Electronic Supplementary Information

Double amplification bioassay based on CRISPR-Cas12a and 3D nanomachine for HPV-16 sensitive detection

Yueli Hu,^a Liwei Liu, ^b Chaoqun Wang, ^c Jing Zhou, ^c Rui Liu,^{a*} and Yi Lv^{a,c*}

^a Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China.

^b State Key Laboratory of Vanadium and Titanium Resources Comprehensive Utilization, Pangang Group Research Institute Co, Ltd, Panzhihua 617000, China.

^c Analytical & Testing Centre, Sichuan University, Chengdu 610064, China.

Email: <u>liur@scu.edu.cn</u> (R. Liu); <u>lvy@scu.edu.cn</u> (Y. Lv) Tel. and Fax: +86-28-8541-2798.

Table of Content

Experiment section

Table S1 The DNA and RNA sequences used in this work.

Table S2 The comparison of analytical methods for HPV-16.

- Table S3 The working condition of ICPMS.
- Fig. S1 Labeling process of DNA substrate with DOTA-Tb.
- Fig. S2 ESI-MS of MMA-DOTA and DOTA-Tb.
- Fig. S3 MALDI-TOF of DNA and DNA+DOTA+Tb.
- Fig. S4 EDS of bare MBs and weight content distribution in EDS.
- Fig. S5 PAGE of DNA under different conditions.
- Fig. S6 Optimization of amount of MBs.

Experimental section

Reagents and Materials

Streptavidin-coated magnetic micro spheres (MBs) were DynabeadsTM M-280 Streptavidin ($10mg/\mu L$) were purchased from Thermo Fisher Scientific Inc. (USA). 1,4,7,10-Tetraazacyclododecane-1,4,7-tris-aceticacid-10-maleimidoethylacetamide (MMA-DOTA) was purchased from Macrocyclics, Inc. (USA). Terbium chloride hexahydrate (TbCl₃·6H₂O) were purchased from Aladdin Reagent Inc. (Shanghai, China). Tris (2-carboxyethyl) phosphine (TCEP) was obtained from Adamas Reagent, Ltd. (Shanghai, China). Tris (hydroxymethyl) aminomethane (Tris-HCl) stock solution, ethylenediaminetetraacetic Acid (EDTA) and DEPC-treated water were purchased from Shanghai Sangon Biotech Co. Ltd. (Shanghai, China). Sodium chloride (NaCl), magnesium chloride hexahydrate ($MgCl_2·6H_2O$), ammonium acetate (NH_4AC), acetic acid (HOAC), nitric acid (HNO₃) were bought in Chengdu Kelong Chemical Reagent Company (China). 3K Amicon Ultra-0.5 NMWL spin filters was purchased from Merck Millipore (Germany). Ultrapure water (UPW, 18.2 M Ω cm⁻¹) was produced using a ULUPURE (Chengdu, China) water purification system.

All the oligonucleotides listed in Table S1 were synthesized and HPLC-purified by Shanghai Sangon Biotech Co. Ltd. (Shanghai, China). The clinical serum samples were collected by Chengdu Seventh People's Hospital.

Apparatus

A NexION 350 commercial inductively coupled plasma mass spectrometry (ICP-MS) from PerkinElmer Co., Ltd. was used for 159^{Tb} detection and the working condition of the instrument was exhibited in Table S3. Electrospray ionization mass spectrometry (ESI-MS) was recorded on a TSQ Quantum Ultra liquid chromatography-mass spectrometer (Thermo Fisher Scientific, Inc., USA). Element-labeling substrates were characterized by an AXIMA Performance matrix assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF-MS, Shimadzu, Japan). Zeta potential of magnetic beads were measured using a Zetasizer Nano ZS nanoparticle size and zeta potential analyzers (Malvern Panalytical, United Kingdom). The energy-dispersive spectrum (EDS) was processed by scanning electron microscopy (SEM, Hitachi, S3400).

Buffers

- a. NH₄Ac buffer: 0.5 M NH₄Ac, pH 5.8
- b. Wash buffer: 10 mM Tris-HCl, 100 mM NaCl, 1 mM EDTA, pH 7.4
- c. Tris-HCl buffer: 20 mM Tris-HCl, 150 mM NaCl, pH 7.4
- d. Binding and Washing (B&W) buffer: 5 mM Tris-HCl, 1 M NaCl, 0.5 mM EDTA, pH 7.4
- e. 2×B&W buffer: 10 mM Tris-HCl, 2 M NaCl, 1 mM EDTA, pH 7.4
- f. NEBuffer r2.1: 10 mM Tris-HCl, 50 mM NaCl, 10 mM MgCl₂, 100 µg/ml Recombinant Albumin, pH 7.9

Labeling DNA substrate with Tb

The labeling process is carried out on the basis of the literature of Zhang's group,¹ and the specific experimental steps are shown in the Figure S1. In brief, the TbCl₃ and 1,4,7,10-Tetraazacyclododecane-1,4,7-tris-aceticacid-10-maleimidoethylacetamide (MMA-DOTA) were dissolved in NH₄AC buffer (pH 5.8). The same volume of 5 mM MMA-DOTA chelates with 10 mM Tb³⁺ at 37 °C for 1 h with gentle shaking. At the same time, the DNA substrate with sulfhydrylation dissolved in 0.5 M NH₄AC buffer (pH 5.8) reacted with excess TCEP at 37 °C for 30 min, then were purified using ultra-filtration tubes. The ultra-filtration involves centrifuging at 14000 rpm for 15 min with wash buffer to remove excess TCEP and then centrifuging at 1000 g for 2 min to transfer the product to a new centrifuge tube. The prepared DOTA-Tb is added and incubated at 37 °C for 2h with violent shaking. After centrifugation with wash buffer for five times to remove excess Tb³⁺ and with Tris-HCl buffer for the sixth time, the production is diluted to 1220 µL and stored at 4 °C for later use.

