Supporting Information

The Pyridine-Catalyzed Ring-Opening Reaction of Cyclopropenone with Bromomethyl Carbonyl Compounds toward Furan-2(5H)-ones

Chen Liang, Kui Zheng, Yifang Ding, Junhang Gao, Zhenlian Wang*, and Jiang Cheng*

College of Chemistry \& Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China.

Table of Contents

1. General Information S2
2. General Experimental Procedures S3
3. Mechanism Study S4
4. Characterization of Products in Details S4
5. ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and ${ }^{19} \mathrm{~F}$ NMR Spectra of Products S13

1. General Information

All reagents and solvents were purchased from TCI, Sigma-Aldrich, Alfa Aesar, Acros
and Meryer. All reactions were conducted using standard Schlenk techniques. Column chromatography was performed using EM silica gel 60 ($300-400$ mesh). ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra were measured on a 400 MHz Bruker AVANCE spectrometer, using DMSO- d_{6} or CDCl_{3} as the solvent with tetramethylsilane (TMS) as the internal standard at room temperature. Chemical shifts were reported in ppm. ${ }^{1} \mathrm{H}$ NMR spectra were referenced to CDCl_{3} (7.26 ppm) or DMSO- $d_{6}(2.50 \mathrm{ppm})$, and ${ }^{13} \mathrm{C}$ NMR spectra were referenced to CDCl_{3} (77.0 ppm) or DMSO- d_{6} (39.5 ppm). Peak multiplicities were designated by the following abbreviations: s , singlet; d , doublet; t , triplet; m , multiplet; q, quartet. Chemical shifts are given in δ relative to TMS, the coupling constants J are given in Hz. Analysis of crude reaction mixture was done on the Varian 4000 GC/MS and Agilent 7890A/5975C. High-resolution mass spectra were recorded on a microTOF-Q II 10410 mass spectrometer. Unless otherwise noted, all reagents and solvents were obtained commercially and used without further purification. The cyclopropenones ${ }^{1}$ were prepared according to corresponding literature procedures.

2. General Experimental Procedures

(1) General procedure (3aa-3ao, 3bl-3fl)

Scheme S1

A 10 mL pressure tube equipped with a stir bar was charged with cyclopropenones ($0.1 \mathrm{mmol}, 1.0$ equiv.), bromomethyl carbonyl compounds ($0.2 \mathrm{mmol}, 2.0$ equiv.), 2picoline ($0.02 \mathrm{mmol}, 0.2$ equiv.), $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ ($0.2 \mathrm{mmol}, 2.0$ equiv.) and $\mathrm{DCM}(2 \mathrm{~mL})$. The reaction mixture was stirred at room temperature under air atmosphere for 16 h . After completion of the reaction, the reaction mixture was concentrated under reduced pressure, then 2.0 ml of water was added, and the reaction solution was extracted with ethyl acetate ($3 \times 2 \mathrm{~mL}$), the combined organic layers were dried over anhydrous magnesium sulfate, filtered and evaporated under reduced pressure. The residue was then purified by flash chromatography on silica gel to provide the corresponding product.
(2) Procedure for $\mathbf{1 0 . 0} \mathbf{~ m m o l}$ scale

Scheme S2

A 150 mL pressure tube equipped with a stir bar was charged with cyclopropenones (10.0 mmol), bromomethyl carbonyl compounds ($20.0 \mathrm{mmol}, 2.0$ equiv.), 2-picoline (0.2 equiv.), $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ (2.0 equiv.) and $\mathrm{DCM}(2 \mathrm{~mL}$). The reaction mixture was stirred at room temperature under air atmosphere for 16 h . After completion of the reaction, the reaction mixture was concentrated under reduced
pressure, then 30 ml of water was added, and the reaction solution was extracted with ethyl acetate ($3 \times 30 \mathrm{~mL}$), the combined organic layers were dried over anhydrous magnesium sulfate, filtered and evaporated under reduced pressure. The remaining residue was purified by column chromatography on silica gel to afford $\mathbf{3 a a}(2.32 \mathrm{~g}$, 80\%).

3. Mechanism study

Scheme S3
A 10 mL pressure tube equipped with a stir bar was charged with 1,2diphenylcyclopropenone ($0.1 \mathrm{mmol}, 1.0$ equiv.), methyl bromoacetate ($0.2 \mathrm{mmol}, 2.0$ equiv.), 2-picoline ($0.02 \mathrm{mmol}, 0.2$ equiv.), $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ ($0.2 \mathrm{mmol}, 2.0$ equiv.), $\mathrm{H}_{2}{ }^{18} \mathrm{O}$ ($1 \mathrm{mmol}, 10$ equiv.) and $\mathrm{DCM}(2 \mathrm{~mL})$. The reaction mixture was stirred at room temperature under N_{2} atmosphere for 12 h . After completion of the reaction, the reaction mixture was concentrated under reduced pressure. The residue was then purified by flash chromatography on silica gel to provide the corresponding product 3aa ($25.0 \mathrm{mg}, 85 \%$).

