Electronic Supplementary Information

4-Vinylbenzodioxinones as A New Type of Precursor for Palladium-Catalyzed (4+3) Cycloaddition of Azomethine Imines

Yi Tang,^a Rulei Zhang,^a Yujie Dong,^a Songcheng Yu,^b Yongjun Wu,^b Yumei Xiao,^a and Hongchao Guo^{*a}

^a Department of Chemistry and Innovation Center of Pesticide Research, China Agricultural University, Beijing 100193, P. R. China

^b College of Public Health, Zhengzhou University, Zhengzhou 450001, P. R. China

Email: hchguo@cau.edu.cn

Contents

General Information
General Procedure for Preparation of Substrates
Optimization of Reaction Conditions
General Procedure for (4+3) Cycloaddition Reaction
The Scaled-up Reaction
Further Transformation of the Product
Characterization Data for New Substrates and All Products
¹ H and ¹³ C NMR Spectra of New Substrates
¹ H and ¹³ C NMR Spectra of All Products
HPLC Chromatograms of All Products
X-Ray Crystallographic Data

General Information

All reactions were performed under an Argon atmosphere in oven-dried glassware with magnetic stirring. Unless otherwise stated, all reagents were purchased from commercial suppliers and used without further purification. All solvents were purified and dried according to standard methods prior to use. Organic solutions were concentrated under reduced pressure using a rotary evaporator or oil pump. Reactions were monitored through thin-layer chromatography (TLC) on silica gel-precoated glass plates. Visualization on TLC was achieved by use of UV light (254 nm), iodine or basic KMnO4 indicator. Flash column chromatography was performed using Qingdao Haiyang flash silica gel (200-300 mesh). Infrared spectra were recorded using a Bruker Optics TENSOR 27 instrument. ¹H and ¹³C NMR spectra were recorded in CDCl₃ using a Bruker 300 MHz, 400 MHz and 500 MHz of NMR instrument (referenced internally to Me4Si). Chemical shifts (\delta, ppm) are relative to tetramethylsilane (TMS) with the resonance of the non-deuterated solvent or TMS as the internal standard. ¹H NMR data are reported as follows: chemical shift, multiplicity (s = singlet; d = doublet; t = triplet; q = quartet; p = pentet; dd = doublet of doublets; td = triplet of doublets; dt = doublet of triplets; dq = doublet of quartets; ddd = doublet of doublet of doublets; m = multiplet; br = broad), coupling constant (Hz), and integral. Data for ${}^{13}C$ NMR spectra are reported in terms of chemical shift. HRMS analyses were carried out on a Thermo Q-Exactive high resolution mass spectrometer (Thermo Scientific, Waltham, MA, USA) apparatus. The type of mass analyzer used for HRMS measurement is TOF. Data were analyzed using instrument-supplied software Xcalibur Qual Browser. X-ray crystallographic data were collected using a Bruker SMART CCD-based diffractometer equipped with a low-temperature apparatus operated at 173.15 K. In addition, unless noted otherwise, in the reactions that need heating, the heat source is oil bath.

General Procedure for Preparation of Substrates

Preparation of 4-Vinylbenzodioxinones 1

To a solution of Substituted 2-hydroxybenzaldehyde **S1** (1 equiv., 8 mmol) in THF (16 mL) was added vinylmagnesium bromide (1.0 M in THF, 2.0 equiv.) at 0 °C. The reaction mixture was stirred at room temperature under Ar atmosphere for 3 h, and then the reaction was quenched with saturated aqueous NH₄Cl. The resulting mixture was transferred to the separating funnel and separated. The obtained aqueous layer was extracted with ethyl acetate (5 mL×3) for three times. The combined organic layers were washed by brine, dried over anhydrous Na₂SO₄, filtered and concentrated. The residue was purified by flash chromatography on silica to afford corresponding diols **S2**.

To a solution of diol **S2** (1 equiv.) and Et₃N (3 equiv.) in THF (0.5 M) was added triphosgene (0.67 equiv, 0.5 M in THF) at -20 °C. The reaction was stirred under Ar atmosphere at room temperature for 3 h. The reaction mixture was then quenched with saturated aqueous NH₄Cl, and extracted with ethyl acetate (5 mL×3) for three times. The combined organic layers were dried over anhydrous Na₂SO₄, filtered and concentrated. The residue was purified by flash chromatography on silica to afford corresponding product **1a–1q** in 8–76% yield. The ¹H, ¹³C-NMR spectra of the products were in accordance with the Supporting Information

Preparation of C, N-Cyclic Aomethine Imines 2

The C, N-cyclic aomethine imines were synthesized using known literature procedures.¹

 ⁽a) T. Wang, J. Luo, C. Gu, R. Li, X. Tang, D. Yu, J. Li, CN 103172575A. (b) T. Wang, A.-L. Shao,
 H.-Y. Feng, S.-W. Yang, M. Gao, J. Tian, A.-W. Lei, *Tetrahedron*, 2015, **71**, 4473–4477. (c) X. Zhang,
 C. Yuan, C. Zhang, X. Gao, B. Wang, Z. Sun, Y. Xiao, H. Guo, *Tetrahedron*, 2016, **72**, 8274-8281. (d) X.
 Wang, Z. Li, C. Feng, Q. Zhen, M. Guo, Y. Yao, X. Zou, P Wang, Y. Hou, P. Gong, *Synlett*, 2021, **32**, 2090-2096.

Optimization of Reaction Conditions for Diastereoselective and Enantioselective (4+3) Cycloaddition

Initially, the reaction of 4-vinylbenzodioxinone **1a** and C, N-cyclic azomethine imine **2a** was chosen as the model reaction for optimization of the reaction conditions (Table S1). With the use of $Pd_2(dba)_3 \cdot CHCl_3$ as the catalyst, various ligands were first screened. Except 1,10-phen (entry 6), other monophosphine and diphosphine ligands exhibited certain catalytic activities, leading to (4+3) cycloaddition product **3aa** in 33–91% yields with 5:1 to >20:1 dr (entries 1–5). According to the results, XantPhos was a nice choice in terms of diastereoselectivity (entry 2). Using XantPhos as the ligand, we next tried to increase yield of the reaction through screening the ratio of palladium catalyst to ligand, reaction time and solvent (entries 7–14). Reducing the amount of ligand could increase the yield to 65% and the dr value was still >20:1 (entry 8 vs entries 2 and 7). Lengthening the reaction time from 12 hours to 24 hours slightly increased the yield from 65% to 69% (entry 9). Subsequently, several solvents such as CHCl₃, 1,2-dichloroethane (DCE), toluene, THF and 1,4-dioxane were screened (entries 10–14). Among these solvents, DCE showed the best compatibility, resulting in the product **3aa** in 88% yield with >20:1 dr (entry 14). When the reaction was performed at 2 mmol of scale, the product still was generated in 73% yield with >20:1 dr under standard reaction conditions.

$ \begin{array}{c} $			Pd ₂ dba ₃ •CHCl ₃ (x mol%) <u>ligand (y mol%)</u> solvent, 12 h 3aa			
Ĺ	PPh ₂ PPh ₂ V	PPh ₂ Fe PPh ₂	1 10-phen	PPh_2	PPh ₂ PPh ₂	
4	liserd	4991			4ppb2	
entry	ligand	x:y	solvent	yield (%)	dr	
1	PPh ₃	2.5:10	CH_2Cl_2	91	5:1	
2	XantPhos	2.5:10	CH_2Cl_2	54	>20:1	
3	dppf	2.5:10	CH_2Cl_2	33	6:1	
4	dppbz	2.5:10	CH_2Cl_2	47	8:1	
5	dppe	2.5:10	CH_2Cl_2	48	6:1	
6	1,10-phen	2.5:10	CH_2Cl_2	trace		
7	XantPhos	5.0:10	CH_2Cl_2	42	>20:1	
8	XantPhos	2.5:5.0	CH_2Cl_2	65	>20:1	
9^d	XantPhos	2.5:5.0	CH_2Cl_2	69	>20:1	
10^d	XantPhos	2.5:5.0	toluene	38	3:1	
11^{d}	XantPhos	2.5:5.0	THF	56	6:1	
12^{d}	XantPhos	2.5:5.0	1,4-dioxane	trace		
13^{d}	XantPhos	2.5:5.0	CHCl ₃	82	>20:1	
14^d	XantPhos	2.5:5.0	DCE	88	>20:1	

^{*a*} Unless otherwise stated, reactions of **1a** (0.12 mmol) and **2a** (0.1 mmol) were performed at 25 °C in the presence of Pd₂dba₃·CHCl₃ and ligand in 1 mL of solvent for 12 h. ^{*b*} Isolated yield. ^{*c*} Determined by ¹HNMR analysis. ^{*d*} The reaction was carried out for 24 h.

Table S2. Exploration	of Reaction	Conditions for	Enantiosele	ective (4+3) Cycloaddition ^a
-----------------------	-------------	----------------	-------------	-------------	------------------------------

entry	R in 1	ligand	solvent	T/°C	t/h	3aa yield (%) ^b	ee (%) ^c
1	Н	L1	CH ₂ Cl ₂	25	12	88	5
2	Н	L2	CH ₂ Cl ₂	25	12	56	20
3	Н	L3	CH ₂ Cl ₂	25	12	46	21
4	Н	L4	CH ₂ Cl ₂	25	12	32	-10
5	Н	L5	CH_2Cl_2	25	12	trace	/
6	Н	L6	CH_2Cl_2	25	12	trace	/
7	Н	L7	CH_2Cl_2	25	12	trace	/
8	Н	L8	CH_2Cl_2	25	12	43	20
9	Н	L9	CH_2Cl_2	25	12	18	-11
10	Н	L10	CH_2Cl_2	25	12	31	7
11	Н	L11	CH_2Cl_2	25	12	25	8
12	Н	L12	CH ₂ Cl ₂	25	12	35	-19
13	Н	L13	CH ₂ Cl ₂	25	12	46	4
14	Н	L14	CH ₂ Cl ₂	25	12	35	-11
15	Н	L15	CH ₂ Cl ₂	25	12	76	58
16	Н	L16	CH_2Cl_2	25	12	trace	/
17	Н	L17	CH_2Cl_2	25	12	83	59
18	Н	L18	CH_2Cl_2	25	12	40	33
19	Н	L19	CH_2Cl_2	25	12	trace	/
20	Н	L17	DCE	25	12	83	67
21	Н	L17	CHCl ₃	25	12	95	36
22	Н	L17	toluene	25	12	messy	/
23	Н	L17	THF	25	12	messy	/
24	Н	L17	DCE	0	24	85	73
25	8-OEt	L17	DCE	0	24	90	92
26	8 OEt	I 17	DCE	20	24	08	0/

^{*a*} Unless noted otherwise, the reaction of **1** (0.12 mmol), **2a** (0.1 mmol), Pd₂dba₃•CHCl₃ (5 mol%) and ligand (10 mol% for phosphoramidite, 5.0 mol% for diphosphines) was performed in 1.0 mL of solvent under indicated reaction conditions. ^{*b*} Isolated yield. ^{*c*} Determined by chiral HPLC analysis.

General Procedure for (4+3) Cycloaddition Reaction

General Procedure for Diastereoselective (4+3) Cycloaddition Reactions

An oven-dried 10 mL of Schlenk tube was charged with 4-vinylbenzodioxinones 1 (0.12 mmol), azomethine imines 2 (0.1 mmol), Pd_2dba_3 •CHCl₃ (0.025 equiv., 2.6 mg), Xantphos (0.05 equiv., 2.9 mg) in 1 mL of DCE under Ar atmosphere at 25 °C. Once the starting material was completely consumed (monitored by TLC), the mixture was concentrated to dryness. The residue was purified by flash column chromatography to afford the product 3 (petroleum ether/EtOAc as the eluent).

General Procedure for enantioselective (4+3) Cycloaddition Reactions

An oven-dried 10 mL of Schlenk tube was charged with 4-vinylbenzodioxinones 1 (0.12 mmol), azomethine imines 2 (0.1 mmol), Pd_2dba_3 •CHCl₃ (0.025 equiv, 2.6 mg), L17 (0.1 equiv., 7.6 mg) in 1 mL of DCE under Ar atmosphere at -20 °C. Once the starting material was completely consumed (monitored by TLC), the mixture was concentrated to dryness. The residue was purified by flash column chromatography to afford the product 4 (petroleum ether/EtOAc as the eluent).

The Scaled-up Reaction

An oven-dried 100 mL of Schlenk tube was charged with 4-vinylbenzodioxinone **1a** (423 mg 2.4 mmol), azomethine imines **2a** (598 mg, 2.0 mmol), Pd_2dba_3 •CHCl₃ (0.025 equiv, 52 mg), Xantphos (0.05 equiv, 58 mg) in 20 mL of DCE under Ar atmosphere at 25 °C. Once the starting material was completely consumed (monitored by TLC), the mixture was concentrated to dryness. The residue was purified by flash column chromatography (petroleum ether/EtOAc as the eluent) to afford the product **3aa** (630 mg, 73% yield, >20:1 dr).