Preparation of the DNA Nanomachine

After washing 80 μ L MBs with BW buffer for three times, 400 μ L Tb³⁺-labeled DNA is added and incubated at 25 °C for two hours. The successfully prepared nanomachine is washed with Tris-HCl buffer four times to remove excess Tb³⁺-labeled DNA, and finally diluted to 1000 μ L for use.

Analysis of target through double amplification

The trans-cleavage reaction of CRISPR-Cas12a is realized by mixing 10 μ L 150 nM DNAzyme, 10 μ L 20 nM Cas 12a and 20 μ L different concentrations of target in a PCR tube and reacting at 37 °C for 60 min. After inactivating at 85 °C for 5 min, 20 μ L 20 mM Mg²⁺ and 20 μ L MBs are added to the PCR tube to walk at 25 °C for 40 min to release the Tb³⁺ on MBs. Finally, 70 μ L supernatant is absorbed by magnetic separation and added to 1 mL 1%HNO₃ for ICPMS analysis.

Table S1 The DNA and RNA sequences used in this work.

Name	Sequences (5'→3')
crRNA	UAAUUUCUACUAAGUGUAGAUAGGGCGUAACCGAAAUCGGU
HPV-16	ACCGATTTCGGTTACGCCCT
Substrate	Biotin-T15CTCACTAT/rA/GGAAGAGATGT5-SH
DNAzyme-E5	CATCTCTTCTCCGAGCCGGTCGAAATAGTGAGT
DNAzyme-E1	CTCCGAGCCGGTCGAAA
DNAzyme-E2	TTCTCCGAGCCGGTCGAAATA
DNAzyme-E3	TCTTCTCCGAGCCGGTCGAAATAGT
DNAzyme-E4	TCTCTTCTCCGAGCCGGTCGAAATAGTGA
HPV-18	GGAATGCTCGAAGGTCGTCT
HPV-31	GGTGAACCGAAAACGGTTGG
HPV-51	TCTGCTGTACAACGCGAAGG
HPV-58	ACAGCTAGGGCACACAATGG

Table S2 The comparison of analytical methods for HPV-16.

analytical method	linear range	LOD	references
Double amplification based on CRISPR-Cas12a and 3D nanomachine	10-400 pM	1.2 pM	this work
Fluorescent DNA-templated silver nanoclusters and hairpin-blocked DNAzyme-assisted cascade amplification	10 pM-10 nM	5.7 pM	2
CRISPR-Cas12a-Derived Photoelectrochemical Biosensor	5-5000 pM	1.2 pM	3
CRISPR/Cas12a-mediated liposome-amplified strategy	0.01-100 nM	1.6 pM	4
Electrochemical Resistive DNA Biosensor	5-20 nM	2.39 nM	5

Table S3 The working condition of ICPMS.

Parameter	Setting
Vacuum Pressure (Torr)	3.50×10 ⁻⁷
ICP RF Power (W)	1300
Nebulizer Gas Flow (L/min)	0.94
Auxiliary Gas Flow (L/min)	1.2
Plasma Gas Flow (L/min)	18
Dwell Time (ms)	50
Dead Time (ns)	35
Sweeps per reading	120
Isotope monitored	¹⁵⁹ Tb

Fig. S1 Labeling process of DNA substrate with DOTA-Tb.

Fig. S2 ESI-MS of MMA-DOTA and DOTA-Tb. (a)MMA-DOTA, ESI-MS, m/z, found: 527.2 ([M+H]⁺), 549.2 ([M+Na]⁺); calc.: 527.5 ([M+H]⁺). (b) DOTA-Tb, ESI-MS, m/z, found: 683.1 ([M+H]⁺), 705.2 ([M+Na]⁺); calc.: 683.4 ([M+H]⁺).

Fig. S3 MALDI-TOF of DNA and DNA+DOTA+Tb.

Element	Wt %
С	67.64
О	18.68
S	0.5
Fe	13.18
Total	100

Fig. S4 (a) EDS of bare MBs and (b) weight content distribution in EDS.

b

Fig. S5 PAGE image of DNA ladder (lane 1), 400 nM Cas12a/crRNA (lane 2), 4 μ M HPV-16 (lane 3), 4 μ M DNzyme (lane 4), 400 nM Cas12a/crRNA and 4 μ M HPV-16 (lane 6), 400 nM Cas12a/crRNA and 4 μ M DNAzyme (lane 5), 400 nM Cas12a/crRNA and 4 μ M HPV-16 (lane 6), 400 nM Cas12a/crRNA and 4 μ M DNAzyme and 4 μ M HPV-16 (lane 7).

Fig. S6 Optimization of amount of MBs.

References

- 1. G. Han, S. Zhang, Z. Xing and X. Zhang, *Angew Chem Int Ed Engl*, 2013, **52**, 1466-1471.
- 2. Y. Yuan, Y. Ma, L. Luo, Q. Wang, J. Huang, J. Liu, X. Yang and K. Wang, *Microchimica Acta*, 2019, **186**, 613-618.
- 3. R. Zeng, H. Gong, Y. Li, Y. Li, W. Lin, D. Tang and D. Knopp, *Analytical Chemistry*, 2022, **94**, 7442-7448.
- 4. H. Gong, Y. Wu, R. Zeng, Y. Zeng, X. Liu and D. Tang, *Chem Commun (Camb)*, 2021, **57**, 8977-8980.
- 5. J. R. Espinosa, M. Galván, A. S. Quiñones, J. L. Ayala, V. Ávila and S. M. Durón, *Molecules*, 2021, **26**, 3436-3451.