Electronic Supplementary Information

Enhancing Cu-Ligand Interaction for Efficient CO₂ Reduction towards Multicarbon Products

Jingyi Chen^{+ [a]}, Lei Fan^{+ [a]}, Yilin Zhao^[a], Haozhou Yang^[a], Di Wang^[a], Bihao Hu^[a], Shibo Xi^[b], and Lei Wang^{*[a,c]}

[a] Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585

[b] Institute of Sustainability for Chemicals, Energy and Environment, A*STAR, 1 Pesek Road, Jurong Island, Singapore 627833

[c] Centre for Hydrogen Innovations, National University of Singapore, 4 Engineering Drive 4, Singapore 117585

⁺ These authors contributed equally to this work.

E-mail: wanglei8@nus.edu.sg

Table of content

Experimental Procedures
Figure S1 CO ₂ reduction performance of the physical mixture of DAT and CuNPs with molar ratio from 0 to 4 (a-e)
Figure S2 EDS mapping of post-reaction mixture between CuNPs and DAT ligand7
Figure S3 SEM image for post-reaction sample of CuNPs and DAT ligand mixture. Parts of Cu particles are exposed in the absence of ligand modification
Figure S4 XRD of as-prepared CuDAT9
Figure S5 Cu 2p XPS of as-prepared CuDAT sample10
Figure S6 ATR-FTIR spectrum of as-prepared CuDAT11
Figure S7 $FE(C_{2+})$ comparison of CuDAT and CuNPs at different current density12
Figure S8 The cyclic voltammetry curve of (a) CuDAT, (b) CuNPs in Ar-saturated 1M KHCO ₃ . (c)The fitted electrical double layer capacitance of CuDAT and CuNPs13
Figure S9 ECSA normalized current density of CuDAT and CuNPs14
Figure S10 CO_2R stability test on CuDAT at 200 mA cm ⁻² 15
Figure S11 (a) SEM and (b) TEM images of post-reaction CuDAT. (c) SEM images of as- prepared CuDAT
Figure S12 (a) TEM image and (b, c) HRTEM images of post-reaction CuDAT samples. Zero-valance Cu aggregation happens with the particle size ~5 nm17
Figure S13 XRD of post-reaction CuDAT, commercial CuNPs and carbon paper substrate.
Figure S14 XRD of as-prepared and post-reaction CuDAT
Figure S15 Cross-section EDS mapping of post-reaction CuDAT20
Figure S16 ATR-FTIR spectra of post-reaction CuDAT21
Figure S17 In situ-ATR-SEIRAS spectra of commercial CuNPs22
Fig. S18 CO stripping on CuDAT and CuNPs with the scan rate of 10 mV S-1, after 10s CO adsorption at -0.3 V in CO saturated 0.1 M KOH23
Figure S19 (a) In-situ ATR-SEIRAS of physical mixture of commercial CuNPs and DAT ligand during CO_2R (the mass ratio of DAT to CuNPs = 2). (b) Relative absorbance of $*CO_L$ band for CuNPs, and physical mixture of CuNPs and DAT ligand. (c) $*CO_L$ band in in-situ ATR-SEIRAS of CuNPs, and physical mixture of CuNPs and DAT ligand, at -0.7 V vs. RHE.

Figure S20 Low-concentration CO ₂ reduction performance of CuNPs in 1 M KHCO ₃ at 300 mA cm ⁻² 25
Figure S21 Overpotential of CuDAT and CuNPs to achieve 300 mA cm ⁻² at different CO2 partial pressure
Figure S22 $FE(C_{2+})/FE(CO_2R)$ for CuDAT and CuNPs with different p(CO ₂) at 300 mA cm ⁻²
Reference

Experimental Procedures

Chemicals and materials: Copper(II) sulfate (CuSO₄, 99%), 3,5-Diamino-1,2,4-triazole ($C_2H_5N_5$, 98%), 3-Amino-1,2,4-triazole ($C_2H_4N_4$, 95%), 1,2,4-Triazole ($C_2H_3N_3$, 98%), Copper nanopowder (60-80 nm, 99.5%), Potassium bicarbonate (KHCO₃, 99.999%) were purchased from Sigma-Aldrich. All reagents were used as received without further purification.