An oven-dried 100 mL of Schlenk tube was charged with 4-vinylbenzodioxinones **1b** (264 mg, 1.2 mmol), azomethine imine **2a** (299 mg, 1.0 mmol), Pd₂dba₃•CHCl₃ (0.025 equiv., 26 mg), **L17** (0.1 equiv., 76 mg) in 10 mL of DCE under Ar atmosphere at -20 °C. Once the starting material was completely consumed (monitored by TLC), the mixture was concentrated to dryness. The residue was purified by flash column chromatography (petroleum ether/EtOAc as the eluent) to afford the product **4ba** (452 mg, 95% yield, 93% ee, 16:1 dr).

Further Transformation of the Product 3aa

An oven-dried 10 mL of Schlenk tube was charged with the product **3aa** (43.1 mg, 0.1 mmol), at 0 °C, a solution of Br_2 in DCM (0.6 M in DCM, 5.0 equiv) was added. The reaction was stirred at ambient temperature for 2 h. Upon full conversion, the mixture was concentrated and then purified through flash column chromatography (20% EtOAc/PE) to afford the corresponding product **5a** as a white solid (18.9 mg, 32% yield, 10:1 dr) and **5b** as a white solid (37.4 mg, 56% yield, 5:1 dr).

An oven-dried 10 mL of Schlenk tube was charged with the product **3aa** (43.1 mg, 0.1 mmol, > 20:1 dr), Mg (240 mg, 10 mmol, 200-300 mesh), and anhydrous MeOH (3 mL) under argon atmosphere. The resulting solution was heated at 60 °C for 1 h. Then NH₄Cl (2 mL) was added to the reaction mixture to quench excess magnesium powder. The aqueous phase was extracted with ethyl acetate (3×3 mL). The combined organic layers were dried over Na₂SO₄, filtered and concentrated in vacuo. Then the mixture was purified through flash column chromatography (74% EtOAc/PE) to afford the corresponding product **6** as a light yellow solid (16.9 mg, 61% yield, > 20:1 dr).

Characterization Data for New Substrates and All Products

4-vinyl-4H-benzo[d][1,3]dioxin-2-one (1a)

Prepared according to the general procedure as described above in 53% yield. It was purified by flash chromatography (5% EtOAc/PE) to afford a yellow oil; ¹H NMR (500 MHz, CDCl₃) δ 7.39 (td, J = 7.8, 1.6 Hz, 1H), 7.23 (td, J = 7.5, 1.1 Hz, 1H), 7.16 (dd, J = 7.6, 1.9 Hz, 1H), 7.11 (dd, J = 8.2, 1.1 Hz, 1H), 6.05 (ddd, J = 17.0, 10.3, 6.6 Hz, 1H), 5.89 (d, J = 6.6 Hz, 1H), 5.49 (d, J = 10.3 Hz, 1H), 5.42 (dd, J = 17.0, 1.2 Hz, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 148.8, 146.5, 133.1, 130.2, 125.3, 125.1, 121.0, 119.8, 116.3, 80.2; IR (thin film) v_{max} 1766, 1489, 1458, 1274, 1261, 1216, 1153, 1032, 942, 751, 468 cm⁻¹; HRMS (ESI) calculated for C₁₀H₉O₃⁺ [M + H]⁺ 177.0546, found 177.0547.

8-ethoxy-4-vinyl-4H-benzo[d][1,3]dioxin-2-one (1b)

Prepared according to the general procedure as described above in 56% yield. It was purified by flash chromatography (5% EtOAc/PE) to afford a red solid. Melting point: 46–47 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.13 (t, *J* = 8.0 Hz, 1H), 6.94 (dd, *J* = 8.3, 1.4 Hz, 1H), 6.69 (d, *J* = 7.6 Hz,1H), 6.03 (ddd, *J* = 16.9, 10.3, 6.5 Hz, 1H), 5.84 (d, *J* = 6.5 Hz, 1H), 5.46 (d, *J* = 10.3 Hz, 1H), 5.41 (dd, *J* = 17.0, 1.2 Hz, 1H), 4.13 (q, *J* = 7.0 Hz, 2H), 1.47 (t, *J* = 7.0 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 146.60, 146.42, 138.23, 133.13, 125.37, 120.98, 120.70, 116.02, 113.90, 80.13, 64.92, 14.70; IR (thin film) v_{max} 1769, 1489, 1473, 1279, 1221, 1151, 1113, 1081, 1022, 944, 749 cm⁻¹; HRMS (ESI) calculated for C₁₂H₁₃O₄⁺ [M + H]⁺ 221.0808, found 221.0805. 7-methoxy-4-vinyl-4H-benzo[d][1,3]dioxin-2-one (1c)

Prepared according to the general procedure as described above in 76% yield. It was purified by flash chromatography (5% EtOAc/PE) to afford a brown solid. Melting point: 35–36 °C; ¹H NMR (500 MHz, CDCl₃) δ 6.97 (d, J = 8.9 Hz, 1H), 6.82 (dd, J = 8.9, 2.9 Hz, 1H), 6.56 (dd, J = 2.9, 0.8 Hz, 1H), 5.96 (ddd, J = 17.0, 10.3, 6.6 Hz, 1H), 5.76 (d, J = 6.6 Hz, 1H), 5.42 (dt, J = 10.2, 0.8 Hz, 1H), 5.36 (dt, J = 16.9, 0.9 Hz, 1H), 3.73 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 155.8, 145.7, 141.5, 131.9, 120.0, 119.6, 116.2, 114.3, 108.9, 79.2, 54.8; IR (thin film) v_{max} 1770, 1497, 1433, 1259, 1225, 1163, 1034, 817, 764 cm⁻¹; HRMS (ESI) calculated for C₁₁H₁₁O₄⁺ [M + H]⁺ 207.0652, found 207.0652.

6-methoxy-4-vinyl-4H-benzo[d][1,3]dioxin-2-one (1d)

Prepared according to the general procedure as described above in 68% yield. It was purified by flash chromatography (5% EtOAc/PE) to afford a brown solid. Melting point: 33–34 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.05 (d, *J* = 8.9 Hz, 0H), 6.89 (dd, *J* = 9.0, 2.9 Hz, 0H), 6.64 (d, *J* = 2.9 Hz, 0H), 6.04 (ddd, *J* = 17.0, 10.3, 6.6 Hz, 0H), 5.83 (d, *J* = 6.6 Hz, 0H), 5.49 (d, *J* = 10.3 Hz, 0H), 5.44 (d, *J* = 17.2 Hz, 0H), 3.80 (s, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 189.5, 145.3, 143.5, 137.2, 134.6, 131.7, 130.6, 128.9, 128.8, 128.0, 127.6, 127.6, 127.5, 127.5, 123.5, 121.7, 118.3, 97.6, 83.8; IR (thin film) v_{max} 1768, 1496, 1432, 1259, 1224, 1162, 1033, 817, 765 cm⁻¹; HRMS (ESI) calculated for C₁₁H₁₁O₄⁺ [M + H]⁺ 207.0652, found 207.0653. 8-methyl-4-vinyl-4H-benzo[d][1,3]dioxin-2-one (1e)

Prepared according to the general procedure as described above in 27% yield. It was purified by flash chromatography (5% EtOAc/PE) to afford a white solid. Melting point: 78–79 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.17 – 7.11 (m, 1H), 7.03 (t, *J* = 7.6 Hz, 1H), 6.92 – 6.85 (m, 1H), 5.97 (ddd, *J* = 17.0, 10.3, 6.5 Hz, 1H), 5.77 (d, *J* = 6.5 Hz, 1H), 5.39 (dt, *J* = 10.4, 0.9 Hz, 1H), 5.33 (dt, *J* = 17.0, 0.9 Hz, 1H), 2.27 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 146.1, 145.8, 132.2, 130.6, 125.0, 123.8, 121.4, 119.6, 118.6, 79.1, 14.0; IR (thin film) v_{max} 1770, 1473, 1219, 1162, 1089, 1027, 943, 790, 755 cm⁻¹; HRMS (ESI) calculated for C₁₁H₁₁O₃⁺ [M + H]⁺ 191.0703, found 191.0702.

7-methyl-4-vinyl-4H-benzo[d][1,3]dioxin-2-one (1f)

Prepared according to the general procedure as described above in 20% yield. It was purified by flash chromatography (5% EtOAc/PE) to afford a yellow oil; ¹H NMR (500 MHz, CDCl₃) δ 6.98 – 6.90 (m, 2H), 6.85 (s, 1H), 6.06 – 5.88 (m, 1H), 5.77 (d, J = 6.6 Hz, 1H), 5.39 (d, J =10.2 Hz, 1H), 5.33 (d, J = 17.0 Hz, 1H), 2.31 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 148.8, 146.7, 140.9, 133.3, 126.0, 124.7, 120.7, 116.7, 116.6, 80.3, 21.3; IR (thin film) v_{max} 1780, 1415, 1259, 1155, 1016, 984, 807, 764, 750 cm⁻¹; HRMS (ESI) calculated for C₁₁H₁₁O₃⁺ [M + H]⁺ 191.0703, found 191.0699. 6-methyl-4-vinyl-4H-benzo[d][1,3]dioxin-2-one (1g)

Prepared according to the general procedure as described above in 40% yield. It was purified by flash chromatography (5% EtOAc/PE) to afford a white solid. Melting point: 44–45 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.07 (dd, J = 8.4, 2.1 Hz, 1H), 6.89 (d, J = 8.3 Hz, 1H), 6.84 (d, J = 2.1 Hz, 1H), 5.93 (ddd, J = 17.0, 10.3, 6.6 Hz, 1H), 5.74 (d, J = 6.7 Hz, 1H), 5.37 (d, J = 10.3 Hz, 1H), 5.33 (d, J = 16.9 Hz, 1H), 2.25 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 145.7, 145.6, 134.2, 132.2, 129.6, 124.3, 119.7, 118.4, 114.9, 79.3, 19.8; IR (thin film) v_{max} 1769, 1496, 1227, 1167, 1152, 1126, 1027, 815, 764 cm⁻¹; HRMS (ESI) calculated for C₁₁H₁₀O₃⁺ [M + H]⁺ 191.0703, found 191.0702.

6-(tert-butyl)-4-vinyl-4H-benzo[d][1,3]dioxin-2-one (1h)

Prepared according to the general procedure as described above in 68% yield. It was purified by flash chromatography (5% EtOAc/PE) to afford a yellow oil; ¹H NMR (500 MHz, CDCl₃) δ 7.31 (dd, J = 8.6, 2.4 Hz, 1H), 7.04 (d, J = 2.4 Hz, 1H), 6.95 (d, J = 8.6 Hz, 1H), 5.97 (ddd, J = 16.9, 10.3, 6.5 Hz, 1H), 5.79 (d, J = 6.6 Hz, 1H), 5.40 (d, J = 10.3 Hz, 1H), 5.35 (dd, J =17.0, 1.1 Hz, 1H), 1.23 (s, 9H); ¹³C NMR (126 MHz, CDCl₃) δ 148.7, 146.8, 146.6, 133.3, 127.2, 121.7, 120.8, 119.1, 115.7, 80.6, 34.6, 31.4; IR (thin film) v_{max} 2961, 1771, 1498, 1273, 1235, 1158, 1131, 1025, 823, 763 cm⁻¹; HRMS (ESI) calculated for C₁₄H₁₇O₃⁺ [M + H]⁺ 233.1172, found 233.1171. 7-fluoro-4-vinyl-4H-benzo[d][1,3]dioxin-2-one (1i)

Prepared according to the general procedure as described above in 21% yield. It was purified by flash chromatography (5% EtOAc/PE) to afford a yellow oil; ¹H NMR (500 MHz, CDCl₃) δ 7.05 (dd, *J* = 8.5, 5.7 Hz, 1H), 6.88 (td, *J* = 8.4, 2.5 Hz, 1H), 6.80 (dd, *J* = 8.6, 2.5 Hz, 1H), 5.96 (ddd, *J* = 17.0, 10.3, 6.7 Hz, 1H), 5.79 (d, *J* = 6.7 Hz, 1H), 5.44 (d, *J* = 10.3 Hz, 1H), 5.36 (dd, *J* = 17.1, 1.1 Hz, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 163.2 (C-F, ¹*J*_{C-F} = 250.0 Hz), 149.7 (C-F, ²*J*_{C-F} = 12.4 Hz), 145.8, 132.8, 126.4 (C-F, ³*J*_{C-F} = 9.8 Hz), 121.4, 115.8 (C-F, ¹*J*_{C-F} = 3.4 Hz), 112.6 (C-F, ²*J*_{C-F} = 22.4 Hz), 104.5 (C-F, ²*J*_{C-F} = 26.0 Hz)., 80.1; ¹⁹F NMR (471 MHz, CDCl₃) δ -114.28; IR (thin film) v_{max} 1599, 1497, 1274, 1261, 1152, 1099, 972, 835, 764, 749 cm⁻¹; HRMS (ESI) calculated for C₁₀H₈FO₃⁺ [M + H]⁺ 195.0452, found 195.0451.