4. Characterization of Products in Details

methyl 5-oxo-3,4-diphenyl-2,5-dihydrofuran-2-carboxylate (3aa)

Following the general procedure, using $10 / 1$ petroleum ether/EtOAc as the eluant afford a yellow oil ($24.1 \mathrm{mg}, 82 \%$), ${ }^{1} \mathbf{H}$ NMR (400 MHz , chloroform-d) $87.27-7.20$ (m, 6H), 7.17 - 7.14 (m, 4H), 5.57 (s, 1H), 3.96 (s, 3H). ${ }^{13}$ C NMR (126 MHz , chloroform-d) $\delta 162.82,161.25,157.21,138.30,134.13,131.11,128.68,128.55$, 128.24, 127.92, 127.18, 115.43, 84.66, 56.08. HRMS: (ESI) calculated for $\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{O}_{4}$ $[\mathrm{M}+\mathrm{H}]^{+} 295.0965$, found 295.0969 .

phenyl 5-oxo-3,4-diphenyl-2,5-dihydrofuran-2-carboxylate (3ab)

Following the general procedure, using $10 / 1$ petroleum ether/EtOAc as the eluant afford a white solid ($30.3 \mathrm{mg}, 85 \%$), Melting Point: $128.4-129.1^{\circ} \mathrm{C} .{ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz, chloroform-d) $\delta 7.49(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.35-7.34(\mathrm{~m}, 1 \mathrm{H}), 7.32-7.30(\mathrm{~m}$, 2H), $7.28-7.25(\mathrm{~m}, 5 \mathrm{H}), 7.24-7.22(\mathrm{~m}, 3 \mathrm{H}), 7.10(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 5.52(\mathrm{~s}, 1 \mathrm{H})$. ${ }^{13}$ C NMR (126 MHz , chloroform-d) $\delta 161.79,161.18,156.38,152.29,137.88,133.93$, $131.09,130.36,128.84,128.60,128.31,128.03,127.45,126.52,120.54,117.36$, 87.65. HRMS: (ESI) calculated for $\mathrm{C}_{23} \mathrm{H}_{27} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+} 357.1121$, found 357.1120 .

5-benzoyl-3,4-diphenylfuran-2(5H)-one (3ac)

Following the general procedure, using $10 / 1$ petroleum ether/EtOAc as the eluant afford a yellow solid ($24.5 \mathrm{mg}, 72 \%$), Melting Point: $181.1-182.6^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 MHz , chloroform-d) $\delta 7.96-7.94(\mathrm{~m}, 2 \mathrm{H}), 7.52-7.50(\mathrm{~m}, 3 \mathrm{H}), 7.31-7.30(\mathrm{~m}, 3 \mathrm{H})$, 7.28 - 7.25 (m, 5H), 7.23 - 7.22 (m, 2H), 6.89 (s, 1H). ${ }^{13}$ C NMR (126 MHz , chloroform-d) $\delta 162.73,158.30,152.81,137.84,133.89,131.41,130.94,130.81$, 129.01, 128.80, 128.75, 128.44, 128.02, 127.74, 125.64, 123.14, 105.05. HRMS: (ESI) calculated for $\mathrm{C}_{23} \mathrm{H}_{17} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+} 341.1172$, found 341.1167.

5-(4-chlorobenzoyl)-3,4-diphenylfuran-2(5H)-one (3ad)

Following the general procedure, using $10 / 1$ petroleum ether/EtOAc as the eluant afford a yellow oil ($23.6 \mathrm{mg}, 63 \%$), ${ }^{1} \mathbf{H}$ NMR (400 MHz , chloroform-d) $\delta 7.88$ (d, $J=$ $8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.48(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.31-7.29(\mathrm{~m}, 3 \mathrm{H}), 7.28-7.23(\mathrm{~m}, 5 \mathrm{H}), 7.21$ $-7.19(\mathrm{~m}, 2 \mathrm{H}), 6.86(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (126 MHz , chloroform-d) $\delta 162.44,157.09$,
152.63, 137.66, 136.90, 133.70, 130.87, 129.88, 129.30, 128.86, 128.70, 128.46, 128.03, 127.84, 126.87, 123.48, 105.22. HRMS: (ESI) calculated for $\mathrm{C}_{23} \mathrm{H}_{15} \mathrm{ClO}_{3} \mathrm{Na}$ $[\mathrm{M}+\mathrm{Na}]^{+} 397.0602$, found 397.0602 .