Material characterizations: Transmission electron microscopy (TEM) and corresponding energy-dispersive X-ray spectroscopy (EDS) were taken by a JEOL JEM-2010F TEM. Scanning electron microscope (SEM) and corresponding energy-dispersive X-ray spectroscopy (EDS) were carried by JEOL JSM-7610F SEM. X-ray photoelectron spectroscopy (XPS) was conducted on Kratos Axis UltraDLD (Mono Al K α , hv= 1486.71 eV). Fourier-transform infrared spectroscopy (FTIR) was recorded using VERTEX 70 FT-IR Spectrometer. In-situ FTIR was measured by Shimadzu IR tracer-100 FTIR Spectrophotometer. XAS was performed at XAFCA beamline of Singapore Synchrotron Light Source under transmission mode. Cu K-edge XANES and EXAFS spectra were collected. And data process was processed by Athena.

Synthesis of Cu(II) complexes: For CuDAT, 2 mmol Cu(SO₄) \cdot 5H₂O is dissolved in 10 mL deionized water. Then, 10 mL water solution of 3,5-Diamino-1,2,4-triazole (4 mmol) is dropped Cu(SO₄) \cdot 5H₂O solution under vigorous stirring. After stirring for 4 hours, the products were collected *via* centrifuge at 5000 rpm for 5 minutes and washed three times with deionized water. The resulting samples were dried in vacuum at room temperature overnight. For CuAT and CuT synthesizing, 3-Amino-1,2,4-triazole (C₂H₄N₄, 95%) and 1,2,4-Triazole were applied as the ligand, following the same procedure as CuDAT synthesis.

CO₂R measurements in the flow cell: 4 mg samples (CuDAT, CuAT, CuT and CuNPs) were dispersed in the mixed solution containing 400 uL ethanol and 16 uL 5 wt% Nafion. The ink was sonicated for 30 min and sprayed on carbon paper (1.2*1.2 cm², Fuel Cell Gas Diffusion Layer YLS30T) to reach the loading of 1 mg cm⁻². The reaction was conducted in a self-designed flow cell with a catalyst area of 1 cm². The prepared carbon paper was used as the working electrode, while Ag/AgCl electrode and Pt foil were used as the reference electrode and counter electrode, respectively. All the recorded potentials were converted to RHE scale based on:

$$E (vs. RHE) = E (vs. Ag/AgCl) + 0.197 V + 0.0591 V \times pH - I \times R_{e}$$

Anion exchange membrane (Selemion AMN/N type 1, AGG Inc.) was applied to separate two compartments. Bio-Logic VMP3 multichannel potentiostat was used for controlling electrochemical measurement. During CO₂ reduction, CO₂ was flowed continuously through the gas chamber at a rate of 20 sccm. The catholyte (1 M KHCO₃) and anolyte (1 M KOH) flowed at a rate of 10 mL/min under the control of a peristaltic pump. The gas products were analyzed by gas chromatography (GC, Shimadzu 2014). Liquid products were analyzed by ¹H NMR spectrum (Bruker, 400 MHz). Faradic efficiency (FE) for each product was calculated based on:

 $FE = \frac{\text{Product amount (mol)} \times n \times F(C/mol)}{I(A) \times t(s)}$

where n is the electron transfer number of a specific product, F is the Faradic efficiency (96485 C/mol), I is the total current, and t is reaction time.

Electrochemical surface area measurement: The ECSA test was performed in a standard three-electrode system with CuDAT/CuNPs loaded carbon paper as the working electrode, Ag/AgCl as the reference electrode, and platinum foil as the counter electrode. CV tests at different scan rate (20, 40, 60, 80, 100, 120, 140, 160 mV/s) were carried in Ar-saturated 0.1 M KHCO₃. The normalized current density was calculated based on:

ECSA normalized
$$j = \frac{I}{S_{ECSA}}$$

 $S_{ECSA} = \frac{C_{dl}}{C_S}$

where I is current (mA), C_{dl} is measured double layer capacitance of catalysts, and C_s is C_{dl} for planar polycrystalline Cu (= 29 μ F).¹