6-fluoro-4-vinyl-4H-benzo[d][1,3]dioxin-2-one (1j)

Prepared according to the general procedure as described above in 26% yield. It was purified by flash chromatography (5% EtOAc/PE) to afford a white solid. Melting point: 37–38 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.28 (dd, J = 8.7, 2.4 Hz, 1H), 7.07 (d, J = 2.4 Hz, 1H), 7.00 (d, J = 8.7 Hz, 1H), 5.95 (ddd, J = 17.0, 10.3, 6.7 Hz, 1H), 5.78 (d, J = 6.8 Hz, 1H), 5.47 (d, J = 10.3 Hz, 1H), 5.39 (d, J = 17.0 Hz, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 159.4 (C-F, ¹ $J_{C-F} = 245.8$ Hz), 146.1, 144.8 (C-F, ³ $J_{C-F} = 2.7$ Hz), 132.4, 121.7, 121.4 (C-F, ³ $J_{C-F} = 7.9$ Hz), 117.9 (C-F, ³ $J_{C-F} = 8.3$ Hz), 117.1 (C-F, ² $J_{C-F} = 23.8$ Hz), 112.0 (C-F, ² $J_{C-F} = 25.5$ Hz), 79.8 (C-F, ³ $J_{C-F} = 2.3$ Hz); ¹⁹F NMR (471 MHz, CDCl₃) δ -115.78; IR (thin film) v_{max} 1770, 1482, 1259, 1213, 1158, 1109, 1030, 820, 761 cm⁻¹; HRMS (ESI) calculated for C₁₀H₈FO₃⁺ [M + H]⁺ 195.0452, found 195.0453.

5-fluoro-4-vinyl-4H-benzo[d][1,3]dioxin-2-one (1k)

Prepared according to the general procedure as described above in 35% yield. It was purified by flash chromatography (5% EtOAc/PE) to afford a yellow oil; ¹H NMR (500 MHz, CDCl₃) δ 7.30 (td, J = 8.4, 6.1 Hz, 1H), 6.87 (dd, J = 18.4, 8.8 Hz, 2H), 6.11 – 5.85 (m, 2H), 5.35 – 5.28 (m, 1H), 5.29 – 5.20 (m, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 157.7 (C-F, ¹ $J_{C-F} = 250.0$ Hz), 149.5 (C-F, ³ J_{C-F} 6.0 Hz), 145.6, 132.5, 131.0 (C-F, ³ $J_{C-F} = 9.1$ Hz), 119.5, 112.2 (C-F, ² $J_{C-F} = 14.8$ Hz), 112.1 (C-F, ³ $J_{C-F} = 1.2$ Hz), 108.3 (C-F, ² $J_{C-F} = 20.8$ Hz), 75.8; ¹⁹F NMR (471 MHz, CDCl₃) δ -118.15; IR (thin film) v_{max} 1777, 1604, 1468, 1241, 1148, 1046, 942, 787, 765, 747 cm⁻¹; HRMS (ESI) calculated for C₁₀H₈FO₃⁺ [M + H]⁺ 195.0452, found 195.0452.

8-chloro-4-vinyl-4H-benzo[d][1,3]dioxin-2-one (11)

Prepared according to the general procedure as described above in 10% yield. It was purified by flash chromatography (5% EtOAc/PE) to afford a white solid. Melting point: 46–47 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.36 (dd, J = 8.1, 1.4 Hz, 1H), 7.10 (t, J = 7.8 Hz, 1H), 6.99 (dt, J= 7.7, 1.2 Hz, 1H), 5.96 (ddd, J = 16.9, 10.2, 6.5 Hz, 1H), 5.81 (d, J = 6.5 Hz, 1H), 5.44 (dd, J = 10.2, 1.0 Hz, 1H), 5.37 (dd, J = 17.0, 1.2 Hz, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 145.46, 144.9, 132.5, 130.9, 125.7, 123.4, 121.7, 121.6, 121.5, 80.1; IR (thin film) v_{max} 1774, 1457, 1236, 1162, 1140, 1028, 986, 785, 747 cm⁻¹; HRMS (ESI) calculated for C₁₀H₈ClO₃⁺ [M + H]⁺ 211.0156, found 211.0155. 7-chloro-4-vinyl-4H-benzo[d][1,3]dioxin-2-one (1m)

Prepared according to the general procedure as described above in 19% yield. It was purified by flash chromatography (5% EtOAc/PE) to afford a yellow oil; ¹H NMR (500 MHz, CDCl₃) δ 7.14 (dd, J = 8.2, 2.0 Hz, 1H), 7.07 (d, J = 2.0 Hz, 1H), 7.02 (d, J = 8.1 Hz, 1H), 5.95 (ddd, J = 17.0, 10.3, 6.6 Hz, 1H), 5.79 (d, J = 6.7 Hz, 1H), 5.44 (d, J = 10.3 Hz, 1H), 5.36 (d, J =17.1 Hz, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 149.3, 145.7, 135.8, 132.6, 126.1, 125.6, 121.6, 118.4, 116.9, 80.0; IR (thin film) v_{max} 1594, 1484, 1408, 1263, 1229, 982, 934, 900, 734, 703 cm⁻¹; HRMS (ESI) calculated for C₁₀H₈ClO₃⁺ [M + H]⁺ 211.0156, found 211.0156.

6-chloro-4-vinyl-4H-benzo[d][1,3]dioxin-2-one (1n)

Prepared according to the general procedure as described above in 34% yield. It was purified by flash chromatography (5% EtOAc/PE) to afford a yellow oil; ¹H NMR (500 MHz, CDCl₃) δ 7.09 – 6.97 (m, 2H), 6.80 (dd, J = 7.6, 2.5 Hz, 1H), 5.95 (ddd, J = 17.0, 10.3, 6.7 Hz, 1H), 5.79 (d, J = 6.7 Hz, 1H), 5.46 (d, J = 10.3 Hz, 1H), 5.39 (dd, J = 17.0, 1.1 Hz, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 147.9, 145.8, 133.2, 132.33, 128.0, 121.9, 121.8, 118.1, 117.9, 79.7; IR (thin film) v_{max} 1774, 1492, 1436, 1250, 1220, 1152, 1029, 824, 764 cm⁻¹; HRMS (ESI) calculated for C₁₀H₈ClO₃⁺ [M + H]⁺ 211.0156, found 211.0153. 8-bromo-4-vinyl-4H-benzo[d][1,3]dioxin-2-one (10)

Prepared according to the general procedure as described above in 8% yield. It was purified by flash chromatography (5% EtOAc/PE) to afford a white solid. Melting point: 78–79 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.58 – 7.50 (m, 1H), 7.07 – 6.99 (m, 2H), 5.96 (ddd, *J* = 16.9, 10.3, 6.5 Hz, 1H), 5.80 (dt, *J* = 6.6, 1.1 Hz, 1H), 5.44 (dd, *J* = 10.4, 1.0 Hz, 1H), 5.37 (dd, *J* = 17.1, 1.2 Hz, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 146.0, 145.6, 134.0, 132.5, 126.1, 124.1, 121.7, 121.5, 110.1, 80.1; IR (thin film) v_{max} 1777, 1453, 1235, 1203, 1161, 1136, 1029, 986, 749, cm⁻¹; HRMS (ESI) calculated for C₁₀H₈BrO₃⁺ [M + H]⁺ 254.9651, found 254.9650.

7-bromo-4-vinyl-4H-benzo[d][1,3]dioxin-2-one (1p)

Prepared according to the general procedure as described above in 12% yield. It was purified by flash chromatography (5% EtOAc/PE) to afford a light yellow solid. Melting point: 48– 49 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.29 (dd, *J* = 8.1, 1.8 Hz, 1H), 7.22 (d, *J* = 1.9 Hz, 1H), 6.95 (dd, *J* = 8.1, 0.8 Hz, 1H), 5.95 (ddd, *J* = 17.0, 10.3, 6.6 Hz, 1H), 5.77 (dd, *J* = 6.8, 1.3 Hz, 1H), 5.44 (dd, *J* = 10.2, 1.0 Hz, 1H), 5.36 (dd, *J* = 17.1, 1.2 Hz, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 148.3, 144.7, 131.5, 127.5, 125.3, 122.2, 120.5, 118.7, 117.9, 79.0; IR (thin film) v_{max} 1774, 1586, 1484, 1408, 1218, 1161, 1066, 1028, 947, 758 cm⁻¹; HRMS (ESI) calculated for C₁₀H₈BrO₃⁺ [M + H]⁺ 254.9651, found 254.9652. 6-bromo-4-vinyl-4H-benzo[d][1,3]dioxin-2-one (1q)

Prepared according to the general procedure as described above in 13% yield. It was purified by flash chromatography (5% EtOAc/PE) to afford a white solid. Melting point: 50–51 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.41 (dd, J = 8.7, 2.3 Hz, 1H), 7.21 (dd, J = 2.4, 0.8 Hz, 1H), 6.93 (d, J = 8.6 Hz, 1H), 5.94 (ddd, J = 17.0, 10.3, 6.7 Hz, 1H), 5.79 (d, J = 6.8 Hz, 1H), 5.46 (d, J = 10.2 Hz, 1H), 5.39 (d, J = 17.0 Hz, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 146.4, 144.8, 131.3, 129.6, 129.3, 124.1, 120.7, 120.5, 116.8, 78.8; IR (thin film) v_{max} 1769, 1479, 1260, 1148, 1124, 1108, 1027, 946, 817, 756, cm⁻¹; HRMS (ESI) calculated for C₁₀H₈BrO₃⁺ [M + H]⁺ 254.9651, found 254.9651.

8-tosyl-9-vinyl-8,9-dihydro-14aH-benzo[6,7][1,3,4]oxadiazepino[3,2-c]quinazoline (3aa)

Prepared according to the general procedure as described above in 88% yield. It was purified by flash chromatography (20% EtOAc/PE) to afford a white solid. Melting point: 100–101 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.54 – 7.47 (m, 2H), 7.35 (ddd, *J* = 8.4, 6.8, 1.9 Hz, 1H), 7.28

(ddd, J = 17.7, 7.7, 1.4 Hz, 2H), 7.23 – 7.17 (m, 3H), 7.14 – 7.02 (m, 3H), 6.96 (dd, J = 7.9, 1.3 Hz, 1H), 6.90 (d, J = 1.5 Hz, 1H), 6.05 (ddd, J = 16.7, 10.2, 6.1 Hz, 1H), 5.97 (dt, J = 6.1, 1.5 Hz, 1H), 5.93 (d, J = 1.6 Hz, 1H), 5.24 (dt, J = 10.0, 1.0 Hz, 1H), 5.05 (dt, J = 16.9, 1.0 Hz, 1H), 2.27 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 158.1, 148.3, 145.1, 139.7, 134.6, 132.3, 130.9, 130.6, 130.1, 130.1, 123.0, 128.3, 128.2, 126.4, 126.1, 125.2, 122.2, 121.9, 121.4, 86.1, 67.3, 21.7; IR (thin film) v_{max} 1766, 1489, 1458, 1274, 1261, 1153, 1032, 942, 751 cm⁻¹; HRMS (ESI) calculated for C₂₄H₂₂N₃O₃S⁺ [M + H]⁺ 432.1376, found 432.1376.

13-ethoxy-8-tosyl-9-vinyl-8,9-dihydro-14aH-benzo[6,7][1,3,4]oxadiazepino [3,2-c]quinazoline (3ba)

Prepared according to the general procedure as described above in 81% yield (38.4 mg). It was purified by flash chromatography (20% EtOAc/PE) to afford a white solid. Melting point: 130–131 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.55 – 7.51 (m, 2H), 7.35 (ddt, *J* = 5.7, 4.1, 1.9 Hz, 2H), 7.29 – 7.18 (m, 2H), 7.12 (d, *J* = 7.7 Hz, 2H), 7.05 (t, *J* = 7.9

Hz, 1H), 6.90 (dd, J = 7.7, 1.4 Hz, 1H), 6.85 (dd, J = 8.2, 1.5 Hz, 1H), 6.82 (d, J = 1.4 Hz, 0H), 6.11 (ddd, J = 16.8, 10.2, 6.3 Hz, 1H), 6.01 (d, J = 1.4 Hz, 1H), 5.93 (dt, J = 6.3, 1.4 Hz, 1H), 5.27 (dt, J = 10.1, 1.1 Hz, 1H), 5.19 (dt, J = 17.1, 1.2 Hz, 1H), 4.06 – 3.91 (m, 2H), 2.32 (s, 3H), 1.38 (t, J = 7.0 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 150.6, 147.2, 146.4, 144.0, 138.6, 133.5, 132.1, 130.8, 129.4, 128.9, 127.8, 127.2, 125.2, 125.0, 124.5, 121.1, 120.3, 120.0, 112.8, 85.1, 66.3, 63.4, 20.6, 13.9; IR (thin film) v_{max} 1604, 1261, 1204, 1165, 1089, 931, 765, 751, 669 cm⁻¹; HRMS (ESI) calculated for C₂₆H₂₆N₃O₄S⁺ [M + H]⁺ 476.1639, found 476.1638.

