL) afforded 3a after purification on silica gel (isohexane/EA = 10/1 to 5/1). Reaction time: 18 h.

N-(2,4,6-trimethylbenzyl)benzamide

Yield: 36 mg (0.14 mmol, 72%).

Physical State: white solid.


R_f Value: 0.27 (isohexane/EtOAc -5/1).

¹**H NMR** (300 MHz, CDCl₃) δ 7.76 – 7.69 (m, 2H), 7.52 – 7.44 (m, 1H), 7.44 – 7.36 (m, 2H), 6.91 (s, 2H), 5.88 (s, 1H), 4.63 (d, J = 4.5 Hz, 2H), 2.37 (s, 6H), 2.28 (d, J = 6.6 Hz, 3H).

¹³C NMR (75 MHz, CDCl₃) δ 167.52, 137.89, 137.75, 134.50, 131.61, 130.93, 129.41, 128.71, 127.04, 38.89, 21.08, 19.81.

IR (ATR in CDCl₃) *v*3280 (s), 2955 (s), 2918 (m), 1628 (s), 1535 (s), 1453 (w), 1036 (m), 746 (m), 689 (s) cm⁻¹.

HRMS (ESI MS) calcd for $C_{17}H_{20}NO$ [M+H⁺]: 154.1545, found: 154.1543.

According to GP-3, N-methyl-N-(tosyloxy)benzamide (0.2 mmol, 61.0 mg) and Ru(PPh₃)₃Cl₂ (5 mol%, 9.6 mg) in toluene (1 mL) afforded 3b as a white solid after purification on silica gel (isohexane/EA = 10/1 to 5/1). Reaction time: 18 h.

N-(4-methylbenzyl)benzamide and *N*-(2-methylbenzyl)benzamide

Yield: 29 mg (0.13 mmol, 65%).

Physical State: white solid.

 R_f Value: 0.18 (isohexane/EtOAc – 5/1).

¹**H NMR** (300 MHz, CDCl₃) δ 7.81 – 7.74 (m, 2H), 7.54 – 7.47 (m, 1H), 7.46 – 7.39 (m, 2H), 7.27 – 7.15 (m, 4H), 6.32 (s, 0.76H), 6.19 (s, 0.27H), 4.65 (d, J = 5.3 Hz, 0.5H), 4.61 (d, J = 5.6 Hz, 1.5H), 2.38 (s, 0.72H), 2.35 (s, 2.28H).

¹³C NMR (75 MHz, CDCl₃) δ 167.41, 167.34, 137.50, 136.78, 135.89, 135.27, 134.60, 134.51, 131.67, 131.63, 130.79, 129.59, 128.88, 128.74, 128.70, 128.09, 127.07, 126.43, 44.06, 42.50, 21.24, 19.20.

IR (ATR in CDCl₃) v3309 (s), 2922 (s), 1640 (s), 1535 (m), 1297 (w), 1028 (w), 805 (w), 745 (m), 693 (s) cm⁻¹.

HRMS (ESI MS) calcd for C₁₅H₁₆NO [M+H⁺]: 226.1232, found: 226.1230.

According to GP-3, anisole (0.2 mmol, 21.6 mg), N-methyl-N-(tosyloxy)benzamide (0.3 mmol, 91.5 mg) and Ru(PPh₃)₃Cl₂ (5 mol%, 9.6 mg) in DCE (1 mL) afforded p-3c and o-3c as a white solid after purification on silica gel (isohexane/EA = 10/1 to 5/1). Reaction time: 18 h.

N-(4-methoxybenzyl)benzamide

Yield: 25 mg (0.10 mmol, 51%).

Physical State: white solid.

R_f **Value:** 0.15 (isohexane/EtOAc -5/1).

¹**H NMR** (300 MHz, CDCl₃) δ 7.81 – 7.74 (m, 2H), 7.48 (dd, J = 5.0, 3.6 Hz, 1H), 7.45 – 7.38 (m, 2H), 7.31 – 7.26 (m, 2H), 6.92 – 6.86 (m, 2H), 6.36 (s, 1H), 4.58 (d, J = 5.6 Hz, 2H), 3.80 (s, 3H).

¹³C NMR (75 MHz, CDCl₃) δ 167.38, 159.28, 134.60, 131.64, 130.38, 129.46, 128.72, 127.06, 114.31, 55.46, 43.79.

IR (ATR in CDCl₃) v3309 (s), 2929 (s), 2832 (s), 1640 (s), 1535 (s), 1300 (m), 1248 (s), 1032 (m), 831 (w), 697 (s) cm⁻¹.

HRMS (ESI MS) calcd for $C_{15}H_{16}NO_2$ [M+H⁺]: 242.1176, found: 242.1181.

N-(2-methoxybenzyl)benzamide

Yield: 8 mg (0.04 mmol, 18%).

Physical State: white solid.

R_f Value: 0.20 (isohexane/EtOAc -5/1).

¹**H NMR** (300 MHz, CDCl₃) δ 7.79 – 7.74 (m, 2H), 7.50 – 7.34 (m, 4H), 7.30 (dd, J = 7.8, 1.7 Hz, 1H), 6.93 (dd, J = 14.4, 7.8 Hz, 2H), 6.64 (s, 1H), 4.65 (d, J = 5.8 Hz, 2H), 3.89 (s, 3H).

¹³C NMR (75 MHz, CDCl₃) δ 157.83, 134.98, 131.45, 130.20, 129.15, 128.66, 127.07, 126.31, 120.97, 110.54, 55.57, 40.21.

IR (ATR in CDCl₃) v3309 (s), 2929 (s), 2834 (s), 1640 (s), 1535 (s), 1330 (m), 1156 (s), 1036 (m), 868 (w), 693 (s) cm⁻¹.

HRMS (ESI MS) calcd for C₁₅H₁₅NO₂ [M+H⁺]: 242.1176, found: 242.1178.

According to GP-3, 2-chloroanisole (0.2 mmol, 28.4 mg), N-methyl-N-(tosyloxy)benzamide (0.3 mmol, 91.5 mg) and Ru(PPh₃)₃Cl₂ (5 mol%, 9.6 mg) in DCE (1 mL) afforded 3d as a white solid after purification on silica gel (isohexane/EA = 10/1 to 5/1). Reaction time: 18 h.

N-(3-chloro-4-methoxybenzyl)benzamide

Yield: 51 mg (0.18 mmol, 93%).

Physical State: white solid.

 R_f Value: 0.11 (isohexane/EtOAc – 5/1).

¹**H NMR** (300 MHz, CDCl₃) δ 7.78 (dd, J = 5.2, 3.3 Hz, 2H), 7.52 – 7.45 (m, 1H), 7.44 – 7.36 (m, 2H), 7.33 (d, J = 2.1 Hz, 1H), 7.18 (dd, J = 8.4, 2.1 Hz, 1H), 6.85 (d, J = 8.4 Hz, 1H), 6.73 (s, 1H), 4.51 (d, J = 5.8 Hz, 2H), 3.86 (s, 3H).

¹³C NMR (75 MHz, CDCl₃) δ 167.55, 154.47, 134.25, 131.72, 131.57, 129.81, 128.68, 127.47, 127.11, 122.60, 112.26, 77.58, 77.16, 76.74, 56.29, 43.14.

IR (ATR in CDCl₃) v3317 (s), 2933 (m), 2840 (w), 1640 (s), 1535 (m), 1502 (s), 1282 (s), 1066 (m), 879 (w), 805 (w), 693 (s) cm⁻¹.

HRMS (ESI MS) calcd for $C_{15}H_{15}CINO_2$ [M+H⁺]: 276.0791, found: 276.0790.

According to GP-3, 2-bromoanisole (0.2 mmol, 37.0 mg), N-methyl-N-(tosyloxy)benzamide (0.3 mmol, 91.5 mg) and Ru(PPh₃)₃Cl₂ (5 mol%, 9.6 mg) in DCE (1 mL) afforded 3e as a brown solid after purification on silica gel (isohexane/EA = 10/1 to 5/1). Reaction time: 18 h.

N-(3-bromo-4-methoxybenzyl)benzamide

Yield: 51 mg (0.16 mmol, 81%).

Physical State: brown solid.

R_f Value: 0.10 (isohexane/EtOAc -5/1).

¹**H NMR** (300 MHz, CDCl₃) δ 7.82 – 7.72 (m, 2H), 7.49 (dd, J = 7.9, 4.7 Hz, 2H), 7.44 – 7.37 (m, 2H), 7.27 – 7.19 (m, 1H), 6.82 (d, J = 8.4 Hz, 1H), 6.71 (s, 1H), 4.52 (d, J = 5.8 Hz, 2H), 3.85 (s, 3H).

¹³C NMR (75 MHz, CDCl₃) δ 167.52, 155.38, 134.25, 132.89, 132.03, 131.73, 128.69, 128.30, 127.11, 112.11, 77.58, 77.16, 76.74, 56.39, 43.05.

IR (ATR in CDCl₃) *v*3313 (s), 2937 (s), 2836 (m), 1640 (s), 1535 (s), 1494 (s), 1256 (s), 1054 (s), 1021 (s), 711 (s) cm⁻¹.

HRMS (ESI MS) calcd for $C_{15}H_{15}BrNO_2$ [M+H⁺]: 320.0281, found: 320.0277.

According to GP-3, 2-iodoanisole (0.2 mmol, 46.8 mg), N-methyl-N-(tosyloxy)benzamide (0.3 mmol, 91.5 mg) and Ru(PPh₃)₃Cl₂ (5 mol%, 9.6 mg) in DCE (1 mL) afforded 3f as a yellow oil after purification on silica gel (isohexane/EA = 10/1 to 5/1). Reaction time: 18 h.

N-(3-iodo-4-methoxybenzyl)benzamide

Yield: 41 mg (0.11 mmol, 56%).

Physical State: yellow oil.

R_f Value: 0.10 (isohexane/EtOAc -5/1).

¹**H NMR** (300 MHz, CDCl₃) δ 7.81 – 7.72 (m, 3H), 7.48 (d, J = 7.2 Hz, 1H), 7.44 – 7.38 (m, 2H), 7.30 (dd, J = 8.4, 2.1 Hz, 1H), 6.76 (d, J = 8.4 Hz, 1H), 6.60 (d, J = 19.1 Hz, 1H), 4.52 (d, J = 5.7 Hz, 2H), 3.85 (s, 3H).

¹³C NMR (75 MHz, CDCl₃) δ 167.48, 157.71, 139.03, 134.29, 132.57, 131.73, 129.47, 128.71, 127.11, 111.06, 86.20, 56.55, 42.92.

IR (ATR in CDCl₃) *v*3309 (s), 2937 (m), 2836 (w), 1636 (s), 1535 (m), 1487 (s), 1278 (s), 1047 (m), 883 (w), 805 (w), 708 (s) cm⁻¹.

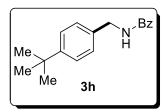
HRMS (ESI MS) calcd for C₁₅H₁₅INO₂ [M+H⁺]: 368.0142, found: 368.0143.

According to GP-3, ethylbenzene (0.2 mmol, 21.2 mg), N-methyl-N-(tosyloxy)benzamide (0.3 mmol, 91.5 mg) and Ru(PPh₃)₃Cl₂ (5 mol%, 9.6 mg) in DCE (1 mL) afforded 3g as a white solid after purification on silica gel (isohexane/EA = 10/1 to 5/1). Reaction time: 18 h.

N-(4-ethylbenzyl)benzamide

Yield: 27 mg (0.11 mmol, 58%).

Physical State: white solid.


R_f Value: 0.20 (isohexane/EtOAc -5/1).

¹**H NMR** (300 MHz, CDCl₃) δ 7.82 – 7.72 (m, 2H), 7.52 – 7.47 (m, 1H), 7.47 – 7.38 (m, 2H), 7.28 (d, J = 8.1 Hz, 2H), 7.19 (d, J = 8.2 Hz, 2H), 6.35 (s, 1H), 4.62 (d, J = 5.5 Hz, 2H), 2.65 (q, J = 7.6 Hz, 2H), 1.24 (t, J = 7.6 Hz, 3H).

¹³C NMR (75 MHz, CDCl₃) δ 167.41, 143.96, 135.49, 134.62, 131.64, 128.73, 128.45, 128.20, 127.07, 44.12, 28.69, 15.77.

IR (ATR in CDCl₃) v3308 (s), 2959 (s), 2199 (m), 1640 (s), 1539 (m), 1248 (w), 730 (m), 700 (w) cm⁻¹.

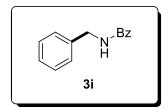
HRMS (ESI MS) calcd for $C_{16}H_{18}NO$ [M+H⁺]: 240.1388, found: 240.1389.

According to GP-3, *tert*-butylbenzene (0.2 mmol, 26.8 mg), N-methyl-N-(tosyloxy)benzamide (0.3 mmol, 91.5 mg) and Ru(PPh₃)₃Cl₂ (5 mol%, 9.6 mg) in DCE (1 mL) afforded 3h as a white solid after purification on silica gel (isohexane/EA = 10/1 to 5/1). Reaction time: 18 h.

N-(4-(tert-butyl)benzyl)benzamide

Yield: 39 mg (0.15 mmol, 74%).

Physical State: white solid.


R_f Value: 0.21 (isohexane/EtOAc -5/1).

¹**H NMR** (300 MHz, CDCl₃) δ 7.83 – 7.74 (m, 2H), 7.48 (dd, J = 5.0, 3.6 Hz, 1H), 7.46 – 7.35 (m, 4H), 7.30 (d, J = 8.4 Hz, 2H), 6.36 (s, 1H), 4.62 (d, J = 5.5 Hz, 2H), 1.32 (s, 9H).

¹³C NMR (75 MHz, CDCl₃) δ 167.42, 150.86, 135.24, 134.61, 131.64, 128.72, 127.94, 127.08, 125.88, 44.02, 34.69, 31.47.

IR (ATR in CDCl₃) *v*3304 (s), 2939 (s), 1641 (s), 1439 (m), 1118 (w), 1069 (w), 737 (m), 716 (w) cm⁻¹.

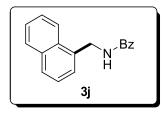
HRMS (ESI MS) calcd for $C_{18}H_{22}NO$ [M+H⁺]: 268.1701, found: 268.1703.

According to GP-3, N-methyl-N-(tosyloxy)benzamide (0.2 mmol, 61.0 mg) and Ru(PPh₃)₃Cl₂ (5 mol%, 9.6 mg) in benzene (1 mL) afforded 3i as a white solid after purification on silica gel (isohexane/EA = 10/1 to 5/1). Reaction time: 18 h.

N-benzylbenzamide

Yield: 20 mg (0.08 mmol, 43%).

Physical State: white solid.


 R_f Value: 0.18 (isohexane/EtOAc – 5/1).

¹**H NMR** (300 MHz, CDCl₃) δ 7.83 – 7.76 (m, 2H), 7.53 – 7.47 (m, 1H), 7.46 – 7.40 (m, 2H), 7.40 – 7.28 (m, 5H), 6.38 (s, 1H), 4.66 (d, J = 5.7 Hz, 2H).

¹³C NMR (75 MHz, CDCl₃) δ 167.47, 138.30, 134.55, 131.72, 128.97, 128.77, 128.10, 127.82, 127.09, 44.33.

IR (ATR in CDCl₃) v3302 (s), 2967 (s), 1640 (s), 1539 (m), 1457 (w), 1300 (m), 712 (s), 700 (m) cm⁻¹.

HRMS (ESI MS) calcd for C₁₄H₁₄NO [M+H⁺]: 212.1075, found: 212.1076.

According to GP-3, naphthalene (0.2 mmol, 25.6 mg), N-methyl-N-(tosyloxy)benzamide (0.3 mmol, 91.5 mg) and Ru(PPh₃)₃Cl₂ (5 mol%, 9.6 mg) in DCE (1 mL) afforded 3j as a white solid after purification on silica gel (isohexane/EA = 10/1 to 5/1). Reaction time: 18 h.

N-(naphthalen-1-ylmethyl)benzamide

Yield: 20 mg (0.08 mmol, 39%).

Physical State: white solid.

 R_f Value: 0.1 (isohexane/EtOAc – 5/1).

¹**H NMR** (300 MHz, CDCl₃) δ 8.13 – 8.04 (m, 1H), 7.92 – 7.82 (m, 2H), 7.75 (dd, J = 5.3, 3.3 Hz, 2H), 7.58 – 7.45 (m, 5H), 7.43 – 7.37 (m, 2H), 6.34 (s, 1H), 5.10 (d, J = 5.2 Hz, 2H).

¹³C NMR (75 MHz, CDCl₃) δ 167.29, 134.45, 134.09, 133.51, 131.70, 131.65, 128.97, 128.78, 128.73, 127.15, 127.10, 126.94, 126.23, 125.58, 123.67, 42.59.

IR (ATR in CDCl₃) v3321 (s), 3063 (s) 2926 (m), 1640 (s), 1535 (s), 1293 (s), 1148 (w), 1028 (m), 805 (w), 745 (s) cm⁻¹.

HRMS (ESI MS) calcd for $C_{18}H_{16}NO_2$ [M+H⁺]: 262.1232, found: 262.1233.

According to GP-3, dibenzofuran (0.2 mmol, 33.6 mg), N-methyl-N-(tosyloxy)benzamide (0.3 mmol, 91.5 mg) and Ru(PPh₃)₃Cl₂ (5 mol%, 9.6 mg) in DCE (1 mL) afforded 3k as a white solid after purification on silica gel (isohexane/EA = 10/1 to 5/1). Reaction time: 18 h.

N-(dibenzo[b,d]furan-2-ylmethyl)benzamide

Yield: 35 mg (0.11 mmol, 58%).

Physical State: white solid.

R_f Value: 0.15 (isohexane/EtOAc -5/1).

¹**H NMR** (300 MHz, CDCl₃) δ 7.93 (d, J = 7.6 Hz, 2H), 7.85 – 7.80 (m, 2H), 7.58 – 7.42 (m, 7H), 7.34 (td, J = 7.6, 1.0 Hz, 1H), 6.57 (s, 1H), 4.79 (d, J = 5.7 Hz, 2H).

¹³C NMR (75 MHz, CDCl₃) δ 167.50, 156.72, 155.79, 134.47, 132.93, 131.76, 128.77, 127.52, 127.35, 127.13, 122.95, 120.90, 120.42, 111.98, 111.87, 44.36.

IR (ATR in CDCl₃) *v*3324 (s), 3060 (m), 2926 (m), 1640 (s), 1449 (s), 1535 (s), 1483 (s), 1304 (m), 1196 (s), 1025 (m), 909 (m), 842 (m), 749 (s), 711 (w) cm⁻¹.

HRMS (ESI MS) calcd for $C_{20}H_{16}NO_2$ [M+H⁺]: 302.1181, found: 302.1178.

According to GP-3, benzofuran (0.2 mmol, 23.6 mg), N-methyl-N-(tosyloxy)benzamide (0.3 mmol, 91.5 mg) and Ru(PPh₃)₃Cl₂ (5 mol%, 9.6 mg) in DCE (1 mL) afforded 3l as a white solid after purification on silica gel (isohexane/EA = 10/1 to 5/1). Reaction time: 18 h.

N-(benzofuran-2-ylmethyl)benzamide

Yield: 26 mg (0.10 mmol, 52%).

Physical State: white solid.

R_f Value: 0.17 (isohexane/EtOAc -5/1).

¹**H NMR** (300 MHz, CDCl₃) δ 7.85 – 7.76 (m, 2H), 7.56 – 7.48 (m, 2H), 7.47 – 7.41 (m, 3H), 7.30 – 7.18 (m, 2H), 6.69 (s, 1H), 6.56 (s, 1H), 4.80 (d, J = 5.1 Hz, 2H).

¹³C NMR (75 MHz, CDCl₃) δ 167.43, 155.11, 153.99, 134.17, 131.91, 128.80, 128.37, 127.17, 124.42, 123.06, 121.19, 111.26, 104.60, 37.62.

IR (ATR in CDCl₃) v3321 (s), 1640 (s), 1535 (s), 1487 (s), 1297 (m), 1177 (m), 939 (m), 808 (s), 697 (w) cm⁻¹.

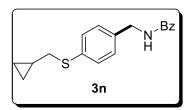
HRMS (ESI MS) calcd for $C_{16}H_{14}NO_2$ [M+H⁺]: 252.1019, found: 252.1025.

According to GP-3, benzothiophene (0.2 mmol, 26.8 mg), N-methyl-N-(tosyloxy)benzamide (0.3 mmol, 91.5 mg) and Ru(PPh₃)₃Cl₂ (5 mol%, 9.6 mg) in DCE (1 mL) afforded 3m as a yellow solid after purification on silica gel (isohexane/EA = 10/1 to 5/1). Reaction time: 18 h.