In-situ ATR-SEIRAS: The working electrode was prepared on Au film that was pre-deposited onto a silicon attenuated total reflection (ATR) crystal via chemical deposition. 5 mg catalyst (CuDAT or CuNPs) was dispersed in 500 uL ethanol and 20 uL 5 wt% Nafion solution to form a homogeneous ink by sonicating. Then, the ink was dropped onto the Au film. The prepared working electrode was assembled into an H cell. Ag/AgCl electrode and graphite rod served as reference and counter electrodes, respectively. Anion exchange membrane (Selemion AMN/N type 1, AGG Inc.) was applied to separate two compartments, 0.2 M KHCO₃ was used as both catholyte and anolyte with continuous CO_2 purging, and CHI760e potentiostat was employed to control overpotential. The H cell was assembled Shimadzu IR tracer-100 FTIR Spectrophotometer. Before data collecting, the background was recorded at open circuit potential. During the experiment, the overpotential changed from -0.4 V vs. RHE to -1.4 V vs. RHE. All data was presented in absorbance units.

Figure S1 CO_2 reduction performance of the physical mixture of DAT and CuNPs with molar ratio from 0 to 4 (a-e).

Figure S2 EDS mapping of post-reaction mixture between CuNPs and DAT ligand.

Figure S3 SEM image for post-reaction sample of CuNPs and DAT ligand mixture. Parts of Cu particles are exposed in the absence of ligand modification.

Figure S4 XRD of as-prepared CuDAT.

Figure S5 Cu 2p XPS of as-prepared CuDAT sample.

Figure S6 ATR-FTIR spectrum of as-prepared CuDAT.

v

Figure S7 $FE(C_{2+})$ comparison of CuDAT and CuNPs at different current density.

Figure S8 The cyclic voltammetry curve of (a) CuDAT, (b) CuNPs in Ar-saturated 1M KHCO₃. (c)The fitted electrical double layer capacitance of CuDAT and CuNPs.

Figure S9 ECSA normalized current density of CuDAT and CuNPs.

Figure S10 CO₂R stability test on CuDAT at 200 mA cm⁻².

Figure S11 (a) SEM and (b) TEM images of post-reaction CuDAT. (c) SEM images of asprepared CuDAT.

Figure S12 (a) TEM image and (b, c) HRTEM images of post-reaction CuDAT samples. Zero-valance Cu aggregation happens with the particle size ~5 nm.

Figure S13 XRD of post-reaction CuDAT, commercial CuNPs and carbon paper substrate.

Figure S14 XRD of as-prepared and post-reaction CuDAT.

Figure S15 Cross-section EDS mapping of post-reaction CuDAT.

Figure S16 ATR-FTIR spectra of post-reaction CuDAT.

Figure S17 In situ-ATR-SEIRAS spectra of commercial CuNPs.

Fig. S18 CO stripping on CuDAT and CuNPs with the scan rate of 10 mV S-1, after 10 s CO adsorption at -0.3 V in CO saturated 0.1 M KOH.

Figure S19 (a) In-situ ATR-SEIRAS of physical mixture of commercial CuNPs and DAT ligand during CO_2R (the mass ratio of DAT to CuNPs = 2). (b) Relative absorbance of $*CO_L$ band for CuNPs, and physical mixture of CuNPs and DAT ligand. (c) $*CO_L$ band in in-situ ATR-SEIRAS of CuNPs, and physical mixture of CuNPs and DAT ligand, at -0.7 V vs. RHE.

Figure S20 Low-concentration CO_2 reduction performance of CuNPs in 1 M KHCO₃ at 300 mA cm⁻².

Figure S21 Overpotential of CuDAT and CuNPs to achieve 300 mA cm⁻² at different CO2 partial pressure.

Figure S22 $FE(C_{2+})/FE(CO_2R)$ for CuDAT and CuNPs with different $p(CO_2)$ at 300 mA cm⁻².

Reference

(1) Wang, L.; Nitopi, S.; Wong, A. B.; Snider, J. L.; Nielander, A. C.; Morales-Guio, C. G.; Orazov, M.; Higgins, D. C.; Hahn, C.; Jaramillo, T. F. Electrochemically converting carbon monoxide to liquid fuels by directing selectivity with electrode surface area. *Nat. Catal.* **2019**, *2*, 702-708.