Supporting Information

Olefin skeletal rearrangement enabling access to multiarylated N-sulfonyl amidines

Chen-Chang Cui, ${ }^{1}$ Feng Lin, ${ }^{1}$ Lu-Yao Wang, ${ }^{1}$ Yin-Ping Liu, ${ }^{1}$ Shu-Jiang Tu, ${ }^{1}$ Man-Su Tu, *, ${ }^{2}$ Wen-Juan Hao,*, ${ }^{1}$ Bo Jiang*,1
${ }^{1}$ School of Chemistry \& Materials Science, Jiangsu Normal University, Xuzhou 221116, China.
${ }^{2}$ Analyzing and Test Center, Jiangsu Normal University, Xuzhou, 211116, China.
E-mail: tumansu@jsnu.edu.cn (MST); wjhao@jsnu.edu.cn (WJH); jiangchem@jsnu.edu.cn (BJ).

Contents
General information S2
X-Ray structure of product 3a S2
General procedure for the synthesis of substrates $\mathbf{1 , 2}$ and $\mathbf{4}$ S3
General procedure for the synthesis of products $\mathbf{3}$ S4
General procedure for the synthesis of products 5 S10
General procedure for the synthesis of product $\mathbf{6 a}$ S13
Reference S15
Copies of NMR spectra of compounds $\mathbf{3}, \mathbf{5}$ and $\mathbf{6 a}$ S16

General information

EtOAc refers to ethyl acetate, PE refers to Petroleum Ethers $\left(60-90^{\circ} \mathrm{C}\right)$, DCM refers to dichloromethane, THF refers to tetrahydrofuran, DMF refers to N, N-dimethylformamide. Unless otherwise stated, all other starting materials and solvents were commercially available and used without further purification. Dried THF was delivered from an Innovation Technology solvent system. ${ }^{1} \mathrm{HNMR}\left({ }^{13} \mathrm{C}\right.$ NMR) spectra were measured on a Bruker DPX 400 MHz spectrometer in CDCl_{3} with chemical shift (δ) given in ppm relative to TMS as internal standard [(s = singlet, $\mathrm{d}=$ doublet, $m=$ multiplet), coupling constant (Hz)]. HRMS (ESI) was determined by using microTOF-QII HRMS/MS instrument (BRUKER). X-Ray crystallographic analysis was performed with a Siemens SMART CCD and a Siemens P4 diffractometer.

Figure S1. X-Ray Structure of 3a (CCDC 2310727)
A single crystal 3a was obtained by slowly evaporating the mixed solvent of dichloromethane and hexane (V/V 1:10) at room temperature under air conditions. Its dimensions of $0.31 \mathrm{~mm} \times 0.22 \mathrm{~mm}$ $\times 0.14 \mathrm{~mm}$ was mounted on a Siemens P1 diffractometer equipped with a graphite mono-chromated $\operatorname{MoKa}(\lambda=0.71073 \AA)$ radiation at $298(2) \mathrm{K}$. A total of 42129 reflections were collected in the 2.52 $<\theta<35.08^{\circ}$ range by using an ω scan mode and 11291 were independent ($R_{\text {int }}=0.0356$), of which 8080 with $I>2 \sigma(I)$ were observed. The calculations were performed with SHELXS-97 and SHELXS97 programs and corrections for $L p$ factors and absorptions were applied. The structure was solved by direct methods. The non-hydrogen atoms were refined anisotropically, and the hydrogen atoms were determined by theoretical calculations. The final cycle of refinement gave $R=0.0630$ and $w R=$ $0.1617\left(\mathrm{w}=1 /\left[\sigma^{2}\left(F_{0}^{2}\right)+(0.1038 P)^{2}+0.2838 P\right]\right.$, where $\left.P=\left(F_{0}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3\right) . S=1.074,(\triangle / \sigma)_{\max }=0.000$, $(\triangle \rho)_{\min }=0.378 \mathrm{e} / \AA^{3}$ and $(\triangle \rho)_{\max }=-0.372 \mathrm{e} / \AA^{3}$.

The crystal of compound 3a belongs to Orthorhombic, space group $P 2(1) 2(1) 2(1)$ with $a=9.7941$ (9) $\AA, b=11.2385(11) \AA, c=23.348(2) \AA, \alpha=\beta=\gamma=90^{\circ}, V=2569.9(4) \AA^{3}, M r=462.59, Z=4, D c=$ $1.196 \mathrm{~g} / \mathrm{cm}^{3}, \mu(\mathrm{Mo} K \alpha)=0.155 \mathrm{~mm}^{-1}, F(000)=984$, the final $R=0.0630$ and $w R=0.1617$.

General information

General procedure for the synthesis of compounds $\mathbf{1}^{1}$:

General Procedure for $\mathbf{1 a - 1 r}$:

$+$

1) Piperidine, Toluene, reflux.
2) $\mathrm{Ac}_{2} \mathrm{O}$

In a Dean-Stark apparatus, a mixture of aldehyde ($25.0 \mathrm{mmol}, 1.0$ equiv) and 2,6-di-tert-butylphenol (25.0 mmol , 1.0 equiv) in toluene (100 mL) was placed and refluxed. Piperidine ($50.0 \mathrm{mmol}, 4.94 \mathrm{~mL}$) was added to this reaction mixture in a dropwise manner within an hour, and the resultant mixture was stirred at reflux temperature for 12 h . The reaction mixture was cooled to $100^{\circ} \mathrm{C}$, and after acetic anhydride ($50.0 \mathrm{mmol}, 2.55 \mathrm{~g}$) was added, the resulting solution was stirred for 30 minutes at the same temperature. The reaction mixture was then cooled to room temperature, poured into ice-cold water (500 mL), and extracted with dichloromethane (DCM) ($200 \mathrm{~mL} \times 3$). The combined organic layer was dried over anhydrous sodium sulfate, filtered, and concentrated under reduced pressure. The residue was purified by silica gel column chromatography to obtain pure p-quinone methides ($\mathrm{PE} / \mathrm{EtOAc}$).

General procedure for the synthesis of compounds $\mathbf{2}^{\mathbf{2}}$:

General Procedure for $\mathbf{2}$:

A 100 mL flask was charged with NFSI ($15.8 \mathrm{~g}, 50 \mathrm{mmol}$) and $\mathrm{MeOH}(30 \mathrm{~mL})$. Pyridine ($4.9 \mathrm{~mL}, 60 \mathrm{mmol}$) was added via a syringe with stirring. The reaction mixture was stirred at room temperature until the insoluble NFSI was dissolved completely. The solution was diluted with EtOAc. The organic phase was washed with $2 \mathrm{M} \mathrm{HCl}(2 \times 30$ mL), water, and brine successively, and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The organic solvents were removed under reduced pressure. The residue was purified by column chromatography on silica gel $(\mathrm{PE} / \mathrm{EtOAc}=5: 1)$ to give product 1 as a pale yellow oil ($7.26 \mathrm{~g}, 83 \%$ yield $)$.