12-methoxy-8-tosyl-9-vinyl-8,9-dihydro-14aH-benzo[6,7][1,3,4]oxadiazepino[3,2-c]quinazoline (3ca)

Prepared according to the general procedure as described above in 98% yield (45.1 mg). It was purified by flash chromatography (20% EtOAc/PE) to afford a light yellow solid. Melting point: 140–141 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.58 – 7.49 (m, 2H), 7.42 – 7.29 (m, 2H), 7.28 – 7.20 (m, 2H), 7.13 (d, *J* = 8.1 Hz, 2H), 6.98

- 6.88 (m, 2H), 6.82 (d, J = 3.0 Hz, 1H), 6.73 (dd, J = 8.7, 3.0 Hz, 1H), 6.04 (ddd, J = 16.8, 10.2, 6.1 Hz, 1H), 5.99 (d, J = 1.5 Hz, 1H), 5.89 (dt, J = 6.3, 1.5 Hz, 1H), 5.28 (dt, J = 10.2, 1.1 Hz, 1H), 5.11 (dt, J = 17.0, 1.1 Hz, 1H), 3.76 (s, 3H), 2.32 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 155.7, 150.5, 147.5, 144.3, 137.5 133.4, 130.9, 130.7, 129.6, 129.0, 127.3, 127.1, 125.6, 124.4, 121.9, 121.3, 120.2, 113.9, 113.7, 85.3, 66.1, 54.7, 20.7; IR (thin film) v_{max} 1620, 1275, 1261, 1165, 930, 764, 750, 704, 663 cm⁻¹; HRMS (ESI) calculated for C₂₅H₂₄N₃O₄S⁺ [M + H]⁺ 462.1482, found 462.1483.

11-methoxy-8-tosyl-9-vinyl-8,9-dihydro-14aH-benzo[6,7][1,3,4]oxadiazepino[3,2-c]quinazoline (3da)

(m, 3H), 7.12 (d, J = 8.1 Hz, 2H), 6.90 (d, J = 8.7 Hz, 1H), 6.85 (d, J = 1.5 Hz, 1H), 6.82 (d, J = 3.0 Hz, 1H), 6.73 (dd, J = 8.7, 3.0 Hz, 1H), 6.05 (ddd, J = 16.9, 10.2, 6.2 Hz, 1H), 5.94 (d, J = 1.5 Hz, 1H), 5.90 (dt, J = 6.2, 1.5 Hz, 1H), 5.27 (dt, J = 10.2, 1.1 Hz, 1H), 5.11 (dt, J = 17.1, 1.2 Hz, 1H), 3.76 (s, 3H), 2.31 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 156.6, 151.7, 148.4, 145.1, 139.6, 134.6, 132.1, 131.8, 130.5, 123.0, 128.3, 128.2, 126.3, 126.1, 123.0, 122.0, 121.5, 114.9, 114.7, 86.2, 67.2, 55.8, 21.7; IR (thin film) v_{max} 1605, 1495, 1203, 1176, 1165, 937, 764, 751, 667, 549 cm⁻¹; HRMS (ESI) calculated for C₂₅H₂₄N₃O₄S⁺ [M + H]⁺ 462.1482, found 462.1481.

13-methyl-8-tosyl-9-vinyl-8,9-dihydro-14aH-benzo[6,7][1,3,4]oxadiazepino[3,2-c]quinazoline (3ea)

Prepared according to the general procedure as described above in 94% yield (41.8 mg). It was purified by flash chromatography (20% EtOAc/PE) to afford a light yellow solid. Melting point: 152–153 °C; ¹H NMR (500 MHz, CDCl₃) 7.57 – 7.48 (m, 2H), 7.38 (ddd, J = 8.4, 6.9, 1.8 Hz, 2H), 7.28 (dd, J = 8.0, 1.2 Hz, 2H), 7.26 – 7.19 (m, 3H),

7.15 (dd, J = 7.4, 1.7 Hz, 4H), 7.11 (dd, J = 8.1, 2.2 Hz, 1H), 7.00 (t, J = 7.5 Hz, 1H), 6.87 (d, J = 1.5 Hz, 1H), 6.08 (ddd, J = 16.7, 10.2, 6.3 Hz, 1H), 5.95 (dd, J = 5.7, 1.6 Hz, 1H), 5.25 (dt, J = 10.1, 1.1 Hz, 1H), 5.11 (t, J = 1.2 Hz, 1H), 2.31 (s, 3H), 2.16 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 156.5, 148.4, 145.1, 139.8, 134.6, 132.5, 131.6, 131.0, 130.9, 130.5, 129.9, 128.3, 128.2, 128.2, 127.7, 126.3, 126.2, 124.8, 121.8, 121.4, 86.0, 67.4, 21.7, 16.7; IR (thin film) v_{max} 557, 667, 703, 733, 749, 764, 1166, 1264, 1491, 1619 cm⁻¹; HRMS (ESI) calculated for C₂₅H₂₄N₃O₃S⁺ [M + H]⁺ 446.1533, found 446.1533.

12-methyl-8-tosyl-9-vinyl-8,9-dihydro-14aH-benzo[6,7][1,3,4]oxadiazepino[3,2-c]quin-azoline (3fa)

Prepared according to the general procedure as described above in 82% yield (36.5 mg). It was purified by flash chromatography (20% EtOAc/PE) to afford a light yellow solid. Melting point: 138–139 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.59 – 7.48 (m, 2H), 7.37 (ddd, *J* = 7.9, 5.3, 3.4 Hz, 1H), 7.30 – 7.16 (m, 4H), 7.11 (d, *J* = 8.1 Hz, 2H), 6.98 –

6.89 (m, 1H), 6.86 (d, J = 1.5 Hz, 1H), 6.80 (d, J = 1.7 Hz, 1H), 6.04 (ddd, J = 17.0, 10.2, 6.1 Hz, 1H), 6.00 (d, J = 1.5 Hz, 1H), 5.94 (dt, J = 6.0, 1.5 Hz, 1H), 5.24 (dt, J = 10.2, 1.1 Hz, 1H), 5.06 (dt, J = 17.0, 1.1 Hz, 1H), 2.31 (s, 3H), 2.27 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 189.5, 145.3, 143.5, 137.2, 134.6, 131.7, 130.6, 128.9, 128.8, 128.0, 127.6, 127.6, 127.5, 123.5, 121.7, 118.3, 97.6, 83.8; IR (thin film) v_{max} 549, 597, 666, 703, 733, 764, 1165, 1263, 1605, 1618 cm⁻¹; HRMS (ESI) calculated for C₂₅H₂₄N₃O₃S⁺ [M + H]⁺ 446.1533, found 446.1533.

11-methyl-8-tosyl-9-vinyl-8,9-dihydro-14aH-benzo[6,7][1,3,4]oxadiazepino[3,2-c]quinazoline (3ga)

Prepared according to the general procedure as described above in 87% yield (38.7 mg). It was purified by flash chromatography (20% EtOAc/PE) to afford a light yellow solid, Melting point: 100–101 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.56 – 7.48 (m, 2H), 7.36 (ddd, *J* = 8.1, 5.9, 2.8 Hz, 1H), 7.27 – 7.19 (m, 3H), 7.14 – 7.07 (m, 3H), 7.04

- 6.99 (m, 1H), 6.87 (d, J = 8.0 Hz, 1H), 6.84 (d, J = 1.5 Hz, 1H), 6.05 (ddd, J = 16.8, 10.2, 6.2 Hz, 1H), 6.00 (d, J = 1.5 Hz, 1H), 5.91 (dt, J = 6.2, 1.5 Hz, 1H), 5.25 (dt, J = 10.2, 1.1 Hz, 1H), 5.08 (dt, J = 17.1, 1.2 Hz, 1H), 2.31 (s, 3H), 2.29 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 154.9, 147.3, 144.0, 138.6, 133.8, 133.5, 131.4, 129.5, 129.5, 129.4, 128.9, 127.3, 127.2, 125.3, 125.0, 120.9, 120.8, 120.5, 85.1, 66.2, 20.6, 19.7; IR (thin film) v_{max} 1915, 1605, 1177, 1165, 934, 765, 754, 667, 624, 557 cm⁻¹; HRMS (ESI) calculated for C₂₅H₂₄N₃O₃S⁺ [M + H]⁺ 446.1533, found 446.1532.

13-methyl-8-tosyl-9-vinyl-8,9-dihydro-14aH-benzo[6,7][1,3,4]oxadiazepino[3,2-c]quinazoline (3ha)

J = 7.6, 1.5 Hz, 1H), 7.07 (d, J = 8.1 Hz, 1H), 6.96 (d, J = 1.5 Hz, 1H), 6.87 (d, J = 8.3 Hz, 1H), 6.08 (ddd, J = 16.8, 10.2, 6.2 Hz, 1H), 5.96 (dt, J = 6.2, 1.5 Hz, 1H), 5.77 (d, J = 1.5 Hz, 1H), 5.27 (dt, J = 10.2, 1.1 Hz, 1H), 5.10 (dt, J = 17.0, 1.1 Hz, 1H), 2.30 (s, 3H), 1.29 (s, 9H); ¹³C NMR (126 MHz, CDCl₃) δ 154.7, 147.5, 147.2, 143.9, 138.7, 133.9, 131.5, 129.5, 129.0, 128.8, 127.2, 127.1, 125.8, 125.2, 125.1, 120.8, 120.5, 120.4, 85.0, 66.8, 33.5, 30.4, 20.6; IR (thin film) v_{max} 1619, 1274, 1262, 1167, 764, 749, 703, 668, 622, 551 cm⁻¹; HRMS (ESI) calculated for C₂₈H₃₀N₃O₃S⁺ [M + H]⁺ 488.2002, found 488.2003.

12-fluoro-8-tosyl-9-vinyl-8,9-dihydro-14aH-benzo[6,7][1,3,4]oxadiazepino[3,2-c]quinazoline (3ia)

1.2 Hz, 1H), 7.27 – 7.19 (m, 2H), 7.18 – 7.12 (m, 3H), 6.95 – 6.84 (m, 2H), 6.78 (dt, J = 8.1, 1.1 Hz, 1H), 6.50 (dq, J = 6.2, 1.4 Hz, 1H), 6.07 (d, J = 1.5 Hz, 1H), 6.02 (ddd, J = 16.7, 10.2, 6.1 Hz, 1H), 5.28 (dd, J = 10.3, 1.4 Hz, 1H), 5.11 (dd, J = 17.1, 1.5 Hz, 1H), 2.32 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 159.9, 158.4 (C-F, ³ $J_{C-F} = 4.0$ Hz), 157.91, 147.0, 144.2, 138.6, 133.7, 130.3, 129.7, 129.3 (C-F, ² $J_{C-F} = 10.3$ Hz), 129.0, 127.2, 127.0, 125.3 (C-F, ² $J_{C-F} = 25.5$ Hz), 120.9, 120.0, 118.3 (C-F, ² $J_{C-F} = 15.1$ Hz), 116.8 (C-F, ³ $J_{C-F} = 3.3$ Hz), 111.0 (C-F, ² $J_{C-F} = 22.9$ Hz), 85.4, 57.5 (C-F, ³ $J_{C-F} = 6.5$ Hz), 20.7; ¹⁹F NMR (471 MHz, CDCl₃) δ -115.59; IR (thin film) v_{max} 1619 1263, 1167, 1007, 910, 764, 747, 732, 703, 667,550 cm⁻¹; HRMS (ESI) calculated for C₂₄H₂₁FN₃O₃S⁺ [M + H]⁺ 450.1282, found 450.1281.

11-fluoro-8-tosyl-9-vinyl-8,9-dihydro-14aH-benzo[6,7][1,3,4]oxadiazepino[3,2-c]quinazoline (3ja)

Prepared according to the general procedure as described above in 43% yield (19.3 mg). It was purified by flash chromatography (20% EtOAc/PE) to afford a light yellow solid. Melting point: 135–136 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.54 (d, *J* = 8.4 Hz, 2H), 7.38 (ddd,

J = 8.4, 6.8, 1.9 Hz, 1H), 7.30 - 7.19 (m, 3H), 7.14 (d, J = 8.1 Hz,

2H), 7.03 (dd, J = 8.2, 2.9 Hz, 1H), 6.99 – 6.87 (m, 2H), 6.83 (d, J = 1.5 Hz, 1H), 6.13 – 5.98 (m, 2H), 5.89 (dt, J = 6.2, 1.5 Hz, 1H), 5.29 (d, J = 10.1 Hz, 1H), 5.11 (dd, J = 17.1, 1.5 Hz, 1H), 2.32 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 159.3, 157.3, 153.1 (C-F, ³ $J_{C-F} = 2.7$ Hz), 147.0, 144.3, 138.5, 133.3, 131.6 (C-F, ³ $J_{C-F} = 7.2$ Hz), 130.6, 129.6, 129.0, 127.3, 127.1, 122.6 (C-F, ³ $J_{C-F} = 8.4$ Hz), 121.3, 120.1, 115.6, 115.4 (C-F, ³ $J_{C-F} = 23.3$, 17.7 Hz), 115.3, 85.3, 65.6, 20.7; ¹⁹F NMR (471 MHz, CDCl₃) δ -117.41; IR (thin film) v_{max} 1619, 1606, 1264, 1166, 934, 733, 666, 654, 592, 550 cm⁻¹; HRMS (ESI) calculated for C₂₄H₂₁FN₃O₃S⁺ [M + H]⁺ 450.1282, found 450.1284.

