Supplementary Information

An open-cage bis[60]fulleroid as electron transport material for tin halide perovskite solar cells

Wentao Liu, \dot{f}^{a} Guanglin Huang, \dot{f}^{a} Chien-Yu Chen, \dot{f}^{a} Tiancheng Tan, ${ }^{a}$ Harata Fuyuki ${ }^{a}$ Shuaifeng Hu, ${ }^{a}$ Tomoya Nakumura, ${ }^{a}$ Minh Anh Truong, ${ }^{a}$ Richard Murdey, ${ }^{a}$ Yoshifumi Hashikawa, ${ }^{a}$ Yasujiro Murata, ${ }^{a}$ and Atsushi Wakamiya ${ }^{a^{*}}$
*E-mail: yasujiro@scl.kyoto-u.ac.jp, wakamiya@scl.kyoto-u.ac.jp

Author Contributions

W. L., G. H., A.W., and Y.M. conceived the idea; G. H. synthesized and characterized the target compound and carried out UV, MS, HPLC, NMR measurements and DFT calculations; W. L. and C. C. fabricated the solar cell devices and measured the SEM, EQE, ideality factor, and stability; W. L., C. C. and R. M. measured AFM; G. H., T. T., and C. C. conducted CV measurements with the help of M. A. T.; C. C. and G. H. carried out the XPS measurements with the help of T. N. and F. H.; C. C. and G. H. conducted TGA measurements; C. C. and R.M. carried out EIS measurements; C. C. and F. H. conducted PL and TRPL measurements; C. C. carried out SCLC measurements; W. L., G. H., and C. C. prepared the manuscript. A. W., Y. M, R. M., Y. H., T. N., and S. H. edited and reviewed the manuscript; All authors commented on the manuscript; A. W. and Y. M. supervised the project.

Experimental section

Materials

Formamidinium iodide (FAI, 99.99\%) and bathocuproine (BCP) were purchased from Tokyo Chemical Industry Co., Ltd. (TCI). Ammonium thiocyanate ($\mathrm{NH}_{4} \mathrm{SCN}, 99.99 \%$ trace metals basis), $\operatorname{tin}\left(\right.$ II) fluoride ($\mathrm{SnF}_{2}, 99 \%$), and $\operatorname{tin}(\mathrm{II})$ iodide (SnI_{2}, beads, 99.99%, trace metals basis), ethane-1,2-diammonium iodide (ethylenediammonium diiodide, $\mathrm{EDAI}_{2}, \geq 98 \%$), and 1-chloronaphthalene ($1-\mathrm{ClNp}$) were purchased from Sigma-Aldrich Co., Ltd. (Sigma-Aldrich). Poly (3,4-ethylenedioxythiophene): poly (styrene sulfonate) (PEDOT:PSS) aqueous solution (Clevious PVP AI 4083) was purchased from Heraeus Co., Ltd. Fullerene C_{60} (sublimed, 99.99%) was purchased from ATR Company and Fullerene $\mathrm{C}_{60}(95 \%)$ for synthesis was purchased from SES Research Co. Phenyl-C $\mathrm{C}_{61}{ }^{-}$ butyric acid methyl ester (PCBM) and Indene- C_{60} bisadduct (ICBA) was purchased from Ossila. Zinc oxide (ZnO) nanoparticle ink was purchased from Sigma-Aldrich. Dehydrated dimethyl sulfoxide (DMSO, super dehydrated), dehydrated orthodichlorobenzene (ODCB), carbon disulfide $\left(\mathrm{CS}_{2}\right)$, dehydrated 1,2,4trichlorobenzene (TCB), and acetonitrile were purchased from FUJIFILM Wako Pure Chemical Co., Ltd. Dimethylformamide (DMF), toluene, and chlorobenzene were purchased from Kanto Chemical. Co., Inc. Hexane and toluene were purchased from Nacalai Tesque, Inc. All of these solvents that were used for the fabrication of devices were degassed by Ar gas bubbling for 1 h and further dried with molecular sieves ($3 \AA$) in an Ar-filled glove box $\left(\mathrm{H}_{2} \mathrm{O}, \mathrm{O}_{2}<0.1 \mathrm{ppm}\right)$ before use. Open-cage bis[60]fulleroid (OC) was synthesized according to the literature. ${ }^{1}$ Unless otherwise noted, materials purchased from commercial suppliers were used without further purification. All reactions were carried out under an Ar atmosphere. All the materials were used as received.