5-(4-methoxybenzoyl)-3,4-diphenylfuran-2(5H)-one (3ae)

Following the general procedure, using $10 / 1$ petroleum ether/EtOAc as the eluant afford a yellow oil ($25.9 \mathrm{mg}, 70 \%$), ${ }^{1} \mathbf{H}$ NMR (500 MHz , chloroform-d) $\delta 7.85$ (d, $J=$ $8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.25-7.22(\mathrm{~m}, 3 \mathrm{H}), 7.20-7.17$ (m, 5H), $7.16-7.14$ (m, 2H), 6.97 (d, J $=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.72(\mathrm{~s}, 1 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (126 MHz , chloroform-d) δ $162.90,161.78,158.51,153.16,138.06,134.03,130.96,128.71,128.66,128.36$, $127.95,127.57,127.33,123.97,121.94,114.41,103.60,55.51$. HRMS: (ESI) calculated for $\mathrm{C}_{24} \mathrm{H}_{19} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+} 371.1278$, found 371.1278.

5-(2-fluorobenzoyl)-3,4-diphenylfuran-2(5H)-one (3af)

Following the general procedure, using $10 / 1$ petroleum ether/EtOAc as the eluant afford a yellow solid ($26.9 \mathrm{mg}, 75 \%$), Melting Point: $106.3-107.2^{\circ} \mathrm{C} .{ }^{1} \mathbf{H}$ NMR (500 MHz , chloroform-d) $\delta 7.96(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{q}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.17-7.12$ $(\mathrm{m}, 4 \mathrm{H}), 7.12-7.09(\mathrm{~m}, 5 \mathrm{H}), 7.07-7.03(\mathrm{~m}, 3 \mathrm{H}), 6.98(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz , chloroform-d) $\delta 162.43,160.17(\mathrm{~d}, J=254.7 \mathrm{~Hz}), 152.74,137.68,133.74,132.01(\mathrm{~d}$, $J=9.1 \mathrm{~Hz}$), 130.90, 128.82, 128.42, 128.04, 127.84, 124.8 (d, $J=3.8 \mathrm{~Hz}$), 119.7, (d, $J=10.0 \mathrm{~Hz}), 116.6(\mathrm{~d}, J=22.7 \mathrm{~Hz}), 110.10(\mathrm{~d}, J=15.6 \mathrm{~Hz}) .{ }^{19}$ F NMR $(471 \mathrm{MHz}$, chloroform-d) δ-111.29. HRMS: (ESI) calculated for $\mathrm{C}_{23} \mathrm{H}_{15} \mathrm{FO}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$ 381.0897, found 381.0890.

5-(4-iodobenzoyl)-3,4-diphenylfuran-2(5H)-one (3ag)

Following the general procedure, using $10 / 1$ petroleum ether/EtOAc as the eluant afford a yellow solid ($31.7 \mathrm{mg}, 68 \%$), Melting Point: $153.9-154.6^{\circ} \mathrm{C} .{ }^{1} \mathbf{H}$ NMR (500 MHz , chloroform-d) $\delta 7.70(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.52(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.17-7.15$ $(\mathrm{m}, 3 \mathrm{H}), 7.13-7.09(\mathrm{~m}, 5 \mathrm{H}), 7.06-7.05(\mathrm{~m}, 2 \mathrm{H}), 6.74(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz , chloroform-d) $\delta 162.42,157.24,152.58,138.21,138.15,137.63,133.70,130.87$, 128.88, 128.73, 128.48, 128.05, 127.86, 127.04, 123.66, 105.28, 97.41. HRMS: (ESI) calculated for $\mathrm{C}_{23} \mathrm{H}_{16} \mathrm{IO}_{3}[\mathrm{M}+\mathrm{H}]^{+} 467.0139$, found 467.0145 .

5-(3-nitrobenzoyl)-3,4-diphenylfuran-2(5H)-one (3ah)

Following the general procedure, using $10 / 1$ petroleum ether/EtOAc as the eluant afford a yellow solid ($22.3 \mathrm{mg}, 58 \%$), Melting Point: $176.3-176.8^{\circ} \mathrm{C} .{ }^{1} \mathbf{H}$ NMR (500 MHz , chloroform-d) $\delta 8.62(\mathrm{~s}, 1 \mathrm{H}), 8.22-8.20(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.17-8.15$ (d, J $=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.61(\mathrm{t}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.21(\mathrm{~m}, 3 \mathrm{H}), 7.17-7.14(\mathrm{~m}, 3 \mathrm{H}), 7.11-7.08$ $(\mathrm{m}, 4 \mathrm{H}), 6.88(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (126 MHz, chloroform-d) $\delta 161.96,155.36,152.23$, 148.79, 137.26, 133.36, 133.13, 131.12, 130.80, 130.26, 129.07, 128.70, 128.56, 128.10, 124.99, 124.73, 120.35, 106.55. HRMS: (ESI) calculated for $\mathrm{C}_{23} \mathrm{H}_{16} \mathrm{NO}_{5}$ $[\mathrm{M}+\mathrm{H}]^{+} 386.1023$, found 386.1021.