N-(benzothiophen-2-ylmethyl)benzamide

Yield: 28 mg (0.11 mmol, 53%).

Physical State: yellow solid.


R_f **Value:** 0.17 (isohexane/EtOAc -5/1).

¹**H NMR** (300 MHz, CDCl₃) δ 7.93 – 7.83 (m, 2H), 7.80 – 7.72 (m, 2H), 7.48 (dd, J = 4.9, 3.6 Hz, 1H), 7.45 – 7.35 (m, 5H), 6.36 (s, 1H), 4.91 (d, J = 5.4 Hz, 2H).

¹³C NMR (75 MHz, CDCl₃) δ 167.50, 140.84, 137.93, 134.37, 132.82, 131.79, 128.77, 127.09, 124.92, 124.87, 124.65, 123.13, 121.95, 38.21.

IR (ATR in CDCl₃) v3309 (s), 3060 (m), 2926 (m), 1640 (s), 1535 (s), 1293 (s), 1159 (w), 760 (w), 693 (s) cm⁻¹.

HRMS (ESI MS) calcd for C₁₆H₁₄NOS [M+H⁺]: 268.0796, found: 268.0794.

According to GP-3, cyclopropylmethyl phenyl sulfide (0.2 mmol, 32.8 mg), N-methyl-N-(tosyloxy)benzamide (0.3 mmol, 91.5 mg) and Ru(PPh₃)₃Cl₂ (5 mol%, 9.6 mg) in DCE (1 mL) afforded 3n as a yellow oil after purification on silica gel (isohexane/EA = 10/1 to 5/1). Reaction time: 18 h.

N-(4-((cyclopropylmethyl)thio)benzyl)benzamide

Yield: 39 mg (0.14 mmol, 69%).

Physical State: yellow oil.

 $\mathbf{R_f Value:} \ 0.16 \ (isohexane/EtOAc - 5/1).$

¹**H NMR** (300 MHz, CDCl₃) δ 7.83 – 7.76 (m, 2H), 7.51 – 7.41 (m, 3H), 7.36 – 7.26 (m, 4H), 6.41 (s, 1H), 4.61 (d, J = 5.7 Hz, 2H), 2.85 (d, J = 7.0 Hz, 2H), 1.12 – 0.98 (m, 1H), 0.67 – 0.45 (m, 2H), 0.34 – 0.17 (m, 2H).

¹³C NMR (75 MHz, CDCl₃) δ 167.46, 136.67, 136.01, 134.47, 131.74, 129.77, 128.76, 128.56, 127.08, 43.83, 39.78, 10.77, 5.77.

IR (ATR in CDCl₃) *v*3309 (s), 3071 (m), 3004 (m), 2914 (m), 1640 (s), 1535 (s), 1289 (s), 1092 (m), 1017 (m), 827 (w), 793 (m), 693 (s) cm⁻¹.

HRMS (ESI MS) calcd for $C_{18}H_{20}NOS$ [M+H⁺]: 298.1266, found: 298.1267.

According to GP-3, 2-bromothiophene (0.2 mmol, 32.6 mg), N-methyl-N-(tosyloxy)benzamide (0.3 mmol, 91.5 mg) and Ru(PPh₃)₃Cl₂ (5 mol%, 9.6 mg) in DCE (1 mL) afforded 30 as a yellow solid after purification on silica gel (isohexane/EA = 10/1 to 5/1). Reaction time: 18 h.

N-((5-bromothiophen-2-yl)methyl)benzamide

Yield: 39 mg (0.13 mmol, 67%).

Physical State: yellow solid.

 R_f Value: 0.16 (isohexane/EtOAc – 5/1).

¹**H NMR** (300 MHz, CDCl₃) δ 7.81 – 7.72 (m, 2H), 7.54 – 7.47 (m, 1H), 7.47 – 7.40 (m, 2H), 6.90 (d, J = 3.7 Hz, 1H), 6.79 (d, J = 3.7 Hz, 1H), 6.51 (s, 1H), 4.72 (d, J = 6.4 Hz, 2H).

¹³C NMR (75 MHz, CDCl₃) δ 167.38, 142.78, 134.02, 131.95, 129.69, 128.80, 127.13, 126.68, 112.07, 39.17.

IR (ATR in CDCl₃) v3328(s), 2922 (s), 2855 (m), 1641 (s), 1420 (m), 1222 (s), 1140 (m), 972 (m), 735 (w), 397 (m) cm⁻¹.

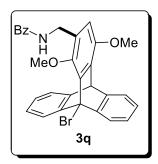
HRMS (ESI MS) calcd for $C_{12}H_{11}BrNOS$ [M+H⁺]: 295.9739, found: 295.9737.

According to GP-3, phenanthrene (0.2 mmol, 35.6 mg), N-methyl-N-(tosyloxy)benzamide (0.3 mmol, 91.5 mg) and Ru(PPh₃)₃Cl₂ (5 mol%, 9.6 mg) in DCE (1 mL) afforded 3p as a white solid after purification on silica gel (isohexane/EA = 10/1 to 5/1). Reaction time: 18 h.

N-(phenanthren-9-ylmethyl)benzamide

Yield: 40 mg (0.13 mmol, 64%).

Physical State: white solid.


 R_f Value: 0.11 (isohexane/EtOAc – 5/1).

¹**H NMR** (300 MHz, CDCl₃) δ 8.80 – 8.65 (m, 2H), 8.18 – 8.09 (m, 1H), 7.91 – 7.83 (m, 1H), 7.81 – 7.73 (m, 3H), 7.71 – 7.58 (m, 4H), 7.53 – 7.44 (m, 1H), 7.44 – 7.36 (m, 2H), 6.41 (s, 1H), 5.14 (d, J = 5.3 Hz, 2H).

¹³C NMR (75 MHz, CDCl₃) δ 167.36, 134.43, 131.82, 131.73, 131.44, 131.04, 130.64, 130.42, 128.75, 128.68, 128.02, 127.39, 127.18, 127.12, 127.07, 126.94, 124.38, 123.47, 122.71, 43.03.

IR (ATR in CDCl₃) v3313 (s), 3056 (s) 2922 (m), 1640 (s), 1535 (s), 1487 (m), 1297 (s), 1177 (w), 1073 (m), 790 (w), 693 (s) cm⁻¹.

HRMS (ESI MS) calcd for C₂₂H₁₈NO₂ [M+H⁺]: 312.1383, found: 312.1385.

According to GP-3, triptycene (0.1 mmol, 39.2 mg), N-methyl-N-(tosyloxy)benzamide (0.15 mmol, 45.8 mg) and Ru(PPh₃)₃Cl₂ (5 mol%, 4.8 mg) in DCE (0.5 mL) afforded 3q as a white solid after purification on silica gel (isohexane/EA = 10/1 to 5/1). Reaction time: 18 h.

N-(((9r,10r)-9-bromo-1,4-dimethoxy-9,10-dihydro-9,10-[1,2]benzenoanthracen-2-yl)methyl)benzamide

Yield: 35 mg (0.07 mmol, 66%).

Physical State: white solid.

R_f **Value:** 0.31 (DCM/MeOH - 10/1).

¹**H NMR** (600 MHz, CDCl₃) δ 7.98 – 7.94 (m, 2H), 7.74 – 7.69 (m, 2H), 7.49 – 7.44 (m, 1H), 7.39 (ddd, J = 13.8, 7.2, 1.4 Hz, 4H), 7.13 – 7.05 (m, 4H), 6.72 (s, 1H), 6.56 (t, J = 5.2 Hz, 1H), 5.92 (s, 1H), 4.60 (d, J = 5.6 Hz, 2H), 3.82 (s, 3H), 3.77 (s, 3H).

¹³C NMR (151 MHz, CDCl₃) δ 167.45, 150.03, 148.65, 145.16, 143.58, 137.03, 134.57, 134.45, 131.59, 130.67, 128.65, 127.10, 126.48, 125.50, 125.02, 123.33, 111.70, 65.93, 63.97, 56.27, 46.43, 39.81.

IR (ATR in CDCl₃) *v*3309 (s), 3063 (m), 2937 (m), 2832 (w), 1640 (s), 1528 (m), 1468 (s), 1293 (m), 1226 (m), 1043 (m), 909 (m), 730 (s) cm⁻¹.

HRMS (ESI MS) calcd for C₃₀H₂₅BrNO₃ [M+H⁺]: 526.1012, found: 526.1014.

According to GP-3, mesitylene (0.2 mmol, 24.0 mg), 4-methoxy-N-methyl-N-(tosyloxy)benzamide (0.3 mmol, 100.5 mg) and Ru(PPh₃)₃Cl₂ (5 mol%, 9.6 mg) in DCE (1 mL) afforded 6a as a white solid after purification on silica gel (isohexane/EA = 10/1 to 5/1). Reaction time: 18 h.

4-methoxy-*N*-(2,4,6-trimethylbenzyl)benzamide

Yield: 50 mg (0.18 mmol, 91%).

Physical State: white solid.

 R_f Value: 0.24 (isohexane/EtOAc – 5/1).

¹**H NMR** (300 MHz, CDCl₃) δ 7.78 – 7.69 (m, 2H), 7.12 – 7.03 (m, 2H), 6.91 (s, 2H), 5.82 (s, 1H), 4.62 (d, J = 4.5 Hz, 2H), 2.37 (s, 6H), 2.29 (s, 3H).

¹³C NMR (75 MHz, CDCl₃) δ 167.01, 162.29, 137.80, 137.76, 131.10, 129.37, 128.82, 126.76, 113.85, 55.53, 38.81, 21.06, 19.80.

IR (ATR in CDCl₃) v3309 (s), 2948 (w), 1621 (s), 1528 (w), 1505 (m), 1312 (w), 1263 (s), 1028 (w), 835 (m), 717 (m) cm⁻¹.

HRMS (ESI MS) calcd for C₁₈H₂₂NO₂ [M+H⁺]: 284.1651, found: 284.1670.

According to GP-3, mesitylene (0.2 mmol, 24.0 mg), 4-fluoro-N-methyl-N-(tosyloxy)benzamide (0.3 mmol, 96.9 mg) and Ru(PPh₃)₃Cl₂ (5 mol%, 9.6 mg) in DCE (1 mL) afforded 6b as a white solid after purification on silica gel (isohexane/EA = 10/1 to 5/1). Reaction time: 18 h.

4-fluoro-N-(2,4,6-trimethylbenzyl)benzamide

Yield: 27 mg (0.1 mmol, 50%).

Physical State: white solid.

R_f Value: 0.26 (isohexane/EtOAc -5/1).

¹**H NMR** (300 MHz, CDCl₃) δ 7.78 – 7.69 (m, 2H), 7.12 – 7.03 (m, 2H), 6.91 (s, 2H), 5.82 (s, 1H), 4.62 (d, J = 4.5 Hz, 2H), 2.37 (s, 6H), 2.29 (s, 3H).

¹³C NMR (75 MHz, CDCl₃) δ 166.43, 164.86 (d, J = 249.7 Hz), 137.97, 137.72, 130.80, 129.44, 129.41, 129.29, 115.73 (d, J = 21.7 Hz), 38.93, 21.07, 19.80.

¹⁹**F**{¹**H**} **NMR** (282 MHz, CDCl₃) δ -108.89.

IR (ATR in CDCl₃) v3268 (s), 2948 (w), 2914 (m), 1632 (s), 1546 (w), 1502 (s), 1304 (w), 1226 (s), 1155 (w), 909 (s), 849 (s), 738 (m) cm⁻¹.

HRMS (ESI MS) calcd for $C_{17}H_{19}FNO$ [M+H⁺]: 272.1451, found: 272.1449.

According to GP-3, mesitylene (0.2 mmol, 24.0 mg), 4-trifluoromethyl-*N*-methyl-*N*-(tosyloxy)benzamide (0.3 mmol, 100.5 mg) and Ru(PPh₃)₃Cl₂ (5 mol%, 9.6 mg) in DCE (1 mL)

afforded 6c as a yellow oil after purification on silica gel (isohexane/EA = 10/1 to 5/1). Reaction time: 18 h.

4-(trifluoromethyl)-N-(2,4,6-trimethylbenzyl)benzamide

Yield: 23 mg (0.07 mmol, 36%).

Physical State: yellow oil.

 R_f Value: 0.26 (isohexane/EtOAc – 5/1).

¹**H NMR** (300 MHz, CDCl₃) δ 7.84 (d, J = 8.1 Hz, 2H), 7.67 (d, J = 8.2 Hz, 2H), 6.92 (s, 2H), 5.94 (s, 1H), 4.64 (d, J = 4.6 Hz, 2H), 2.37 (s, 6H), 2.29 (s, 3H).

¹³C NMR (75 MHz, CDCl₃) δ 166.17, 138.10, 137.72, 133.36 (q, J = 32.8 Hz), 130.51, 129.69, 129.48, 127.54, 125.75 (q, J = 3.8 Hz), 123.77 (q, J = 270.7 Hz), 39.03, 21.06, 19.81.

¹⁹**F**{¹**H**}**NMR** (282 MHz, CDCl₃) δ -62.96.

IR (ATR in CDCl₃) *v*3308 (s), 2949(w), 2904 (m), 1639 (s), 1584 (w), 1432 (s), 1321 (w), 1066 (w), 913 (s), 837 (w), 752 (m) cm⁻¹.

HRMS (ESI MS) calcd for $C_{18}H_{19}F_3NO$ [M+H⁺]: 322.1419, found: 322.1418.

According to GP-3, mesitylene (0.2 mmol, 24.0 mg), benzyl methyl(tosyloxy)carbamate (0.3 mmol, 100.5 mg) and Ru(PPh₃)₃Cl₂ (5 mol%, 9.6 mg) in DCE (1 mL) afforded 6d as a white solid after purification on silica gel (isohexane/EA = 10/1 to 5/1). Reaction time: 18 h.

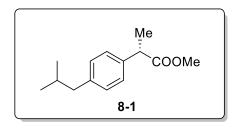
benzyl (2,4,6-trimethylbenzyl)carbamate

Yield: 28 mg (0.1 mmol, 49%).

Physical State: white solid.

R_f **Value:** 0.45 (isohexane/EtOAc -5/1).

¹**H NMR** (300 MHz, CDCl₃) δ 7.37 – 7.30 (m, 5H), 6.86 (s, 2H), 5.12 (s, 2H), 4.60 (s, 1H), 4.39 (d, J = 4.8 Hz, 2H), 2.33 (s, 6H), 2.26 (s, 3H).


¹³C NMR (75 MHz, CDCl₃) δ 156.27, 137.69, 137.42, 136.72, 131.09, 129.32, 128.66, 128.25, 128.21, 66.87, 39.49, 21.04, 19.71.

IR (ATR in CDCl₃) v3317 (s), 2922 (s), 1681 (s), 1524 (s), 1353 (m), 1284 (s), 1047 (m), 853 (s) cm⁻¹.

HRMS (ESI MS) calcd for $C_{18}H_{22}NO_2$ [M+H⁺]: 284.1651, found: 284.1654.

3.4. General procedure (GP-4) for preparation of 8-1, 9-1

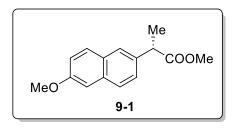
MeI (0.51 g, 3.6 mmol, 1.2 equiv) was added to a solution of S(+)-Ibuprofen (618 mg, 3 mmol) or S(+)-Naproxen (690 mg, 3 mmol) and K_2CO_3 (1.24 g, 9 mmol, 3 equiv) in DMF (10 mL) at room temperature. The mixture was allowed to stir overnight at room temperature. After pouring 10 mL of water, the mixture was extracted by EtOAc (10 mL × 3). The combined organic layer was washed by brine and dried over anhydrous Na_2SO_4 . The residue was purified by silica gel chromatography using isohexane/EtOAc = (10/1) to obtain pure product **8-1**.^[3]

methyl (S)-2-(4-isobutylphenyl)propanoate

Yield: 646 mg (2.94 mmol, 98%).

Physical State: colorless oil.

R_f **Value:** 0.35 (isohexane/EtOAc -5/1).


¹**H NMR** (300 MHz, CDCl₃) δ 7.90 – 7.77 (m, 2H), 7.56 – 7.40 (m, 3H), 7.27 (td, J = 7.3, 2.4 Hz, 3H), 7.20 – 7.13 (m, 2H), 7.00 (d, J = 8.6 Hz, 1H), 6.93 – 6.79 (m, 3H), 2.32 (s, 6H), 2.29 (s, 3H).

¹³C NMR (75 MHz, CDCl₃) δ 175.32, 140.66, 137.87, 129.46, 127.24, 52.06, 45.16, 45.13, 30.29, 22.50, 18.73.

IR (ATR in CDCl₃) v2952 (s), 2870 (m), 1736 (s), 1461 (m), 1334 (m), 1207 (s), 1161 (s), 1069 (m), 857 (m), 797 (m) cm⁻¹.

HRMS (ESI MS) calcd for $C_{14}H_{21}O_2$ [M+H⁺]: 221.1536, found: 221.1542.

Enantiomer ratio was determinted by HPLC using a Daicel Chiralpak OJ column (flow rate 0.8 mL/min, n-hexane/i-PrOH = 99.9/0.1, λ = 230.4 nm), t_R = 11.76 min (major), t_R = 12.89 min (minor); 98% ee.

methyl (S)-2-(6-methoxynaphthalen-2-yl)propanoate

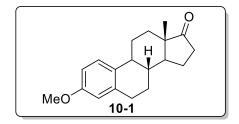
Yield: 577 mg (2.36 mmol, 79%).

Physical State: white solid.

R_f Value: 0.55 (isohexane/EtOAc -5/1).

¹**H NMR** (300 MHz, CDCl₃) δ 7.69 (dd, J = 12.1, 5.1 Hz, 3H), 7.41 (dd, J = 8.5, 1.7 Hz, 1H), 7.14 (dt, J = 7.0, 2.4 Hz, 2H), 3.91 (d, J = 4.1 Hz, 3H), 3.90 – 3.83 (m, 1H), 3.67 (s, 3H), 1.58 (d, J = 7.2 Hz, 3H).

¹³C NMR (75 MHz, CDCl₃) δ 175.27, 157.77, 135.80, 133.82, 129.40, 129.05, 127.30, 126.31, 126.06, 119.12, 105.70, 55.42, 52.17, 45.47, 18.72.


IR (ATR in CDCl₃) v2985 (m), 2940 (m), 1736 (s), 1602 (s), 1438 (s), 1267 (m), 1174 (s), 1028 (m), 857 (m), 823 (s) cm⁻¹.

HRMS (ESI MS) calcd for $C_{15}H_{17}O_3$ [M+H⁺]: 245.1172, found: 245.1178.

Enantiomer ratio was determinted by HPLC using a Daicel Chiralpak OD-H column (flow rate 1.0 mL/min, n-hexane/i-PrOH = 99.0/1.0, λ = 230.4 nm), t_R = 9.25 min (minor), t_R = 10.96 min (major); 99% ee.

3.5. Preparation of 10-1

Add estrone (568 mg, 2 mmol) and MeI (6.85 mL, 110 mmol) to a solution of KOH (448 mg, 8 mmol) in DMSO (3.6 mL) at room temperature. Stir the reaction mixture at room temperature for 3 hours. Filter the reaction mixture. Wash the reaction mixture with water to obtain (8R,9S,13S,14S)-3-methoxy-13-methyl-7,8,9,11,12,13,15,16-octahydro-6H-cyclopenta[a]-phenanthren-17(14H)-one **10-1**.^[4]

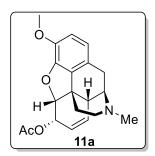
(8R,13S)-3-methoxy-13-methyl-6,7,8,9,11,12,13,14,15,16-decahydro-17H-cyclopenta[a]-phenanthren-17-one

Yield: 511 mg (0.18 mmol, 92%).

Physical State: white solid.

R_f Value: 0.32 (isohexane/EtOAc -5/1).

¹**H NMR** (300 MHz, CDCl₃) δ 7.21 (d, J = 8.5 Hz, 1H), 6.74 – 6.59 (m, 2H), 3.78 (s, 3H), 2.93 – 2.86 (m, 2H), 2.55 – 2.37 (m, 2H), 2.25 - 2.18 (m, 1H), 2.08 – 1.95 (m, 3H), 1.65 – 1.42 (m, 7H), 0.91 (s, 3H).


¹³C NMR (75 MHz, CDCl₃) δ 221.25, 157.70, 137.87, 132.14, 126.47, 114.00, 111.69, 77.58, 77.16, 76.74, 55.34, 50.52, 48.16, 44.09, 38.49, 36.01, 31.69, 29.79, 26.67, 26.05, 21.71, 13.98.