Preparation of perovskite films

PEA $_{0.15} \mathbf{F A}_{\mathbf{0 . 8 5}} \mathbf{S n I}_{\mathbf{3}}$

$0.8 \mathrm{M} \mathrm{PEA}_{0.15} \mathrm{FA}_{0.85} \mathrm{SnI}_{3}$ perovskite solution was prepared by dissolving PEAI (30.0 mg , $0.12 \mathrm{mmol})$, FAI ($116.9 \mathrm{mg}, 0.68 \mathrm{mmol}), \mathrm{SnI}_{2}(298.0 \mathrm{mg}, 0.8 \mathrm{mmol}) \mathrm{SnF}_{2}(9.4 \mathrm{mg}, 0.06$
$\mathrm{mmol})$ and $\mathrm{NH}_{4} \mathrm{SCN}(3.0 \mathrm{mg}, 0.04 \mathrm{mmol})$ in a mixed solvent of 0.8 mL DMF and 0.2 mL DMSO. The precursor solution was stirred at $70^{\circ} \mathrm{C}$ for 1 h and filtered through a 0.20 $\mu \mathrm{m}$ PTFE filter before spin-coating. After the precursor solution was cooled down to room temperature, $100 \mu \mathrm{~L}$ of the precursor solution was spin-coated at 5000 rpm for 50 s with an acceleration of $1000 \mathrm{rpm} \mathrm{s}^{-1}$ (total time for spin-coating is 55 s). $500 \mu \mathrm{~L}$ of toluene antisolvent was dripped onto the surface of the spinning substrate at 52 s during the spinning. Then, the substrate was immediately annealed on a $70^{\circ} \mathrm{C}$ hot plate for 10 min . All the steps above were conducted in an Ar-filled glove box $\left(\mathrm{H}_{2} \mathrm{O}, \mathrm{O}_{2}<0.1 \mathrm{ppm}\right)$.

$\mathbf{F A}_{\mathbf{0 . 7 5}} \mathbf{M A}_{\mathbf{0 . 2 5}} \mathbf{S n I}_{\mathbf{3}}$

$1.0 \mathrm{M} \mathrm{FA}_{0.75} \mathrm{MA}_{0.25} \mathrm{SnI}_{3}$ perovskite solution was prepared by dissolving FAI (129.0 mg , 0.75 mmol), MAI ($39.8 \mathrm{mg}, 0.25 \mathrm{mmol}$), $\mathrm{SnI}_{2}(372.6 \mathrm{mg}, 1.0 \mathrm{mmol})$ and $\mathrm{SnF}_{2}(15.7 \mathrm{mg}$, 0.1 mmol) in 1.0 mL DMSO. The precursor solution was stirred at $45^{\circ} \mathrm{C}$ for 1.5 h and filtered through a $0.20 \mu \mathrm{~m}$ PTFE filter before spin-coating. After the precursor solution was cooled down to room temperature, $200 \mu \mathrm{~L}$ of the precursor solution was spin-coated at 5000 rpm for 60 s with an acceleration of $1000 \mathrm{rpm} \mathrm{s}^{-1} .300 \mu \mathrm{~L}$ chlorobenzene (preheated to $65^{\circ} \mathrm{C}$) was used as antisolvent and dripped slowly onto the surface of spinning substrate at 2 s during the spin-coating step. The substrate was immediately annealed at $65^{\circ} \mathrm{C}$ for over 10 min and then $100^{\circ} \mathrm{C}$ for 10 min . All the steps above were conducted in an Ar-filled glove box $\left(\mathrm{H}_{2} \mathrm{O}<0.1 \mathrm{ppm}, \mathrm{O}_{2}<0.1 \mathrm{ppm}\right)$.