General Procedure for $\mathbf{2 a}, \mathbf{2 b}$:

To the solution of $\mathrm{PhSO}_{2} \mathrm{NHF}(876 \mathrm{mg}, 5 \mathrm{mmol})$ in $\mathrm{MeOH}(2 \mathrm{~mL})$, the solution of $\mathrm{NaOH}(200 \mathrm{mg}, 5 \mathrm{mmol})$ in $\mathrm{MeOH}(3 \mathrm{~mL})$ was added at $0^{\circ} \mathrm{C}$ slowly. The solution was stirred at $0^{\circ} \mathrm{C}$ for 30 min , followed by adding $\mathrm{ArSO} \mathrm{O}_{2} \mathrm{Cl}$ (6 mmol) slowly. Precipitate formed quickly, and the reaction was stirred for 4 h at room temperature. Then, pyridine $(0.8 \mathrm{~mL}, 10 \mathrm{mmol})$ was added and stirred overnight. EtOAc and water was added for dilution. The organic phase was washed with $2 \mathrm{M} \mathrm{HCl}(2 \times 5 \mathrm{~mL})$, water and brine successively, and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The organic solvent was removed under reduced pressure. The residues were purified by column chromatography on silica gel ($\mathrm{PE} / \mathrm{EtOAc}$) to obtain N-fluoroarenesulfonamides (2a-b) as white or pale yellow solid.
General procedure for the synthesis of compounds 4^{3} :

A solution of phenols (1.1 equiv.) and aldehydes (1.0 equiv.) in toluene ($5 \mathrm{~mL} / \mathrm{mmol}$ substrate) was placed in a Dean-Stark apparatus which was heated to reflux. Piperidine (2.0 equiv.) was added dropwise slowly. Then, the temperature was raised to $140{ }^{\circ} \mathrm{C}$ and stirred for 12 h . After that, the reaction mixture was cooled to $120{ }^{\circ} \mathrm{C}$ and acetic anhydride (2.0 equiv.) was dropwise added. The stirring was continued for 30 min and the solution was poured on ice-water and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 50 \mathrm{~mL})$. The organic phases were combined, washed with brine and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Then the solvent was evaporated under reduced pressure and the corresponding products $\mathbf{4 a 1 - 4 h 1}$ were obtained after flash column chromatography (pentane $/ \mathrm{Et}_{2} \mathrm{O}=100 / 1$ to $30 / 1$). To a solution of $\mathbf{4 a} \mathbf{1 - 4} \mathbf{h} \mathbf{1}$ (1.0 equiv.) in THF ($10 \mathrm{~mL} / \mathrm{mmol}$ substrate) at $0{ }^{\circ} \mathrm{C}$ was added tetrabutylammonium fluoride trihydrate (1.1 equiv.). The reaction mixture was stirred for 10 min and a saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution was added dropwise to quench the reaction. The resulting solution was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 20 \mathrm{~mL})$. Then the combined organic phases were washed with brine and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed to give the crude product which was purified by flash column chromatography (pentane $/ \mathrm{Et}_{2} \mathrm{O}=10 / 1$ to $4 / 1$) to afford the desired compounds 4a-4h.

General procedure for the synthesis of compounds 3 and 5:

Add 4-benzylidene-2,6-di-tert-butylcyclohexa-2,5-dien-1-one $\mathbf{1 a}(0.2 \mathrm{mmol}, 59 \mathrm{mg}), \mathrm{N}$-fluorobenzenesulfonamide 2a $(0.6 \mathrm{mmol}, 105 \mathrm{mg})$, DIPEA ($0.6 \mathrm{mmol}, 77 \mathrm{mg}$), and $\mathrm{MeCN}(4 \mathrm{~mL})$ to a $10-\mathrm{mL}$ reaction tube, and then the reaction system was stirred at $50{ }^{\circ} \mathrm{C}$ (oil bath) for 24 hours. After the reaction was complete (monitored by TLC), the reaction system was concentrated by vacuum filtration, and the crude product was purified by flash silica gel column chromatography $(\mathrm{PE} / \mathrm{EtOAc}=25: 1)$ to obtain pure product $\mathbf{3 a}(77 \mathrm{mg}, 85 \%)$.

(Z)-N-(3,5-di-tert-butyl-4-oxocyclohexa-2,5-dien-1-ylidene)- N^{\prime}-(phenylsulfonyl)benzimidamide (3a)

Orange solid; $77 \mathrm{mg}, 85 \%$ yield; m.p. $83-85{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathbf{H}$ NMR (400 MHz , Chloroform- d) $\delta 7.97$ (d, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}$), 7.81 (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.61-7.55(\mathrm{~m}, 2 \mathrm{H}), 7.54-7.48(\mathrm{~m}, 2 \mathrm{H}), 7.47-7.41(\mathrm{~m}, 2 \mathrm{H}), 6.64(\mathrm{~s}, 2 \mathrm{H}), 1.26(\mathrm{~s}, 18 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (100 MHz , Chloroform- d) $\delta 186.3,168.9,157.6,156.5,141.2,134.0,132.8,132.2,129.1,129.0,128.8,128.3,127.6,36.1$,
29.5. IR (KBr, $v, \mathrm{~cm}^{-1}$): 3307, 2961, 1644, 1518, 1293, 1056, 825. HRMS (ESI) m/z calcd for $\mathrm{C}_{27} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$ 463.2055, found 463.2042.

(Z)-N-(3,5-di-tert-butyl-4-oxocyclohexa-2,5-dien-1-ylidene)-2-methyl-N'-(phenylsulfonyl)benzimidamide (3b)

Orange solid; $19 \mathrm{mg}, 21 \%$ yield; m.p. $87-89{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathbf{H}$ NMR (400 MHz , Chloroform- d) $\delta 7.97$ (d, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}$), 7.58 (d, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.55-7.46(\mathrm{~m}, 3 \mathrm{H}), 7.40-7.33(\mathrm{~m}, 1 \mathrm{H}), 7.27-7.19(\mathrm{~m}, 4 \mathrm{H}), 6.70(\mathrm{~s}, 2 \mathrm{H}), 2.56(\mathrm{~s}, 3 \mathrm{H}), 1.27(\mathrm{~s}, 18 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , Chloroform- d) $\delta 186.1,171.2,156.2,141.2,133.6,132.8,132.2,132.0,130.0,128.8,128.5,127.4$, 126.2, 36.0, 29.4, 21.9. IR (KBr, $v, \mathrm{~cm}^{-1}$): 3318, 2961, 1654, 1538, 1267, 1086, 822, 578. HRMS (ESI) m/z calcd for $\mathrm{C}_{28} \mathrm{H}_{33} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{SNa}[\mathrm{M}+\mathrm{Na}]^{+} 499.2031$, found 499.2025 .

(Z)-N-(3,5-di-tert-butyl-4-oxocyclohexa-2,5-dien-1-ylidene)-3-methyl- N^{\prime}-(phenylsulfonyl)benzimidamide (3c)

Orange solid; $76 \mathrm{mg}, 81 \%$ yield; m.p. $83-85{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathbf{H}$ NMR (400 MHz , Chloroform- d) $\delta 7.95$ (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}$), 7.72 (s, $1 \mathrm{H}), 7.55(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.49(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}), 7.37(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.31(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.62(\mathrm{~s}, 2 \mathrm{H})$, $2.37(\mathrm{~s}, 3 \mathrm{H}), 1.26(\mathrm{~s}, 18 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (100 MHz , Chloroform- d) δ 186.3, 169.2, 157.4, 156.4, 141.1, 139.0, 135.0, 132.8, $132.0,129.4,128.8,128.8,128.3,127.6,126.5,36.1,29.5,21.5$. IR (KBr, $\left.v, \mathrm{~cm}^{-1}\right): 3064,2870,1655,1536,1321,1107$, 823, 589. HRMS (ESI) m/z calcd for $\mathrm{C}_{28} \mathrm{H}_{33} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 477.2212$, found 477.2216.
(Z)-N-(3,5-di-tert-butyl-4-oxocyclohexa-2,5-dien-1-ylidene)-4-methyl-N'-(phenylsulfonyl)benzimidamide (3d)

Orange solid; $56 \mathrm{mg}, 59 \%$ yield; m.p. $87-89{ }^{\circ} \mathrm{C} ;{ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz , Chloroform- d) $\delta 7.96(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}$), $7.70(\mathrm{~d}$, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.58-7.53(\mathrm{~m}, 1 \mathrm{H}), 7.51-7.46(\mathrm{~m}, 2 \mathrm{H}), 7.23(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.62(\mathrm{~s}, 2 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H}), 1.25(\mathrm{~s}, 18 \mathrm{H})$. ${ }^{13}$ C NMR (100 MHz , Chloroform- d) $\delta 186.3,169.0,157.4,156.3,145.2,141.2,132.7,129.7,129.2,128.7,128.3,127.5$, 36.0, 29.5, 21.8. IR (KBr, $v, \mathrm{~cm}^{-1}$): 3416, 2871, 1655, 1520, 1408, 1210, 1085, 854, 689. HRMS (ESI) m/z calcd for $\mathrm{C}_{28} \mathrm{H}_{33} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 477.2212$, found 477.2205 .