IR (ATR in CDCl₃) v2926 (s), 2858 (m), 1736 (s), 1610 (m), 1498 (s), 1282 (m), 1054 (m), 868 (w), 816 (m), 782 (m), 730 (m) cm⁻¹.

HRMS (ESI MS) calcd for $C_{19}H_{25}O_2$ [M+H⁺]: 285.1855, found: 285.1661.

3.6. Preparation of 11-a

To a mixture of Codeine hydrochloride salt (0.3 g, 1.0 mmol) and dimethylaminopyridine (DMAP, 0.244 g, 2.0 mmol, 2.0 equiv) in dry DCM (10.5 mL) at rt were added triethylamine (0.41 mL, 3 mmol, 3.0 equiv) and Ac_2O (0.28 mL, 3.0 mmol, 3.0 equiv) respectively. The resulting solution was stirred for 24 h, then poured into half saturated brine (20 mL), and extracted with DCM (3 × 10 mL). The combined organic extracts was dried over anhydrous Na_2SO_4 , decanted and concentrated by rotary evaporation. The residue was purified by silica gel chromatography using DCM/MeOH = (20/1 to 10/1) to obtain pure product. [5]

N-((4-oxo-2-phenylchroman-6-yl)methyl)benzamide

Yield: 220 mg (0.6 mmol, 65%).

Physical State: light yellow solid.

 R_f Value: 0.50 (DCM/MeOH – 10/1).

¹H NMR (300 MHz, CDCl₃) δ 6.65 (d, J = 8.2 Hz, 1H), 6.53 (d, J = 8.2 Hz, 1H), 5.69 – 5.57 (m, 1H), 5.47 – 5.37 (m, 1H), 5.18 (ddd, J = 8.2, 5.2, 2.8 Hz, 1H), 5.11 – 5.01 (m, 1H), 3.84 (s, 3H), 3.36 (dd, J = 5.9, 3.3 Hz, 1H), 3.03 (d, J = 18.6 Hz, 1H), 2.79 – 2.68 (m, 1H), 2.59 (dd, J = 12.2, 3.8 Hz, 1H), 2.43 (d, J = 5.1 Hz, 3H), 2.41 – 2.23 (m, 2H), 2.15 (s, 3H), 2.05 (td, J = 12.3, 5.1 Hz, 1H), 1.86 (dd, J = 12.6, 1.8 Hz, 1H).

¹³C NMR (75 MHz, CDCl₃) δ 170.71, 146.87, 142.24, 130.71, 129.71, 128.55, 127.07, 119.25, 113.90, 88.22, 59.17, 56.73, 46.77, 43.17, 42.87, 40.83, 35.49, 20.99, 20.46.

IR (ATR in CDCl₃) v2914 (w), 2814 (w), 1750 (s), 1636 (s), 1435 (s), 1230 (s), 1170 (w), 1043 (s), 902 (m), 782 (m), 697 (m) cm⁻¹.

HRMS (ESI MS) calcd for $C_{20}H_{24}NO_4$ [M+H⁺]: 342.1705, found: 342.1707.

3.7. Preparation of 7-11

According to GP-3, flavanone (0.2 mmol, 44.8 mg), N-methyl-N-(tosyloxy)benzamide (0.3 mmol, 91.5 mg) and Ru(PPh₃)₃Cl₂ (5 mol%, 9.6 mg) in DCE (1 mL) afforded **7** after purification on silica gel (isohexane/EA = 10/1 to 5/1). Reaction time: 18 h.

N-((4-oxo-2-phenylchroman-6-yl)methyl)benzamide

Yield: 20 mg (0.06 mmol, 29%).

Physical State: yellow solid.

 R_f Value: 0.40 (isohexane/EtOAc – 1/1).

¹**H NMR** (300 MHz, CDCl₃) δ 7.88 (d, J = 2.3 Hz, 1H), 7.79 (dd, J = 5.3, 3.3 Hz, 2H), 7.58 – 7.41 (m, 9H), 7.06 (d, J = 8.5 Hz, 1H), 6.52 (s, 1H), 5.47 (dd, J = 13.1, 3.1 Hz, 1H), 4.63 (d, J = 5.8 Hz, 2H), 3.08 (dd, J = 16.9, 13.1 Hz, 1H), 2.89 (dd, J = 16.9, 3.1 Hz, 1H).

¹³C NMR (75 MHz, CDCl₃) δ 191.97, 167.57, 161.17, 138.67, 136.35, 134.32, 131.94, 131.82, 129.02, 128.99, 128.78, 127.13, 126.29, 126.06, 120.86, 118.96, 79.81, 44.65, 43.38.

IR (ATR in CDCl₃) *v*3354 (s), 2981 (s), 1692 (s), 1643 (s), 1539 (s), 1490 (s), 1297 (s), 1230 (s), 909 (m), 805 (w), 760 (w), 700 (s) cm⁻¹.

HRMS (ESI MS) calcd for $C_{23}H_{20}NO_3$ [M+H⁺]: 358.1438, found: 358.1439.

According to GP-3, S(+)-Ibuprofen methyl ester **8-1** (0.2 mmol, 44.0 mg), *N*-methyl-*N*-(tosyloxy)benzamide (0.3 mmol, 91.5 mg) and Ru(PPh₃)₃Cl₂ (5 mol%, 9.6 mg) in DCE (1 mL) afforded **8** as a colorless oil after purification on silica gel (isohexane/EA = 10/1 to 5/1). Reaction time: 18 h.

methyl (S)-2-(3-(benzamidomethyl)-4-isobutylphenyl)propanoate

Yield: 28 mg (0.08 mmol, 41%).

Physical State: colorless oil.

 R_f Value: 0.3 (isohexane/EtOAc – 3/1).

¹**H NMR** (500 MHz, CDCl₃) δ 7.77 (dd, J = 5.2, 3.4 Hz, 2H), 7.50 (ddd, J = 6.6, 3.8, 1.2 Hz, 1H), 7.43 (dd, J = 10.4, 4.7 Hz, 2H), 7.23 (d, J = 1.7 Hz, 1H), 7.19 (dd, J = 7.9, 1.9 Hz, 1H), 7.15 (d, J = 7.9 Hz, 1H), 6.17 (s, 1H), 4.65 (d, J = 5.2 Hz, 2H), 3.70 (q, J = 7.2 Hz, 1H), 3.66 (s, 3H), 2.53 (d, J = 7.2 Hz, 2H), 1.92 – 1.81 (m, 1H), 1.49 (d, J = 7.2 Hz, 3H), 0.93 (d, J = 6.6 Hz, 6H).

¹³C NMR (126 MHz, CDCl₃) δ 175.17, 167.29, 139.33, 138.67, 136.02, 134.58, 131.68, 131.13, 128.77, 128.51, 127.07, 126.81, 52.20, 45.11, 42.01, 41.50, 30.10, 22.72, 18.76.

IR (ATR in CDCl₃) v3317 (s), 2952 (s), 2870 (m), 1736 (s), 1640 (s), 1535 (s), 1289 (m), 1162 (m), 846 (w), 693 (m) cm⁻¹.

HRMS (ESI MS) calcd for $C_{22}H_{28}NO_3[M+H^+]$: 354.2069, found: 354.2066.

Enantiomer ratio was determinted by HPLC using a Daicel Chiralpak AS-H column (flow rate 1.0 mL/min, n-hexane/i-PrOH = 98.0/2.0, λ = 230.4 nm), t_R = 118.70 min (minor), t_R = 129.01 min (major); 99% ee.

According to GP-3, S(+)-Naproxen methyl ester **9-1** (0.2 mmol, 48.8 mg), *N*-methyl-*N*-(tosyloxy)benzamide (0.3 mmol, 91.5 mg) and Ru(PPh₃)₃Cl₂ (5 mol%, 9.6 mg) in DCE (1 mL) afforded **9** as a white solid after purification on silica gel (isohexane/EA = 10/1 to 5/1). Reaction time: 18 h.

methyl (S)-2-(5-(benzamidomethyl)-6-methoxynaphthalen-2-yl)propanoate

Yield: 41 mg (0.11 mmol, 54%).

Physical State: white solid.

 R_f Value: 0.15 (isohexane/EtOAc – 5/1).

¹**H NMR** (300 MHz, CDCl₃) δ 8.17 (d, J = 8.9 Hz, 1H), 7.83 (d, J = 9.0 Hz, 1H), 7.74 – 7.70 (m, 3H), 7.49 – 7.32 (m, 5H), 6.37 (s, 1H), 5.12 (d, J = 5.3 Hz, 2H), 4.00 (s, 3H), 3.89 – 3.85 (m, 1H), 3.66 (s, 3H), 1.57 (d, J = 7.2 Hz, 3H).

¹³C NMR (75 MHz, CDCl₃) δ 175.13, 167.31, 155.72, 136.03, 134.76, 132.17, 131.45, 130.06, 129.30, 128.61, 127.49, 127.09, 126.64, 124.02, 118.60, 113.29, 56.68, 52.23, 45.34, 34.68, 18.64.

IR (ATR in CDCl₃) *v*3350 (s), 2974 (m), 2948 (s), 1840 (m), 1733 (s), 1643 (s), 1505 (s), 1457 (m), 1252 (s), 1162 (m), 1095 (w), 890 (m), 805 (w), 715 (s) cm⁻¹.

HRMS (ESI MS) calcd for C₂₃H₂₄NO₄ [M+H⁺]: 378.1705, found: 378.1714.

Enantiomer ratio was determinted by HPLC using a Daicel Chiralpak OD-H column (flow rate 1.0 mL/min, n-hexane/i-PrOH = 95.0/5.0, λ = 230.4 nm), t_R = 52.09 min (minor), t_R = 71.60 min (major); 79% ee.

According to GP-3, methyl estrone (0.2 mmol, 56.8 mg), N-methyl-N-(tosyloxy)benzamide (0.3 mmol, 91.5 mg) and Ru(PPh₃)₃Cl₂ (5 mol%, 9.6 mg) in DCE (1 mL) afforded 3w as a white solid after purification on silica gel (isohexane/EA = 10/1 to 5/1). Reaction time: 18 h.

N-(((8R,13S)-3-methoxy-13-methyl-17-oxo-7,8,9,11,12,13,14,15,16,17-decahydro-6H-cyclopenta[a]phenanthren-2-yl)methyl)benzamide o-10 and N-(((8R,13S)-3-methoxy-13-methyl-17-oxo-7,8,9,11,12,13,14,15,16,17-decahydro-6H-cyclopenta[a]phenanthren-4-yl)methyl)benzamide p-10

Yield: 58 mg (0.14 mmol, 71%).

Physical State: white solid.

 $\mathbf{R_f Value:} \ 0.30 \ (isohexane/EtOAc - 5/1).$

¹**H NMR** (300 MHz, CDCl₃) δ 7.77 – 7.68 (m, 2H), 7.49 – 7.37 (m, 3H), 7.28 (s, 0.77H), 6.79 (d, J = 8.7 Hz, 0.23H), 6.65 - 6.60 (m, 1H), 4.71 (dd, J = 5.5, 4.1 Hz, 0.43H), 4.60 (dd, J = 5.7, 1.4 Hz, 1.57H), 3.88 (s, 0.70H), 3.86 (s, 2.30H), 3.05 – 2.83 (m, 2H), 2.54 – 2.41 (m, 2H), 2.16 – 1.93 (m, 4H), 1.67 – 1.37 (m, 7H), 0.93 – 0.87 (m, 3H).

¹³C NMR (75 MHz, CDCl₃) δ 220.90, 167.12, 156.52, 155.91, 137.43, 136.92, 135.05, 134.88, 132.09, 131.40, 131.37, 128.60, 127.64, 127.04, 125.93, 124.28, 123.80, 111.02, 108.22, 55.75, 55.61, 50.55, 50.48, 48.13, 48.01, 44.44, 44.04, 40.31, 38.51, 37.64, 35.98, 35.57, 31.72, 31.68, 29.87, 26.72, 26.65, 26.09, 21.70, 13.98, 13.92.

IR (ATR in CDCl₃) v3399 (s), 2929 (s), 2840 (m), 1736 (s), 1651 (m), 1505 (s), 1267 (m), 1088 (m), 861 (w), 678 (m) cm⁻¹.

HRMS (ESI MS) calcd for C₂₇H₃₂NO₃ [M+H⁺]: 418.2382, found: 418.2389.

3.8. Procedure for preparation of 11

A mixture of codeine acetate **11-1** (0.1 mmol, 34.1 mg), *N*-methyl-*N*-(tosyloxy)benzamide (0.15 mmol, 45.8 mg) and Ru(PPh₃)₃Cl₂ (5 mol%, 4.8 mg) in DCE (0.5 mL) in a 15 mL sealed glass vial was heated at 100 $^{\circ}$ C under air with vigorous stirring for 18 hours. The reaction mixture was cooled to room temperature, and diluted with ethyl acetate and filtered through celite. The filtrate was concentrated *in vacuo* and purified by column chromatography on silica gel (DCM/MeOH – 20/1 to 10/1)to give the corresponding product **11**.

methyl (S)-2-(5-(benzamidomethyl)-6-methoxynaphthalen-2-yl)propanoate

Yield: 10 mg (0.02 mmol, 21%).

Physical State: white solid.

 R_f Value: 0.45 (DCM/MeOH – 10/1).

¹**H NMR** (300 MHz, CDCl₃) δ 7.80 – 7.72 (m, 2H), 7.55 – 7.48 (m, 1H), 7.47 – 7.39 (m, 2H), 6.68 (s, 1H), 6.16 (s, 1H), 5.65 (d, J = 10.0 Hz, 1H), 5.49 – 5.39 (m, 1H), 5.19 (dt, J = 5.1, 2.8 Hz, 1H), 5.09 (d, J = 6.1 Hz, 1H), 4.62 (dd, J = 14.5, 5.8 Hz, 1H), 4.43 (dd, J = 14.5, 4.9 Hz, 1H), 3.86 (s, 3H), 3.43 – 3.31 (m, 1H), 3.06 (d, J = 18.6 Hz, 1H), 2.78 (s, 1H), 2.66 – 2.58 (m, 1H), 2.41 (s, 3H), 2.27 (dd, J = 18.8, 6.6 Hz, 2H), 2.15 (s, 3H), 1.85 (d, J = 10.9 Hz, 2H).

¹³C NMR (151 MHz, CDCl₃) δ 170.69, 167.31, 146.51, 142.29, 134.45, 131.78, 131.52, 129.54, 128.83, 127.47, 127.00, 114.83, 88.20, 68.10, 59.00, 56.94, 46.89, 43.17, 42.82, 41.15, 40.32, 40.30, 35.34, 20.97, 18.67.

IR (ATR in CDCl₃) *v*3309 (s), 2937 (m), 1733 (m), 1636 (s), 1505 (s), 1446 (m), 1371 (s), 1241 (s), 1121 (w), 1054 (w), 909 (m), 697 (s), 667 (s) cm⁻¹.

HRMS (ESI MS) calcd for $C_{28}H_{31}N_2O_5$ [M+H⁺]: 475.2233, found: 475.2230

3.9. Scale-up reaction

A mixture of **1e** (0.74 g, 4.0 mmol, 1.0 equiv), *N*-benzoyl-*O*-tosyl-*N*-methylhydroxylamine **2a** (1.2 g, 4.0 mmol, 1.0 equiv), Ru(PPh₃)₃Cl₂ (191 mg, 0.2 mmol, 5 mol%), and 20 mL DCE in a 100 mL sealed high-pressure glass tube was heated at 100 °C under air with vigorous stirring for 24 hours. The reaction mixture was cooled to room temperature, diluted with ethyl acetate, and filtered through celite. The filtrate was concentrated *in vacuo* and purified by column chromatography on silica gel (isohexane/EA = 10/1 to 5/1) to give the product.

3.10. Further transformation-Heck reaction

An argon-flooded Schlenk tube containing phenylboronic acid (29.2 mg, 0.24 mmol, 1.2 equiv) in dry 1.4-dioxane (1 mL) was charged with sodium carbonate (42.4 mg, 0.4 mmol, 2 equiv), deionized water (0.4 mL) the *N*-(3-bromo-4-methoxybenzyl)benzamide **3e** (63.8 mg, 0.2 mmol, 1 equiv), and Pd(PPh₃)₄ (11.6 mg, 0.01 mmol, 0.05 equiv). After refluxing for 18 h, the crude mixture was cooled to room temperature and filtered through a short pad of celite. After the addition of brine (50 mL) and extraction with toluene (3 x 50 mL) the organic phase was dried with MgSO₄ and concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel (EtOAc/isohexane = 1:7) to provide the product.^[6]

N-((6-methoxy-[1,1'-biphenyl]-3-yl)methyl)benzamide

Yield: 59 mg (0.19 mmol, 94%).

Physical State: white solid.

 R_f Value: 0.27 (isohexane/EtOAc – 5/1).

¹**H NMR** (300 MHz, CDCl₃) δ 7.82 – 7.73 (m, 2H), 7.55 – 7.46 (m, 3H), 7.44 – 7.37 (m, 4H), 7.36 – 7.29 (m, 3H), 6.96 (d, J = 8.7 Hz, 1H), 6.51 (s, 1H), 4.62 (d, J = 5.6 Hz, 2H), 3.80 (s, 3H).

¹³C NMR (75 MHz, CDCl₃) δ 167.39, 156.13, 138.23, 134.55, 131.60, 131.15, 130.79, 130.56, 129.59, 128.67, 128.44, 128.16, 127.23, 127.08, 111.65, 55.84, 43.78.

IR (ATR in CDCl₃) *v*3306 (s), 3060 (m), 2933 (s), 2832 (m), 1640 (s), 1539 (s), 1487 (s), 1297 (m), 1263 (s), 1148 (w), 1028 (m), 805 (m), 775 (w), 700 (s) cm⁻¹.

HRMS (ESI MS) calcd for $C_{21}H_{20}NO_2$ [M+H⁺]: 318.1494, found: 318.1500.

3.11. Further transformation-C-H activation

A mixture of required N-(3-bromo-4-methoxybenzyl)benzamide **3e** (63.8 mg, 0.2 mmol, 1 equiv), (2-bromoethynyl)triisopropylsilane (78 mg, 0.3 mmol, 1.5 equiv), [Cp*IrCl₂]₂ (8.0 mg, 5 mol%), Cs₂CO₃ (97.6 mg, 0.3 mmol, 1.5 equiv), PivOH (6.0 mg, 0.06 mmol, 0.3 equiv) and 1 mL cyclohexane in a 15 mL sealed glass tube was heated at 80 °C under air with vigorous stirring for 18 hours. The reaction mixture was cooled to room temperature, and diluted with ethyl acetate and filtered through celite. The filtrate was concentrated *in vacuo* and purified by column chromatography on silica gel (isohexane/EA = 20/1 to 5/1) to give the corresponding product. [7]

2-(3-bromo-4-methoxybenzyl)-3-(diisopropyl(prop-1-en-2-yl)silyl)isoquinolin-1(2H)-one

Yield: 39 mg (0.08 mmol, 81%).

Physical State: yellow oil.

 R_f Value: 0.24 (isohexane/EtOAc – 5/1).

¹**H NMR** (300 MHz, CDCl₃) δ 8.48 (dd, J = 8.0, 1.2 Hz, 1H), 7.71 (d, J = 7.8 Hz, 1H), 7.60 – 7.52 (m, 2H), 7.48 – 7.43 (m, 1H), 7.31 – 7.27 (m, 1H), 7.12 (s, 1H), 6.85 (d, J = 8.4 Hz, 1H), 5.90 (dd, J = 3.0, 1.6 Hz, 1H), 5.47 (dd, J = 2.9, 1.2 Hz, 1H), 5.14 (s, 2H), 3.87 (s, 3H), 1.83 (s, 3H), 1.45 – 1.35 (m, 2H), 1.02 – 0.97 (m, 12H).

¹³C NMR (75 MHz, CDCl₃) δ 162.33, 155.75, 142.10, 140.64, 139.23, 133.21, 132.17, 131.81, 130.67, 129.95, 128.70, 128.29, 127.99, 126.68, 112.22, 112.08, 107.48, 56.46, 51.01, 24.53, 18.75, 18.42, 18.16, 11.34, 11.02.

IR (ATR in CDCl₃) v2870 (m), 2183 (w), 1640 (s), 1408 (m), 1148 (w), 1006 (m), 916 (s), 853 (m), 752 (w) cm⁻¹.

HRMS (ESI MS) calcd for C₂₆H₃₃BrNO₂Si [M+H⁺]: 498.1464, found: 498.1464.

3.12. Further transformation-Bz removal

Reflux a suspension of *N*-(3-bromo-4-methoxybenzyl)benzamide **3e** (63.8 mg, 0.2 mmol, 1 equiv) in 6 M HCl (13 mL, 80 mmol) until a clear solution was obtained (18 hours). The reaction mixture was cooled to room temperature. Then add NaOH solution solwly basified the resulting

S45

solution, then exacted with DCM (3 times), dry it with K₂CO₃, evaporate to get the pure amine as yellow oil.^[8]

(3-bromo-4-methoxyphenyl)methanamine

Yield: 33 mg (0.14 mmol, 95%).