Device fabrication

Glass/ITO substrates ($10 \Omega \mathrm{sq}^{-1}$, Geomatec Co., Ltd.) were etched with zinc powder and HCl (6 M in deionized water), then consecutively cleaned with water, acetone, detergent solution (Semico Clean 56, Furuuchi chemical), water, and isopropyl alcohol with 15 min ultrasonic bath under each step. Before coating the PEDOT:PSS, plasma treatment was applied to clean the substrates. PEDOT:PSS aqueous dispersion was filtered through a $0.45 \mu \mathrm{~m}$ PTFE filter and then spin-coated on the ITO glass surface at 1000 rpm for 10 s and 4000 rpm for 30 s , and then annealed at $140^{\circ} \mathrm{C}$ for 20 min under air. The substrates were transferred to an Ar-filled glove box $\left(\mathrm{H}_{2} \mathrm{O}, \mathrm{O}_{2}<0.1 \mathrm{ppm}\right)$ and annealed at $140{ }^{\circ} \mathrm{C}$ for another 20 min . The perovskite layer was fabricated on PEDOT:PSS following the above-mentioned procedure. For EDAI_{2} post-treatment, $1.0 \mathrm{mg} \mathrm{EDAI}_{2}$ was added to 1.0
mL IPA and 1.0 mL toluene. The mixed solution was stirred at $70^{\circ} \mathrm{C}$ for 3 h and then filtered through a $0.20 \mu \mathrm{~m}$ PTFE filter before spin coating. After that, $150 \mu \mathrm{~L}$ solution was dynamically spin-coated onto perovskite films. The spin coating process was set as 4000 rpm for 20 s with an acceleration of $1333 \mathrm{rpm} \mathrm{s}^{-1}$. Following spin coating, the films were immediately annealed at $70^{\circ} \mathrm{C}$ for around 5 min . Subsequently, $15 \mathrm{mg} \mathrm{mL}^{-1}$ solution of PCBM, OC or ICBA in $\mathrm{CB} / \mathrm{CS}_{2} / \mathrm{TCB}(10 / 5 / 1, \mathrm{v} / \mathrm{v})$ was spin-coated at 2000 rpm for 30 s, followed by annealing at $70^{\circ} \mathrm{C}$ for 10 min .8 nm of bathocuproine $\left(0.01 \mathrm{~nm} \mathrm{~s}^{-1}\right)$ was then deposited by thermal evaporation. Finally, 100 nm of Ag was deposited through a shadow mask to form the metal electrode. The deposition rate for Ag was set as 0.003 nm s^{-1} until the thickness reached 5 nm , then $0.01 \mathrm{~nm} \mathrm{~s}^{-1}$ until 20 nm , and finally $0.08 \mathrm{~nm} \mathrm{~s}^{-1}$ until the target thickness was reached. The overlap area of the bottom ITO and the uppermost silver electrode of the devices was $0.15 \mathrm{~cm}^{2}$.

The device for electron-only devices for SCLC (space-charge limited current) measurements adopted the device structures of glass $/ \mathrm{ITO} / \mathrm{ZnO} / \mathrm{ETM} / \mathrm{BCP} / \mathrm{Ag} . \mathrm{ZnO}$ was filtered through a $0.45 \mu \mathrm{~m}$ PTFE filter and then spin-coated on the plasma-treated ITO glass at 3000 rpm for 30 s , followed by thermal annealing at $200^{\circ} \mathrm{C}$ for 30 min under air. After the samples were transferred to an Ar-filled glove box, $30 \mathrm{mg} \mathrm{mL}^{-1}$ solution of PCBM, OC, or ICBA in CB/CS $/$ /TCB ($10 / 5 / 1, \mathrm{v} / \mathrm{v}$) was filtrated through $0.20 \mu \mathrm{~m}$ PTFE filters. The filtrated solutions were subsequently spin-coated at 2000 rpm for 30 s on the ITO/ ZnO samples, followed by thermal annealing at $70^{\circ} \mathrm{C}$ for 10 min . We note that the concentration of $30 \mathrm{mg} \mathrm{mL}^{-1}$ is slightly higher than the solubility of OC in $\mathrm{CB} / \mathrm{CS}_{2} / \mathrm{TCB}$ (10/5/1, v/v) so the OC solution formed a saturated solution. Lastly, BCP and Ag were deposited using the same procedure employed for the fabrication of solar cells. The overlap area of the bottom ITO and the uppermost silver electrode of the devices is 0.15 cm^{2}.

For the measurements of photoluminescence (PL) and time-resolved photoluminescence (TRPL), the perovskite and perovskite/ETM samples were prepared using the same procedure employed for the fabrication of the solar cells, except the substrate was changed to plasma-treated quartz.