[^0]

Orange solid; 70mg, 67% yield; m.p. $94-96{ }^{\circ} \mathrm{C}$; ${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz , Chloroform- d) $\delta 7.96(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}$), 7.74 (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.58-7.53(\mathrm{~m}, 1 \mathrm{H}), 7.51-7.43(\mathrm{~m}, 4 \mathrm{H}), 6.64(\mathrm{~s}, 2 \mathrm{H}), 1.31(\mathrm{~s}, 9 \mathrm{H}), 1.26(\mathrm{~s}, 18 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (100 MHz, Chloroform- d) $\delta 186.3,168.9,158.1,157.3,156.2,141.2,132.7,129.2,129.0,129.0,128.7,128.3,127.5,125.9,36.0$, 35.3, 31.0, 29.5. IR (KBr, $v, \mathrm{~cm}^{-1}$): 3417, 2963, 1655, 1525, 1485, 1101, 905, 597. HRMS (ESI) m/z calcd for $\mathrm{C}_{31} \mathrm{H}_{39} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 519.2681$, found 519.2678.

(Z)-N-(3,5-di-tert-butyl-4-oxocyclohexa-2,5-dien-1-ylidene)-3-methoxy- N^{\prime}-(phenylsulfonyl)benzimidamide-(3f)

Orange solid; $70 \mathrm{mg}, 72 \%$ yield; m.p. $76-78{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathbf{H}$ NMR (400 MHz , Chloroform-d) $\delta 7.94(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}$), 7.58-7.53 $(\mathrm{m}, 1 \mathrm{H}), 7.51-7.45(\mathrm{~m}, 2 \mathrm{H}), 7.41(\mathrm{~s}, 1 \mathrm{H}), 7.32-7.26(\mathrm{~m}, 2 \mathrm{H}), 7.11-7.07(\mathrm{~m}, 1 \mathrm{H}), 6.61(\mathrm{~s}, 2 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 1.25(\mathrm{~s}, 18 \mathrm{H})$. ${ }^{13}$ C NMR (100 MHz , Chloroform- d) $\delta 186.2,168.8,159.9,157.4,156.4,141.0,133.4,132.8,129.9,128.7,128.2,127.5$, $121.6,119.8,113.9,55.6,36.0,29.4$. IR (KBr, $v, \mathrm{~cm}^{-1}$): 3358, 2961, 1597, 1458, 1363, 1102, 905, 776. HRMS (ESI) m/z calcd for $\mathrm{C}_{28} \mathrm{H}_{34} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 493.2161$, found 493.2165.
(Z)-N-(3,5-di-tert-butyl-4-oxocyclohexa-2,5-dien-1-ylidene)-4-methoxy- N^{\prime}-(phenylsulfonyl)benzimidamide (3g)

Orange solid; 69 mg , 69% yield; m.p. $100-102{ }^{\circ} \mathrm{C}$; ${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz , Chloroform- d) $\delta 7.93(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}$), 7.75 $(\mathrm{d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.55-7.50(\mathrm{~m}, 1 \mathrm{H}), 7.49-7.43(\mathrm{~m}, 2 \mathrm{H}), 6.90(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.60(\mathrm{~s}, 2 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 1.24(\mathrm{~s}$, $18 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (100 MHz , Chloroform- d) $\delta 186.3,168.8,164.6,157.5,156.2,141.4,132.7,131.5,128.7,128.3,127.5$, 123.9, 114.4, 55.7, 36.0, 29.5. IR (KBr, $v, \mathrm{~cm}^{-1}$): 3001, 2871, 1640, 1500, 1311, 1087, 786, 549. HRMS (ESI) m/z calcd for $\mathrm{C}_{28} \mathrm{H}_{34} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 493.2161$, found 493.2160.
(Z)-N-(3,5-di-tert-butyl-4-oxocyclohexa-2,5-dien-1-ylidene)-4-fluoro- N^{\prime}-(phenylsulfonyl)benzimidamide (3h)

Orange solid; 53 mg , 55% yield; m.p. $140-142{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathbf{H}$ NMR (400 MHz , Chloroform- d) $\delta 7.95(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.86-$ $7.81(\mathrm{~m}, 2 \mathrm{H}), 7.59-7.54(\mathrm{~m}, 1 \mathrm{H}), 7.51-7.46(\mathrm{~m}, 2 \mathrm{H}), 7.13-7.08(\mathrm{~m}, 2 \mathrm{H}), 6.62(\mathrm{~s}, 2 \mathrm{H}), 1.25(\mathrm{~s}, 18 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{~ N M R}(100 \mathrm{MHz}$, Chloroform- d) $\delta 186.1,166.3\left({ }^{4} J_{\mathrm{CF}}=257.6 \mathrm{~Hz}\right), 157.8,156.6,141.0,132.8,131.7\left({ }^{2} J_{\mathrm{CF}}=9.4 \mathrm{~Hz}\right), 128.2\left({ }^{1} J_{\mathrm{CF}}=2.9 \mathrm{~Hz}\right)$, $127.5,116.3\left({ }^{3} J_{\mathrm{CF}}=22 \mathrm{~Hz}\right), 36.0$, 29.4. ${ }^{19}$ F NMR (376 MHz , Chloroform- d) $\delta-103.32$. IR (KBr, $\left.v, \mathrm{~cm}^{-1}\right): 3417,2952$, 1654, 1523, 1345, 1176, 822, 618. HRMS (ESI) m / z calcd for $\mathrm{C}_{27} \mathrm{H}_{30} \mathrm{FN}_{2} \mathrm{O}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 481.1961$, found 481.1966.

(Z)-3-chloro-N-(3,5-di-tert-butyl-4-oxocyclohexa-2,5-dien-1-ylidene)- N^{\prime}-(phenylsulfonyl)benzimidamide (3i)

Orange solid; $43 \mathrm{mg}, 45 \%$ yield; m.p. $148-150{ }^{\circ} \mathrm{C}$; ${ }^{\mathbf{1}} \mathbf{H}$ NMR $(400 \mathrm{MHz}$, Chloroform- d) $\delta 7.96(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.85$ (s, 1H), $7.65(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.59(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.55-7.49(\mathrm{~m}, 3 \mathrm{H}), 7.40-7.36(\mathrm{~m}, 1 \mathrm{H}), 6.64(\mathrm{~s}, 2 \mathrm{H}), 1.28(\mathrm{~s}$, ${ }^{18 H}$). ${ }^{13} \mathbf{C}$ NMR (100 MHz , Chloroform- d) δ 186.1, 167.3, 158.0, 156.8, 140.8, 135.2, 134.0, 133.8, 132.9, 130.2, 128.8, 128.1, 127.5, 127.2, 36.1, 29.5. IR (KBr, $v, \mathrm{~cm}^{-1}$): 3068, 2871, 1655, 1534, 1365, 1161, 822, 553. HRMS (ESI) m/z calcd for $\mathrm{C}_{27} \mathrm{H}_{30} \mathrm{ClN}_{2} \mathrm{O}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 497.1666$, found 497.1680.