Physical State: yellow oil.

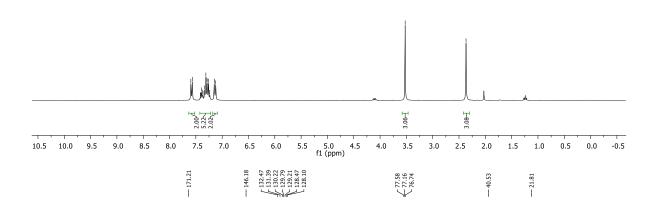
 $\mathbf{R_f Value:} \ 0.05 \ (isohexane/EtOAc - 5/1).$

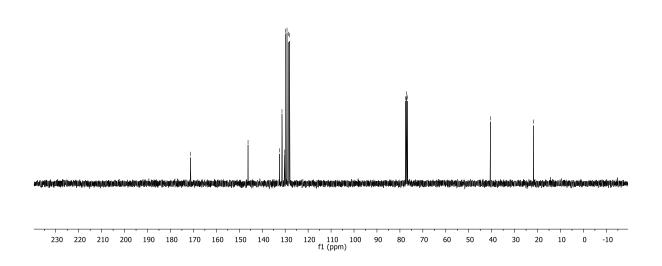
¹**H NMR** (300 MHz, CDCl₃) δ 7.51 (d, J = 2.0 Hz, 1H), 7.24 – 7.20 (m, 1H), 6.86 (d, J = 8.3 Hz, 1H), 3.90 – 3.82 (m, 5H), 2.17 (s, 2H).

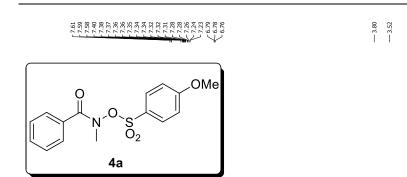
¹³C NMR (75 MHz, CDCl₃) δ 154.90, 133.67, 132.31, 127.31, 112.10, 111.80, 56.46, 31.07.

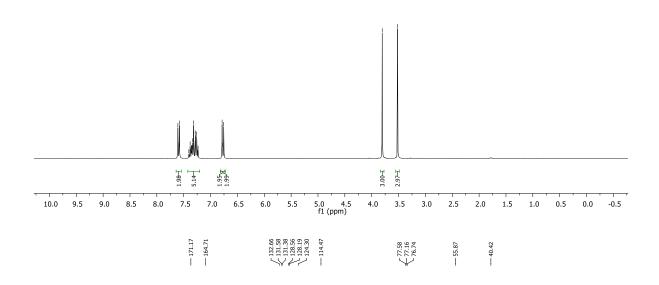
IR (ATR in CDCl₃) v3350 (s), 2922 (s), 2840 (m), 1602 (w), 1494 (s), 1256 (s), 1054 (s), 1021 (w), 808 (m), 738 (w) cm⁻¹.

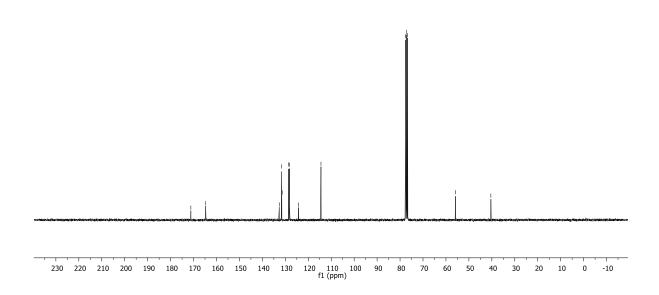

HRMS (ESI MS) calcd for [C₈H₁₀BrNO +H⁺-NH₃]: 200.9738, found: 200.9739.

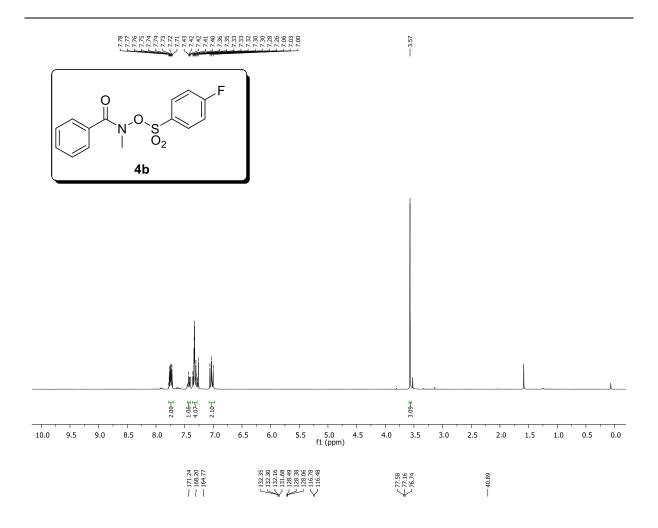

4. References

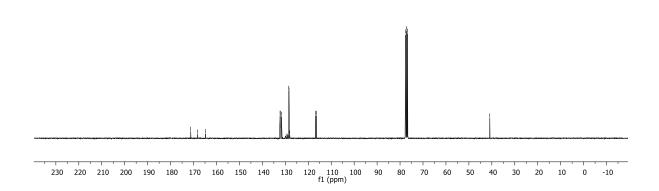

- [1] G. Cecere, C. M. König, J. L. Alleva, D. W. C. MacMillan, *J. Am. Chem. Soc.* 2013, 135, 11521–11524.
- [2] X. Ma, I. R. Hazelden, T. Langer, R. H. Munday, J. F. Bower, *J. Am. Chem. Soc.* 2019, 141, 3356–3360.
- [3] S. Wang, E. Miao, H. Wang, B. Song, W. Huang, W. Yang, *Chem. Commun.* 2021, **57**, 5929–5932.
- [4] Q. Guo, X. Ren, Z. Lu, Org. Lett. 2019, 21, 880–884.
- [5] M. P. Paudyal, A. M. Adebesin, S. R. Burt, D. H. Ess, Z. Ma, L. Kürti, J. R. Falck, Science. 2016, 353, 1144–1147.
- [6] S. Bhowmik, S. Khanna, K. Srivastava, M. Hasanain, J. Sarkar, S. Verma, S. Batra, *ChemMedChem* 2013, **8**, 1767–1772.

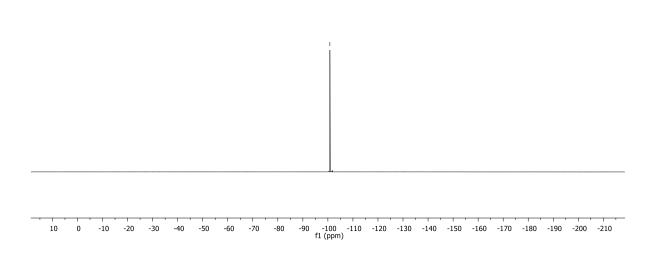

- [7] G. Li, J. Hu, R. Zeng, D.-Q. Shi, Y. Zhao, Org. Lett. 2018, 20, 2454–2458.
- [8] M. Gait, N. Seeman, D. Liu, O. Seitz, M. Komiyama, J. Micklefield, *Org. Biomol. Chem.* 2012, **10**, 8660–8668.
- [9] W. Lau, J. K. Kochi, J. Am. Chem. Soc. 2002, 106, 7100–7112.
- [10] C.-Z. Yao, Z.-F. Xiao, J. Liu, X.-S. Ning, Y.-B. Kang, Org. Lett. 2014, 16, 2498–2501.