Characterization

Scanning electron microscopy (SEM) was performed with a Hitachi S8010 ultra-highresolution scanning electron microscope (Hitachi High-Tech Corporation). Atomic force microscopy (AFM) was performed with a Picoscan Plus AFM instrument used in ACmode with Nanoworld NCST probes. UV-vis absorption measurement was performed with a JASCO V-780 spectrophotometer.

Cyclic voltammetry (CV) of thin film was performed on an ALS/chi-620C electrochemical analyzer using a three-electrode cell with an ETMs-adsorbed ITO working electrode, a Pt wire counter electrode, and an $\mathrm{Ag} / \mathrm{AgNO}_{3}$ reference electrode. The films of ETMs were spin-coated on a plasma-treated ITO surface (condition: 15 mg $\mathrm{mL}^{-1} \mathrm{CB} / \mathrm{CS}_{2} / \mathrm{TCB}(10 / 5 / 1 \mathrm{v} / \mathrm{v})$ solution of ETMs, 2000 rpm). The measurements were carried out using acetonitrile solution of 0.1 M tetrabutylammonium hexafluorophosphate $\left(n \mathrm{Bu}_{4} \mathrm{NPF}_{6}\right)$ as a supporting electrolyte. The redox potentials were calibrated with ferrocene as an internal standard. The area of the working electrode dipped into the electrolyte solution is $0.9 \mathrm{~cm} \times 1.25 \mathrm{~cm}$. The measurement of CV in solutions was performed on an ALS/chi-620C electrochemical analyzer using a three-electrode cell with a glassy carbon working electrode, a platinum wire counter electrode, and an $\mathrm{Ag} / \mathrm{AgNO}_{3}$ reference electrode. The measurements were carried out using 1 mM solutions of ETMs and 0.1 M tetrabutylammonium tetrafluoroborate $\left(\mathrm{TBABF}_{4}\right)$ as a supporting electrolyte, and the potentials were calibrated with ferrocene used as an internal standard which was added after each measurement. The CV measurements were carried out under an argon atmosphere.

Photocurrent-voltage ($J-V$) curves were measured in an N_{2}-filled glove box $\left(\mathrm{H}_{2} \mathrm{O}, \mathrm{O}_{2}\right.$ $<0.1 \mathrm{ppm}$) with an OTENTO-SUN-P1G solar simulator (Bunkoukeiki Co., Ltd.). The light intensity of the illumination source was calibrated using a standard silicon photodiode. The active area of the devices was $0.0985 \mathrm{~cm}^{2}$ as defined by the aperture of the shadow mask placed between the light source and test cells.

Each device was measured with a $10-\mathrm{mV}$ voltage step and a 100 ms time step (i.e., scan rate of $0.1 \mathrm{~V} \mathrm{~s}^{-1}$) using a Keithley 2400 source meter.

External quantum efficiency (EQE) were measured with a Bunkoukeiki SMO-250III system equipped with a Bunkoukeiki SM-250 diffuse reflection unit (Bunkoukeiki Co.,

Ltd.). The incident light intensity was calibrated with a standard SiPD S1337-1010BQ silicon photodiode.

Impedance spectroscopy data was obtained with an E4990A impedance analyzer (Keysight) with an oscillator voltage of 30 mV , in the frequency range of $20-200,000 \mathrm{~Hz}$. The measurements were performed with the devices exposed to AM1.5G-equivalent radiation in an inert atmosphere, with a $0.1 \mathrm{~cm}^{2}$ shadow mask. The impedance data was fit by a series resistor $\left(r_{\mathrm{s}}\right)$ along with a capacitor $\left(c_{\mathrm{p}}\right)$ in parallel with a resistor $\left(r_{\mathrm{p}}\right)$.