4-(5-oxo-3,4-diphenyl-2,5-dihydrofuran-2-carbonyl)benzonitrile (3ai)

Following the general procedure, using $10 / 1$ petroleum ether/EtOAc as the eluant afford a green solid ($22.3 \mathrm{mg}, 61 \%$), Melting Point: $193.2-194.5^{\circ} \mathrm{C} .{ }^{\mathbf{1}} \mathbf{H}$ NMR (500 MHz , chloroform-d) $\delta 7.91$ (d, $J=8.3 \mathrm{~Hz}, 2 \mathrm{H}$), 7.66 (d, $J=8.2 \mathrm{~Hz}, 2 \mathrm{H}$), $7.20-7.13$ (m, 6H), 7.12 - $7.06(\mathrm{~m}, 4 \mathrm{H}), 6.86(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz , chloroform-d) δ $161.99,155.68,152.15,137.29,135.29,133.36,132.76,130.79,129.06,128.68$, 128.56, 128.10, 125.97, 124.90, 118.20, 113.92, 107.11. HRMS: (ESI) calculated for $\mathrm{C}_{24} \mathrm{H}_{15} \mathrm{NO}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+} 388.0944$, found 388.0942 .

4-(5-oxo-3,4-diphenyl-2,5-dihydrofuran-2-carbonyl)benzonitrile (3aj)

Following the general procedure, using $10 / 1$ petroleum ether/EtOAc as the eluant afford a green solid ($24.8 \mathrm{mg}, 67 \%$), Melting Point: $160.7-161.1 .{ }^{1} \mathbf{H}$ NMR (500 MHz , chloroform-d) $\delta 7.96(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.21(\mathrm{~s}, 1 \mathrm{H})$, $7.17-7.14(\mathrm{~m}, 3 \mathrm{H}), 7.13-7.10(\mathrm{~m}, 5 \mathrm{H}), 7.09-7.07(\mathrm{~m}, 2 \mathrm{H}), 7.00(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H})$, $6.91(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (126 MHz , chloroform-d) $\delta 163.02$, $157.48,155.33,153.08,138.28,134.10$, 131.64, 130.97, 129.21, 128.86, 128.54, 128.31, 127.95, 127.58, 122.91, 121.01, 120.23, 111.51, 110.10, 55.71. HRMS: (ESI) calculated for $\mathrm{C}_{24} \mathrm{H}_{19} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+} 371.1278$, found 371.1279.

5-(1-naphthoyl)-3,4-diphenylfuran-2(5H)-one (3ak)

Following the general procedure, using $10 / 1$ petroleum ether/EtOAc as the eluant afford a yellow solid ($20.7 \mathrm{mg}, 53 \%$), Melting Point: $168.6-169.3^{\circ} \mathrm{C} .{ }^{1} \mathbf{H}$ NMR (500 MHz , chloroform-d) $\delta 8.37(\mathrm{~s}, 1 \mathrm{H}), 7.82-7.79(\mathrm{~m}, 1 \mathrm{H}), 7.73(\mathrm{~m}, 3 \mathrm{H}), 7.44-7.39(\mathrm{~m}$, $2 \mathrm{H}), 7.17-7.12(\mathrm{~m}, 4 \mathrm{H}), 7.12-7.09(\mathrm{~m}, 4 \mathrm{H}), 7.08-7.05(\mathrm{~m}, 2 \mathrm{H}), 6.81(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (126 MHz , chloroform-d) $\delta 162.79,158.18,152.85,137.89,134.29,133.91$, 133.17, 130.97, 129.06, 128.81, 128.78, 128.46, 128.05, 127.81, 127.78, 127.04, 126.10, 123.19, 122.04, 105.45. HRMS: (ESI) calculated for $\mathrm{C}_{27} \mathrm{H}_{19} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}$ 391.1329, found 391.1332.

5-(cyclopropanecarbonyl)-3,4-diphenylfuran-2(5H)-one (3al)

Following the general procedure, using $10 / 1$ petroleum ether/EtOAc as the eluant afford a yellow solid ($26.8 \mathrm{mg}, 88 \%$), Melting Point: $133.3-134.7^{\circ} \mathrm{C} .{ }^{1} \mathbf{H}$ NMR (500 MHz , chloroform-d) $\delta 7.10-7.03(\mathrm{~m}, 6 \mathrm{H}), 7.03-6.99(\mathrm{~m}, 2 \mathrm{H}), 6.96-6.95(\mathrm{~m}, 2 \mathrm{H})$, $6.10(\mathrm{~s}, 1 \mathrm{H}), 1.72-1.67(\mathrm{~m}, 1 \mathrm{H}), 1.05-1.04(\mathrm{~m}, 2 \mathrm{H}), 0.87-0.85(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR
(126 MHz , chloroform-d) $\delta 164.50$, 163.11, 153.09, 137.78, 134.23, 130.96, 128.69, 128.63, 128.29, 127.92, 127.41, 120.98, 105.16, 14.38, 8.32. HRMS: (ESI) calculated for $\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{O}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+} 327.0992$, found 327.0997.