10-fluoro-8-tosyl-9-vinyl-8,9-dihydro-14aH-benzo[6,7][1,3,4]oxadiazepino[3,2-c]quinazoline (3ka)

Prepared according to the general procedure as described above in 54% yield (24.3 mg). It was purified by flash chromatography (20% EtOAc/PE) to afford a light yellow solid. Melting point: 132–133 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.57 – 7.50 (m, 2H), 7.39 (ddd, *J* = 8.0, 7.2, 1.7 Hz, 1H), 7.34 – 7.20 (m, 4H), 7.17 – 7.11 (m, 2H), 6.93 – 6.79

(m, 2H), 6.72 (dd, J = 9.2, 2.6 Hz, 1H), 6.07 (d, J = 1.5 Hz, 1H), 6.06 – 6.00 (m, 1H), 5.97 (dt, J = 6.0, 1.4 Hz, 1H), 5.27 (d, J = 10.5 Hz, 1H), 5.05 (d, J = 17.3 Hz, 1H), 2.33 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 163.0, 161.0, 158.3 (C-F, ² $J_{C-F} = 11.2$ Hz), 147.0, 144.3, 138.5, 133.4, 131.2, 130.1 (C-F, ³ $J_{C-F} = 9.9$ Hz), 129.7, 129.0, 127.2, 127.2, 126.0 (C-F, ³ $J_{C-F} = 3.4$ Hz), 125.5, 125.2, 120.9, 119.9, 111.0 (C-F, ² $J_{C-F} = 21.3$ Hz), 109.0 (C-F, ² $J_{C-F} = 23.1$ Hz), 85.5, 66.0, 20.7; ¹⁹F NMR (471 MHz, CDCl₃) δ -115.59; IR (thin film) v_{max} 1617, 1605, 1263, 1166, 764, 747, 734, 703, 666, 549 cm⁻¹; HRMS (ESI) calculated for C₂₄H₂₁FN₃O₃S⁺ [M + H]⁺ 450.1282, found 450.1283.

13-chloro-8-tosyl-9-vinyl-8,9-dihydro-14aH-benzo[6,7][1,3,4]oxadiazepino[3,2-c]quina-

zoline (3la)

Prepared according to the general procedure as described above in 75% yield (34.8 mg). It was purified by flash chromatography (20% EtOAc/PE) to afford a light yellow solid. Melting point: 90–91 °C; ¹H 3la NMR (500 MHz, CDCl₃) δ 7.53 (d, J = 8.2 Hz, 2H), 7.47 – 7.32 (m, 3H), 7.30 - 7.22 (m, 3H), 7.14 (d, J = 8.1 Hz, 2H), 7.07 (t, J = 7.8 Hz, 1H), 6.81 (d, J = 1.5Hz, 1H), 6.13 (s, 1H), 5.96 (d, *J* = 6.4 Hz, 1H), 5.30 (d, *J* = 10.2 Hz, 1H), 5.14 (dd, *J* = 17.0, 1.4 Hz, 1H), 2.33 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 154.0, 147.8, 145.4, 139.6, 134.2, 133.5, 131.6, 130.8, 130.7, 130.0, 129.2, 128.3, 128.3, 128.2, 127.8, 126.5, 126.2, 125.8, 122.4, 120.6, 86.8, 67.0, 21.7; IR (thin film) v_{max} 1622, 1606, 1456, 1275, 1260, 1166, 764, 750, 704, 667 cm^{-1} ; HRMS (ESI) calculated for $C_{24}H_{21}CIN_3O_3S^+$ [M + H]⁺ 466.0987, found 466.0985.

12-chloro-8-tosyl-9-vinyl-8,9-dihydro-14aH-benzo[6,7][1,3,4]oxadiazepino[3,2-c]quinazoline (3ma)

8.3, 6.8, 2.0 Hz, 1H), 7.31 - 7.21 (m, 4H), 7.17 - 7.09 (m, 3H), 7.02 (d, J = 2.1 Hz, 1H), 6.83 $(d, J = 1.5 \text{ Hz}, 1\text{H}), 6.09 (d, J = 1.5 \text{ Hz}, 1\text{H}), 6.02 (ddd, J = 16.7, 10.1, 6.0 \text{ Hz}, 1\text{H}), 5.99 - 100 \text{ Hz}, 100 \text{ Hz$ $5.93 (m, 1H), 5.46 - 5.14 (m, 1H), 5.06 (dd, J = 17.0, 1.4 Hz, 1H), 2.34 (s, 3H); {}^{13}C NMR (126)$ MHz, CDCl₃) δ 158.7, 148.0, 145.4, 139.5, 135.2, 134.3, 131.9, 130.9, 130.8, 130.1, 129.6, 128.3, 128.2, 126.5, 126.2, 125.4, 122.8, 122.1, 121.0, 86.5, 66.6, 21.7; IR (thin film) v_{max} 1622, 1274, 1263, 1167, 937, 764, 748, 703, 666, 550, cm⁻¹; HRMS (ESI) calculated for $C_{24}H_{21}CIN_3O_3S^+[M+H]^+$ 466.0987, found 466.0986.

11-chloro-8-tosyl-9-vinyl-8,9-dihydro-14aH-benzo[6,7][1,3,4]oxadiazepino[3,2-c]quinazoline (3na)

(ddd, J = 8.4, 6.8, 2.0 Hz, 1H), 7.31 – 7.17 (m, 5H), 7.15 (d, J = 8.1 Hz, 2H), 6.93 (d, J = 8.5 Hz, 1H), 6.82 (d, J = 1.5 Hz, 1H), 6.08 (d, J = 1.5 Hz, 1H), 6.02 (ddd, J = 16.8, 10.2, 6.2 Hz, 1H), 5.90 (dt, J = 6.2, 1.5 Hz, 1H), 5.29 (dd, J = 10.2, 1.3 Hz, 1H), 5.09 (dd, J = 17.1, 1.5 Hz, 1H), 2.33 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 156.7, 148.0, 145.4, 139.5, 134.3, 132.6, 131.6, 130.7, 130.2, 130.1, 123.0, 129.8, 128.3, 128.2, 126.5, 126.2, 123.7, 122.4, 121.1, 86.4, 66.6, 21.7; IR (thin film) v_{max} 554, 1618, 1605, 1275, 1260, 1165, 935, 763, 749, 668 cm⁻¹; HRMS (ESI) calculated for C₂₄H₂₁ClN₃O₃S⁺ [M + H]⁺ 466.0987, found 466.0985.

13-bromo-8-tosyl-9-vinyl-8,9-dihydro-14aH-benzo[6,7][1,3,4]oxadiazepino[3,2-c]quinazoline (3oa)

Prepared according to the general procedure as described above in 51% yield (26 mg). It was purified by flash chromatography (20% EtOAc/PE) to afford a light yellow solid. Melting point: 140–141 °C; ¹H NMR (500

3oa MHz, CDCl₃) δ 7.59 – 7.48 (m, 4H), 7.39 (ddd, J = 8.3, 7.3, 1.5 Hz, 1H), 7.31 – 7.24 (m, 3H), 7.14 (d, J = 8.1 Hz, 2H), 7.00 (t, J = 7.7 Hz, 1H), 6.82 (d, J = 1.5 Hz, 1H), 6.12 (d, J = 1.5 Hz, 1H), 6.07 (ddd, J = 16.8, 10.2, 6.3 Hz, 1H), 5.96 (dt, J = 6.3, 1.5 Hz, 1H), 5.29 (dt, J = 10.2, 1.0 Hz, 1H), 5.18 – 5.08 (m, 1H), 2.33 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 154.0, 146.8, 144.3, 138.6, 133.2, 132.7, 132.3, 130.6, 129.7, 129.0, 128.4, 128.1, 127.2, 125.4, 125.2, 125.1, 121.4, 119.5, 116.3, 85.8, 66.0, 20.7; IR (thin film) v_{max} 1621, 1605, 1488, 1275, 1260, 1165, 764, 750, 666, 545 cm⁻¹; HRMS (ESI) calculated for C₂₄H_{21Br}N₃O₃S⁺ [M + H]⁺ 510.0482, found 510.0482.

12-bromo-8-tosyl-9-vinyl-8,9-dihydro-14aH-benzo[6,7][1,3,4]oxadiazepino[3,2-c]quinazoline (3pa)

Prepared according to the general procedure as described above in 61% yield (31.1 mg). It was purified by flash chromatography (20% EtOAc/PE) to afford a light yellow solid. Melting point: 89–90 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.58 – 7.49 (m, 2H), 7.39 (ddd, *J* =

8.1, 6.5, 2.3 Hz, 1H), 7.32 – 7.20 (m, 4H), 7.20 – 7.17 (m, 2H), 7.17 – 7.10 (m, 2H), 6.83 (d, J = 1.5 Hz, 1H), 6.09 (d, J = 1.5 Hz, 1H), 6.02 (ddd, J = 16.9, 10.1, 6.1 Hz, 1H), 5.95 (dt, J = 6.1, 1.4 Hz, 1H), 5.28 (dd, J = 10.1, 1.9 Hz, 1H), 5.06 (dd, J = 16.9, 1.6 Hz, 1H), 2.33 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 157.8, 146.9, 144.4, 138.5, 133.3, 130.8, 130.1, 129.7, 129.1, 129.0, 127.3, 127.3, 127.1, 125.5, 125.1, 124.7, 121.9, 121.1, 119.9, 85.5, 65.7, 20.7; IR (thin film) v_{max} 1618,1605,1495,1203, 1164, 765, 752, 734, 667, 548, cm⁻¹; HRMS (ESI) calculated for C₂₄H_{21Br}N₃O₃S⁺ [M + H]⁺ 510.0482, found 510.0482.

11-chloro-8-tosyl-9-vinyl-8,9-dihydro-14aH-benzo[6,7][1,3,4]oxadiazepino[3,2-c]quinazoline (3qa)

J = 8.5, 2.4 Hz, 1H), 7.30 – 7.19 (m, 3H), 7.15 (d, J = 8.0 Hz, 2H), 6.87 (d, J = 8.5 Hz, 1H), 6.82 (d, J = 1.5 Hz, 1H), 6.08 (d, J = 1.5 Hz, 1H), 6.01 (ddd, J = 16.8, 10.2, 6.1 Hz, 1H), 5.89 (dt, J = 6.2, 1.5 Hz, 1H), 5.29 (dd, J = 10.3, 1.3 Hz, 1H), 5.09 (dd, J = 17.0, 1.4 Hz, 1H), 2.32 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 156.2, 146.9, 144.4, 138.4, 133.3, 132.0, 131.9, 131.6, 130.6, 129.7, 129.0, 127.3, 127.2, 125.5, 125.1, 123.0, 121.3, 120.0, 116.8, 85.4, 65.5, 20.7; IR (thin film) v_{max} 1618, 1605, 1478, 1261, 1165, 804, 765, 751, 663, 549 cm⁻¹; HRMS (ESI) calculated for C₂₄H_{21Br}N₃O₃S⁺ [M + H]⁺ 510.0482, found 510.0482.

2-fluoro-8-tosyl-9-vinyl-8,9-dihydro-14aH-benzo[6,7][1,3,4]oxadiazepino[3,2-c]quinazoline (3ab)

Hz, 1H), 5.98 (dt, J = 6.1, 1.4 Hz, 1H), 5.89 (d, J = 1.5 Hz, 1H), 5.26 (d, J = 10.0 Hz, 1H), $5.10 - 5.00 \text{ (m, 1H)}, 2.31 \text{ (s, 3H)}; {}^{13}\text{C NMR} (126 \text{ MHz, CDCl}_3) \delta 160.5 \text{ (C-F, }^{1}J_{\text{C-F}} = 246.1 \text{ Hz}),$ 157.9, 147.7 (C-F, ³*J*_{C-F} = 2.1 Hz), 145.2, 136.2 (C-F, ³*J*_{C-F} = 2.7 Hz), 134.5, 132.3, 130.8, 130.2, 130.1, 130.0, 128.2, 128.0 (C-F, ${}^{3}J_{C-F} = 8.4$ Hz), 127.9, 125.4, 122.5 (C-F, ${}^{3}J_{C-F} = 8.2$ Hz), 122.1, 122.0, 118.0 (C-F, ${}^{2}J_{C-F} = 22.6$ Hz), 114.3 (C-F, ${}^{2}J_{C-F} = 23.5$ Hz), 85.6 (C-F, ${}^{1}J_{C-F}$ = 2.1 Hz), 67.3, 21.7; ¹⁹F NMR (471 MHz, CDCl₃) δ -114.97; IR (thin film) v_{max} 1615, 1489, 1164, 857, 764, 749, 719, 667, 550 cm⁻¹; HRMS (ESI) calculated for $C_{24}H_{22}N_3O_4S^+$ [M + H]⁺ 448.1326, found 448.1326.