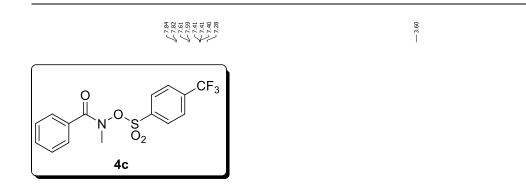

5. ¹H-, ¹³C-, ¹⁹F- NMR Spectra

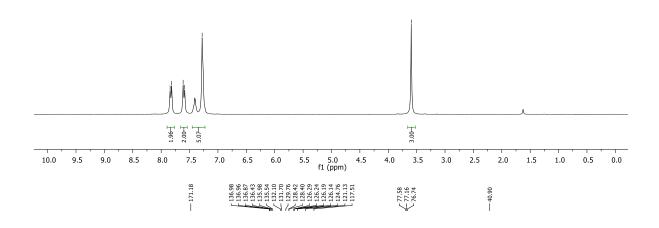


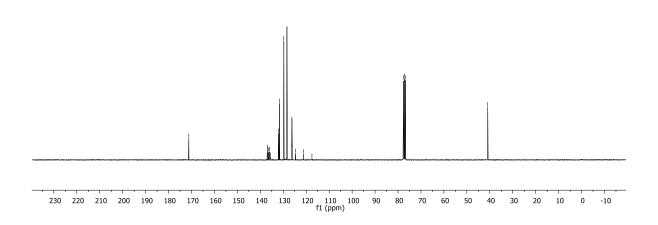


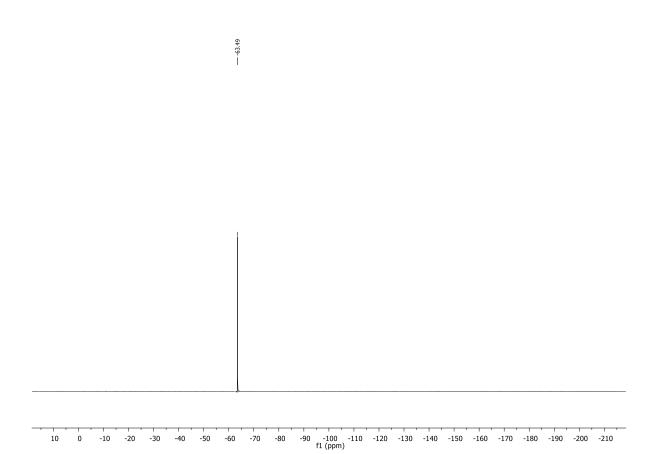


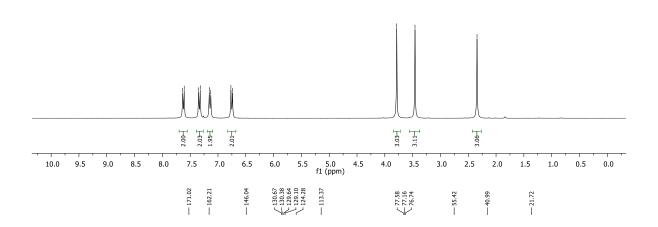


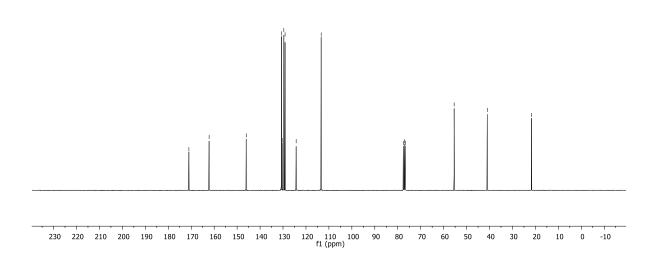


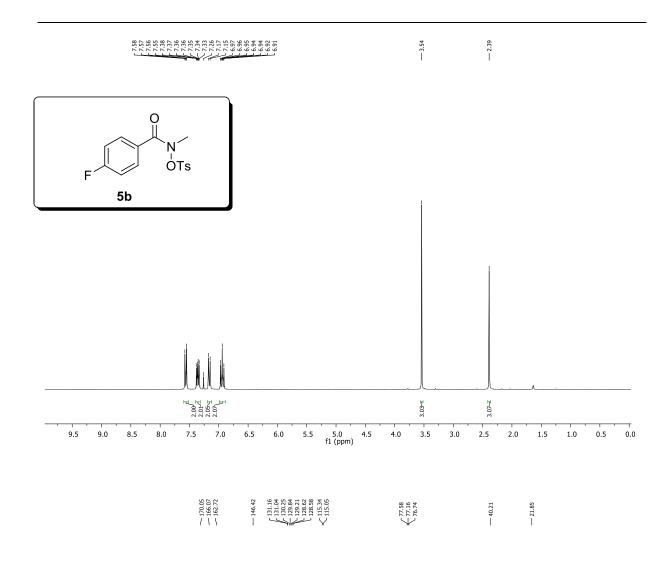


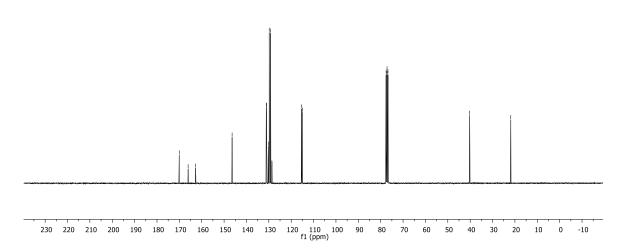


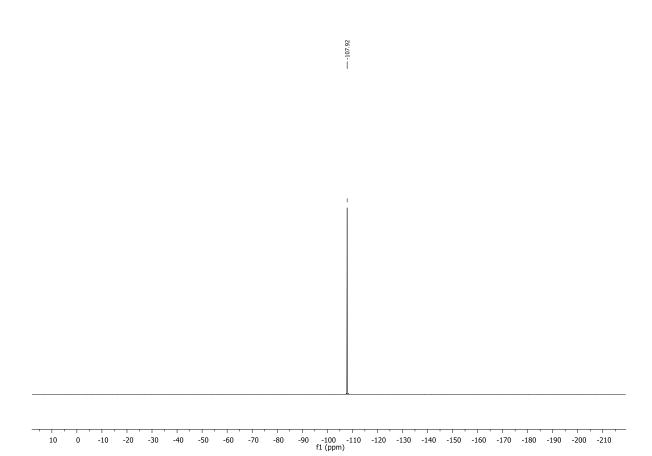


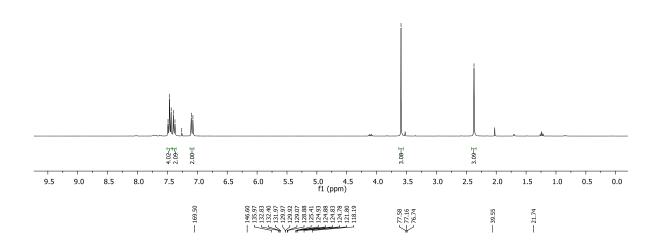


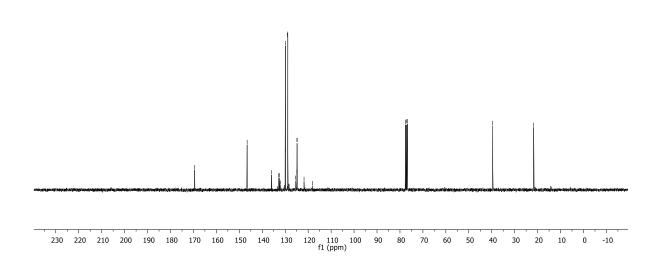


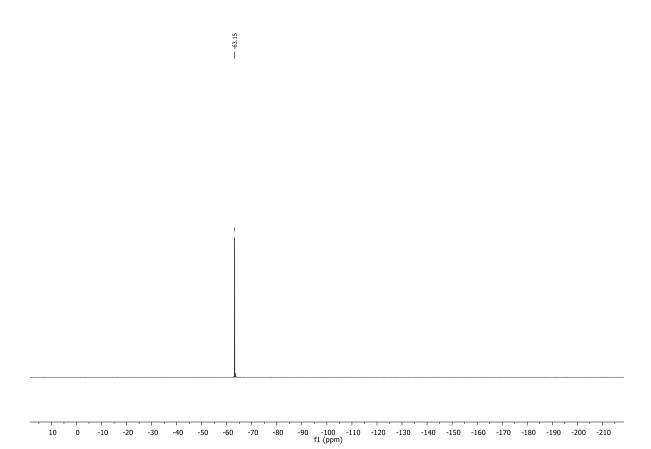


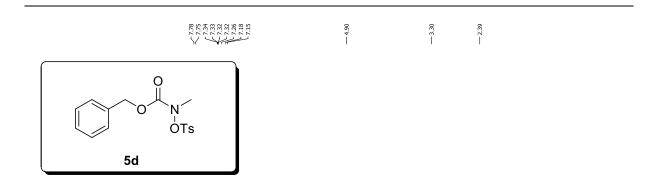


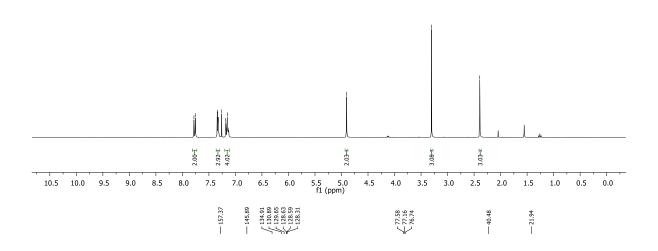


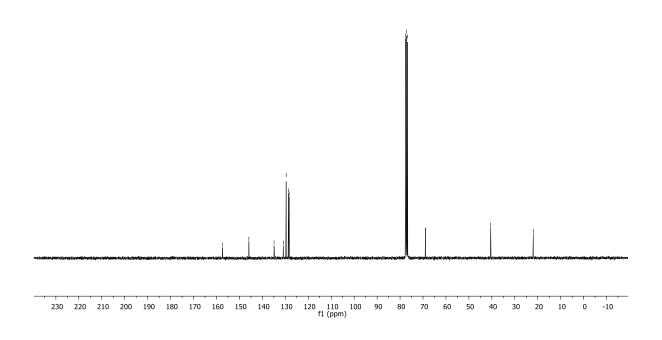


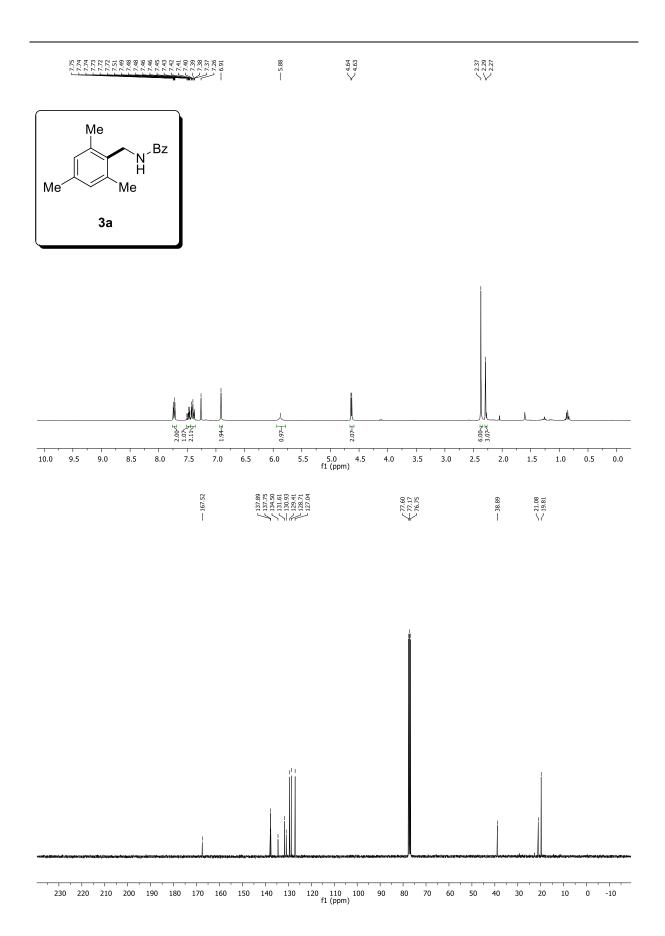


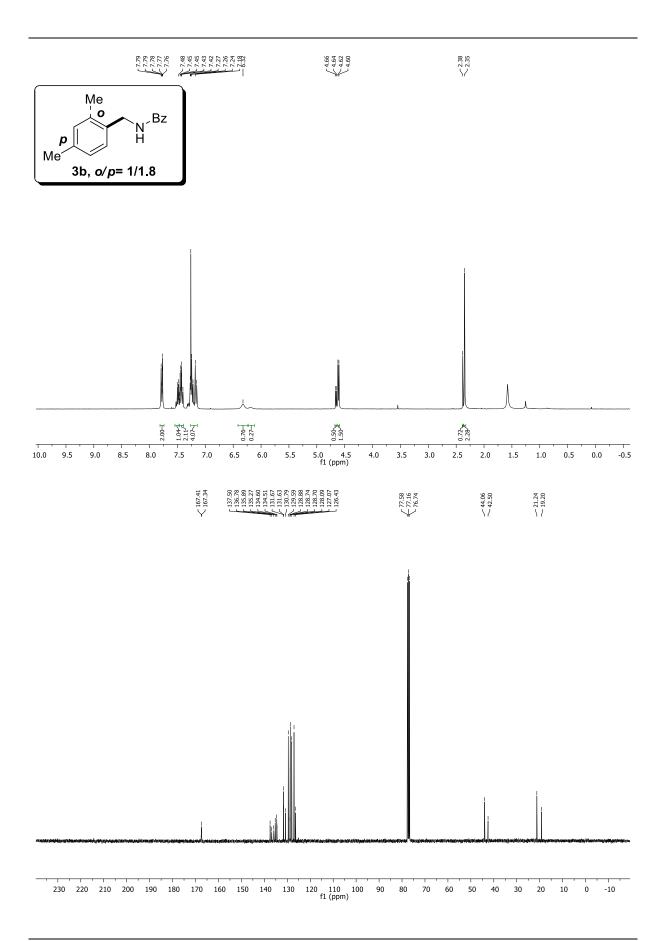


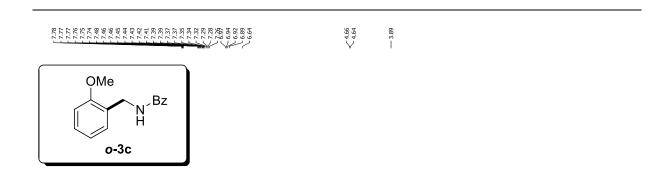


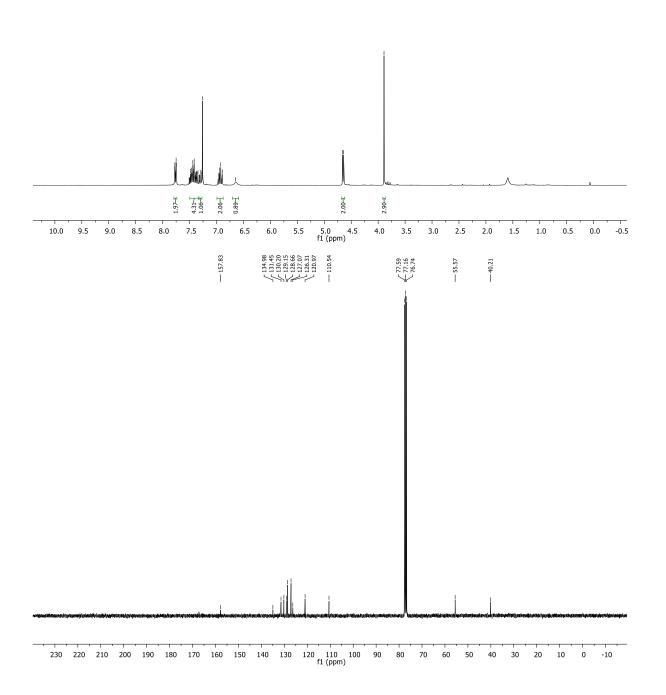


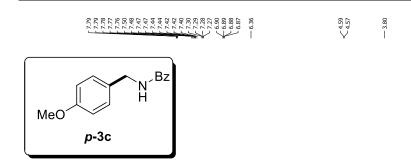


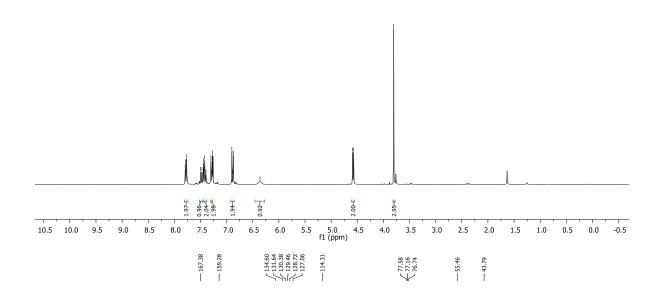


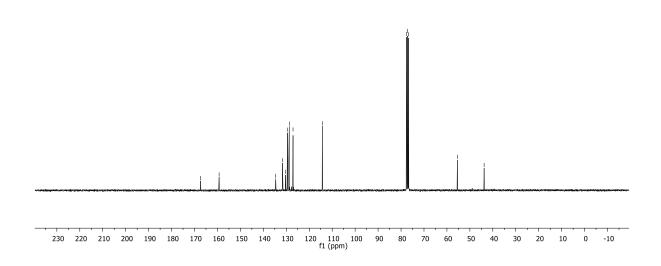


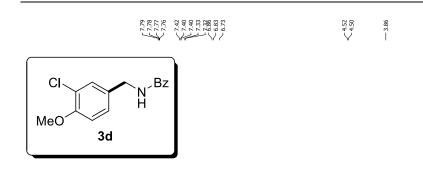


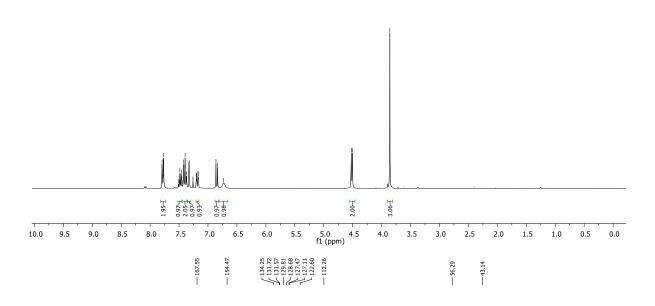


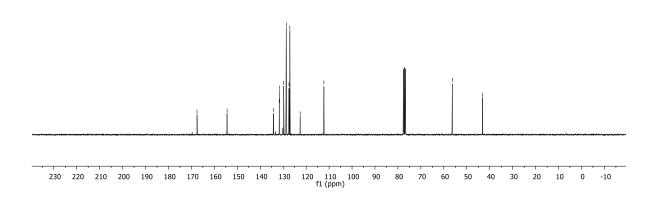


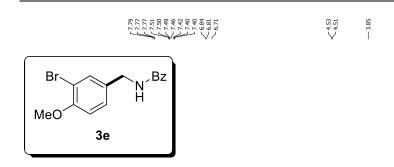


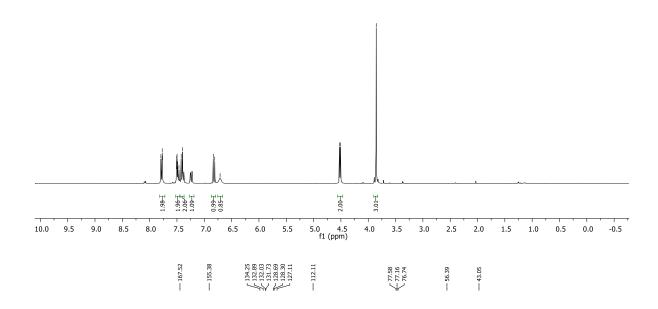


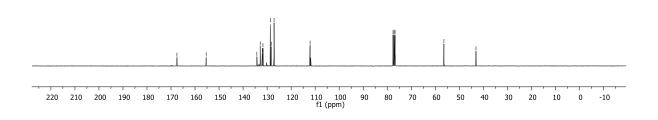


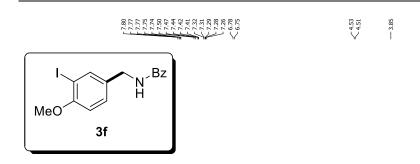


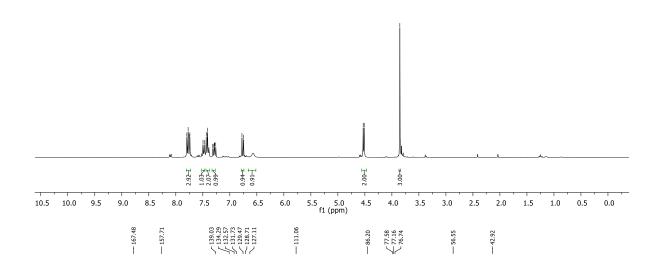


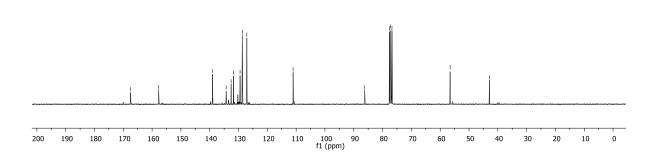


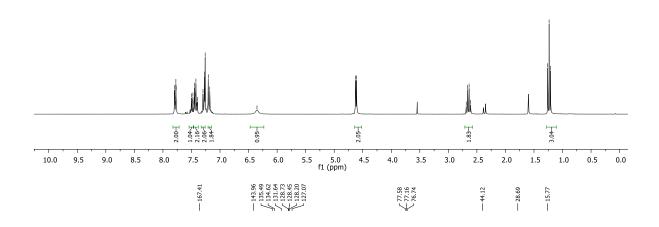


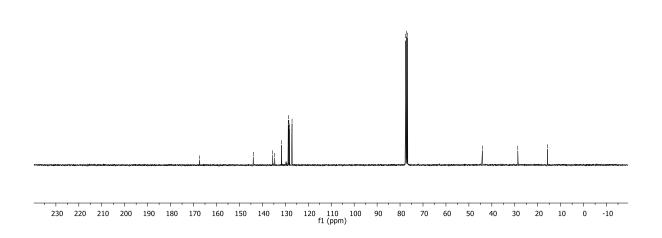


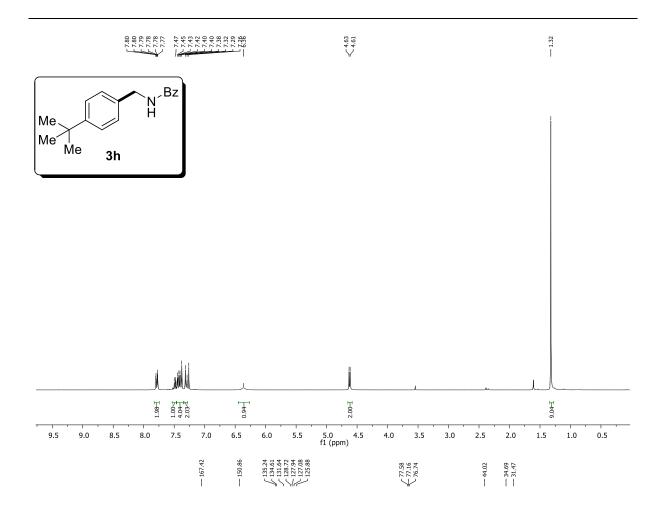


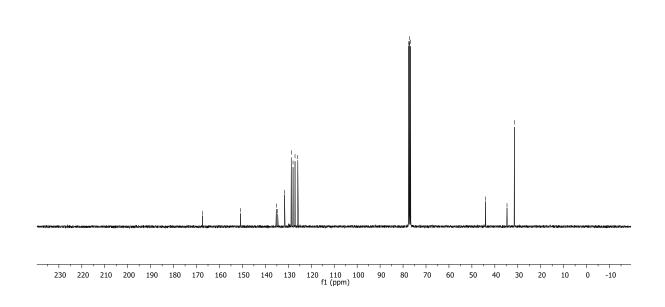


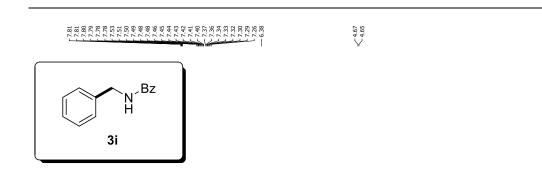


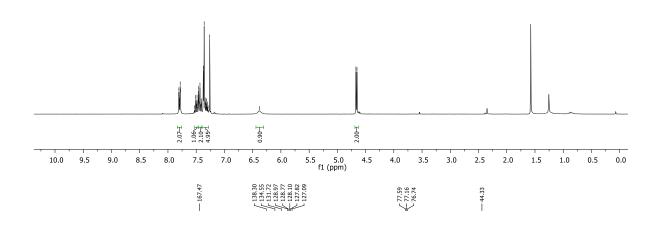


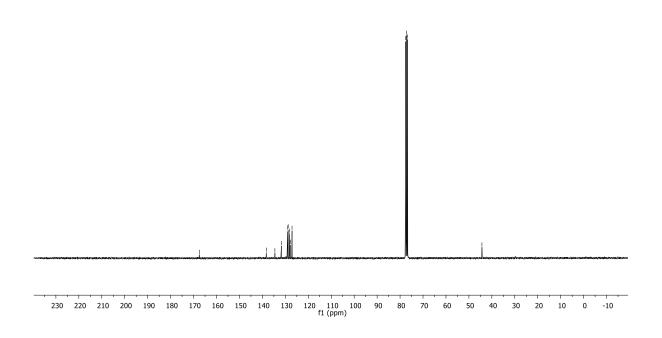


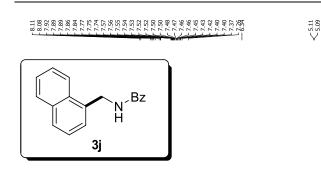


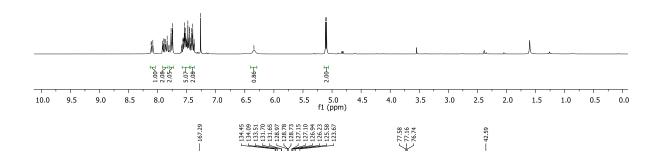


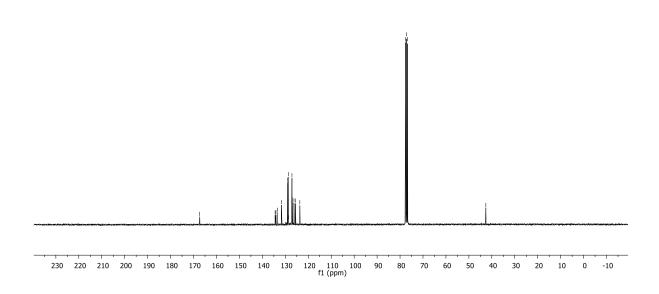


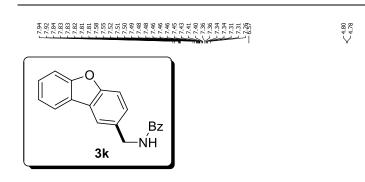


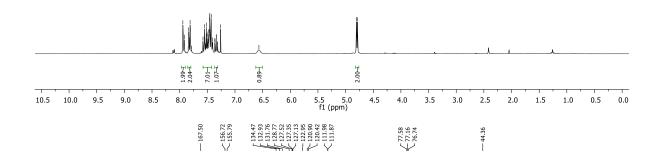


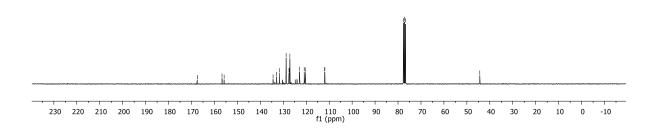


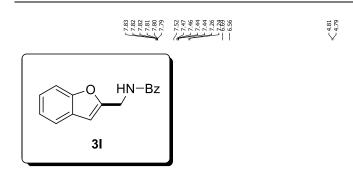


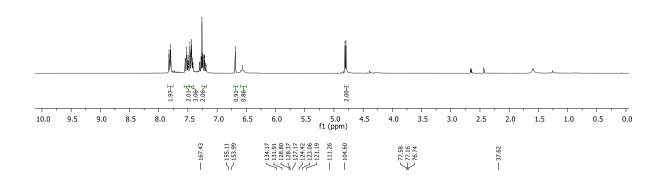