3,4-diphenyl-5-pivaloylfuran-2(5H)-one(3am)

Following the general procedure, using $10 / 1$ petroleum ether/EtOAc as the eluant afford a white solid ($18.5 \mathrm{mg}, 58 \%$), Melting Point: $196.4-196.8^{\circ} \mathrm{C} .{ }^{\mathbf{1}} \mathbf{H}$ NMR (500 MHz , chloroform-d) $\delta 7.22-7.19(\mathrm{~m}, 6 \mathrm{H}), 7.18-7.13(\mathrm{~m}, 2 \mathrm{H}), 7.13-7.08(\mathrm{~m}, 2 \mathrm{H})$, 6.19 (s, 1H), 1.35 ($\mathrm{s}, 9 \mathrm{H}$). ${ }^{13} \mathbf{C}$ NMR (126 MHz , chloroform-d) δ 170.57, 163.34, $152.67,138.08,134.06,130.89,128.70,128.57,128.29,127.94,127.52,122.11$, 103.13, 36.13, 28.03. HRMS: (ESI) calculated for $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+} 321.1485$, found 321.1482 .

5-(adamantane-1-carbonyl)-3,4-diphenylfuran-2(5H)-one (3an)

Following the general procedure, using $10 / 1$ petroleum ether/EtOAc as the eluant afford a white solid ($22.7 \mathrm{mg}, 57 \%$), Melting Point: $203.6-204.3^{\circ} \mathrm{C} .{ }^{\mathbf{1}} \mathrm{H}$ NMR (500 MHz , chloroform-d) $\delta 7.16-7.08(\mathrm{~m}, 6 \mathrm{H}), 7.06-7.04(\mathrm{~m}, 2 \mathrm{H}), 7.01-6.99(\mathrm{~m}, 2 \mathrm{H})$, $6.03(\mathrm{~s}, 1 \mathrm{H}), 2.02(\mathrm{~s}, 3 \mathrm{H}), 1.90(\mathrm{~s}, 6 \mathrm{H}), 1.74-1.64(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (126 MHz, chloroform-d) $\delta 170.54,163.46,152.80,138.16,134.15,130.91,128.73,128.55$, 128.27, 127.93, 127.48, 122.06, 103.16, 39.71, 37.84, 36.51, 28.05. HRMS: (ESI) calculated for $\mathrm{C}_{27} \mathrm{H}_{27} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+} 399.1955$, found 399.1955.

5-(2-bromoacetyl)-3,4-diphenylfuran-2(5H)-one (3ao)

Following the general procedure, using $10 / 1$ petroleum ether/EtOAc as the eluant afford a white solid (20.0 mg , 56%), Melting Point: $158.6-159.9{ }^{\circ} \mathrm{C} .{ }^{\mathbf{1}} \mathbf{H}$ NMR (500 MHz, chloroform-d) $\delta 7.17-7.15$ (m, 6H), $7.09-7.07$ (m, 2H), 7.02 (d, $J=7.4 \mathrm{~Hz}$, 2H), $6.41(\mathrm{~s}, 1 \mathrm{H}), 4.17(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (126 MHz , chloroform-d) $\delta 162.23,156.48$, $151.71,136.89,133.32,130.72,129.00,128.68,128.45,128.09,128.03,124.90$, 108.91, 26.99. HRMS: (ESI) calculated for $\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{BrO}_{3}[\mathrm{M}+\mathrm{H}]^{+} 357.0121$, found 357.0123 .

5-(cyclopropanecarbonyl)-3,4-di-p-tolylfuran-2(5H)-one(3bl)

Following the general procedure, using $10 / 1$ petroleum ether/EtOAc as the eluant afford a yellow oil ($39.6 \mathrm{mg}, 92 \%$), ${ }^{1} \mathbf{H}$ NMR (500 MHz , chloroform-d) $\delta 6.94-6.92$ $(\mathrm{m}, 6 \mathrm{H}), 6.91-6.89(\mathrm{~m}, 2 \mathrm{H}), 6.11(\mathrm{~s}, 1 \mathrm{H}), 2.20(\mathrm{~s}, 3 \mathrm{H}), 2.19(\mathrm{~s}, 3 \mathrm{H}), 1.75-170(\mathrm{~m}$, $1 \mathrm{H}), 1.08-1.06(\mathrm{~m}, 2 \mathrm{H}), 0.90-0.88(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (126 MHz , chloroform-d) δ $163.96,163.43,152.61,138.57,137.02,134.97,131.33,130.71,128.96,128.73$, $128.65,120.76,105.18,21.29,21.27,14.30,8.12$. HRMS: (ESI) calculated for $\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+} 333.1485$, found 333.1481.