2-methyl-8-tosyl-9-vinyl-8,9-dihydro-14aH-benzo[6,7][1,3,4]oxadiazepino[3,2-c]quinazoline (3ac)

Prepared according to the general procedure as described above in 49% yield (21.8 mg). It was purified by flash chromatography (20% EtOAc/PE) to afford a light yellow solid. Melting point: 140–141 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.57 – 7.47 (m, 2H), 7.31 (dd, J = 7.5, 1.7 Hz, 1H), 7.28 - 7.22 (m, 1H), 7.18 - 7.09 (m, 5H), 7.03 - 6.99 (m, 2H), 6.82 (d, J = 1.5 Hz, 1H), 6.06 (ddd, J = 16.7, 10.2, 6.1 Hz, 1H), 5.99 (d, J = 1.5 Hz, 1H), 5.97 (dt, J = 6.1, 1.4 Hz, 1H), 5.26 (dt, J = 10.0, 1.1 Hz, 1H), 5.07 (dt, J = 16.9, 1.1 Hz, 1H), 2.34 (s, 3H), 2.32 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 157.1, 146.6, 144.0, 136.3, 135.3, 133.6, 131.3, 130.5, 130.0, 129.0, 129.0, 128.9, 127.4, 127.1, 124.9, 124.1, 121.2, 120.8, 120.1, 85.2, 66.2, 20.6, 20.1; IR (thin film) v_{max} 1610, 1275, 1261, 1165, 933, 764, 749, 669, 551 cm⁻

¹; HRMS (ESI) calculated for $C_{25}H_{24}N_3O_3S^+$ [M + H]⁺ 446.1533, found 446.1533.

1-methyl-8-tosyl-9-vinyl-8,9-dihydro-14aH-benzo[6,7][1,3,4]oxadiazepino[3,2-c]quinazoline (3ad)

Prepared according to the general procedure as described above in 65% yield (28.9 mg). It was purified by flash chromatography (20% EtOAc/PE) to afford a light yellow solid. Melting point: 128–129 °C;

3ad ¹H NMR (500 MHz, CDCl₃) δ 7.52 (d, J = 8.1 Hz, 2H), 7.31 (dd, J = 7.5, 1.7 Hz, 1H), 7.23 (td, J = 7.7, 1.7 Hz, 1H), 7.18 – 7.08 (m, 5H), 7.01 (dd, J = 8.2, 1.4 Hz, 2H), 6.82 (d, J = 1.5 Hz, 1H), 6.06 (ddd, J = 16.7, 10.2, 6.2 Hz, 1H), 6.00 – 5.92 (m, 2H), 5.25 (d, J = 10.1 Hz, 1H), 5.07 (d, J = 17.2 Hz, 1H), 2.33 (s, 3H), 2.31 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) 158.1, 147.7, 145.1, 137.3, 136.3, 134.6, 132.3, 131.6, 131.0, 130.07, 130.04, 129.9, 128.4, 128.2, 125.9, 125.2, 122.3, 121.9, 121.1, 86.2, 67.2, 21.7, 21.2 cm⁻¹; HRMS (ESI) calculated for C₂₅H₂₄N₃O₃S⁺ [M + H]⁺ 446.1533, found 446.1533.

3-methoxy-8-tosyl-9-vinyl-8,9-dihydro-14aH-benzo[6,7][1,3,4]oxadiazepino[3,2-c]quinazoline (3ae)

Prepared according to the general procedure as described above in 83% yield (38.3 mg). It was purified by flash chromatography (5% EtOAc/PE) to afford a light yellow solid. Melting point: 82–83 °C; ¹H NMR (500 MHz, CDCl₃) 7.57 – 7.44 (m, 2H), 7.31 (dd, J = 7.5, 1.7 Hz, 1H), 7.23 (td, J = 7.7, 1.7 Hz, 1H), 7.14 – 7.06 (m,

4H), 6.96 (dd, J = 7.9, 1.3 Hz, 1H), 6.89 (d, J = 1.5 Hz, 1H), 6.83 – 6.72 (m, 2H), 6.06 (ddd, J = 16.8, 10.2, 6.1 Hz, 1H), 5.97 (dd, J = 6.1, 1.5 Hz, 1H), 5.89 (d, J = 1.5 Hz, 1H), 5.26 (d, J = 9.9 Hz, 1H), 5.07 (d, J = 17.1 Hz, 1H), 3.76 (s, 3H), 2.31 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 161.3, 158.0, 148.7, 145.1, 141.0, 134.6, 132.3, 130.9, 130.1, 130.0, 129.9, 129.2, 128.2, 125.1, 122.3, 121.9, 114.1, 114.0, 109.2, 86.0, 67.2, 55.5, 21.7; IR (thin film) v_{max} 1609, 1275, 1263, 1165, 764, 748, 733, 703, 669, 571 cm⁻¹; HRMS (ESI) calculated for C₂₅H₂₃N₃O₄S⁺ [M + H]⁺ 462.1482, found 462.1482. 8-(mesitylsulfonyl)-9-vinyl-8,9-dihydro-14aH-benzo[6,7][1,3,4]oxadiazepino[3,2-c]quina-zoline (3af)

6.6 Hz, 1H), 5.97 (d, J = 6.6 Hz, 1H), 5.26 (d, J = 10.2 Hz, 1H), 5.14 (d, J = 17.0 Hz, 1H), 2.39 (s, 6H), 2.19 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 158.3, 147.7, 144.1, 140.8, 139.4, 132.3, 132.0, 131.4, 130.5, 130.3, 130.1, 129.9, 128.4, 126.5, 126.0, 125.4, 122.1, 121.8, 121.5, 86.5, 66.57, 22.8, 21.1; IR (thin film) v_{max} 1603, 1275, 1261, 1177, 1163, 930, 764, 750, 668, 627 cm⁻¹; HRMS (ESI) calculated for C₂₆H₂₅N₃O₃S⁺ [M + H]⁺ 460.1689, found 460.1689.

8-((4-(tert-butyl)phenyl)sulfonyl)-9-vinyl-8,9-dihydro-14aH-benzo[6,7][1,3,4]oxadiazepino[3,2-c]quinazoline (3ag)

Prepared according to the general procedure as described above in 83% yield (39.3 mg). It was purified by flash chromatography (20% EtOAc/PE) to afford a white solid. Melting point: 156–157 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.59 – 7.46 (m, 2H), 7.37 (td, J = 7.6, 1.5 Hz, 1H), 7.34 – 7.26 (m,

4H), 7.21 (tdd, J = 7.4, 4.6, 1.5 Hz, 2H), 7.14 – 7.06 (m, 2H), 6.98 (s, 1H), 6.94 (dd, J = 7.9, 1.2 Hz, 1H), 6.07 (ddd, J = 16.8, 10.2, 6.1 Hz, 1H), 5.97 (dd, J = 6.1, 1.5 Hz, 1H), 5.77 (d, J = 1.5 Hz, 1H), 5.26 (dt, J = 10.1, 1.1 Hz, 1H), 5.07 (dt, J = 17.0, 1.0 Hz, 1H), 1.21 (s, 9H); ¹³C NMR (126 MHz, CDCl₃) δ 157.1, 157.0, 147.3, 138.6, 133.4, 131.3, 129.8, 129.5, 129.1, 129.0, 127.1, 126.9, 125.3, 125.2, 125.1, 124.2, 121.1, 120.9, 120.3, 85.0, 66.4, 34.2, 30.0; IR (thin film) v_{max} 1620, 1604, 1275, 1261, 1169, 931, 764, 750, 630, 547 cm⁻¹; HRMS (ESI) calculated for C₂₇H₂₈N₃O₃S⁺ [M + H]⁺ 474.1846, found 474.1847

8-((4-(methoxy)phenyl)sulfonyl)-9-vinyl-8,9-dihydro-14aH-benzo[6,7][1,3,4]oxadiazepino[3,2-c]quinazoline (3ah)

Prepared according to the general procedure as described above in 77% yield (34.4 mg). It was purified by flash chromatography (5% EtOAc/PE) to afford a light yellow solid. Melting point: 100–101 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.59 – 7.50 (m, 2H), 7.37 (ddd, *J* = 8.5, 6.6, 2.1 Hz, 1H), 7.33

- 7.19 (m, 5H), 7.11 (td, J = 7.4, 1.3 Hz, 1H), 6.97 (dd, J = 8.0, 1.3 Hz, 1H), 6.92 (d, J = 1.5 Hz, 1H), 6.80 - 6.68 (m, 2H), 6.06 (ddd, J = 16.7, 10.2, 6.1 Hz, 1H), 5.97 (dt, J = 6.1, 1.5 Hz, 1H), 5.94 (d, J = 1.5 Hz, 1H), 5.26 (dt, J = 10.2, 1.0 Hz, 1H), 5.06 (dt, J = 16.9, 1.0 Hz, 1H), 3.73 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 163.9, 158.1, 148.4, 139.7, 132.4, 130.9, 130.6, 130.4, 130.13, 130.09, 128.7, 128.3, 126.3, 126.1, 125.2, 122.2, 121.9, 121.3, 114.5, 85.9, 67.2, 55.7; IR (thin film) v_{max} 1621, 1605, 1274, 1262, 764, 748, 730, 702, 672, 556 cm⁻¹; HRMS (ESI) calculated for C₂₄H₂₂N₃O₄S⁺ [M + H]⁺ 448.1326, found 448.1326.

(9S,14aS)-8-tosyl-9-vinyl-8,9-dihydro-14aH-benzo[6,7][1,3,4]oxadiazepino[3,2-]quinazoline (4aa)

6.96 (d, J = 1.5 Hz, 1H), 6.14 (ddd, J = 16.6, 10.1, 6.1 Hz, 1H), 6.07 – 5.99 (m, 2H), 5.34 (d, J = 10.2 Hz, 1H), 5.14 (dd, J = 17.1, 1.4 Hz, 1H), 2.38 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 158.1, 148.3, 145.1, 139.6, 134.6, 132.3, 130.9, 130.6, 130.1, 130.0, 129.9, 128.3, 128.2, 126.3, 126.1, 125.2, 122.2, 121.9, 121.4, 86.1, 67.3, 21.7; IR (thin film) v_{max} 1766, 1489, 1458, 1274, 1261, 1153, 1032, 942, 751 cm⁻¹; HRMS (ESI) calculated for C₂₄H₂₂N₃O₃S⁺ [M + H]⁺ 432.1376, found 432.1376.; HPLC analysis: **4aa**, 75% ee (IE, isopropanol : hexane=40 : 60, 1 mL/min, UV: 254 nm), t_R =22.0 min (major), 24.1 min (minor).

(9S,14aS)-13-ethoxy-8-tosyl-9-vinyl-8,9-dihydro-14aH-benzo[6,7][1,3,4]oxadiazepine-

[3,2-c]quinazoline (4ba)

(dd, J = 37.6, 8.0 Hz, 3H), 7.03 – 6.83 (m, 3H), 6.18 (ddd, J = 16.8, 10.2, 6.3 Hz, 1H), 6.06 (d, J = 1.5 Hz, 1H), 6.00 (dt, J = 6.4, 1.5 Hz, 1H), 5.34 (d, J = 10.2 Hz, 1H), 5.26 (dd, J = 17.1, 1.3 Hz, 1H), 4.21 – 3.94 (m, 2H), 2.38 (s, 3H), 1.44 (t, J = 7.0 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 151.6, 148.2, 147.4, 145.0, 139.7, 134.6, 133.1, 131.9, 130.5, 129.9, 128.8, 128.2, 126.2, 126.0, 125.6, 122.1, 121.4, 121.1, 113.9, 86.1, 67.3, 64.4, 21.7, 14.9; IR (film) v_{max} 1604, 1261, 1204, 1165, 1089, 931, 765, 751, 669 cm⁻¹; HRMS (ESI) calculated for C₂₆H₂₆N₃O₄S⁺ [M + H]⁺ 476.1639, found 476.1638; HPLC analysis: **4ba**, 94% ee (IE, isopropanol : hexane=40 : 60, 1 mL/min, UV: 254 nm), t_R =25.6 min (major), 28.1 min (minor).