SCLC measurements were measured in the dark in a glove box with a Keithley 2400 source meter. The electrons were injected from BCP/Ag and collected at ITO/ZnO. The voltage was increased logarithmically scanning from low to high voltage. The SCLC
electron mobility of the ETMs was fitted using the Mott-Gurney equation ${ }^{2,3} J=\overline{8} \varepsilon_{0} \varepsilon_{\mathrm{r}}$ $\mu_{\mathrm{e}} V^{2} d^{-3}$, where $J, \varepsilon_{0,}, \varepsilon_{\mathrm{r}}, \mu_{\mathrm{e}}, V, d$ are the current density of the device, vacuum permittivity ($8.854 \times 10^{-12} \mathrm{~F} / \mathrm{m}$), relative permittivity of the ETM, SCLC electron mobility, bias voltage, and the thickness of the ETM, respectively. The ε_{r} values were assumed to be 3 for all ETMs. The thicknesses were $77 \mathrm{~nm}, 67 \mathrm{~nm}$, and 86 nm for PCBM, OC, and ICBA, respectively, determined based on their respective cross-sectional SEM images.

For the PL and TRPL measurements, the samples were excited from the substrate side by a picosecond pulsed light with a wavelength of 688 nm (Advanced Laser Diode System). The excitation fluence was set at $100 \mathrm{~nJ} \mathrm{~cm}{ }^{-2}$. The PL spectra were collected from the substrate side and were recorded using an N_{2}-cooled charge-coupled-device array equipped with a monochromator (Princeton Instruments). The TRPL signals were recorded using an avalanche photodiode (ID Quantique) and a time-correlated single photon counting board (PicoQuant). The TRPL traces were fitted with a double exponential function $\operatorname{PL}(t)=\mathrm{A}_{1} \exp \left(-t / \tau_{1}\right)+\mathrm{A}_{2} \exp \left(-t / \tau_{2}\right)$, and the average PL lifetimes were calculated using the equation $\tau_{\text {avg }}=\left(\mathrm{A}_{1} \tau_{1}{ }^{2}+\mathrm{A}_{2} \tau_{2}{ }^{2}\right) /\left(\mathrm{A}_{1} \tau_{1}+\mathrm{A}_{2} \tau_{2}\right)$. During the measurement, the samples were kept in an Ar-filled metallic box with quartz windows to avoid oxygen contamination and degradation.

The ${ }^{1} \mathrm{H}$ measurements were carried out at room temperature (unless otherwise noted) with JEOL JNM ECA500 and Bruker Advance III 400 spectrometer. The NMR chemical shifts
were reported in ppm with reference to residual protons and carbons of acetone- $d_{6}(\delta 2.05$ ppm in ${ }^{1} \mathrm{H}$ NMR) and DMSO- $d_{6}\left(\delta 2.50 \mathrm{ppm}\right.$ in ${ }^{1} \mathrm{H}$ NMR $)$. Atmospheric pressure chemical ionization (APCI) mass spectra were measured on a Bruker micrOTOF-Q II. The highperformance liquid chromatography (HPLC) was performed with the use of a Cosmosil Buckyprep column (250 mm in length, 4.6 mm in inner diameter) for analytical purpose and the same columns (two directly connected columns; 250 mm in length, 20 mm in inner diameter) for preparative purpose. Column chromatography was performed using PSQ 60B (Fuji Silysia). XPS was recorded with a JPS-9010 (JEOLCo.,Ltd.) instrument, with an X-ray energy of $1.5 \mathrm{keV}(\mathrm{Al} \mathrm{K} \alpha)$, a step of 0.1 eV , and a dwell time of 200 ms . The perovskite film samples were transferred to the XPS chamber through an Ar-filled transfer vessel in order to avoid oxygen contamination.

Computational Methods

Theoretical calculations were performed using the Gaussian 09 software package. Ground state structures were optimized at the B3LYP-D3/6-31G(d,p) level of theory without any symmetry assumptions and confirmed by frequency analyses at the same level of theory.

Synthesis of OC

The purity of OC in this study was confirmed by the ${ }^{1} \mathrm{H}$ NMR and MS data shown below.

Supplementary Figures and Tables

Figure S1. ${ }^{1} \mathrm{H}$ NMR spectra ($500 \mathrm{MHz}, \mathrm{CS}_{2} /$ acetone- $d_{6}(5: 1)$) of OC.

Figure S2. APCI mass spectra (negative ionization mode) of OC.

Figure S3. Top view SEM images of (a) PCBM, (b) OC, and (c) ICBA films grown on Sn-based perovskite layers (scale bar is $2 \mu \mathrm{~m}$).

