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1. Experimental section

1.1. Chemicals and Reagents

2,4,6-Triphenylpyrylium tetrafluoroborate (TPP, 98%), acetonitrile (CH;CN,
>99%), ethanol (C,HsOH, >99.7%), methanol (CH3OH, 99.5%), and dichloromethane
(CH,Cl,, 99.5%) were purchased from Shanghai Aladdin Reagent Co., Ltd. All lignin
model substrates and other reagents were bought from Shanghai Bide Medical

Technology Co., Ltd.

1.2 Photocatalytic reactions

For the photocatalytic reaction, in general, a mixture of 2.5 mol% of
photocatalyst (TPP), 0.1 mmol of the substrate, and 3 mL of the solvent was placed
into a 10 mL quartz reaction tube. The resulting mixture was stirred in the dark for 0.5
h to obtain adsorption equilibrium under an air atmosphere. The reaction mixture was
stirred under visible light irradiation using a 300 W Xe lamp (Perfectlight Co., PLE-
SXE300, A > 400 nm) at 25 °C controlled by cooling water. Products were confirmed
by gas chromatography-mass spectrometry (GC-MS, Agilent 6890N GC/5973 MS,
Santa Clara, CA) spectra, 'H and 3C NMR spectra (JEOL-ECX500 500Mz
spectrometer), and compared with standard samples. The conversion of the substrate
and the yield of the product were determined by high-performance liquid
chromatography (HPLC, Agilent Technologies 1260 Infinity II), using the below
analysis conditions: Injection, 10 pL; mobile phase, CH3;CN/H,O (6/4, 5 mM
CH3COONH, aqueous solution); flow rate, 0.6 mL/min; TCC temperature, 35 °C;
detector, UV 250 nm.

1.3. UV-Vis determination

The acetonitrile solution of TPP (1.0 x 10 mol L) and 1a or 1d (1.0 x 10-2 mol
L) were prepared as stock solutions. In detail, 3 mL of TPP stock solution was
added to the quartz cuvette, followed by adding the corresponding 1a or 1d stock
solution and maintaining the molar ratio of 0, 1/3, 2/3, 1.0, 4/3, 5/3, 2.0, 7/3, 8/3, and
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3.0. The measurements were performed at room temperature with a TU-1901 external

spectrometer.

1.4. NMR titration experiments

The 1a, 1d, and TPP were each dissolved in acetonitrile-Ds, respectively. The 1a
or 1d solution concentration was fixed at 0.1 mM in all analyses. The TPP (catalytic
amount) solution was added to the 1a or 1d solution, and the '"H NMR spectra were

recorded at appropriate intervals using a JEOL-ECX500 500Mz spectrometer at 25 °C.

2. Computational methods

The M06-2X density functional method was employed in this work to carry out
all the computations.5! The 6-31G(d) basis set was used for the atoms in geometry
optimizations using the PCM model with acetonitrile as the solvent.5>3 Vibrational
frequency analyses at the same level of theory were performed on all optimized
structures to characterize stationary points as local minima or transition states.
Furthermore, intrinsic reaction coordinate (IRC) computations were carried out to
confirm that transition states connect to the appropriate reactants and products. The
single-point energy calculations were carried out using the def2-TZVP basis set to
provide better energy correction.5* All DFT theoretical calculations were performed

using the Gaussian 16 software program package.$
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3. Supplementary Tables and Figures

As shown in Fig. SIA and S1B, various scavengers were added to the
system to further identify the active substances and reaction pathways of
photocatalytic selective oxidative cleavage of the C-C bond. The conversion of
la and 1d was significantly suppressed by the addition of NaN; ('O,
scavenger), benzoquinone (BQ, ‘O, scavenger), or silver nitrate (AgNOs, e
scavenger), but scarcely affected by isopropyl alcohol (IPA, -OH scavenger)
and ethylenediaminetetraacetic acid (EDTA, TPP* scavenger), revealing that
10, and O, were the main reactive oxygen species and played an important
role in the conversion of 1a and 1d. Additionally, the addition of AgNOj5 also
had an obvious inhibitory effect on the reaction, mainly indicating that electron
transfer was also the main process of the reaction. The above results confirmed
that the catalytic process belonged to a visible-light-mediated free radical

reaction system.
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Fig. S1 The oxidative C-C bond cleavage of 1a (A) and 1d (B) in the presence of different
scavengers. Reaction conditions: 0.1 mmol 1a or 1d, 2 mol % TPP, 1 equiv. quencher, 3 mL
CH;CH, A > 400 nm irradiation for 6 h at 25 °C under air atmosphere.
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As shown in Fig. S2A and S2B, the absorbance of the system increased after

gradually adding solution 1a or 1d to the TPP solution, indicating the existence of

weak interactions between the catalyst and the substrate.
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Fig. S2 The UV-Vis spectra of (A) TPP-1a, and (B) TPP-1d in different molar ratios.
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Fig. S3 The GC-MS spectra of 1,2-diphenylethan-1-o0l (1a) in CD;CN.
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Fig. S4 The mass spectrum of benzoic acid.
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Fig. S5 The 'H and 13C NMR spectra of benzoic acid.
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Fig. S6 The mass spectrum of 4-methoxybenzoic acid.
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Fig. S7 The 'H and '*C NMR spectra of 4-methoxybenzoic acid.
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Fig. S8 The mass spectrum of 2-methoxybenzoic acid.
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Fig. S9 The 'H and *C NMR spectra of 2-methoxybenzoic acid
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Fig. S10 The mass spectrum of 3,4-dimethoxybenzoic acid.
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Fig. S11 The 'H and '*C NMR spectra of 3,4-dimethoxybenzoic acid.
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Table S1 Results of the TPP-catalyzed oxidative C-C bond cleavage of 1a.