(9S,14aS)-13-methyl-8-tosyl-9-vinyl-8,9-dihydro-14aH-benzo[6,7][1,3,4]oxadiazepino-[3,2-c]quinazoline (4ea)

Prepared according to the general procedure as described above in 83% yield (36.9 mg, 6:1 dr). It was purified by flash chromatography (25% EtOAc/PE) to afford a light yellow solid. Melting point: 146–147 °C; $[\alpha]^{25}_{D} = +40$ (c 0.5, CH₂Cl₂); ¹H NMR (500 MHz, CDCl₃) δ 7.60 (d, J **4ea** (6:1 dr) = 8.1 Hz, 2H), 7.48 – 7.04 (m, 10H), 6.98 – 6.89 (m, 1H), 6.15 (ddd, J = 16.8, 10.2, 6.2 Hz, 1H), 6.10 – 5.91 (m, 1H), 5.32 (d, J = 10.0 Hz, 1H), 5.17 (d, J = 17.0 Hz, 1H), 2.38 (s, 3H), 2.23 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 156.4, 148.45, 145.06, 134.6, 132.5, 131.5, 131.0, 130.9, 130.5, 129.93, 129.91, 128.3, 128.2, 127.7, 126.3, 126.2, 124.8, 121.8, 121.4, 86.0, 67.4, 21.7, 16.7; IR (film) v_{max} 1619, 1491, 1264, 1166, 764, 749, 733, 703, 667, 557 cm⁻¹; HRMS (ESI) calculated for C₂₅H₂₄N₃O₃S⁺ [M + H]⁺ 446.1533, found 446.1533; HPLC analysis: **4ea**, 82% ee (IE, isopropanol : hexane=40 : 60, 1 mL/min, UV: 254 nm), t_R =20.5 min (major), 24.0 min (minor).

(9S,14aS)-13-ethoxy-2-fluoro-8-tosyl-9-vinyl-8,9-dihydro-14aH-benzo[6,7][1,3,4]oxadia-

zepino[3,2-c]quinazoline (4bb)

Prepared according to the general procedure as described above in 93% yield (45.9 mg). It was purified by flash chromatography (30% EtOAc/PE) to afford a light yellow solid. Melting point: 131–132 °C; $[\alpha]^{25}_{D} = +64$ (*c* 0.5, CH₂Cl₂); ¹H NMR (500 MHz, CDCl₃) δ 7.59 (d, *J* = 8.2 Hz, 2H), 7.33 – 7.05 (m, 6H), 7.04 – 6.83 (m, 3H), 6.16 (ddd, *J* = 16.8, 10.2, 6.2 Hz, 1H), 6.03 – 6.01 (m, 1H), 6.01 – 5.97 (m, 1H), 5.34 (d, *J* = 10.2 Hz, 1H), 5.25 (d, *J* = 17.1 Hz, 1H), 4.06 (h, *J* = 7.0 Hz, 2H),

2.39 (s, 3H), 1.48 (t, J = 7.0 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 160.6 (C-F, ¹ $J_{C-F} = 245.9$ Hz), 151.6, 147.5 (C-F, ³ $J_{C-F} = 2.1$ Hz), 147.1, 145.2, 136.2 (C-F, ³ $J_{C-F} = 2.7$ Hz), 134.5, 133.0, 131.8, 129.9, 128.2, 127.8 (C-F, ² $J_{C-F} = 8.4$ Hz), 125.8, 122.6 (C-F, ³ $J_{C-F} = 8.4$ Hz), 122.1, 121.0, 117.9 (C-F, ² $J_{C-F} = 22.7$ Hz), 114.8 (C-F, ² $J_{C-F} = 23.7$ Hz), 113.7, 85.6 (C-F, ³ $J_{C-F} = 2.0$ Hz), 67.3, 64.4, 21.7, 14.8; ¹⁹F NMR (471 MHz, CDCl₃) δ -115.46; IR (film) v_{max} 1617, 1491, 1346, 1277, 1205, 1166, 1091, 946, 868 cm⁻¹; HRMS (ESI) calculated for C₂₆H₂₅FN₃O₄S [M + H] 494.1550, found 494.1543. HPLC analysis: **4bb**, 95% ee (IC, isopropanol : hexane=30 : 70, 1 mL/min, UV: 254 nm), t_R =9.4 min (major), 13.1 min (minor).

(9S,14aS)-13-ethoxy-1-methyl-8-tosyl-9-vinyl-8,9-dihydro-14aH-benzo[6,7][1,3,4]oxadiazepine[3,2-c]quinazoline (4bd)

Prepared according to the general procedure as described above in 85% yield (41.6 mg). It was purified by flash chromatography (30% EtOAc/PE) to afford a light yellow solid. Melting point: 136–137 °C; $[\alpha]^{25}_{D} = +96 (c \ 0.5, CH_2Cl_2);$ ¹H NMR (500 MHz, CDCl₃) δ 7.68 – 7.45 (m, 2H), 7.28 – 6.98 (m, 6H), 6.87 (ddd, J = 25.9, 8.0, 1.4 Hz, 2H), 6.74

(d, J = 1.4 Hz, 1H), 6.10 (ddd, J = 16.9, 10.2, 6.3 Hz, 1H), 6.03 (d, J = 1.4 Hz, 1H), 5.91 (dt, J = 6.5, 1.5 Hz, 1H), 5.25 (d, J = 10.2 Hz, 1H), 5.18 (d, J = 17.0 Hz,1H), 4.05 – 3.93 (m, 2H), 2.32 (s, 3H), 2.31 (s, 3H), 1.42 (t, J = 6.9 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 150.7, 146.5, 146.3, 144.0, 136.4, 135.0, 133.6, 132.2, 130.8, 130.3, 128.9, 128.0, 127.2, 124.8, 124.5, 121.0, 120.12, 119.98, 112.6, 85.2, 66.2, 63.3, 20.6, 20.1, 13.9; IR (film) v_{max} 1610, 1496, 1276, 1196, 1164, 1089, 1016, 935, 801 cm⁻¹; HRMS (ESI) calculated for C₂₇H₂₈N₃O₄S [M + H] 490.1801, found 490.1804; HPLC analysis: **4bd**, 94% ee (IC, isopropanol : hexane=30 : 70, 1 mL/min, UV: 254 nm), t_R =13.8 min (major), 17.0 min (minor).

(9S,14aS)-13-ethoxy-3-methoxy-8-tosyl-9-vinyl-8,9-dihydro-14aH-benzo[6,7][1,3,4]oxadiazepino[3,2-c]quinazoline (4be)

Prepared according to the general procedure as described above in 46% yield (23.3 mg). It was purified by flash chromatography (30% EtOAc/PE) to afford a light yellow solid. Melting point: 144–145 °C; $[\alpha]^{25}_{D} = +24$ (*c* 0.5, CH₂Cl₂); ¹H NMR (500 MHz, CDCl₃) δ 77.68 – 7.52 (m, 2H), 7.31 (d, *J* = 8.6 Hz, 1H), 7.14 (dd, *J* = 41.9, 7.9 Hz, 3H), 7.01 – 6.76 (m, 5H), 6.18 (ddd, *J* = 16.8, 10.2, 6.3

Hz, 1H), 6.05 - 5.93 (m, 2H), 5.41 - 5.31 (m, 1H), 5.31 - 5.22 (m, 1H), 4.09 - 4.00 (m, 2H), 3.83 (s, 3H), 2.39 (s, 3H), 1.44 (t, J = 6.9 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 161.3, 151.7, 148.5, 147.3, 145.0, 141.1, 134.6, 133.1, 131.9, 129.9, 129.7, 128.2, 125.5, 122.1, 121.1, 114.0, 113.9, 109.1, 86.1, 67.3, 64.4, 55.5, 21.7, 14.9; IR (film) v_{max} 1609, 1498, 1469, 1279, 1164, 1088, 1015, 933, 798 cm⁻¹; HRMS (ESI) calculated for C₂₇H₂₈N₃O₅S [M + H] 506.1750, found 506.1750; HPLC analysis: **4be**, 90% ee (ID, isopropanol : hexane=60 : 40, 1 mL/min, UV: 254 nm), t_R =21.8 min (major), 45.7 min (minor).

(9S,14aS)-13-ethoxy-8-(mesitylsulfonyl)-9-vinyl-8,9-dihydro-14aH-benzo[6,7][1,3,4]oxadiazepino[3,2-c]quinazoline (4bf)

Prepared according to the general procedure as described above in 98% yield (49.5 mg). It was purified by flash chromatography (25% EtOAc/PE) to afford a white solid. Melting point: 168–169 °C; $[\alpha]^{25}_{D}$ = +160 (*c* 0.5, CH₂Cl₂); ¹H NMR (500 MHz, CDCl₃) δ 7.51 (dd, *J* = 7.7, 1.5 Hz, 1H), 7.42 – 7.15 (m, 3H), 7.05 (t, *J* = 7.9 Hz, 1H), 6.96 – 6.78 (m, 4H), 6.70 (d, *J* = 1.4 Hz, 1H), 6.49 (d, *J* = 1.4 Hz, 1H), 6.18 (ddd, *J* = 17.0, 10.2, 6.8 Hz, 1H), 5.91 (dd, *J* = 6.8, 1.3 Hz, 1H), 5.35 – 5.10 (m,

2H), 4.02 (dtt, J = 16.0, 9.1, 7.0 Hz, 2H), 2.41 (s, 6H), 2.20 (s, 3H), 1.42 (t, J = 7.0 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 150.6, 146.6, 146.4, 143.0, 139.8, 138.5, 132.4, 131.3, 130.6, 129.4, 127.9, 125.2, 124.8, 124.7, 120.9, 120.4, 119.8, 112.6, 85.6, 65.7, 63.2, 21.7, 20.1, 13.9; IR (film) v_{max} 1620, 1604, 1486, 1332, 1205, 1177, 931, 863 cm⁻¹; HRMS (ESI) calculated for C₂₈H₃₀N₃O₄S [M + H] 504.1957, found 504.1961; HPLC analysis: **4bf**, 92% ee (IE, isopropanol : hexane=40 : 60, 1 mL/min, UV: 254 nm), t_R =7.5 min (major), 8.5 min (minor).

(9S,14aS)-8-((4-(tert-butyl)phenyl)sulfonyl)-13-ethoxy-9-vinyl-8,9-dihydro-14aH-benzo-[6,7][1,3,4]oxadiazepino[3,2-c]quinazoline (4bg)

Prepared according to the general procedure as described above in 92% yield (47.6 mg, 18:1 dr). It was purified by flash chromatography (25% EtOAc/PE) to afford a white solid. Melting point: 142–143 °C; $[\alpha]^{25}_{D} = +24$ (*c* 0.5, CH₂Cl₂); ¹H NMR (500 MHz, CDCl₃) δ 7.62 – 7.53 (m, 2H), 7.47 – 7.21 (m, 6H), 7.17 – 6.83 (m, 4H), 6.20 (ddd, *J* = 16.8, 10.2, 6.3

Hz, 1H), 5.99 (dt, J = 6.3, 1.5 Hz, 1H), 5.69 (d, J = 1.4 Hz, 1H), 5.35 (d, J = 10.2 Hz, 1H), 5.26 (dt, J = 17.1, 1.1 Hz, 1H), 4.02 (q, J = 7.0 Hz, 2H), 1.43 (t, J = 7.0 Hz, 3H), 1.29 (s, 9H); ¹³C NMR (126 MHz, CDCl₃) δ 158.0, 151.7, 148.4, 147.3, 139.8, 134.5, 133.0, 131.9, 130.5, 128.7, 128.0, 126.2, 126.1, 126.0, 125.5, 122.1, 121.3, 121.2, 113.6, 85.9, 67.6, 64.3, 35.2, 31.0, 14.9; IR (film) v_{max} 1620, 1605, 1486, 1361, 1204, 1173, 1086, 931, 862, cm⁻¹; HRMS (ESI) calculated for C₂₉H₃₂N₃O₄S [M + H] 518.2114, found 518.2112; HPLC analysis: **4bg**, 94% ee (IC, isopropanol : hexane=40 : 60, 1 mL/min, UV: 254 nm), t_R =9.2 min (major), 11.3 min (minor)

(9S,14aS)-13-ethoxy-8-((4-methoxyphenyl)sulfonyl)-9-vinyl-8,9-dihydro-14aH-benzo-[6,7][1,3,4]oxadiazepino[3,2-c]quinazoline (4bh)

Prepared according to the general procedure as described above in 72% yield (35.4 mg). It was purified by flash chromatography (5% EtOAc/PE) to afford a light yellow solid. Melting point: 138–139 °C; $[\alpha]^{25}_{D} = +56$ (*c* 0.5, CH₂Cl₂); ¹H NMR (500 MHz, CDCl₃) δ 7.63 – 7.49 (m, 2H), 7.40 – 7.19 (m, 4H), 7.09 – 6.68 (m, 5H), 6.11 (ddd, *J* = 16.8,

10.2, 6.3 Hz, 1H), 5.98 (d, J = 1.4 Hz, 1H), 5.92 (dt, J = 6.2, 1.5 Hz, 1H), 5.27 (d, J = 10.2 Hz, 1H), 5.18 (d, J = 17.0 Hz, 1H), 3.98 (dtt, J = 16.1, 9.2, 7.0 Hz, 2H), 3.75 (s, 3H), 1.38 (t, J = 7.0 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 162.8, 150.6, 147.3, 146.4, 138.7, 132.0, 130.9, 129.4, 127.8, 127.7, 125.1, 125.0, 124.5, 121.0, 120.3, 120.0, 113.4, 112.8, 85.0, 66.3, 63.4, 54.7, 13.8; IR (film) v_{max} 1604, 1486, 1356, 1205, 1161, 1092, 932, 835 cm⁻¹; HRMS (ESI) calculated for C₂₆H₂₆N₃O₅S [M + H] 492.1593, found 492.1591; HPLC analysis: **4bh**, 94% ee (IC, isopropanol : hexane=40 : 60, 1 mL/min, UV: 254 nm), t_R =10.9 min (major), 13.6 min (minor).