Figure S4. Cross section SEM images of (a) PCBM, (b) OC, and (c) ICBA films fabricated onto Sn -based perovskite layers (The scale bar is 500 nm). (d) The average thickness of the PCBM, OC and ICBA films estimated from SEM images.

Figure S5. (a) AFM images and (b) the root-mean-square roughness of PCBM, OC and ICBA-covered perovskite samples.

Figure S6. ${ }^{1} \mathrm{H}$ NMR spectra (500 MHz , DMSO- $d_{6} / \mathrm{CS}_{2}(2: 1)$) of OC, OC mixed with ($\mathrm{FAI}+\mathrm{SnI}_{2}+\mathrm{SnF}_{2}+\mathrm{PEAI}$), and mixture of $\left(\mathrm{FAI}+\mathrm{SnI}_{2}+\mathrm{SnF}_{2}+\mathrm{PEAI}\right)$.

Figure S7. XPS spectra of the (a) $\operatorname{Sn}\left(3 d_{3 / 2}\right.$ and $3 d_{5 / 2}$), (b) C $1 s$, (c) I ($3 d_{3 / 2}$ and $3 d_{5 / 2}$), and (d) $\mathrm{N} 1 s$ core levels for the bare perovskite films and perovskite films treated with 1 or 5 nm

OC.

Table S1. Champion and average PV parameters of PSCs from a single batch of six solar cells.

Molecule for ETM	$J_{\mathrm{SC}}\left(\mathrm{mA} \mathrm{cm}^{-2}\right)^{\mathrm{a}}$	$V_{\mathrm{OC}}(\mathrm{V})^{\mathrm{a}}$	FF^{a}	PCE $(\%)^{\mathrm{a}}$
PCBM	17.7	0.57	0.52	5.3
	(18.4 ± 1.3)	(0.48 ± 0.04)	(0.48 ± 0.03)	(4.3 ± 0.5)
OC	19.6	0.72	0.68	9.6
	(18.9 ± 0.7)	(0.69 ± 0.06)	(0.65 ± 0.04)	(8.5 ± 0.8)
ICBA	20.7	0.82	0.69	11.6
	(20.3 ± 0.4)	(0.76 ± 0.05)	(0.67 ± 0.03)	(10.4 ± 0.7)

${ }^{\text {a }}$ The average and standard deviation values are given in parentheses.

Figure S8. Distributions of (a) PCE, (b) J_{SC}, (c) V_{OC}, and (d) FF values derived for six devices with PCBM, OC, and ICBA. The data includes values derived from both forward and reverse $J-V$ scans.

Figure S9. (a) PL and (b) TRPL spectra of perovskite and perovskite/ETM thin films deposited on quartz substrates. Here, the perovskite with ICBA on top shows the highest PL intensity and the longest TRPL lifetime, followed by those with OC and PCBM.

Figure S10. Impedance spectra of $\mathrm{PEA}_{0.15} \mathrm{FA}_{0.85} \mathrm{SnI}_{3}$ solar cells using (a) PCBM, (b) OC, and (c) ICBA as ETMs under AM1.5G-equivalent radiation. Symbols and the solid lines represent the measured data and fitted results, respectively. (d) Fitted r_{p} as functions of bias voltage for the solar cells using PCBM, OC, and ICBA as ETMs. Inset: the equivalent circuit used to model the data. Here, r_{s} is governed by the measurement-related electrical contact, such as the electrodes of the devices, and the values of the r_{s} are almost identical $\left(\approx 1 \Omega \mathrm{~cm}^{2}\right)$ for all devices. r_{p} is inversely correlated with the degree of carrier recombination in the solar cells.

Figure S11. Dark $J-V$ curves of the (a) PCBM-, (b) OC-, and (c) ICBA-based electrononly devices. Solid lines represent fit to the data according to Mott-Gurney equation $J \propto$ $\mu_{\mathrm{e}} V^{2}$, where μ_{e} and V stand for SCLC electron mobility and applied voltage, respectively. The SCLC electron mobility of the ETMs was fitted using the Mott-Gurney equation ${ }^{2,3}$ $J=\overline{9}_{8}^{\varepsilon_{0}} \varepsilon_{\mathrm{r}} \mu_{\mathrm{e}} V^{2} d^{-3}$, where $J, \varepsilon_{0,} \varepsilon_{\mathrm{r},} \mu_{\mathrm{e},} V, d$ are the current density of the device, vacuum permittivity $\left(8.854 \times 10^{-12} \mathrm{~F} / \mathrm{m}\right)$, relative permittivity of the ETM, SCLC electron mobility, bias voltage, and the thickness of the ETM, respectively. The ε_{r} values were assumed to be 3 for all ETMs. The thicknesses were $77 \mathrm{~nm}, 67 \mathrm{~nm}$, and 86 nm for PCBM, OC, and ICBA, respectively, determined based on their respective cross-sectional SEM images.