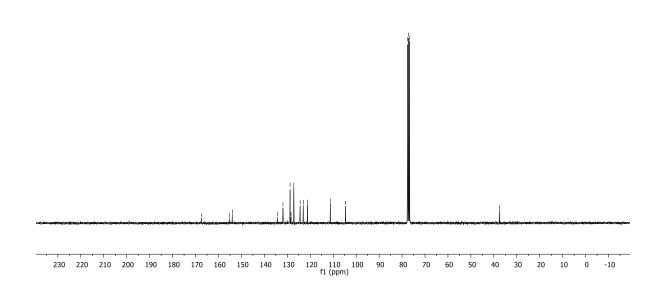


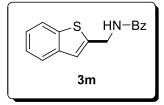


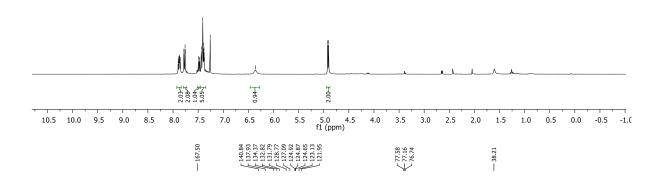


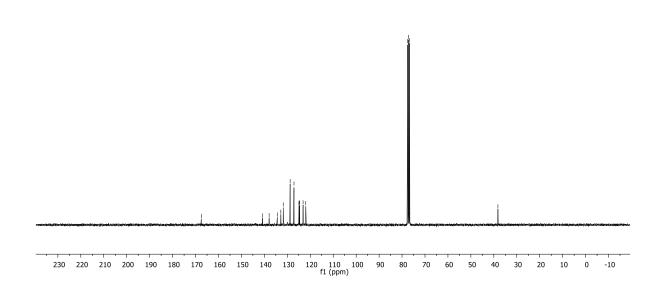


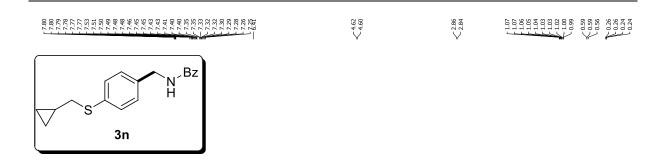


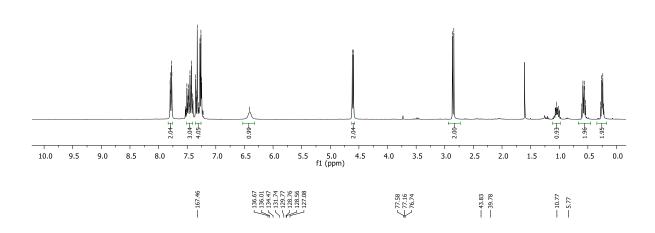


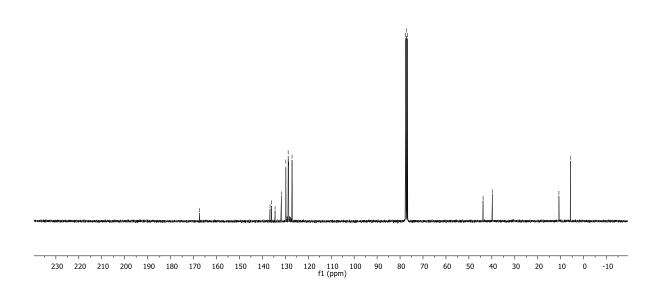


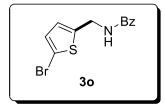


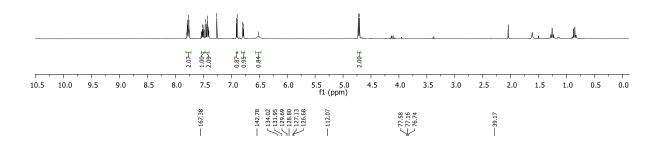


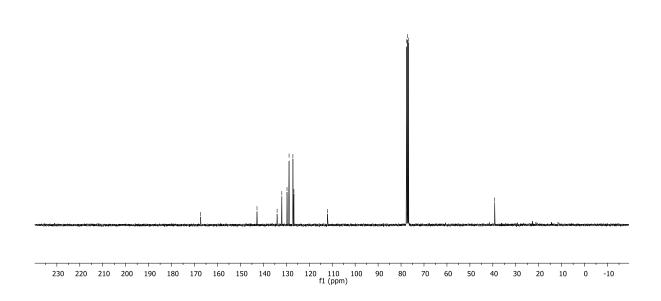


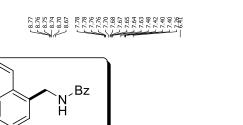


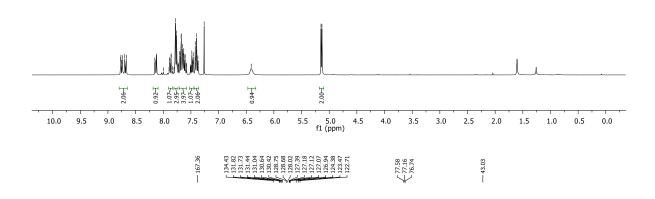


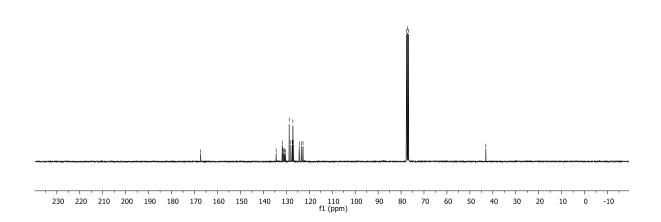


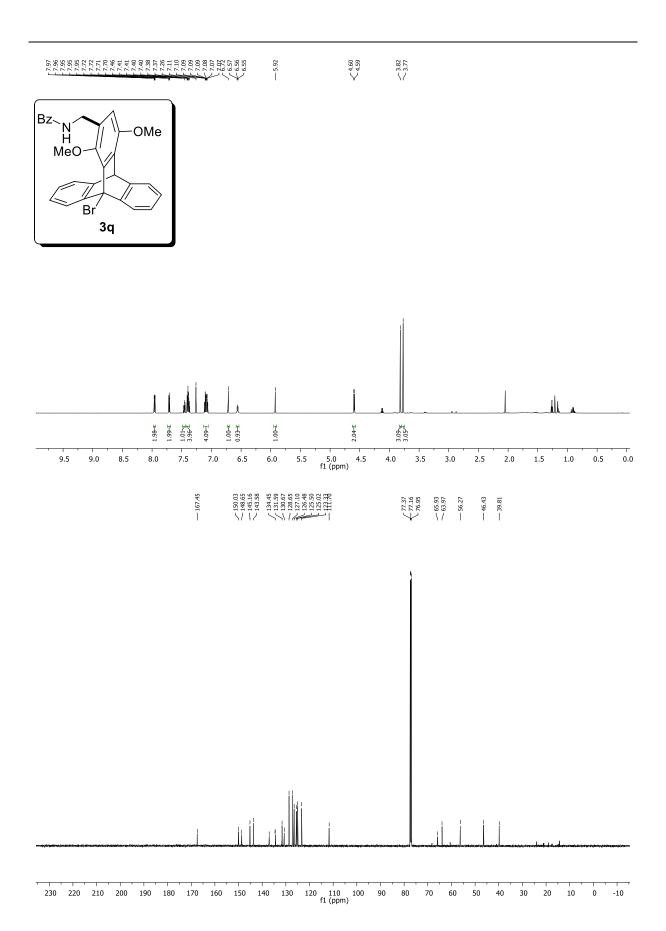


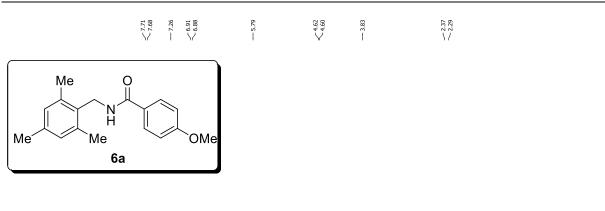


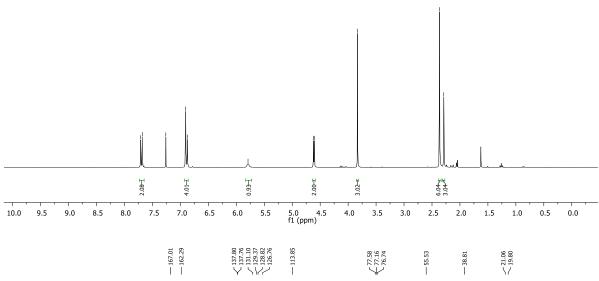


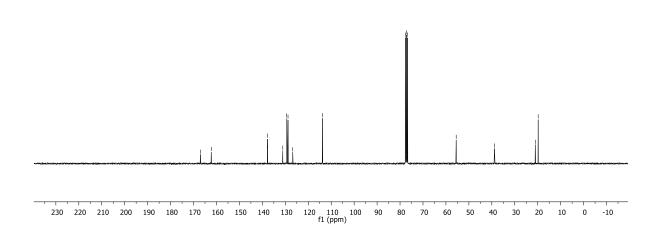


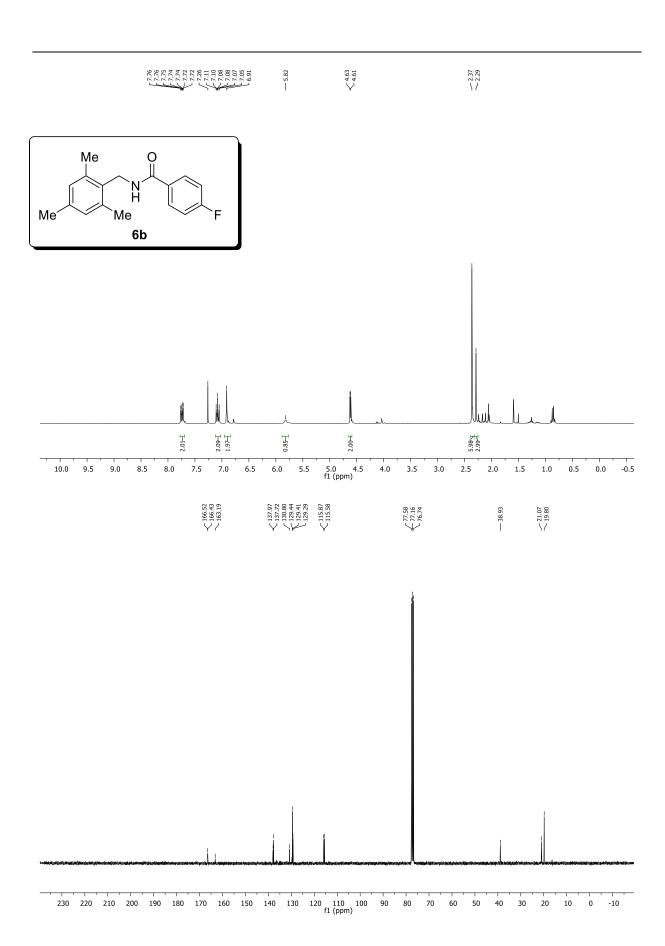


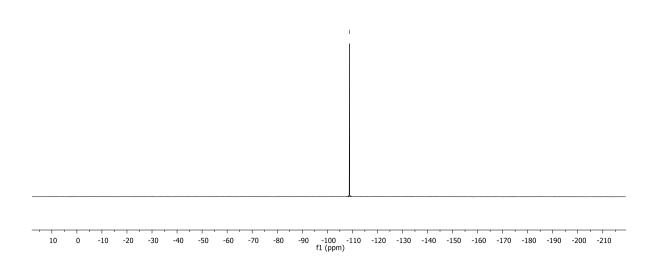


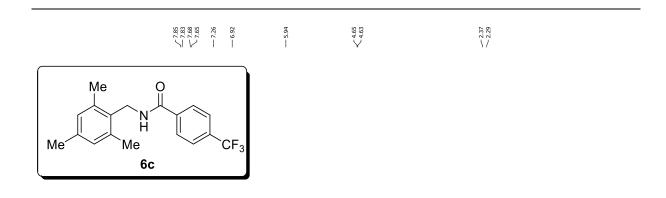


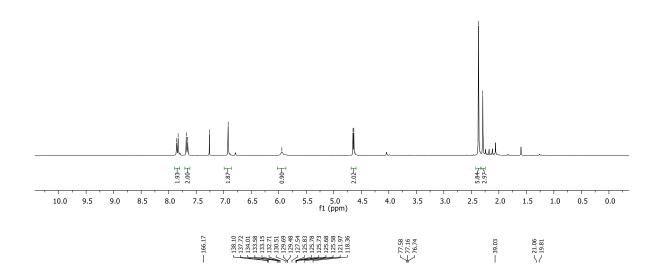

3р

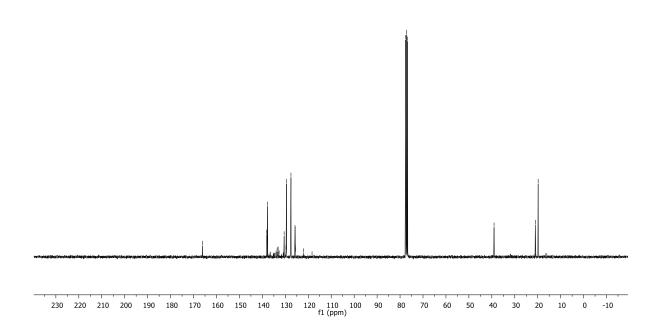


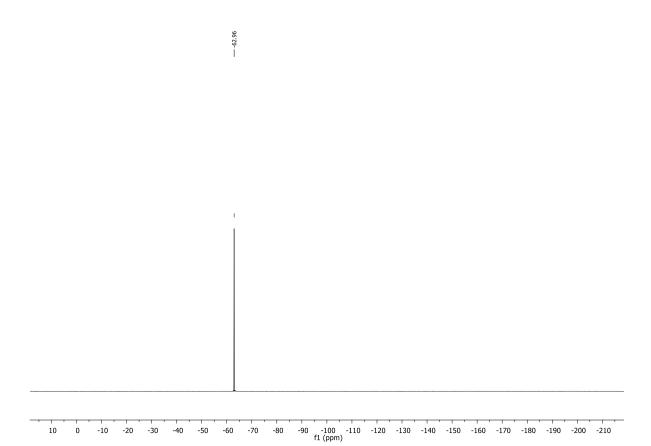


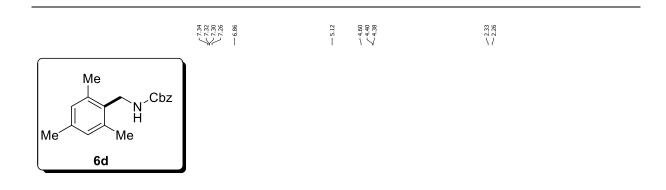


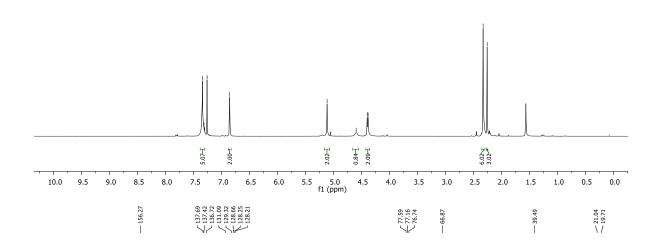


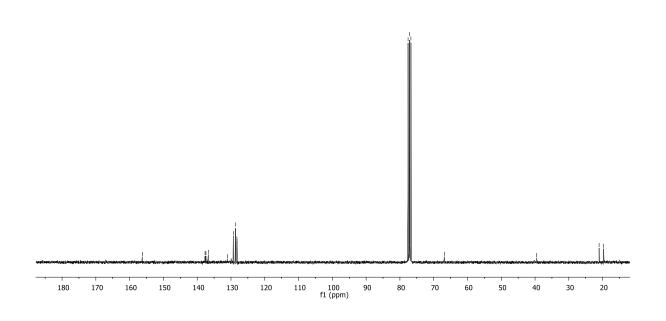


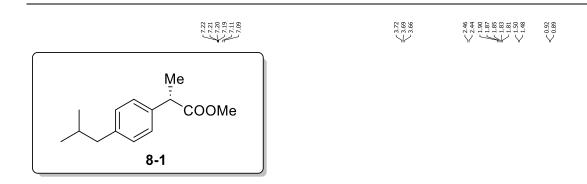


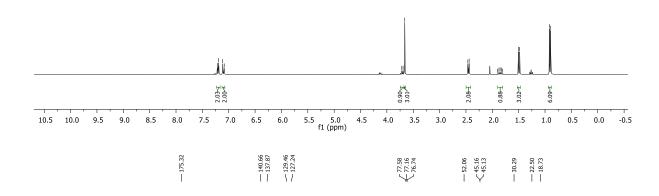


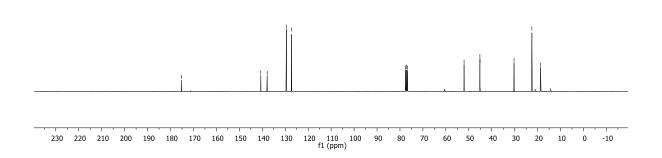


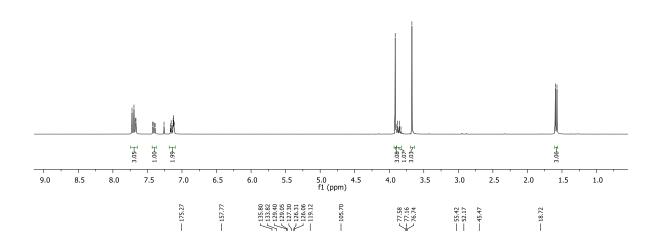


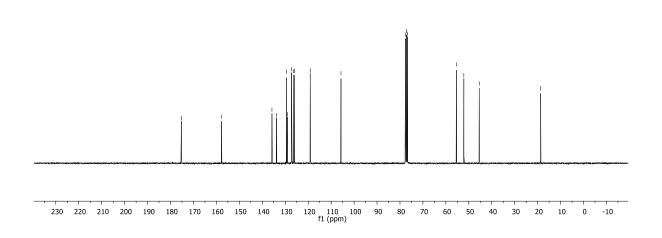


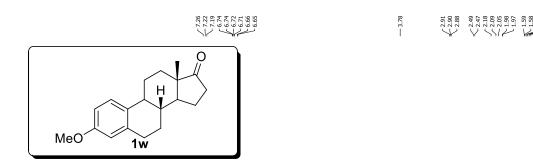


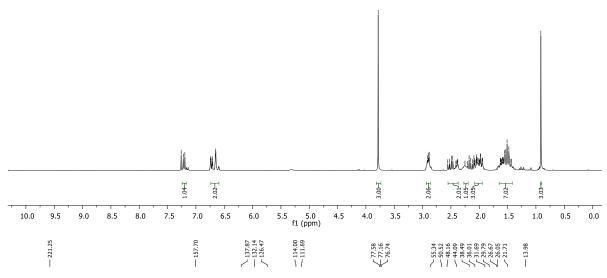


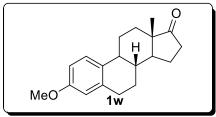


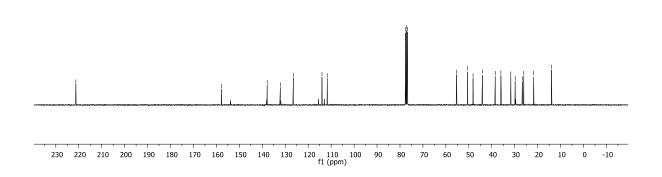


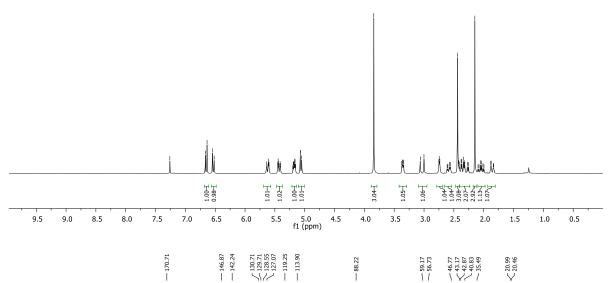


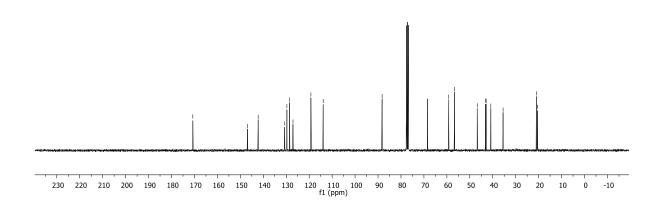


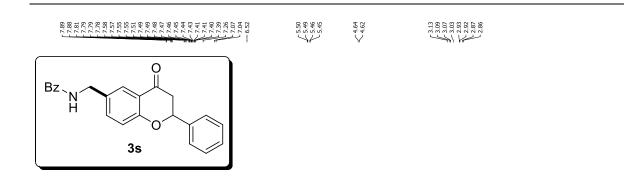


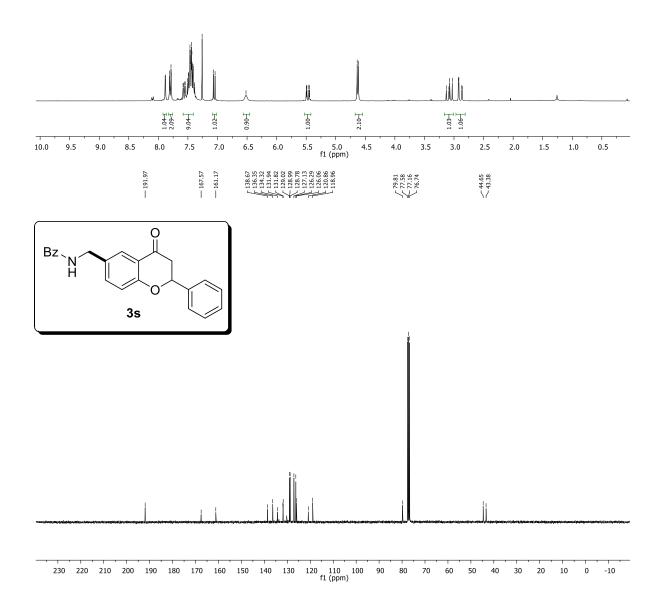


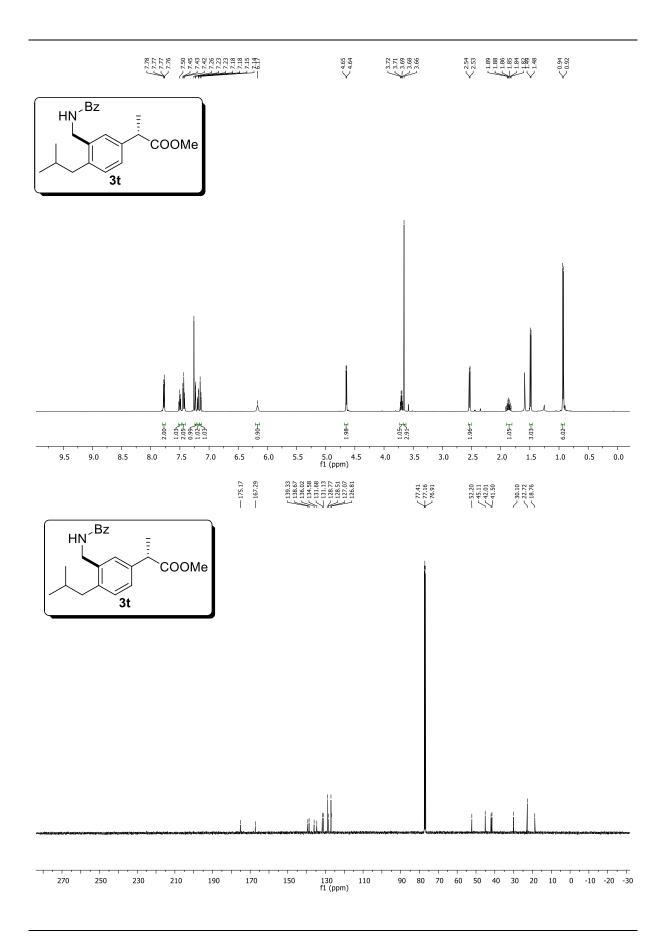


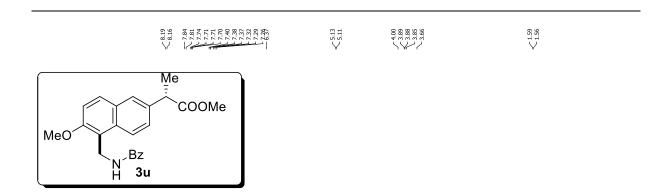




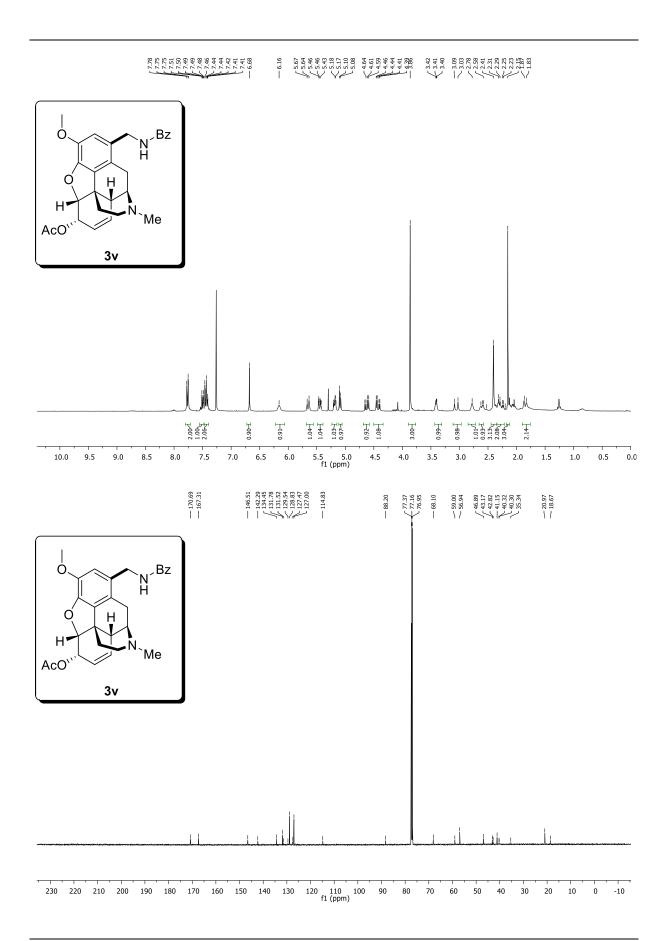


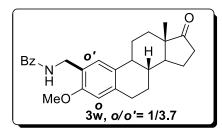


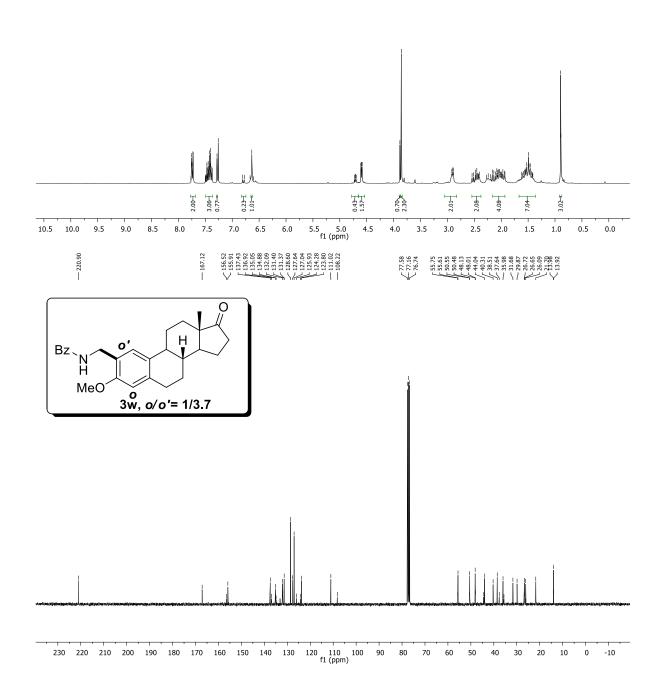


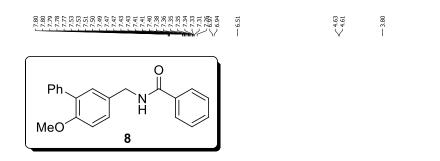


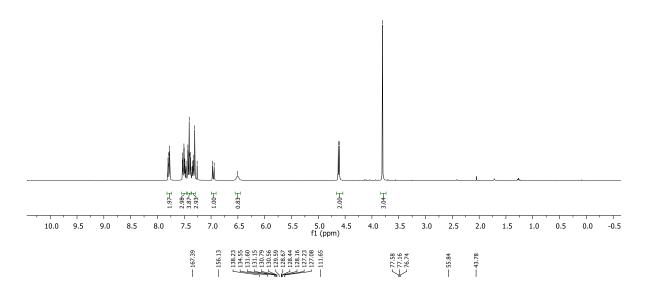