(Z)-4-chloro-N-(3,5-di-tert-butyl-4-oxocyclohexa-2,5-dien-1-ylidene)- N^{\prime}-(phenylsulfonyl)benzimidamide (3j)

Orange solid; $76 \mathrm{mg}, 77 \%$ yield; m.p. $153-155{ }^{\circ} \mathrm{C}$; ${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz , Chloroform- d) $\delta 7.95(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}$), 7.75 (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.58(\mathrm{~d}, J=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.53-7.47(\mathrm{~m}, 2 \mathrm{H}), 7.40(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.62(\mathrm{~s}, 2 \mathrm{H}), 1.26(\mathrm{~s}, 18 \mathrm{H})$. ${ }^{13}$ C NMR (100 MHz , Chloroform- d) δ 186.2, 167.7, 157.9, 156.7, 141.0, 140.7, 133.0, 130.6, 130.4, 130.4, 129.4, 128.8, 128.1, 127.6, 36.1, 29.5. IR (KBr, $\left.v, \mathrm{~cm}^{-1}\right)$: 3510, 2956, 1654, 1528, 1355, 1085, 878, 566. HRMS (ESI) m/z calcd for $\mathrm{C}_{27} \mathrm{H}_{30} \mathrm{ClN}_{2} \mathrm{O}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$497.1666, found 497.1636.

(Z)-4-bromo-N-(3,5-di-tert-butyl-4-oxocyclohexa-2,5-dien-1-ylidene)- N^{\prime}-(phenylsulfonyl)benzimidamide (3k)

Orange solid; $71 \mathrm{mg}, 66 \%$ yield; m.p. $189-191^{\circ} \mathrm{C} ;{ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz , Chloroform- d) $\delta 7.93(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}$), 7.66 $(\mathrm{d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.59-7.52(\mathrm{~m}, 3 \mathrm{H}), 7.51-7.45(\mathrm{~m}, 2 \mathrm{H}), 6.61(\mathrm{~s}, 2 \mathrm{H}), 1.24(\mathrm{~s}, 18 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (100 MHz , Chloroformd) $\delta 186.1,167.8,157.8,156.6,140.9,132.9,132.3,131.0,130.4,129.4,128.8,128.1,127.5,36.0,29.5$. IR (KBr, $v, \mathrm{~cm}^{-}$ ${ }^{1}$): 2995, 1655, 1521, 1394, 1276, 1087, 849, 577. HRMS (ESI) m/z calcd for $\mathrm{C}_{27} \mathrm{H}_{30} \mathrm{BrN}_{2} \mathrm{O}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 541.1161$, found 541.1162.
(Z)-N-(3,5-di-tert-butyl-4-oxocyclohexa-2,5-dien-1-ylidene)- N^{\prime}-(phenylsulfonyl)-4-(trifluoromethyl)benzimidamide

Orange solid; $55 \mathrm{mg}, 51 \%$ yield; m.p. $115-117^{\circ} \mathrm{C} ;{ }^{1} \mathbf{H}$ NMR $(400 \mathrm{MHz}$, Chloroform- d) $\delta 7.98-7.93(\mathrm{~m}, 4 \mathrm{H}), 7.69(\mathrm{~d}, J=$ $8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.61-7.57(\mathrm{~m}, 1 \mathrm{H}), 7.54-7.49(\mathrm{~m}, 2 \mathrm{H}), 6.65(\mathrm{~s}, 2 \mathrm{H}), 1.27(\mathrm{~s}, 18 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (100 MHz , Chloroform- d) δ 186.1, 167.1, 158.1, 157.0, 140.7, 135.7, 135.7, 135.7, 135.2, 134.9, 133.1, $128.9,128.5\left({ }^{4} J_{\mathrm{CF}}=184.1 \mathrm{~Hz}\right) 128.1,126.0$ $\left({ }^{2} J_{\mathrm{CF}}=7.9 \mathrm{~Hz}\right), 125.9\left({ }^{3} J_{\mathrm{CF}}=11.8 \mathrm{~Hz}\right), 125.9\left({ }^{1} J_{\mathrm{CF}}=3.9 \mathrm{~Hz}\right), 36.1,29.5 .{ }^{19}$ F NMR (376 MHz , Chloroform- $\left.d\right) \delta-63.18$. IR ($\mathrm{KBr}, v, \mathrm{~cm}^{-1}$): 3502, 2963, 1654, 1539, 1409, 1277, 1087, 823, 577. HRMS (ESI) m/z calcd for $\mathrm{C}_{28} \mathrm{H}_{30} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}$ $[\mathrm{M}+\mathrm{H}]^{+} 531.1929$, found 531.1957.

(Z)-N-(3,5-di-tert-butyl-4-oxocyclohexa-2,5-dien-1-ylidene)-3,4-dimethyl- N^{\prime}-(phenylsulfonyl)benzimidamide (3m)

Orange solid; $76 \mathrm{mg}, 79 \%$ yield; m.p. $101-103{ }^{\circ} \mathrm{C} ;{ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz , Chloroform- d) $\delta 7.94(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.67$ ($\mathrm{s}, 1 \mathrm{H}$), $7.56-7.51(\mathrm{~m}, 1 \mathrm{H}), 7.49-7.44(\mathrm{~m}, 2 \mathrm{H}), 7.41(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.15(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.61(\mathrm{~s}, 2 \mathrm{H}), 2.27(\mathrm{~d}, J$ $=6.8 \mathrm{~Hz}, 6 \mathrm{H}), 1.25(\mathrm{~s}, 18 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (100 MHz , Chloroform- d) $\delta 186.4,169.4,157.3,156.2,144.2,144.2,141.2$, $141.2,141.2,141.2,137.7,132.8,130.2,129.9,129.4,128.7,128.4,127.6,127.0,36.0,29.5,20.3,19.9$. IR (KBr, $v, \mathrm{~cm}^{-}$ ${ }^{1}$): $3063,2870,1655,1525,1321,1103,931,689$. HRMS (ESI) m/z calcd for $\mathrm{C}_{29} \mathrm{H}_{35} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 491.2368$, found 491.2369 .