3,4-bis(4-bromophenyl)-5-(cyclopropanecarbonyl)furan-2(5H)-one (3cl)

Following the general procedure, using $10 / 1$ petroleum ether/EtOAc as the eluant afford a yellow solid ($38.8 \mathrm{mg}, 84 \%$), Melting Point: $171.1-171.7^{\circ} \mathrm{C} .{ }^{1} \mathbf{H}$ NMR (500 MHz , chloroform-d) $\delta 7.29$ (d, $J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.26(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.90(\mathrm{~d}, J=$ $8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.88(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.09(\mathrm{~s}, 1 \mathrm{H}), 1.77-1.72(\mathrm{~m}, 1 \mathrm{H}), 1.10-1.08$ (m, 2H), $0.95-0.93(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (126 MHz , chloroform-d) $\delta 165.30,162.54$, 152.03, 136.32, 132.77, 132.56, 131.77, 131.34, 130.24, 123.29, 121.90, 119.83, 104.67, 14.46, 8.58. HRMS: (ESI) calculated for $\mathrm{C}_{20} \mathrm{H}_{14} \mathrm{Br}_{2} \mathrm{O}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+} 482.9202$, found 482.9206 .

Following the general procedure, using $10 / 1$ petroleum ether/EtOAc as the eluant afford a green solid ($29.6 \mathrm{mg}, 87 \%$), Melting Point: $172.3-173.0^{\circ} \mathrm{C} .{ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz , chloroform-d) $\delta 7.12-7.07(\mathrm{~m}, 4 \mathrm{H}), 6.95-6.89(\mathrm{~m}, 4 \mathrm{H}), 6.22(\mathrm{~s}, 1 \mathrm{H}), 1.89-$ $1.82(\mathrm{~m}, 1 \mathrm{H}), 1.19-1.18(\mathrm{~m}, 2 \mathrm{H}), 1.04-1.01(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz, chloroform-d) $\delta 164.91,162.70(\mathrm{~d}, J=250.9 \mathrm{~Hz}), 162.95,162.00(\mathrm{~d}, J=248.4 \mathrm{~Hz})$, $152.23,133.62(\mathrm{~d}, J=3.5 \mathrm{~Hz}), 132.72(\mathrm{~d}, J=8.2 \mathrm{~Hz}), 130.71(\mathrm{~d}, J=8.3 \mathrm{~Hz}), 129.90$ (d, $J=3.5 \mathrm{~Hz}$), 119.98, $115.63(\mathrm{~d}, J=21.2 \mathrm{~Hz}), 115.25(\mathrm{~d}, J=21.6 \mathrm{~Hz}), 104.94$, 14.39, 8.43. ${ }^{19}$ F NMR (471 MHz , chloroform-d) $\delta-111.65$, -113.94. HRMS: (ESI) calculated for $\mathrm{C}_{20} \mathrm{H}_{15} \mathrm{~F}_{2} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+} 341.0984$, found 341.0990.

3,4-bis(3-chlorophenyl)-5-(cyclopropanecarbonyl)furan-2(5H)-one (3el)

Following the general procedure, using $10 / 1$ petroleum ether/EtOAc as the eluant afford a green solid ($29.8 \mathrm{mg}, 80 \%$), Melting Point: $138.5-139.6^{\circ} \mathrm{C} .{ }^{\mathbf{1}} \mathbf{H}$ NMR (500 MHz , chloroform-d) $\delta 7.17-7.10(\mathrm{~m}, 1 \mathrm{H}), 7.09-7.03(\mathrm{~m}, 5 \mathrm{H}), 6.86(\mathrm{~d}, J=7.7 \mathrm{~Hz}$, $1 \mathrm{H}), 6.82(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.10(\mathrm{~s}, 1 \mathrm{H}), 1.78-1.73(\mathrm{~m}, 1 \mathrm{H}), 1.11-1.10(\mathrm{~m}, 2 \mathrm{H})$, 0.96 - 0.94 (m, 2H). ${ }^{13}$ C NMR 13C NMR (126 MHz , chloroform-d) δ 165.62, 162.40, 152.09, 139.08, 135.48, 134.48, 133.89, 130.84, 129.71, 129.29, 129.13, 129.00, 128.43, 127.92, 126.94, 119.96, 104.56, 14.48, 8.65. HRMS: (ESI) calculated for $\mathrm{C}_{20} \mathrm{H}_{15} \mathrm{Cl}_{2} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+} 373.0393$, found 373.0395 .