Figure S12. Shelf-stability of unencapsulated cells with PCBM, OC, and ICBA. For this test, devices were stored in the dark in an N_{2}-filled glove box. The error bars represent the standard deviation. The data includes values derived from both forward and reverse $J-$ V scans of three devices for each ETM.

Table S2. Optimized geometry of PCBM (B3LYP-D3/6-31G(d,p)).

Table S3. Optimized geometry of OC (B3LYP-D3/6-31G(d,p)).

51	6	0	-3.202175	-1.726792	0.704948
52	6	0	-3.203097	-1.616838	-0.626882
53	6	0	-2.330730	0.482515	0.895813
54	6	0	-1.330457	1.146493	1.544745
55	6	0	-0.674609	0.502148	2.525083
56	6	0	0.670022	0.494914	2.527792
57	6	0	1.336670	1.132097	1.550084
58	6	0	2.332602	0.457652	0.905285
59	6	0	-0.663220	2.124661	0.904025
60	6	0	0.682504	2.117325	0.906717
61	6	0	1.403314	2.756310	-0.236538
62	6	0	-1.372485	2.771146	-0.242269
63	6	0	-0.643118	3.826052	-1.012538
64	6	0	2.683182	3.402947	0.273432
65	6	0	2.668750	4.301983	1.271386
66	6	0	3.828234	4.841575	1.669948
67	6	0	4.949783	4.452762	1.047388
68	6	0	4.875959	3.551640	0.051670
69	6	0	-2.646069	3.433255	0.263900
70	7	0	-3.727585	3.103056	-0.305922
71	6	0	-4.838414	3.598076	0.048184
72	6	0	-4.900917	4.511500	1.033410
73	6	0	-3.774043	4.896997	1.648334
74	6	0	-2.620743	4.342468	1.252393
75	7	0	3.759847	3.069714	-0.303723
76	6	0	0.688611	3.819236	-1.009362
77	6	0	-6.074939	3.100583	-0.699123
78	6	0	-7.081705	2.508535	0.310180
79	6	0	-5.747134	1.996632	-1.732141
80	6	0	-6.720570	4.283281	-1.449917
81	6	0	6.105577	3.051907	-0.705397
82	6	0	5.760729	1.984421	-1.770719
83	6	0	7.094962	2.412890	0.292190
84	6	0	6.778376	4.241368	-1.421103
85	1	0	-1.201064	4.525894	-1.655000
86	1	0	1.723022	4.591545	1.756795

87	1	0	3.858080	5.580231	2.487188
88	1	0	5.914815	4.879627	1.361321
89	1	0	-5.860861	4.951211	1.345054
90	1	0	-3.794777	5.645079	2.457239
91	1	0	-1.670904	4.628764	1.731779
92	1	0	1.256715	4.513270	-1.649260
93	1	0	-7.447734	3.263581	1.040397
94	1	0	-7.981563	2.103984	-0.206086
95	1	0	-6.621779	1.674796	0.888567
96	1	0	-5.040668	2.355381	-2.514842
97	1	0	-6.663589	1.652002	-2.262373
98	1	0	-5.300713	1.099272	-1.246383
99	1	0	-7.054440	5.089098	-0.759019
100	1	0	-6.003761	4.735287	-2.172903
101	1	0	-7.617604	3.957193	-2.023472
102	1	0	5.061596	2.378658	-2.542927
103	1	0	6.672132	1.639834	-2.309608
104	1	0	5.298259	1.080578	-1.312846
105	1	0	6.616605	1.571056	0.843263
106	1	0	7.990935	2.007575	-0.230194
107	1	0	7.468251	3.140236	1.046560
108	1	0	6.073348	4.728466	-2.132789
109	1	0	7.128288	5.020400	-0.707894
110	1	0	7.669907	3.912498	-2.001572

The total electronic energy E was calculated to be -3249.90224688 Hartree. The frequency calculations using the optimized structure showed no imaginary frequency. The LUMO level is -0.10769 a.u. $(-2.93 \quad$ eV).