(Z)-3,4-dichloro-N-(3,5-di-tert-butyl-4-oxocyclohexa-2,5-dien-1-ylidene)- N^{\prime}-(phenylsulfonyl)benzimidamide (3n)

Orange solid; 79 mg , 74% yield; m.p. $122-124^{\circ} \mathrm{C} ;{ }^{1} \mathbf{H}$ NMR (400 MHz , Chloroform- d) $\delta 7.92(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 3 \mathrm{H}), 7.59-$ $7.54(\mathrm{~m}, 2 \mathrm{H}), 7.51-7.46(\mathrm{~m}, 3 \mathrm{H}), 6.61(\mathrm{~s}, 2 \mathrm{H}), 1.25(\mathrm{~s}, 18 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (100 MHz , Chloroform- d) δ 186.1, 166.4, 158.3, $156.9,140.7,138.6,133.7,133.1,132.1,131.0,130.6,128.9,128.1,128.0,127.6,36.2,29.5$. IR (KBr, $\left.v, \mathrm{~cm}^{-1}\right): 3281$, 2870, 1640, 1529, 1324, 1108, 815, 462. HRMS (ESI) m/z calcd for $\mathrm{C}_{27} \mathrm{H}_{28} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{SNa}[\mathrm{M}+\mathrm{Na}]^{+} 553.1095$, found 553.1095.
(Z)-N-(3,5-di-tert-butyl-4-oxocyclohexa-2,5-dien-1-ylidene)-2-ethynyl- N^{\prime}-(phenylsulfonyl)benzimidamide (3o)

Orange solid; $35 \mathrm{mg}, 36 \%$ yield; m.p. $90-92{ }^{\circ} \mathrm{C}$; ${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz , Chloroform- d) $\delta 8.00(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.77(\mathrm{~d}$, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.61-7.56(\mathrm{~m}, 2 \mathrm{H}), 7.55-7.50(\mathrm{~m}, 2 \mathrm{H}), 7.47-7.38(\mathrm{~m}, 2 \mathrm{H}), 6.77(\mathrm{~s}, 2 \mathrm{H}), 3.20(\mathrm{~s}, 1 \mathrm{H}), 1.27(\mathrm{~s}, 18 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (100 MHz, Chloroform- d) $\delta 186.2,157.1,156.2,141.1,136.1,135.3,132.8,131.9,130.0,129.0,128.9,128.8$, 128.1, 127.6, 83.8, 81.4, 36.1, 29.5. IR (KBr, $v, \mathrm{~cm}^{-1}$): 3258, 2961, 2362, 1751, 1595, 1482, 1321, 1124, 881, 612. HRMS (ESI) m / z calcd for $\mathrm{C}_{29} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 487.2055$, found 487.2064 .

(Z)-N-(3,5-di-tert-butyl-4-oxocyclohexa-2,5-dien-1-ylidene)- N^{\prime}-(phenylsulfonyl)-1-naphthimidamide (3p)

Orange solid; $72 \mathrm{mg}, 70 \%$ yield; m.p. $80-82^{\circ} \mathrm{C}$; ${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz , Chloroform- d) $\delta 8.31(\mathrm{~s}, 1 \mathrm{H}), 8.02(\mathrm{~d}, J=7.3 \mathrm{~Hz}$, $2 \mathrm{H}), 7.94-7.82(\mathrm{~m}, 4 \mathrm{H}), 7.60-7.53(\mathrm{~m}, 2 \mathrm{H}), 7.53-7.46(\mathrm{~m}, 3 \mathrm{H}), 6.72(\mathrm{~s}, 2 \mathrm{H}), 1.26(\mathrm{~s}, 18 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (100 MHz , Chloroform-d) $\delta 186.3,169.2,169.2,157.8,156.5,156.5,141.2,136.0,132.9,132.6,131.3,129.7,129.4,129.3,129.0$, $128.9,128.9,128.4,128.0,127.6,127.3,124.2,36.1,29.5 . \mathbf{I R}\left(\mathrm{KBr}, v, \mathrm{~cm}^{-1}\right): 3308,2831,1605,1517,1389,1157,775$, 582. HRMS (ESI) m/z calcd for $\mathrm{C}_{31} \mathrm{H}_{33} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 513.2212$, found 513.2210.

(Z)-N-(3,5-di-tert-butyl-4-oxocyclohexa-2,5-dien-1-ylidene)- N^{\prime}-(phenylsulfonyl)thiophene-2-carboximidamide (3q)

Orange solid; $70 \mathrm{mg}, 74 \%$ yield; m.p. $73-75^{\circ} \mathrm{C}$; ${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz , Chloroform- d) $\delta 7.95(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}$), $7.70(\mathrm{~d}$, $J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.58-7.53(\mathrm{~m}, 1 \mathrm{H}), 7.51-7.46(\mathrm{~m}, 2 \mathrm{H}), 7.44(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.13-7.08(\mathrm{~m}, 1 \mathrm{H}), 6.66(\mathrm{~s}, 2 \mathrm{H}), 1.26(\mathrm{~s}$, $18 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (100 MHz , Chloroform- d) $\delta 186.3,164.5,158.6,156.6,141.1,136.8,135.8,134.3,132.8,128.8,128.8$, 128.2, 127.6, 36.1, 29.5. IR (KBr, $v, \mathrm{~cm}^{-1}$): 2962, 1655, 1528, 1412, 1286, 1087, 828, 584. HRMS (ESI) m/z calcd for $\mathrm{C}_{25} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}_{2}[\mathrm{M}+\mathrm{H}]^{+} 469.1620$, found 469.1620 .

(Z)-N'-((4-cyanophenyl)sulfonyl)-N-(3,5-di-tert-butyl-4-oxocyclohexa-2,5-dien-1-ylidene)benzimidamide (3r)

Orange solid; $77 \mathrm{mg}, 80 \%$ yield; m.p. $151-153{ }^{\circ} \mathrm{C}$; ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}(400 \mathrm{MHz}$, Chloroform- d) $\delta 8.11(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.84-$ $7.78(\mathrm{~m}, 4 \mathrm{H}), 7.64-7.58(\mathrm{~m}, 1 \mathrm{H}), 7.49-7.43(\mathrm{~m}, 2 \mathrm{H}), 6.67(\mathrm{~s}, 2 \mathrm{H}), 1.27(\mathrm{~s}, 18 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (100 MHz , Chloroform- d) δ $186.2,169.8,157.8,157.1,145.4,134.5,132.7,131.7,129.2,129.1,128.1,128.1,117.6,116.4,36.2,29.5$. IR (KBr, v, cm^{-1}): 2961, 2870, 2232, 1654, 1525, 877, 857, 822. HRMS (ESI) m/z calcd for $\mathrm{C}_{28} \mathrm{H}_{29} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{SNa}[\mathrm{M}+\mathrm{Na}]^{+} 510.1827$, found 510.1826.

Orange solid; $74 \mathrm{mg}, 76 \%$ yield; m.p. $129-130{ }^{\circ} \mathrm{C}$; ${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz , Chloroform- d) $\delta 8.95(\mathrm{~s}, 1 \mathrm{H}), 8.21(\mathrm{~d}, J=8.4$ $\mathrm{Hz}, 1 \mathrm{H}), 7.80(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.64-7.58(\mathrm{~m}, 1 \mathrm{H}), 7.50-7.43(\mathrm{~m}, 3 \mathrm{H}), 6.67(\mathrm{~s}, 2 \mathrm{H}), 1.27(\mathrm{~s}, 18 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (100 MHz , Chloroform-d) $\delta 186.1,169.8,157.9,157.2,155.5,148.9,137.7,136.7,134.6,131.6,129.3,129.1,128.1,124.5,36.2$, 29.5. IR (KBr, $v, \mathrm{~cm}^{-1}$): 3064, 2956, 1653, 1520, 1277, 861, 738, 683. HRMS (ESI) m/z calcd for $\mathrm{C}_{25} \mathrm{H}_{28} \mathrm{ClN}_{3} \mathrm{O}_{3} \mathrm{~S}$ [M$\mathrm{H}]^{+} 496.1462$, found 496.1488 .

