Implementation of micelle enabled C(sp2)-C(sp3) crosselectrophile coupling in pharmaceutical synthesis

Bin Wu^{*a}, Ning Ye^{*a}, Kangming Zhao,^a Min Shi,^a Jiayu Liao,^a Jing Zhang,^a Wei Chen,^a Xianzhong Li, ^a Yunfeng Han,^a Margery Cortes-Clerget,^b Morgan Louis Regnier,^b Michael Parmentier,^b Mathes Christan,^b Florian Rampf,^b Fabrice Gallou^{*b}

^aChemical & Analytical Development, Suzhou Novartis Technical Development Co., Ltd, Changshu, Jiangsu 215537, China. Email: <u>bin-3.wu@novartis.com</u>; <u>ning.ye@novartis.com</u>;

^bChemical & Analytical Development, Novartis Pharma AG, 4056 Basel, Switzerland Email:<u>fabrice.gallou@novartis.com</u>

Contents

Materials and Methods	2
General procedure	.2
Table S1 Full data of ICP measurement	3
Full author names of reference Cell. Chem. Biol., 2023, 30, 235	4
¹ H and ¹³ C NMR Spectra	5

Materials and Methods

General. All chemicals, reagents, and solvents were purchased from commercial sources and were used without further purification unless otherwise noted. ¹H NMR data are reported relative to residual solvent signals and are reported as follows: chemical shift (δ ppm), multiplicity, coupling constant (Hz), and integration. The multiplicities are denoted as follows: s, singlet; d, doublet; t, triplet; q, quartet; m, multiplet; br, broad. ¹H NMR and ¹³C NMR spectra were recorded on a Bruker spectrometer at frequencies of 400 and 100 MHz respectively, using DMSO-*d*⁶. Unless otherwise notice, the ¹H NMR experiments are performed at room temperature (298 K) and 16 times of scans by default; the ¹³C NMR experiments are performed at room temperature (298 K) and 1024 times of scans by default. HRMS were obtained on Waters ACQUITY UPLC/Xevo G2 QTOF SYSTEM. UPLC analysis was performed on Agilent 1290 Infinity LC System.

Materials. Unless otherwise noted, commercial reagents were purchased from Aldrich, J&K Scientific Ltd., and other commercial suppliers and were used as received.

General procedure

Preparation of the catalyst/ligand solution: In reactor A was added Ni(OAc)₂·4H₂O (35 g, 5 mol%), 3,4,7,8-tetramethyl-1,10-phenanthroline (40 g, 6 mol%) and exchanged with N₂ atmosphere for three times. 2 wt% aqueous TPGS-750-M (4 kg) was added. The resulting mixture was stirred at 45 °C for 30 min to obtain a clear pink solution to be directly used in the following step.

General procedure for the reaction: In reactor B was added Me-THF (5.5 kg), 2 wt% aqueous TPGS-750-M (2 kg) and bubbling with N₂ for 60 mins. 1-benzyl-4-iodopiperidine-HCl salt **2a** (1.4 kg, 1.5 equiv.) was added followed by DIPEA (1.1 kg, 3 equiv.), and the resulting mixture was stirred at 45 °C for 3 h. Then 5-bromophthalide **1a** (0.6 kg, 1 equiv.), Cu₂O (6 g, 0.15 mol%) were added and the mixture was stirred at this temperature for 10 mins. The pre-mixed catalyst solution in reactor A was transferred to reactor B and zinc (0.46 kg, 2.5 equiv.) was added (Note: Thermal release was observed and adding zinc in portions is highly recommended). The resulting mixture was stirred at 45 °C for 16 h and the progress was monitored by HPLC analysis. Upon reaction completion, the zinc dust was removed by filtration via MCC (0.6 kg) and washed with additional Me-THF (2.6 kg). A two-layer solution was collected and layer separation to collect upper organic layer. The organic layer was concentrated (~6 kg distilled out) and to this reactor was added i-PrOH (2.8 kg). Continue to distill out 1.7 kg of organic solvent and raise the internal temperature to 70 °C to obtain a light brown clean solution. Water (10.5 kg) was added slowly during 2 h and stirred at this temperature for 1 h. The temperature was cooled to 20 °C over 3 h and stirred at this temperature for 10 h to obtain a suspension. Filtration to get the wet cake and drying under vacuum to obtain the desired product as a light brown solid.