3,4-bis(4-chlorophenyl)-5-(cyclopropanecarbonyl)furan-2(5H)-one (3fl)

Following the general procedure, using $10 / 1$ petroleum ether/EtOAc as the eluant afford a green oil ($27.2 \mathrm{mg}, 73 \%$), ${ }^{\mathbf{1}} \mathbf{H}$ NMR (500 MHz , chloroform-d) $\delta 7.14$ (d, $J=$ $8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.11(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.98(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.95(\mathrm{~d}, J=8.1 \mathrm{~Hz}$, 2H), $6.10(\mathrm{~s}, 1 \mathrm{H}), 1.79-1.73(\mathrm{~m}, 1 \mathrm{H}), 1.12-1.10(\mathrm{~m}, 2 \mathrm{H}), 0.96-0.95(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, chloroform-d) $\delta 165.27,162.69,152.07,135.90,135.02,133.63$, 132.33, 132.28, 130.03, 128.83, 128.43, 119.91, 104.76, 14.48, 8.58. HRMS: (ESI) calculated for $\mathrm{C}_{20} \mathrm{H}_{15} \mathrm{Cl}_{2} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+} 373.0393$, found 373.0394.

2-cyclopropyl-2-oxoethyl (\boldsymbol{E})-3-(p-tolyl)acrylate

Following the general procedure, using $10 / 1$ petroleum ether/EtOAc as the eluant afford a yellow oil ($7.9 \mathrm{mg}, 32 \%$), ${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz , chloroform-d) $\delta 7.77-7.73$ (m, 1H), 7.43 (d, $J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.20(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.51-6.48(\mathrm{~m}, 1 \mathrm{H}), 4.94$ $(\mathrm{s}, 2 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H}), 2.02-1.99(\mathrm{~m}, 1 \mathrm{H}), 1.16-1.14(\mathrm{~m}, 2 \mathrm{H}), 1.00-0.97(\mathrm{~m}, 2 \mathrm{H})$. ${ }^{13} \mathbf{C}$ NMR (126 MHz , chloroform-d) $\delta 204.12,166.36,146.18,141.07$, 131.52, 129.76, 129.35, 128.26, 126.89, 115.82, 106.75, 68.45, 21.50, 17.27, 11.44. HRMS: (ESI) calculated for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{O}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+} 267.0992$, found 267.0990.

Reference

1. (a) J. Zhou, X. Shi, H. Zheng, G. Chen, C. Zhang, X. Liu and H. Cao, Org. Lett. 2022, 24, 3238-3243; (b) T. Nanda, P. Biswal, B. V. Patim S. K. Banjare and P. C. Ravikumar, J. Org. Chem. 2021, 86, 2682-2695; (c) J. Chen, B. Tang, X. Liu, G. Lv, Y. Shi, T. Huang, H. Xing, X. Guo, L. Hai and Y. Wu, Org. Chem. Front. 2020, 7, 2944-2949; (d) R. Ando, Y. Morinaka, H. Tokuyama, M. Isaka and E. Nakamura, J. Am. Chem. Soc. 1993, 115, 1174-1175; (e) L. Yao, Q. Hu, L. Bao, W. Zhu and Y. Hu, Org. Lett., 2021, 23, 4971-4975; (f) W. Miao, W. Gao, X. Huang, M. Liu, Y. Zhou and H. Wu, Org. Lett., 2021, 23, 9425-9430.

5. NMR Spectra

(400 MHz for ${ }^{1} \mathrm{H}$ NMR with CDCl_{3} as solvent)

\circ
∞
∞

$\stackrel{\infty}{\circ}$

 f1 (ppm)
(126 MHz for ${ }^{13} \mathrm{C}$ NMR with CDCl_{3} as solvent)

(400 $\mathbf{M H z}$ for ${ }^{\mathbf{1}} \mathrm{H}$ NMR with $\mathrm{CDCl}_{\mathbf{3}}$ as solvent)

210200190180170160150140130120110100 f1 (ppm)
(126 MHz for ${ }^{13} \mathrm{C}$ NMR with CDCl_{3} as solvent)

(400 MHz for ${ }^{\mathbf{1}} \mathrm{H}$ NMR with CDCl_{3} as solvent)

210200190180170160150140130120110100 f1 (ppm)
(126 MHz for ${ }^{13} \mathrm{C}$ NMR with CDCl_{3} as solvent)

(400 MHz for ${ }^{1} \mathrm{H}$ NMR with CDCl_{3} as solvent)

 f1 (ppm)
(126 MHz for ${ }^{13} \mathrm{C}$ NMR with CDCl_{3} as solvent)

(500 MHz for ${ }^{1} \mathrm{H}$ NMR with CDCl_{3} as solvent)

 f1 (ppm)
(126 MHz for ${ }^{13} \mathrm{C}$ NMR with CDCl_{3} as solvent)

(500 MHz for ${ }^{1} \mathrm{H}$ NMR with CDCl_{3} as solvent)