Example for the synthesis of $\mathbf{5 a}$:

Add 2,6-di-tert-butyl-4-(2-hydroxybenzylidene)cyclohexa-2,5-dien-1-one $\quad \mathbf{4 a} \quad(0.2 \mathrm{mmol}, \quad 62 \mathrm{mg})$, N fluorobenzenesulfonamide 2a ($0.6 \mathrm{mmol}, 105 \mathrm{mg}$), DIPEA ($0.4 \mathrm{mmol}, 52 \mathrm{mg}$), and $\mathrm{MeCN}(4 \mathrm{~mL})$ to a $10-\mathrm{mL}$ reaction tube, and then the reaction system was stirred at $0^{\circ} \mathrm{C}$ for 24 hours. After the reaction was complete (monitored by TLC), the reaction system was concentrated by vacuum filtration, and the crude product was purified by flash silica gel column chromatography $(\mathrm{PE} / \mathrm{EtOAc}=10: 1)$ to obtain pure product $\mathbf{5 a}(89 \mathrm{mg}, 73 \%)$.

(Z)-N-(3,5-di-tert-butyl-4-hydroxyphenyl)-2-hydroxy-N, N^{\prime}-bis(phenylsulfonyl)benzimidamide (5a)

White solid; $89 \mathrm{mg}, 73 \%$ yield; m.p. $192-194{ }^{\circ} \mathrm{C}$; ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 9.91$ (s, 1 H), 7.84 (d, $J=7.2 \mathrm{~Hz}$, $1 \mathrm{H}), 7.78-7.70(\mathrm{~m}, 3 \mathrm{H}), 7.67(\mathrm{~s}, 1 \mathrm{H}), 7.60-7.52(\mathrm{~m}, 6 \mathrm{H}), 7.35(\mathrm{~s}, 1 \mathrm{H}), 7.15(\mathrm{~s}, 1 \mathrm{H}), 6.98-6.93(\mathrm{~m}, 1 \mathrm{H}), 6.84(\mathrm{~d}, J=7.7$ $\mathrm{Hz}, 1 \mathrm{H})$, 6.55-6.49 (m, 1H) , $6.44(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.25(\mathrm{~s}, 18 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}(100 \mathrm{MHz}$, Chloroform-d) δ 164.6, 154.6, $152.4,141.2,138.5,136.1,134.0,132.8,131.8,129.5,129.2,128.8,128.6,127.6,127.1,126.5,121.8,119.8,117.8,34.3$, 29.9. IR (KBr, $v, \mathrm{~cm}^{-1}$): 2958, 1611, 1563, 1364, 1157, 890, 787, 729. HRMS (ESI) m/z calcd for $\mathrm{C}_{33} \mathrm{H}_{37} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{~S}_{2}[\mathrm{M}+\mathrm{H}]^{+}$ 621.2093, found 621.2090.

White solid; $94 \mathrm{mg}, 69 \%$ yield; m.p. 201-203 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathbf{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 9.72(\mathrm{~s}, 1 \mathrm{H}), 7.84(\mathrm{~d}, J=7.2 \mathrm{~Hz}$, $1 \mathrm{H}), 7.80-7.72(\mathrm{~m}, 3 \mathrm{H}), 7.66-7.60(\mathrm{~m}, 1 \mathrm{H}), 7.60-7.55(\mathrm{~m}, 3 \mathrm{H}), 7.52-7.47(\mathrm{~m}, 3 \mathrm{H}), 7.35(\mathrm{~s}, 1 \mathrm{H}), 7.15(\mathrm{~s}, 1 \mathrm{H}), 6.99(\mathrm{~d}, J=$ $8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.71(\mathrm{~s}, 1 \mathrm{H}), 6.38(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.24(\mathrm{~s}, 18 \mathrm{H}), 1.06(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (100 MHz , Chloroform- d) δ $165.0,154.6,150.3,143.7,140.7,138.3,134.1,132.8,129.8,129.3,129.2,128.7,128.5,127.9,124.6,122.6,119.2,34.3$, 34.0, 31.3, 30.0. IR (KBr, v, cm^{-1}): 2962, 2386, 1729, 1557, 1365, 1152, 785, 729. HRMS (ESI) m/z calcd for $\mathrm{C}_{37} \mathrm{H}_{45} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{~S}_{2}[\mathrm{M}+\mathrm{H}]^{+} 677.2719$, found 677.2718 .
(Z)-N-(3,5-di-tert-butyl-4-hydroxyphenyl)-5-fluoro-2-hydroxy-N, N^{\prime}-bis(phenylsulfonyl)benzimidamide (5c)

White solid; $75 \mathrm{mg}, 59 \%$ yield; m.p. 212-214 ${ }^{\circ} \mathrm{C} ;{ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 9.94(\mathrm{~s}, 1 \mathrm{H}), 7.78-7.72(\mathrm{~m}, 3 \mathrm{H})$, $7.71-7.65(\mathrm{~m}, 1 \mathrm{H}), 7.62-7.55(\mathrm{~m}, 5 \mathrm{H}), 7.56-7.49(\mathrm{~m}, 3 \mathrm{H}), 7.20(\mathrm{~s}, 1 \mathrm{H}), 6.80(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.46-6.40(\mathrm{~m}, 1 \mathrm{H}), 1.26$ ($\mathrm{s}, 18 \mathrm{H}$). ${ }^{13} \mathbf{C}$ NMR (100 MHz , Chloroform- d) $\delta 162.6,156.1\left({ }^{1} J_{\mathrm{CF}}=240.3 \mathrm{~Hz}\right.$), 154.8, 148.6, 140.7, 138.2, 134.2, 132.9, $129.6,129.3,128.9,128.6,127.4,127.1,126.5,123.4\left({ }^{4} J_{\mathrm{CF}}=7.9 \mathrm{~Hz}\right), 120.2\left({ }^{5} J_{\mathrm{CF}}=7.4 \mathrm{~Hz}\right), 118.5\left({ }^{3} J_{\mathrm{CF}}=22.9 \mathrm{~Hz}\right), 114.7$ $\left(^{2} J_{\mathrm{CF}}=25.3 \mathrm{~Hz}\right), 34.3,29.9 .{ }^{19}$ F NMR (376 MHz , DMSO- d_{6}) δ-127.50. IR (KBr, $v, \mathrm{~cm}^{-1}$): 2959, 2667, 1568, 1447, 1308, 1155, 898, 782, 728. HRMS (ESI) m/z calcd for $\mathrm{C}_{33} \mathrm{H}_{36} \mathrm{FN}_{2} \mathrm{O}_{6} \mathrm{~S}_{2}[\mathrm{M}+\mathrm{H}]^{+} 639.1999$, found 639.2002.

(Z)-5-chloro-N-(3,5-di-tert-butyl-4-hydroxyphenyl)-2-hydroxy-N, N^{\prime}-bis(phenylsulfonyl)benzimidamide (5d)

White solid; $83 \mathrm{mg}, 64 \%$ yield; m.p. $218-220{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathbf{H}$ NMR (400 MHz , DMSO- d_{6}) $\delta 10.25(\mathrm{~s}, 1 \mathrm{H}), 7.79-7.73(\mathrm{~m}, 3 \mathrm{H})$, $7.72-7.65(\mathrm{~m}, 1 \mathrm{H}), 7.62-7.54(\mathrm{~m}, 5 \mathrm{H}), 7.55-7.49(\mathrm{~m}, 2 \mathrm{H}), 7.21(\mathrm{~s}, 1 \mathrm{H}), 6.99(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.91(\mathrm{~s}, 1 \mathrm{H}), 6.46(\mathrm{~d}, J=$ $8.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.27(\mathrm{~s}, 18 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (100 MHz , Chloroform- d) $\delta 162.6,154.8,151.3,140.7,138.2,134.2,133.0,131.6$, 129.6, 128.9, 128.7, 127.9, 127.4, 127.1, 125.1, 123.4, 119.7, 34.3, 29.9. IR (KBr, $\left.v, \mathrm{~cm}^{-1}\right): 2957,2663,1430,1365,1158$, 897, 785, 728. HRMS (ESI) m/z calcd for $\mathrm{C}_{33} \mathrm{H}_{36} \mathrm{ClN}_{2} \mathrm{O}_{6} \mathrm{~S}_{2}[\mathrm{M}+\mathrm{H}]^{+}$655.1703, found 655.1700.