Table S4. Optimized geometry of ICBA (trans-1) (B3LYP-D3/6-31G(d,p)).

52	6	0	0.000007	1.040841	-3.253333
53	6	0	-2.187119	-0.304141	-2.418700
54	6	0	-2.949598	-0.752942	-1.400878
55	6	0	-2.432921	-1.762613	-0.674049
56	6	0	-2.432917	-1.762636	0.674019
57	6	0	-2.949578	-0.752960	1.400870
58	6	0	-2.187101	-0.304165	2.418703
59	6	0	-3.744481	0.367073	-0.770580
60	6	0	-3.744467	0.367068	0.770567
61	6	0	-5.239095	0.384303	1.138824
62	6	0	-5.239097	0.384318	-1.138820
63	6	0	-5.794973	-0.937634	-0.668561
64	6	0	-5.794947	-0.937643	0.668553
65	6	0	5.795004	-0.937670	0.668555
66	6	0	5.239141	0.384281	1.138826
67	6	0	5.239134	0.384290	-1.138817
68	6	0	5.794973	-0.937649	-0.668549
69	6	0	6.224567	-1.995720	1.365259
70	6	0	6.660224	-3.062772	0.673106
71	6	0	6.660205	-3.062785	-0.673179
72	6	0	6.224503	-1.995705	-1.365313
73	6	0	-6.224578	-1.995693	-1.365278
74	6	0	-6.660356	-3.062718	-0.673143

75	6	0	-6.660325	-3.062725	0.673129
76	6	0	-6.224541	-1.995703	1.365264
77	6	0	5.798170	1.273880	0.000005
78	6	0	-5.797976	1.274010	0.000033
79	1	0	-5.499827	0.674014	2.176114
80	1	0	-5.499838	0.674069	-2.176100
81	1	0	5.499867	0.674043	2.176103
82	1	0	5.499858	0.674040	-2.176098
83	1	0	6.212206	-1.985799	2.465961
84	1	0	7.018255	-3.952384	1.218333
85	1	0	7.018189	-3.952356	-1.218430
86	1	0	6.212102	-1.985751	-2.466000
87	1	0	-6.212218	-1.985807	-2.465977
88	1	0	-7.018412	-3.952301	-1.218362
89	1	0	-7.018360	-3.952317	1.218365
90	1	0	-6.212119	-1.985824	2.465971
91	1	0	5.385308	2.307192	0.000008
92	1	0	6.911228	1.332880	-0.000001
93	1	0	-5.384789	2.307199	0.000025
94	1	0	-6.910995	1.333321	0.000032
$\begin{aligned} & \text { ency } \\ & \text { to le } \end{aligned}$			ated to be ructure showe	2981.9261384 no imaginary	Hartree. frequency.

Table S5. Optimized geometry of \mathbf{C}_{60} (B3LYP-D3/6-31G(d,p)).

53	6	0	2.016802	-1.629388	2.424870
54	6	0	1.357135	-0.682243	3.208950
55	6	0	-0.069743	-0.809554	3.455460
56	6	0	-0.779432	-1.878952	2.908490
57	6	0	-2.096602	-1.659429	2.334510
58	6	0	-2.651768	-0.379309	2.330440
59	6	0	-1.911872	0.735054	2.899444
60	6	0	-0.647369	0.524174	3.450103

The total electronic energy E was calculated to be -2285.953805 Hartree. The frequency calculations using the optimized structure showed no imaginary frequency. The LUMO level is $-0.11848 \quad$ a.u. $\quad(-3.22 \quad \mathrm{eV})$.

References

(1) K. Kurotobi and Y. Murata, Science, 2011, 333, 613-616.
(2) J. Dacuña, Phys. ReV. B, 2011, 84, 195209.
(3) J. C. Blakesley, F. A. Castro, W. Kylberg, G. F. A. Dibb, C. Arantes, R. Valaski, M. Cremona, J. S. Kim and J.-S. Kim, Org. Electron., 2014, 15, 1263-1272.