$210200190180170160150140130120110100 \begin{array}{lllllllllll}90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10\end{array}$ f1 (ppm)
(126 MHz for ${ }^{13} \mathrm{C}$ NMR with CDCl_{3} as solvent)

(471 MHz for ${ }^{19} \mathbf{F}$ NMR with $\mathbf{C D C l}_{3}$ as solvent)

(500 MHz for ${ }^{\mathbf{1}} \mathrm{H}$ NMR with CDCl_{3} as solvent)

(126 MHz for ${ }^{13} \mathrm{C}$ NMR with CDCl_{3} as solvent)

(500 MHz for ${ }^{\mathbf{1}} \mathrm{H}$ NMR with CDCl_{3} as solvent)

(126 MHz for ${ }^{13} \mathrm{C}$ NMR with CDCl_{3} as solvent)

3ai

(500 MHz for ${ }^{1} \mathrm{H}$ NMR with CDCl_{3} as solvent)

(126 MHz for ${ }^{13} \mathrm{C}$ NMR with CDCl_{3} as solvent)

(500 MHz for ${ }^{\mathbf{1}} \mathbf{H}$ NMR with $\mathbf{C D C l}_{3}$ as solvent)

3aj

 f1 (ppm)
(126 MHz for ${ }^{13} \mathrm{C}$ NMR with CDCl_{3} as solvent)

(500 MHz for ${ }^{1} \mathrm{H}$ NMR with CDCl_{3} as solvent)

3ak

$\begin{array}{lllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 \\ 40 & 30 & 20 & 10 & 0 & -10\end{array}$ f1 (ppm)
(126 MHz for ${ }^{13} \mathrm{C}$ NMR with CDCl_{3} as solvent)

(500 MHz for ${ }^{\mathbf{1}} \mathbf{H}$ NMR with $\mathbf{C D C l}_{3}$ as solvent)

$\stackrel{\infty}{\substack{\infty \\ \underset{\sim}{\sim} \\ \underset{1}{\infty} \\ \\ \hline}}$

(126 MHz for ${ }^{13} \mathbf{C}$ NMR with CDCl_{3} as solvent)

(500 MHz for ${ }^{\mathbf{1}} \mathrm{H}$ NMR with CDCl_{3} as solvent)

3 an

(500 MHz for ${ }^{\mathbf{1}} \mathbf{H}$ NMR with $\mathrm{CDCl}_{\mathbf{3}}$ as solvent)

3 an

(126 MHz for ${ }^{13} \mathrm{C}$ NMR with CDCl_{3} as solvent)

(500 MHz for ${ }^{\mathbf{1}} \mathbf{H}$ NMR with $\mathbf{C D C l}_{3}$ as solvent)

 f1 (ppm)
(126 MHz for ${ }^{13} \mathrm{C}$ NMR with CDCl_{3} as solvent)

(500 MHz for ${ }^{\mathbf{1}} \mathrm{H}$ NMR with CDCl_{3} as solvent)

3bl

$\begin{array}{lllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 \\ 40 & 30 & 20 & 10 & 0 & -10\end{array}$ f1 (ppm)
(126 MHz for ${ }^{13} \mathrm{C}$ NMR with CDCl_{3} as solvent)

(500 MHz for ${ }^{\mathbf{1}} \mathrm{H}$ NMR with CDCl_{3} as solvent)

(126 MHz for ${ }^{13} \mathrm{C}$ NMR with CDCl_{3} as solvent)

(500 MHz for ${ }^{\mathbf{1}} \mathbf{H}$ NMR with $\mathrm{CDCl}_{\mathbf{3}}$ as solvent)

$\stackrel{\substack{\infty \\ \underset{T}{\infty} \\ \infty}}{\infty}$

3 dl

(101 MHz for ${ }^{13} \mathrm{C}$ NMR with CDCl_{3} as solvent)

(471 MHz for ${ }^{19} \mathrm{~F}$ NMR with CDCl_{3} as solvent)

3 el

(500 MHz for ${ }^{1} \mathrm{H}$ NMR with CDCl_{3} as solvent)

 f1 (ppm)
(126 MHz for ${ }^{13} \mathrm{C}$ NMR with CDCl_{3} as solvent)

$3 f 1$

(500 MHz for ${ }^{1} \mathrm{H}$ NMR with CDCl_{3} as solvent)

(101 MHz for ${ }^{13} \mathrm{C}$ NMR with CDCl_{3} as solvent)

(400 MHz for ${ }^{\mathbf{1}} \mathrm{H}$ NMR with CDCl_{3} as solvent)

$\begin{array}{llllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 \\ 10 & 0 & -10\end{array}$ f1 (ppm)
(126 MHz for ${ }^{13} \mathrm{C}$ NMR with CDCl_{3} as solvent)