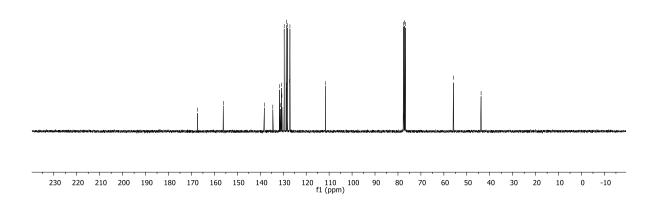


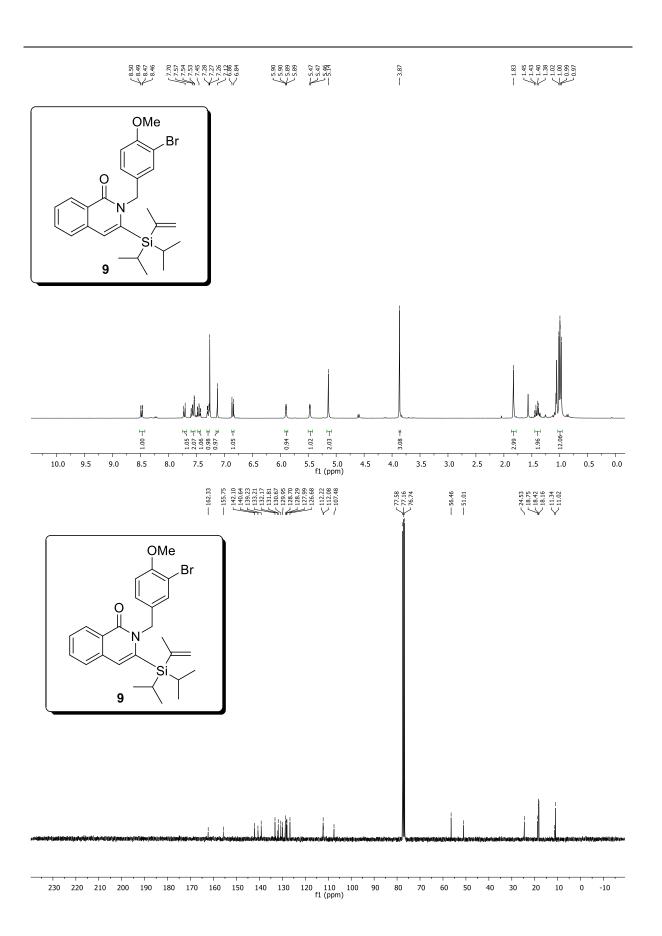


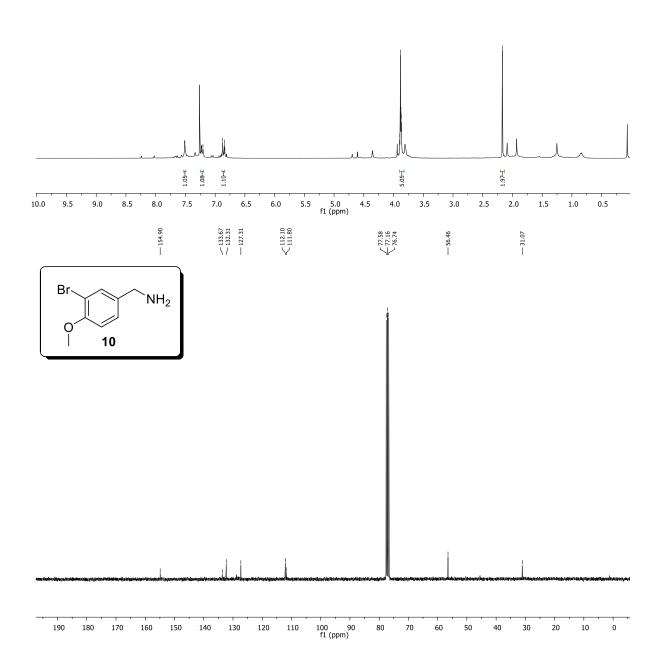


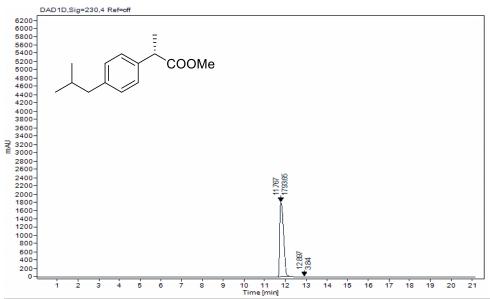


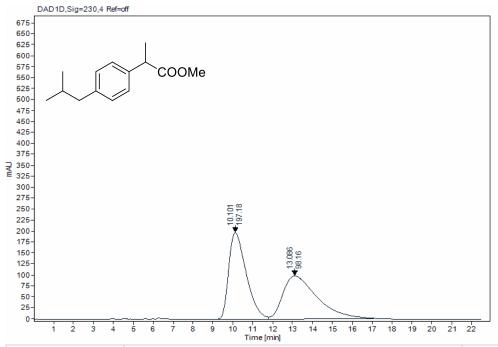


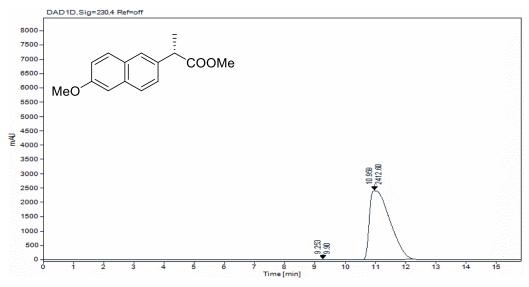

$\frac{1}{2} \frac{1}{2} \frac{1}$

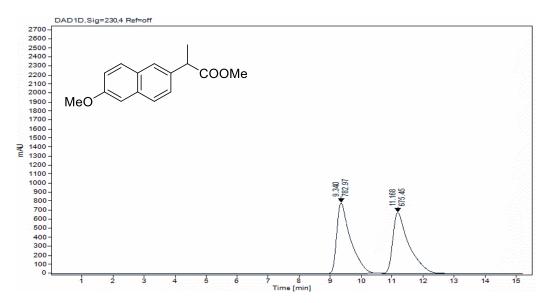


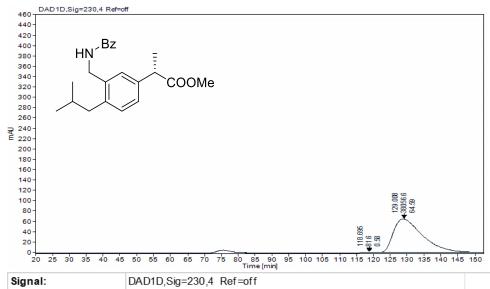


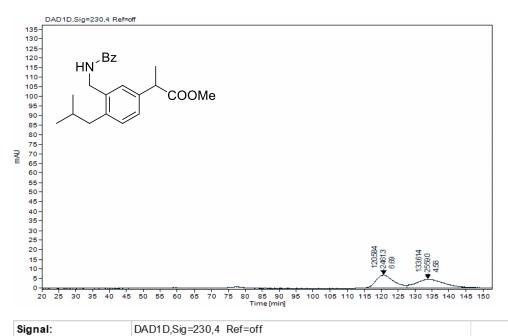


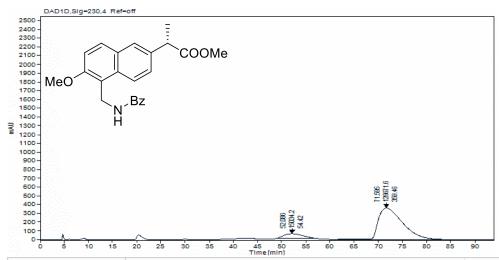


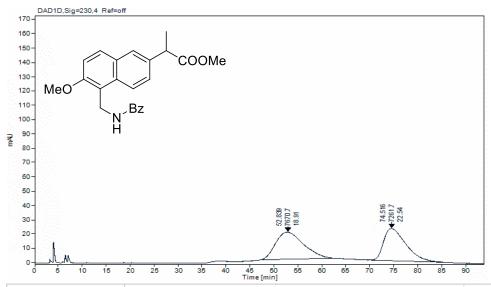

6. Chiral HPLC spectrums


Signal:	DAD1D,Sig=230,	4 Ref=off		
RT [min]	Width [m in]	Area	Height	Area%
11.767	0.7741	23074.7633	1793.6464	99.0574
12.897	1.5201	219.5656	3.8351	0.9426


Signal:	DA D1 D, Sig=230,4	Ref=off			
RT [min]	Width [min]	Area	Height	Area%	
10.101	2.5932	12073.261	197.1753	50.5183	
13.086	5.2813	11825.51	98.1568	49.4817	


Signal:	DAD1D,Sig=230,4	Ref=off			
RT [min]	Width [m in]	Area	Height	Area%	
9.253	1.3013	295.3429	9.9007	0.2605	
10.959	1.8564	113080.17	2412.6	99.7395	

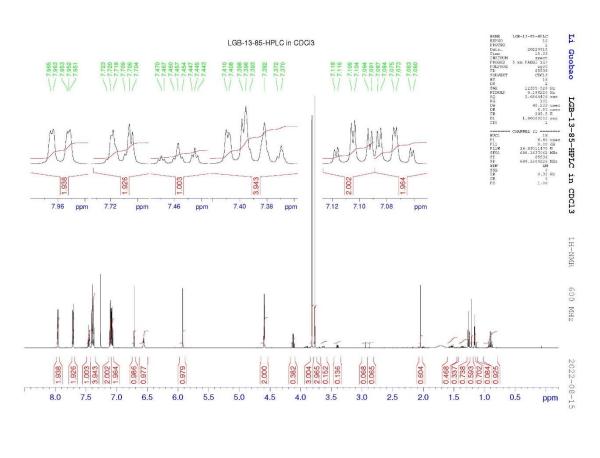

Signal:	DAD1D,Sig=230,4	Ref=off			
RT [min]	Width [m in]	Area	Height	Area%	·
9.34	1.7975	24050.205	782.9663	49.9862	
11.168	2.0745	24063.476	675.4506	50.0138	

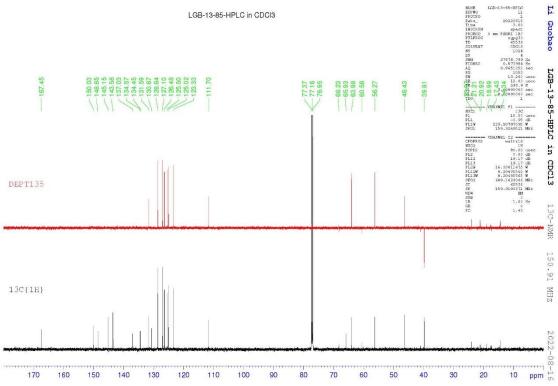

Signal:	DAD1D,Sig=230,4	Ref=off			
RT [min]	Width [m in]	Area	Height	Area%	
118.695	5.45	81.6034	0.5777	0.214	
129.008	26.3828	38056.584	64.592	99.786	

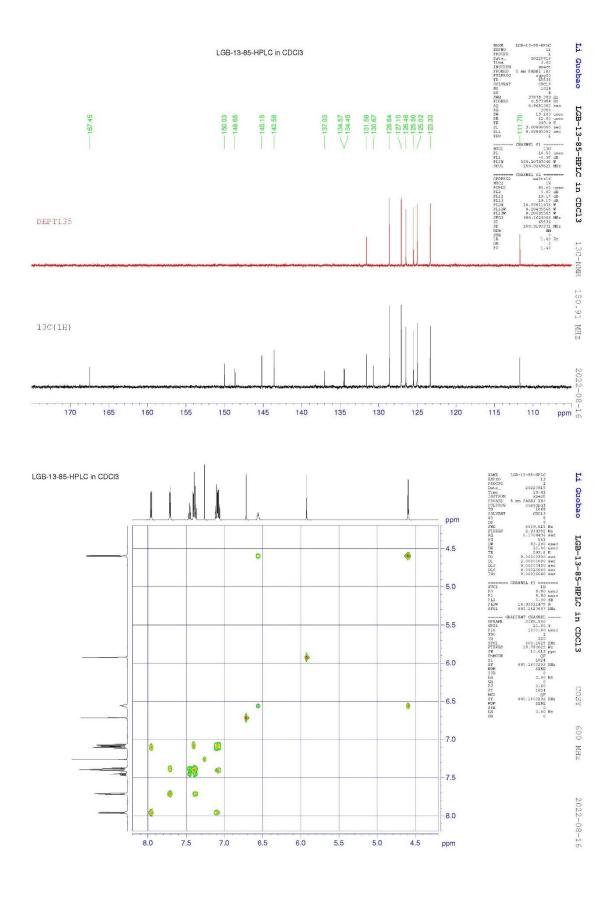
Signal:	DAD1D,Sig=230,4	Ref=off				
RT [min]	Width [min]	Area	Height	Area%		
120.584	12.2272	2461.296	6.6928	49.0267		
133.614	19.9129	2559.0206	4.5816	50.9733		

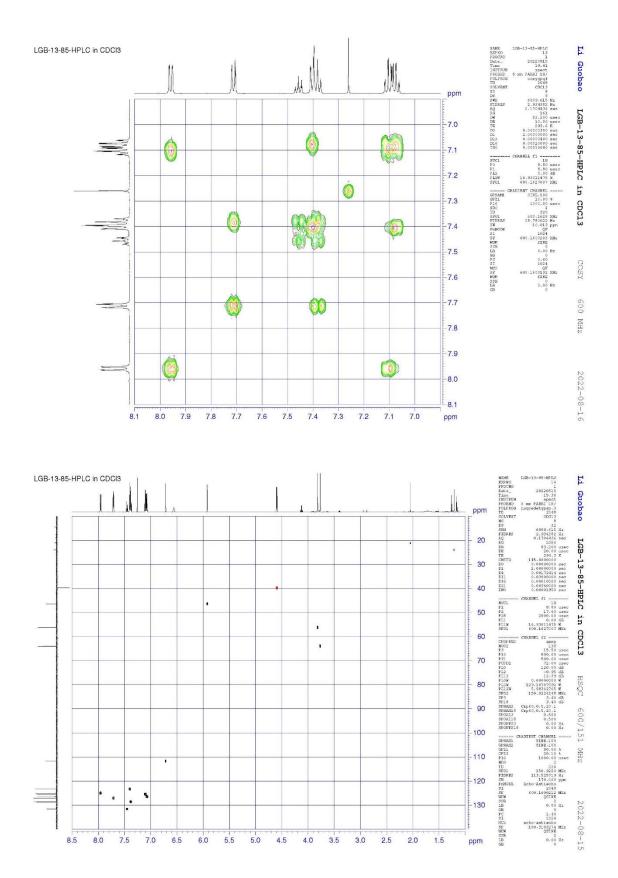
Signal:	DAD1D,Sig=230,4	Ref=off		
RT [min]	Width [min]	Area	Height	Area%
52.086	8.4119	15034.171	54.4174	10.6094
71.595	24.7219	126671.57	359.4567	89.3906

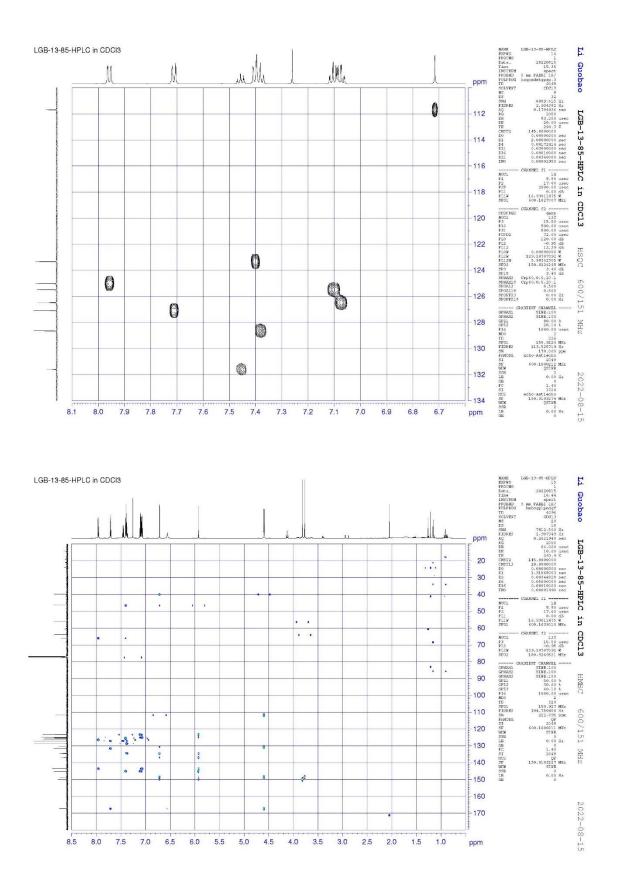
Signal:	DAD1D,Sig=230,4	Ref=off		
RT [min]	Width [min]	Area	Height	Area%
52.839	15.2954	7670.7384	18.9102	51.3696
74.516	18.358	7261.6945	22.5386	48.6304