IS 1, D
O Visible light, PC ©/§0 ©)LOH
—_— +
Solvent, Air + O

1a 1b I 1d
Yield (%)
Entry PC dosage Solvent Conv. (%)
1b 1lc 1d

1 None CH;CN 2% / / /
2 1 mol% TPP CH;CN 78% 28% 50%
3 2 mol% TPP CH;CN >99% 2% 97% /
4 2.5 mol% TPP CH;CN >99% 1% 98% /
5b 2 mol% TPP CH;CN 2% / / 2%
6° 2 mol% TPP CH;CN 0 / / /
7 2 mol% TPP CH;0H 28% 19% 6% 3%
8 2 mol% TPP CH;CH,0H 57% 3% 49% 4%
9 2 mol% TPP CH,Cl, 10% 6% / 4%

a Reaction conditions: 0.1 mmol substrate, 0-2.5 mol% photocatalyst (PC), 3 mL solvent, A >
400 nm, air atmosphere, 25 °C, and 8 h. ® N, atmosphere. ¢ Without light irradiation.

Initially, our investigations were commenced with the selective cleavage of
the C-C bond in the lignin f-1 model compound 1,2-diphenylethan-1-ol (1a)
under various reaction conditions (Table S1). It was found that the amount of
used PC was positively correlated with the conversion of 1a (Entries 1-4). The
conversion of 1a was only 2% after 8 h of visible-light irradiation without PC,
and no product was detected (Entry 1). When PC was used in a dosage of 2
mol%, the conversion of 1a was more than 99%, and benzoic acid (1¢) was
formed in an almost quantitative yield (up to 97%) with benzaldehyde (1b) in a
yield of only 2% (Entry 3). These results indicated that PC played a key role in
the photocatalytic oxidation system for selective C-C bond scission. In an N,
atmosphere, only 2% of 1la was converted to 2-phenylacetophenone (1d),
indicating that molecular oxygen could be the source of the active species in the

reaction (Entry 5). The substrate did not transform under the dark condition,
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suggesting that it is a light-excited reaction process (Entry 6). In addition, the
effects of different solvents were evaluated, and the results showed that none of
them had good catalytic activity and selectivity (Entries 7-9), except CH;CN
(Entry 3) under identical reaction conditions. Overall, it can be speculated that
the whole reaction process is the participation of oxygen-active species in the

photocatalytic transformation system.
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Table S2 The DFT calculation data

Entry G G correction delta G(kcal/mol) E (big) G(big) delta G(kcal/mol)
TPP -960.963752 0.280117 -961.58937 -961.309253
la -616.673156 0.204428 -617.11544 -616.911012
i -1577.633228 0.510332 2.3092368 -1578.723535 -1578.213203 4.43147562 4.4
ii -1577.596305 0.507293 23.16955173 -1578.679985 -1578.172692 25.42105761 29.85253323
iii -1577.625349 0.509236 -18.22540044 -1578.712584 -1578.203348 -19.23694656 10.61558667
1d -615.503293 0.181088 -615.915199 -615.734111
I -1576.461251 0.489045 3.63579294 -1577.521297 -1577.032252 6.97289112 6.9
I -1576.431026 0.485215 18.96648975 -1577.485538 -1577.000323 20.03576679 27.00865791
I -1576.461815 0.48898 -19.32040539 -1577.520866 -1577.031886 -19.80609813 7.20255978
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Table S3 Photocatalytic results in oxidative C-C bond cleavage of lignin 5-O-4 models

Yield of products (%)
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Table S4 Performance comparison of the developed system with previously reported photocatalytic systems for oxidative C-C bond cleavage of lignin models

. ... Conversion Selectivity of
Entry Catalyst Model compound Reaction condition (%) C-C bond (%) Reference
1 Vanadium-complex 1, 30 °C, reflux, >420 nm, 100 679 Chem, Sci. 2015, 6, 7130-
10 mol % 24 h ‘ 7142
) Vanadium-complex 2, Room temp., white LED, 76 799 ACS Catal. 2017, 7, 4682-
10 mol% 24 h ’ 4691
Alcohol B-O-4,
Sp3(cot'cl3) R
oom temp., 455 nm ACS Catal. 2017, 7, 3850-
3 Mpg-C;5Ny4, 10 mg LED, 10 h 96 74.3 3857
4 Moy 3;, 1 mol% + K,S,0s, 10 °C, reflux, 300 W Xe, 916 35 4 ACS Sustainable Chem. Eng.
1 equiv. 6h ’ ’ 2023, 11, 7624-7632
Vanadium-complex 3, 10 25-40 °C, 455 nm LED, 6
5 mol % Alcohol -1, sp(Cyr h 99 52 ACS Catal. 2020, 10, 632-643
C
6 CuOx/ceria/anatase 2 Room temp., 455 nm 7 08 ACS Catal. 2018, 8, 4761-
nanotube, 10 mg LED, 5h 4771
7 TPP, 2.5 mol% Alcohol and ketone B- 500, 400 1m Xe, 4-8 h 100 >99 This work
0_4, Sp (CG_CB)
] TPP. 2.5 mol% Alcohol and ketone - 25 °C, >400 nm Xe, 8-10 100 =99 This work

1 > Sp3(Cu-CB)

h
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