5-(1-Benzylpiperidin-4-yl)isobenzofuran-1(3H)-one (3a): White solid; ¹H NMR (400 MHz, DMSO-*d*₆) δ 7.75 (d, J = 8.0 Hz, 1H), 7.54 (s, 1H), 7.47 (dd, J = 8.0, 1.4 Hz, 1H), 7.33 – 7.30 (m, 4H), 7.27 – 7.21 (m, 1H), 5.36 (s, 2H), 3.50 (s, 2H), 2.93 – 2.90 (m, 2H), 2.69 – 2.59 (m, 1H), 2.09 – 2.02 (m, 2H), 1.78 – 1.64 (m, 4H). ¹³C NMR (100 MHz, DMSO-*d*₆) δ 171.0, 153.8, 148.3, 139.0, 129.3, 128.6, 128.5, 127.3, 125.3, 123.5, 121.4, 70.2, 62.9, 53.9, 42.7, 33.3. HRMS (ESI) Calcd for C₂₀H₂₂NO₂⁺ [M + H]⁺ 308.1645, found 308.1640.

Table S1 Full ICP results for the two different batches of 1a (unit: ppm)

Sample	Ag	AI	As	в	Ве	Bi	Ca	Cd	Co	Cr	Cu	Fe	к	Li	Mg	Mn	Na	Ni	Р	Pb	Pd	Sb
Old	0.379	4.979	0.242	0.597	0.105	8.527	0.805	0.064	0.245	2.011	947.845	20.052	1.997	2.135	0.409	0.346	288.776	1.329	1044.080	21.099	0.048	3.820
New	0.116	5.420	0.079	0.307	0.043	0.325	14.387	0.021	0.112	3.278	1.420	41.290	1.508	0.491	3.948	0.705	1.330	0.755	2.765	41.756	0.059	2.961
Р	Pb	Pd	Sb	Si	Sr	Ti	Zn	Rh	Ru	Sn												
1044.080) 21.09	99 0.04	18 3.82	20 5.71	11 0.00	65 0.45	52 41.8 ⁻	10 0.47	0.00)7 1.4	53											
2.765	41.75	56 0.05	59 2.96	61 4.16	60 0.2 <i>1</i>	1 0.25	57 1.263	3 0.11	6 0.25	50 2.4	52											

Full Author names of reference Cell. Chem. Biol., 2023, 30, 235.

Discovery and characterization of a selective IKZF2 glue degrader for cancer immunotherapy

Simone Bonazzi,^{1,4,*} Eva d'Hennezel,^{1,4,*} Rohan E.J. Beckwith,^{1,4} Lei Xu,¹ Aleem Fazal,¹ Anna Magracheva,¹ Radha Ramesh,¹ Artiom Cernijenko,¹ Brandon Antonakos,¹ Hyo-eun C. Bhang,¹ Roxana García Caro,¹ Jennifer S. Cobb,¹ Elizabeth Ornelas,² Xiaolei Ma,² Charles A. Wartchow,² Matthew C. Clifton,² Ry R. Forseth,³ Bethany Hughes Fortnam,¹ Hongbo Lu,¹ Alfredo Csibi,¹ Jennifer Tullai,¹ Seth Carbonneau,¹ Noel M. Thomsen,¹ Jay Larrow,¹ Barbara Chie-Leon,² Dominik Hainzl,¹ Yi Gu,¹ Darlene Lu,¹ Matthew J. Meyer,¹ Dylan Alexander,¹ Jacqueline Kinyamu-Akunda,³ Catherine A. Sabatos-Peyton,¹ Natalie A. Dales,¹ Frédéric J. Zécri,¹ Rishi K. Jain,¹ Janine Shulok,¹ Y. Karen Wang,¹ Karin Briner,¹ Jeffery A. Porter,¹ John A. Tallarico,¹ Jeffrey A. Engelman,¹ Glenn Dranoff,¹ James E. Bradner,¹ Michael Visser,^{1,4} and Jonathan M. Solomon^{1,4,5,*} ¹Novartis Institutes for Biomedical Research, Cambridge, MA, USA

²Novartis Institutes for Biomedical Research, Emervville, CA, USA

³Novartis Institutes for Biomedical Research, East Hanover, NJ, USA

⁴These authors contributed equally

⁵Lead contact

*Correspondence: simone.bonazzi@novartis.com (S.B.), eva.dhennezel@novartis.com (E.d'H.), jonathan.solomon@novartis.com (J.M.S.) https://doi.org/10.1016/j.chembiol.2023.02.005