White solid; $102 \mathrm{mg}, 73 \%$ yield; m.p. $207-209{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathbf{H}$ NMR (400 MHz , DMSO- d_{6}) $\delta 10.28(\mathrm{~s}, 1 \mathrm{H}), 7.79-7.73(\mathrm{~m}, 3 \mathrm{H})$, 7.72-7.65 (m, 1H), 7.60-7.55 (m, 6H), 7.55-7.51 (m, 2H), $7.21(\mathrm{~s}, 1 \mathrm{H}), 7.10(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.99(\mathrm{~s}, 1 \mathrm{H}), 6.41(\mathrm{~d}, J=$ $8.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.27(\mathrm{~s}, 18 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (100 MHz , Chloroform- d) $\delta 162.5,154.8,151.7,140.6,138.2,134.5,134.3,133.1$, 132.9, 130.7, 129.7, 129.3, 128.9, 128.7, 127.5, 127.2, 126.5, 124.2, 120.5, 112.3, 34.3, 29.9. IR (KBr, $\left.v, \mathrm{~cm}^{-1}\right): 2958$, 2658, 1611, 1491, 1307, 1157, 895, 785, 728. HRMS (ESI) m/z calcd for $\mathrm{C}_{33} \mathrm{H}_{36} \mathrm{BrN}_{2} \mathrm{O}_{6} \mathrm{~S}_{2}[\mathrm{M}+\mathrm{H}]^{+} 699.1198$, found 699.1194 .
(Z)-N-(3,5-di-tert-butyl-4-hydroxyphenyl)-2-hydroxy-4-methyl-N,N'-bis(phenylsulfonyl)benzimidamide (5f)

White solid; $70 \mathrm{mg}, 55 \%$ yield; m.p. $197-199{ }^{\circ} \mathrm{C}$; ${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 9.80(\mathrm{~s}, 1 \mathrm{H}), 7.76-7.69(\mathrm{~m}, 3 \mathrm{H})$, $7.68-7.62(\mathrm{~m}, 1 \mathrm{H}), 7.61-7.53(\mathrm{~m}, 5 \mathrm{H}), 7.53-7.48(\mathrm{~m}, 2 \mathrm{H}), 7.15(\mathrm{~s}, 1 \mathrm{H}), 6.89(\mathrm{~s}, 1 \mathrm{H}), 6.72(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.35(\mathrm{~d}, J=$ $7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.26(\mathrm{~s}, 1 \mathrm{H}), 2.04(\mathrm{~s}, 3 \mathrm{H}), 1.25(\mathrm{~s}, 18 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (100 MHz , Chloroform- d) $\delta 164.9,154.5,152.3$, 142.7, $141.1,138.5,136.1,134.0,132.7,129.5,128.8,128.6,128.4,127.8,127.2,121.0,119.6,118.8,34.3,29.9,21.3$. IR (KBr, $v, \mathrm{~cm}^{-1}$): 2958, 1619, 1447, 1365, 1156, 1082, 805, 729, 609. HRMS (ESI) m / z calcd for $\mathrm{C}_{34} \mathrm{H}_{3} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{~S}_{2}[\mathrm{M}+\mathrm{H}]^{+} 635.2250$, found 635.2249.

(Z)-4-chloro-N-(3,5-di-tert-butyl-4-hydroxyphenyl)-2-hydroxy-N, N^{\prime}-bis(phenylsulfonyl)benzimidamide (5g)

White solid; $65 \mathrm{mg}, 49 \%$ yield; m.p. $192-194{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathbf{H}$ NMR (400 MHz , DMSO- d_{6}) $\delta 10.47(\mathrm{~s}, 1 \mathrm{H}), 7.74(\mathrm{~d}, J=7.6 \mathrm{~Hz}$, $3 \mathrm{H}), 7.71-7.65(\mathrm{~m}, 1 \mathrm{H}), 7.61-7.54(\mathrm{~m}, 5 \mathrm{H}), 7.54-7.48(\mathrm{~m}, 2 \mathrm{H}), 7.23(\mathrm{~s}, 1 \mathrm{H}), 6.93(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.60(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, $1 \mathrm{H}), 6.47(\mathrm{~s}, 1 \mathrm{H}), 1.26(\mathrm{~s}, 18 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (100 MHz , Chloroform-d) $\delta 163.6,154.8,153.3,141.0,138.2,137.4,136.3$, $134.2,133.0,129.5,129.4,128.9,128.6,127.4,127.1,120.5,120.2,117.9,34.3,29.9$. IR (KBr, $\left.v, \mathrm{~cm}^{-1}\right): 3764,3272$, 2959, 2766, 1747, 1430, 1365, 1083, 878, 729. HRMS (ESI) m/z calcd for $\mathrm{C}_{33} \mathrm{H}_{36} \mathrm{ClN}_{2} \mathrm{O}_{6} \mathrm{~S}_{2}[\mathrm{M}+\mathrm{H}]^{+} 655.1703$, found 655.1702 .

White solid; $77 \mathrm{mg}, 56 \%$ yield; m.p. $183-185{ }^{\circ} \mathrm{C} ;{ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 10.46(\mathrm{~s}, 1 \mathrm{H}), 7.74(\mathrm{~d}, J=7.2 \mathrm{~Hz}$, $3 \mathrm{H}), 7.71-7.65(\mathrm{~m}, 1 \mathrm{H}), 7.57(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 4 \mathrm{H}), 7.55-7.50(\mathrm{~m}, 2 \mathrm{H}), 7.23(\mathrm{~s}, 1 \mathrm{H}), 6.86(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.73(\mathrm{~d}, J=$ $8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.62(\mathrm{~s}, 1 \mathrm{H}), 1.27(\mathrm{~s}, 18 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (100 MHz , Chloroform- d) $\delta 163.5,154.8,153.2,140.9,138.2$, 136.4, 134.2, 133.0, 129.5, 128.9, 128.6, 127.4, 127.1, 125.5, 123.3, 121.2, 34.3, 29.9. IR (KBr, $\left.v, \mathrm{~cm}^{-1}\right): 2957,1604,1447$, 1365, 1155, 1082, 805, 729. HRMS (ESI) m/z calcd for $\mathrm{C}_{33} \mathrm{H}_{36} \mathrm{BrN}_{2} \mathrm{O}_{6} \mathrm{~S}_{2}[\mathrm{M}+\mathrm{H}]^{+} 699.1198$, found 699.1195.