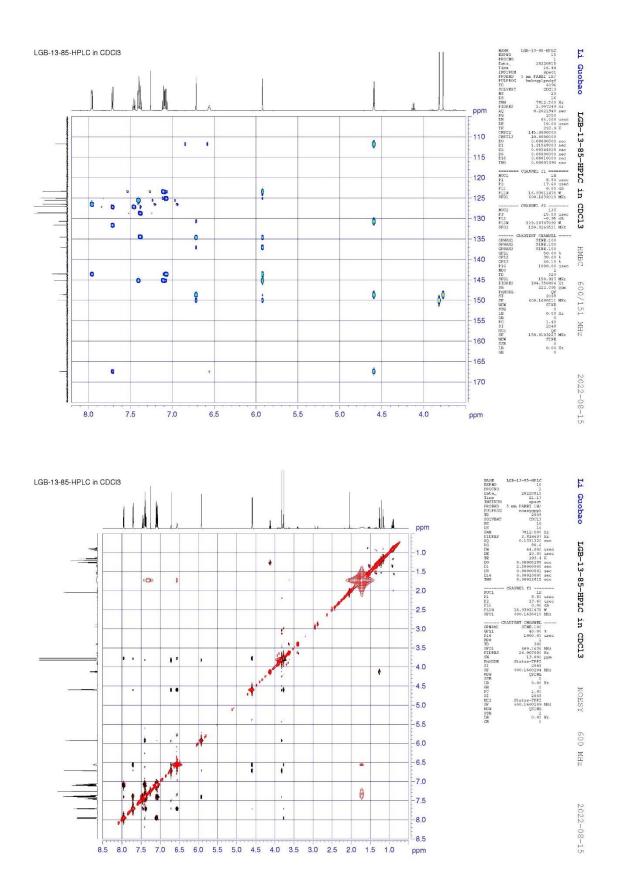

7. 2D- (¹H/¹H-, ¹H/¹³C-) NMR Spectra

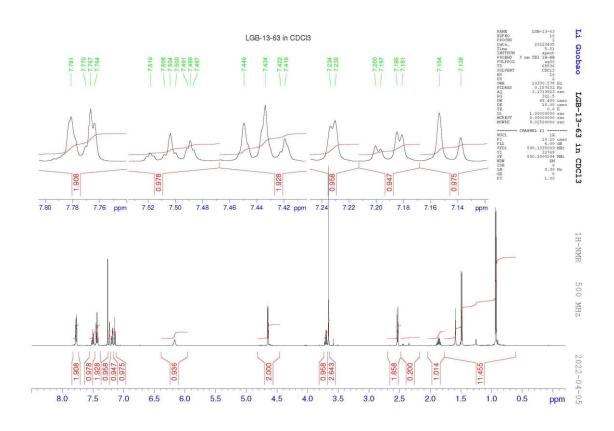

Li Guobao LGB-13-85-HPLC structure Avance600 2022-08-16 verification

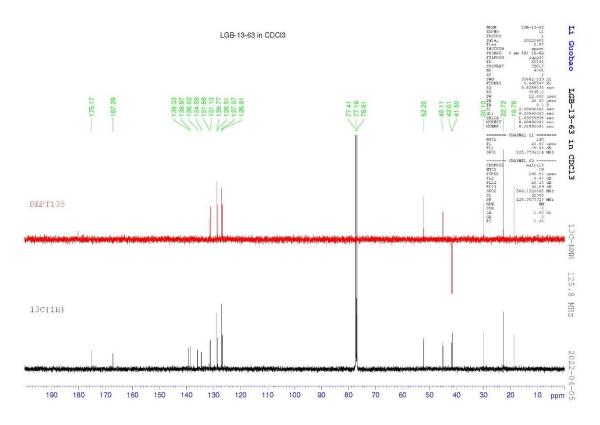

LGB-13-85 in CDCI₃

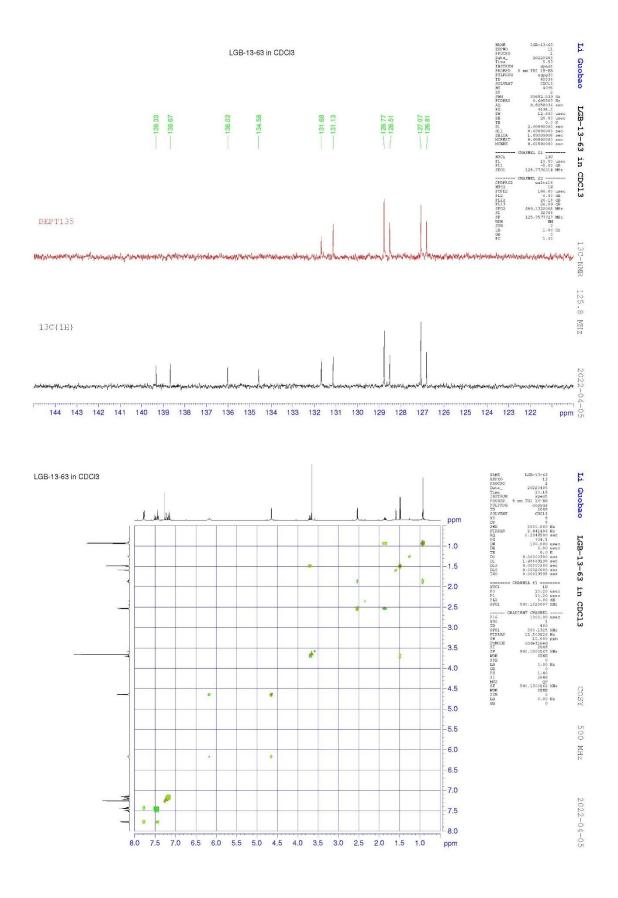

NMR Data were recorded at ambient temperature on a Bruker Avance III 600 spectrometer operating at 600.1 MHz for 1 H and 125.8 MHz for 13 C. Chemical shifts δ are given in ppm relative to TMS. The solvent signals were used as reference (1 H: $\delta_{\rm H}$ 7.260 ppm residual CHCl₃, 13 C: $\delta_{\rm C}$ 77.16 ppm). Coupling constants were given in Hertz and determined assuming first-order spin-spin coupling.

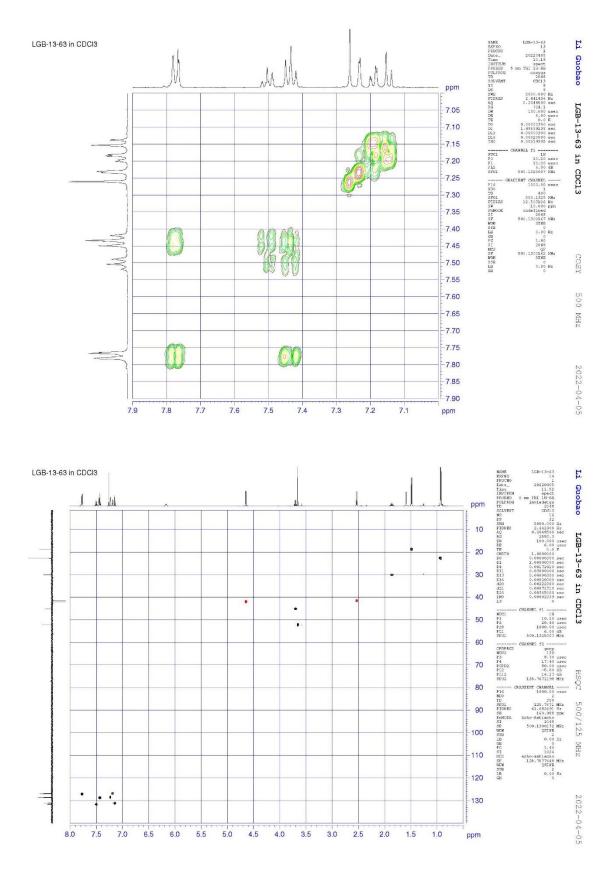

red ¹³C chemical shift blue ¹H chemical shift

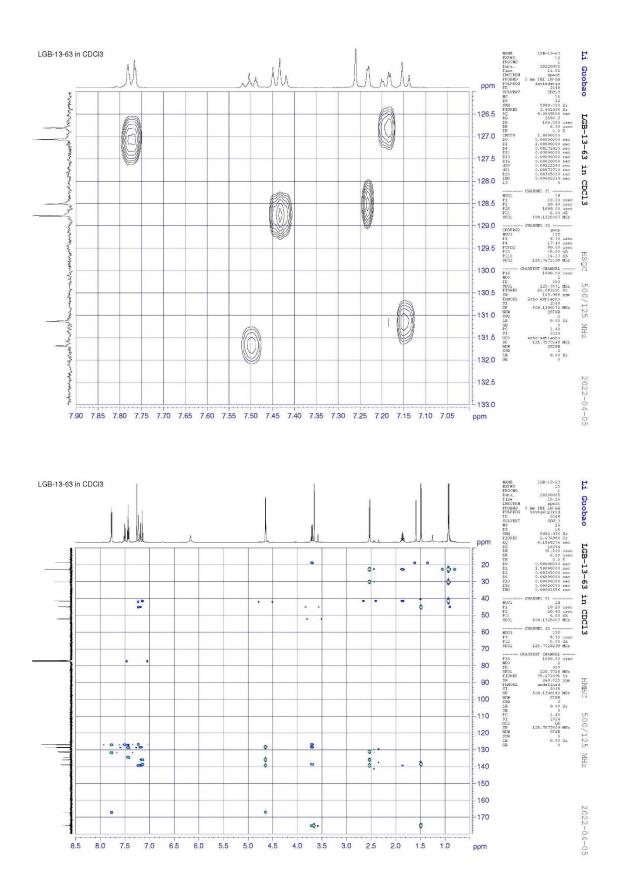


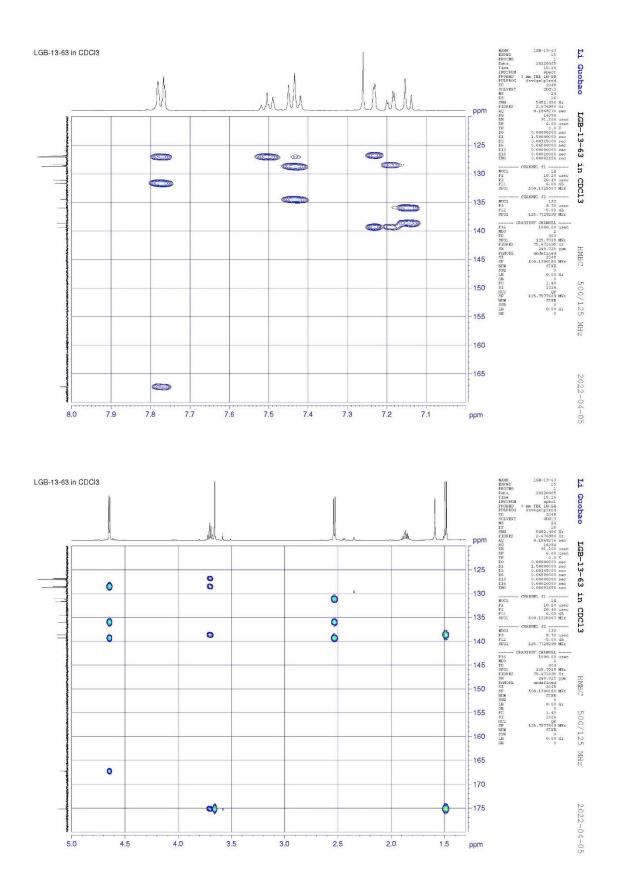


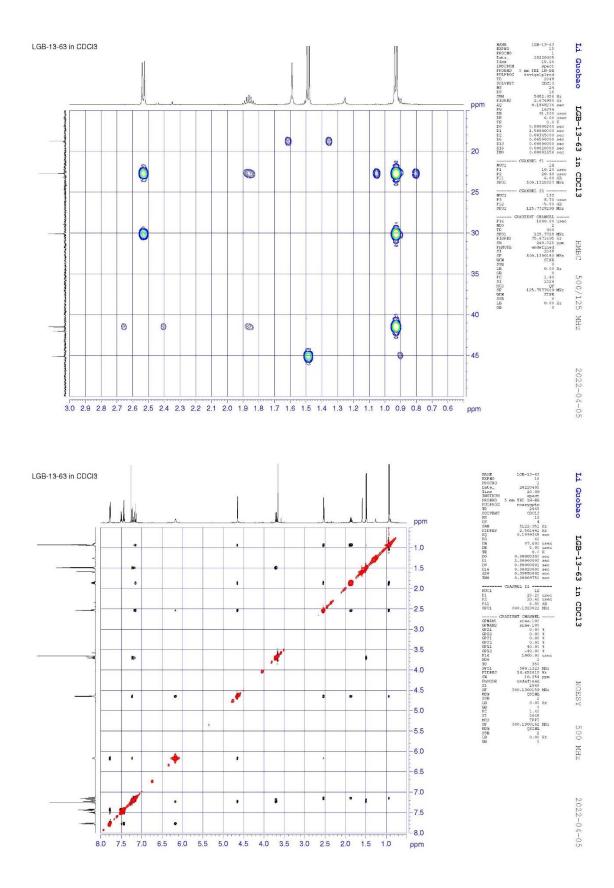


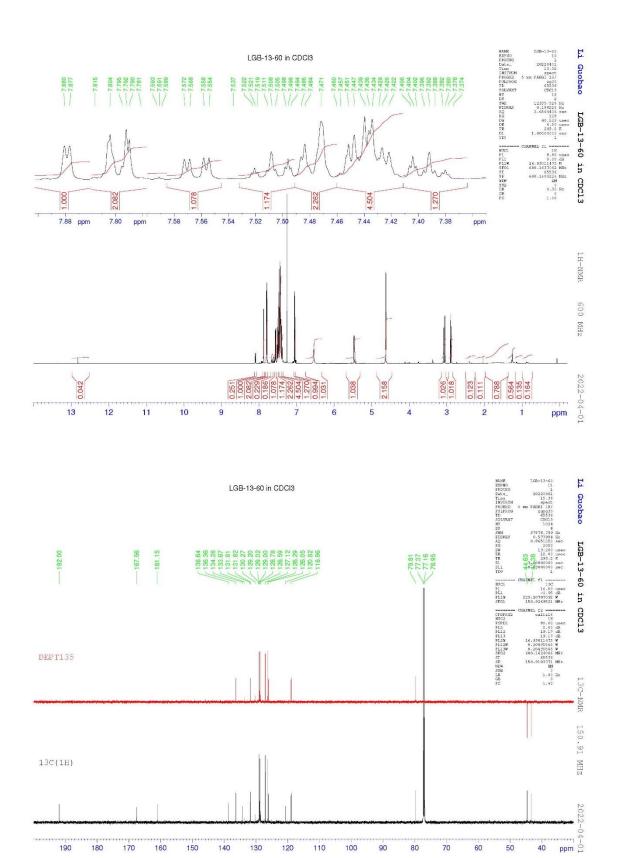

LGB-13-63 in CDCI₃

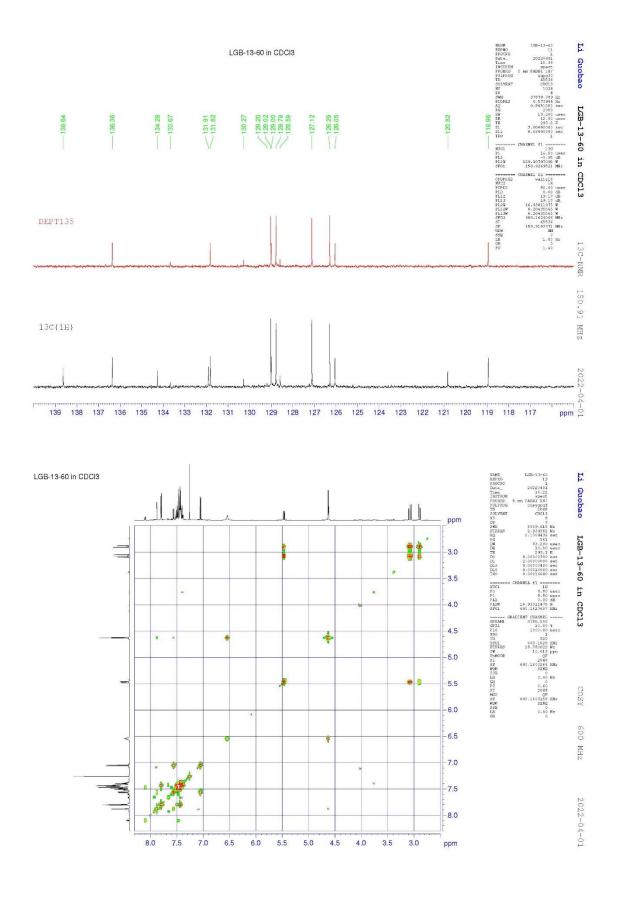

NMR Data were recorded at ambient temperature on a Bruker DRX 500 spectrometer operating at 500.1 MHz for 1 H and 125.8 MHz for 13 C. Chemical shifts δ are given in ppm relative to TMS. The solvent signals were used as reference (1 H: $\delta_{\rm H}$ 7.260 ppm residual CHCl₃, 13 C: $\delta_{\rm C}$ 77.16 ppm). Coupling constants were given in Hertz and determined assuming first-order spin-spin coupling.

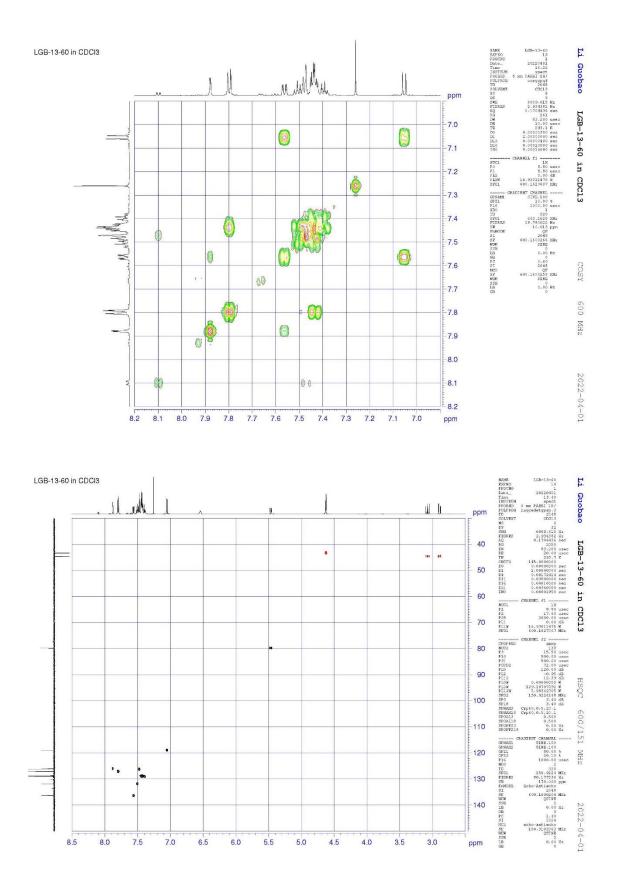

red ¹³C chemical shift blue ¹H chemical shift

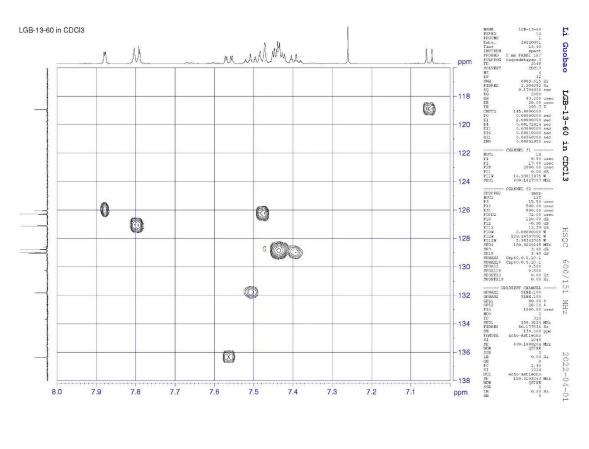


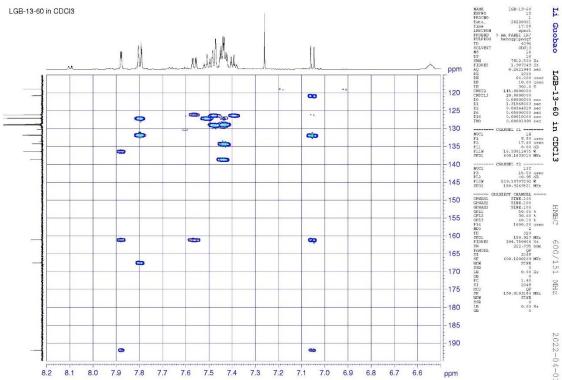





LGB-13-60 in CDCI₃


NMR Data were recorded at ambient temperature on a Bruker Avance III 600 spectrometer operating at 600.1 MHz for 1 H and 125.8 MHz for 13 C. Chemical shifts δ are given in ppm relative to TMS. The solvent signals were used as reference (1 H: $\delta_{\rm H}$ 7.260 ppm residual CHCl₃, 13 C: $\delta_{\rm C}$ 77.16 ppm). Coupling constants were given in Hertz and determined assuming first-order spin-spin coupling.


red ¹³C chemical shift blue ¹H chemical shift


* signal assignment not unambiguous