Application of Product 3a:

Gram scale reaction:

Add 4-benzylidene-2,6-di-tert-butylcyclohexa-2,5-dien-1-one $\quad \mathbf{1 a} \quad(1.5 \mathrm{mmol}, 441 \mathrm{mg})$, N fluorobenzenesulfonamide ($4.5 \mathrm{mmol}, 787.5 \mathrm{mg}$), DIPEA ($4.5 \mathrm{mmol}, 580.5 \mathrm{mg}$), and $\mathrm{MeCN}(15 \mathrm{~mL})$ to a $25-\mathrm{ml}$ reaction tube, and then the reaction system was stirred at $50^{\circ} \mathrm{C}$ for 24 hours. After the reaction was complete (monitored by TLC), the reaction system was concentrated by vacuum filtration, and the crude product was purified by flash silica gel column chromatography $(\mathrm{PE} / \mathrm{EtOAc}=25: 1)$ to obtain pure product $\mathbf{3 a}(0.56 \mathrm{~g})$

Procedure for Synthesis of 6a:

Add 3a($0.1 \mathrm{mmol}, 46.3 \mathrm{mg}$) to the reaction tube equipped with a magnetic stirrer, followed by acetic acid (0.1 mL), methanol (1.5 mL), dry DCM (0.15 mL), and sodium cyanide borohydride ($0.2 \mathrm{mmol}, 12.6 \mathrm{mg}$). After the reaction was complete (monitored by TLC), the reaction system was concentrated by vacuum filtration, and the crude product was purified by flash silica gel column chromatography $(\mathrm{PE} / \mathrm{EtOAc}=5: 1)$ to obtain pure product $6 \mathbf{a}(19 \mathrm{mg}, 84 \%$ yield).
(Z)-N'-(3,5-di-tert-butyl-4-hydroxyphenyl)-N-(phenylsulfonyl)benzimidamide (6a)

White solid; 40 mg , 84% yield; m.p. $187-189^{\circ} \mathrm{C}$; ${ }^{1} \mathbf{H}$ NMR (400 MHz , Chloroform- d) $\delta 10.07$ (s, 1 H), 8.06 (d, $J=7.6 \mathrm{~Hz}$, $2 \mathrm{H}), 7.61-7.46(\mathrm{~m}, 4 \mathrm{H}), 7.31(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}), 7.25-7.16(\mathrm{~m}, 2 \mathrm{H}), 6.59(\mathrm{~s}, 2 \mathrm{H}), 5.13(\mathrm{~s}, 1 \mathrm{H}), 1.25(\mathrm{~s}, 18 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (100 MHz , Chloroform- d) $\delta 162.6,151.3,135.9,132.6,131.6,130.1,128.7,128.5,128.0,127.2,125.8,120.9,33.5,29.2$. IR (KBr, $v, \mathrm{~cm}^{-1}$): 3005, 2989, 1646, 1436, 1275, 1260, 1145, 1085, 749. HRMS (ESI) m/z calcd for $\mathrm{C}_{27} \mathrm{H}_{33} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}$ $[\mathrm{M}+\mathrm{H}]^{+} 464.2134$, found 464.2143 .

References

[1] W. D. Chu, L. F. Zhang, X. Bao, X. H. Zhao, C. Zeng, J. Y. Du, G. B. Zhang, F. X. Wang, X. Y. Ma and C. A. Fan, Angew. Chem. Int. Ed., 2013, 52, 9229.
[2] Y.Y. Zhang, X. H. Xu and F. L. Qing, Chin. J. Chem., 2022, 40, 2956.
[3] K. Zhao, Y. Zhi, T. Shu, A. Valkonen, K. Rissanen and D. Enders, Angew. Chem. Int. Ed., 2016, 55, 12104.

${ }^{\mathbf{1}} \mathbf{H}$ NMR Spectrum of Compound 3a（ $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）

${ }^{13} \mathbf{C}$ NMR Spectrum of Compound $\mathbf{3 a}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{\mathbf{1}} \mathbf{H}$ NMR Spectrum of Compound 3b ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathbf{C}$ NMR Spectrum of Compound 3b $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathbf{C}$ NMR Spectrum of Compound $3 \mathbf{c}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{\mathbf{1}} \mathbf{H}$ NMR Spectrum of Compound 3d $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13}$ C NMR Spectrum of Compound 3d $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$


```
入人NNNNNN八N心N
```


${ }^{\mathbf{1}} \mathbf{H}$ NMR Spectrum of Compound $\mathbf{3 e}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathbf{C}$ NMR Spectrum of Compound $\mathbf{3 e}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{\mathbf{1}} \mathbf{H}$ NMR Spectrum of Compound $3 f\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathbf{C}$ NMR Spectrum of Compound $3 f\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{\mathbf{1}} \mathbf{H}$ NMR Spectrum of Compound $\mathbf{3 g}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

だ

${ }^{13}$ C NMR Spectrum of Compound $\mathbf{3 g}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
$\hat{0}$
Ǹ
1
i

${ }^{\mathbf{1}} \mathbf{H}$ NMR Spectrum of Compound $\mathbf{3 h}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
 -36.032

${ }^{13}$ C NMR Spectrum of Compound $3 \mathrm{~h}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{19}$ F NMR Spectrum of Compound 3h $\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$


```
\mathscr{O}
```


${ }^{13}$ C NMR Spectrum of Compound $\mathbf{3 k}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathbf{H}$ NMR Spectrum of Compound $31\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

๗

${ }^{19}$ F NMR Spectrum of Compound 31 ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{\mathbf{1}} \mathbf{H}$ NMR Spectrum of Compound $\mathbf{3 m}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathbf{C}$ NMR Spectrum of Compound $\mathbf{3 m}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
i

${ }^{\mathbf{1}} \mathbf{H}$ NMR Spectrum of Compound $\mathbf{3 n}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13}$ C NMR Spectrum of Compound $\mathbf{3 n}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} H$ NMR Spectrum of Compound 30

${ }^{13} \mathbf{C}$ NMR Spectrum of Compound $30\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{\mathbf{1}} \mathbf{H}$ NMR Spectrum of Compound $\mathbf{3 p}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13}$ C NMR Spectrum of Compound $\mathbf{3 p}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{\mathbf{1}} \mathbf{H}$ NMR Spectrum of Compound $\mathbf{3 q}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13}$ C NMR Spectrum of Compound $\mathbf{3 q}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{\mathbf{1}} \mathbf{H}$ NMR Spectrum of Compound $\mathbf{3 r}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13}$ C NMR Spectrum of Compound $\mathbf{3 r}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{\mathbf{1}} \mathbf{H}$ NMR Spectrum of Compound 3s $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1}$ H NMR Spectrum of Compound 5a (400 MHz , DMSO- d_{6})

$\bar{\circ}$
$\stackrel{\circ}{\sigma}$
$\underset{\sim}{\sigma}$

T	1	1	17	1	1	1	1	1	11	1	1	1	10	1	1	1	1	1	1	1
00	190	180	170	160	150	140	130	120	110			80	70	60	50	40	30	20	10	0

${ }^{13}$ C NMR Spectrum of Compound 5a $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathbf{H}$ NMR Spectrum of Compound $5 \mathbf{5 b}$ (400 MHz , DMSO- d_{6})

${ }^{13} \mathbf{C}$ NMR Spectrum of Compound $\mathbf{5 b}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{19}$ F NMR Spectrum of Compound $5 \mathbf{5}\left(376 \mathrm{MHz}\right.$, DMSO- d_{6})

${ }^{\mathbf{1}} \mathbf{H}$ NMR Spectrum of Compound $5 \mathbf{5 d}\left(400 \mathrm{MHz}\right.$, DMSO- d_{6})

${ }^{\mathbf{1}} \mathbf{H}$ NMR Spectrum of Compound $\mathbf{5 g}\left(400 \mathrm{MHz}\right.$, DMSO- d_{6})

${ }^{13}$ C NMR Spectrum of Compound $5 \mathbf{g}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathbf{H}$ NMR Spectrum of Compound $\mathbf{5 h}$ (400 MHz , DMSO- d_{6})

[^0]: (Z)-4-(tert-butyl)-N-(3,5-di-tert-butyl-4-oxocyclohexa-2,5-dien-1-ylidene)- N^{\prime}-(phenylsulfonyl)benzimidamide (3e)