9-(1,2-dibromoethyl)-8-tosyl-8,9-dihydro-14aH-benzo[6,7][1,3,4]oxadiazepino[3,2-c]quinazoline (5a)

(dd, J = 11.9, 3.2 Hz, 1H), 2.35 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 157.0, 145.7, 144.5, 138.3, 132.8, 130.6, 130.3, 129.8, 129.0, 127.6, 127.4, 127.2, 125.6, 125.3, 124.5, 121.2, 119.9, 86.4, 68.4, 48.5, 36.2, 20.7; HRMS (ESI) calculated for C₂₄H₂₂Br₂N₃O₃S⁺ [M + H]⁺ 589.9743, found 589.9749.

13-bromo-9-1,2-dibromoethyl)-8-tosyl-8,9-dihydro-14aH-benzo[6,7][1,3,4]oxadiazepine-[3,2-c]quinazoline (5b)

Prepared according to the general procedure as described above in 56% yield (37.3 mg, 5:1 dr). It was purified by flash chromatography (20% EtOAc/PE) to afford a white solid. Melting point: 138–139 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.67 (d, *J* = 8.3 Hz, 2H), 7.52 – 7.39 (m, 2H), 7.39 – 7.18 (m, 7H), 7.09 (dd, *J* = 8.0, 1.2 Hz, 1H), 6.89 (d, *J* = 1.4 Hz, 1H), 6.22 (d, *J* = 1.4 Hz, 1H), 5.89 (d, *J* = 9.4 Hz, 1H), 4.87 – 4.62 (m, 1H), 4.04 – 3.78 (m, 2H), 2.41 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 158.5,

146.0, 145.9, 139.2, 133.7, 132.4, 130.9, 130.8, 130.2, 129.5, 128.6, 128.4, 126.8, 126.3, 124.9, 121.8, 121.0, 87.2, 66.9, 49.6, 36.5, 21.8; HRMS (ESI) calculated for $C_{24}H_{22}Br_3N_3O_3S^+$ [M + H]⁺ 667.8848, found 667.8840.

9-vinyl-8,9-dihydro-14aH-benzo[6,7][1,3,4]oxadiazepino[3,2-c]quinazoline (6)

Prepared according to the general procedure as described above in 61% yield (16.9 mg). It was

purified by flash chromatography (75% EtOAc/PE) to afford a light yellow solid. Melting point: 191–192 °C; ¹H NMR (500 MHz, DMSOd₆) δ 10.24 (s, 1H), 7.83 (s, 1H), 7.60 – 7.47 (m, 1H), 7.23 – 6.99 (m, 6H), 6.86 (dd, J = 8.1, 1.2 Hz, 1H), 6.78 – 6.67 (m, 2H), 6.39 (ddd, J = 17.3, 10.3, 8.9 Hz, 1H), 5.81 – 5.51 (m, 1H), 5.45 (dd, J = 17.3, 1.2 Hz,

1H); ¹³C NMR (126 MHz, DMSO- d_6) δ 153.1, 148.8, 142.1, 139.7, 134.5, 129.6, 128.6, 128.3, 127.6, 127.3, 127.0, 126.2, 125.7, 124.1, 120.6, 116.1, 52.0; HRMS (ESI) calculated for C₁₇H₁₅N₃O [M + H] 278.1293, found 278.1292..

¹H and ¹³C NMR Spectra of New Substrates

¹H NMR spectrum (500 MHz, CDCl₃)

200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

200 190 180 170 180 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

¹H NMR spectrum (500 MHz, CDCl₃)

¹H NMR spectrum (500 MHz, CDCl₃)

57 02	52	12 51 51	08	51
146.	133.	126. 124. 121.	110.	1.08
٧	M	117	I I	Ï

S63

S65

200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

 ^{19}F NMR (471 MHz, CDCl₃) δ -115.46.

S80

HPLC Chromatograms of All Products

HPLC chromatogram of racemic product 3aa

HPLC chromatogram of chiral product 4aa

HPLC chromatogram of racemic product 3ba

HPLC chromatogram of chiral product 4ba

HPLC chromatogram of racemic product 3ea

HPLC chromatogram of chiral product 4ea

HPLC chromatogram of racemic product 4bb

гсак	KetTime	Type	width	Alca	meight	Alca
#	[min]		[min]	[mAU*s]	[mAU]	%
	-					
1	9.487	MM R	0.5864	2832.74561	80.50751	50.7375
2	13.125	MF R	0.8418	2750.39478	54.45171	49.2625

HPLC chromatogram of chiral product 4bb

2

13.119

MM R

0.5983

243.84918

6.79263

2.2660

HPLC chromatogram of racemic product 4bd

HPLC chromatogram of chiral product 4bd

HPLC chromatogram of racemic product 4be

HPLC chromatogram of chiral product 4be

HPLC chromatogram of racemic product 4bf

HPLC chromatogram of chiral product 4bf

S93

HPLC chromatogram of racemic product 4bg

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
			·	-	· ·	
1	9.227	MM R	0.5144	2516.26147	81.53439	50.0469
2	11.352	MM R	0.6569	2511.54663	63.72014	49.9531

HPLC chromatogram of chiral product 4bg

HPLC chromatogram of racemic product 4bh

Peak	RetTime	Type	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	11.003	MM R	0.7355	7485.40674	169.63321	50.0263
2	13.583	MM R	0.9202	7477.54004	135.43274	49.9737

HPLC chromatogram of chiral product 4bh

X-Ray Crystallographic Data

X-Ray Crystallography Data Crystallographic data for the product **3aa** has been deposited with the Cambridge Crystallographic Data Centre as deposition number CCDC 2264459. These data can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif, or by emailing data_request@ccdc.cam.ac.uk, or by contacting The Cambridge Crystallographic Data Centre, 12, Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223 336033.

Single crystals of the product **3aa** were obtained by slow evaporation of a solution containing **3aa** in the mixture of petroleum ether and ethyl acetate at room temperature. A suitable crystal was selected and the crystal data and structure refinement results for compound **3aa** are listed in the Table S3.

Figure S1. ORTEP view of the compound **3aa** with thermal ellipsoids drawn at the 50% probability level

 Table S3. Crystal data and structure refinement for 3aa.

Identification code	3aa
Empirical formula	$C_{24}H_{21}N_3O_3S$
Formula weight	431.50
Temperature/K	296(2)

Crystal system	triclinic
Space group	P-1
a/Å	8.0853(5)
b/Å	10.9301(7)
c/Å	13.3531(8)
a/°	104.791(2)
β/°	92.638(2)
γ/°	111.152(2)
Volume/Å ³	1051.52(11)
Z	2
Density (calculated)	1.363
Absorption coefficient	0.186
F(000)	452.0
Theta range for data collection	$0.58 \times 0.5 \times 0.45$
Index ranges	ΜοΚα (λ = 0.71073)
Reflections collected	4.178 to 55.1
Independent reflections	$-10 \le h \le 10, -14 \le k \le 14, -17 \le l \le 17$
Completeness to theta = 25.242°	32847
Max. and min. transmission	4845 [Rint = 0.0401, Rsigma = 0.0242]
Data/restraints/parameters	4845/0/281
Goodness-of-fit on F ²	1.103
Final R indexes [I>2sigma(I)]	R1=0.0404, wR2=0.1186
Final R indexes [all data]	R1 = 0.0505, wR2 = 0.1269
Largest diff. peak/hole / e Å ⁻³	0.37/-0.43

S97

X-Ray Crystallography Data Crystallographic data for the product **4ba** has been deposited with the Cambridge Crystallographic Data Centre as deposition number CCDC 2311978. These data can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif, or by emailing data_request@ccdc.cam.ac.uk, or by contacting The Cambridge Crystallographic Data Centre, 12, Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223 336033.

Single crystals of the product **4ba** were obtained by slow evaporation of a solution containing **4ba** in the mixture of petroleum ether and ethyl acetate at room temperature. A suitable crystal was selected and the crystal data and structure refinement results for compound **4ba** are listed in the Table S4.

Figure S2. ORTEP view of the compound 4ba with thermal ellipsoids drawn at the 50% probability level

 Table S4. Crystal data and structure refinement for 4ba.

Identification code	4ba
Empirical formula	$C_{26}H_{25}N_3O_4S$
Formula weight	475.55

Temperature/K	293(2)
Crystal system	orthorhombic
Space group	P2 ₁ 2 ₁ 2 ₁
a/Å	10.53610(10)
b/Å	17.8100(2)
c/Å	26.2442(3)
α'°	90
β/°	90
γ/°	90
Volume/Å ³	4924.67(9)
Ζ	8
$\rho_{calc}g/cm^3$	1.283
µ/mm ⁻¹	1.472
F(000)	2000.0
Crystal size/mm ³	$0.15 \times 0.06 \times 0.05$
Crystal size/mm ³ Radiation	$0.15 \times 0.06 \times 0.05$ Cu Ka ($\lambda = 1.54184$)
Crystal size/mm ³ Radiation 2Θ range for data collection/°	0.15 × 0.06 × 0.05 Cu Kα (λ = 1.54184) 6.736 to 153.512
Crystal size/mm ³ Radiation 2Θ range for data collection/° Index ranges	$\begin{array}{l} 0.15 \times 0.06 \times 0.05 \\ \\ Cu \ K\alpha \ (\lambda = 1.54184) \\ \\ 6.736 \ to \ 153.512 \\ \\ -12 \leq h \leq 13, \ -22 \leq k \leq 22, \ -33 \leq l \leq 33 \end{array}$
Crystal size/mm ³ Radiation 2@ range for data collection/° Index ranges Reflections collected	$\begin{array}{l} 0.15 \times 0.06 \times 0.05 \\ \\ Cu \ K\alpha \ (\lambda = 1.54184) \\ \\ 6.736 \ to \ 153.512 \\ \\ -12 \leq h \leq 13, \ -22 \leq k \leq 22, \ -33 \leq l \leq 33 \\ \\ 148366 \end{array}$
Crystal size/mm ³ Radiation 2Θ range for data collection/° Index ranges Reflections collected Independent reflections	$\begin{array}{l} 0.15 \times 0.06 \times 0.05 \\ \\ Cu \ K\alpha \ (\lambda = 1.54184) \\ \\ 6.736 \ to \ 153.512 \\ \\ -12 \leq h \leq 13, \ -22 \leq k \leq 22, \ -33 \leq l \leq 33 \\ \\ 148366 \\ \\ 10285 \ [R_{int} = 0.0684, \ R_{sigma} = 0.0237] \end{array}$
Crystal size/mm ³ Radiation 2@ range for data collection/° Index ranges Reflections collected Independent reflections Data/restraints/parameters	$\begin{array}{l} 0.15 \times 0.06 \times 0.05 \\ \\ Cu \ K\alpha \ (\lambda = 1.54184) \\ \\ 6.736 \ to \ 153.512 \\ \\ -12 \le h \le 13, \ -22 \le k \le 22, \ -33 \le 1 \le 33 \\ \\ 148366 \\ \\ 10285 \ [R_{int} = 0.0684, \ R_{sigma} = 0.0237] \\ \\ 10285/9/617 \end{array}$
Crystal size/mm ³ Radiation 2 Θ range for data collection/° Index ranges Reflections collected Independent reflections Data/restraints/parameters Goodness-of-fit on F ²	$\begin{array}{l} 0.15 \times 0.06 \times 0.05 \\ \\ Cu \ K\alpha \ (\lambda = 1.54184) \\ 6.736 \ to \ 153.512 \\ -12 \leq h \leq 13, \ -22 \leq k \leq 22, \ -33 \leq 1 \leq 33 \\ \\ 148366 \\ \\ 10285 \ [R_{int} = 0.0684, \ R_{sigma} = 0.0237] \\ \\ 10285/9/617 \\ \\ 1.026 \end{array}$
Crystal size/mm ³ Radiation 2Θ range for data collection/° Index ranges Reflections collected Independent reflections Data/restraints/parameters Goodness-of-fit on F ² Final R indexes [I>=2σ (I)]	$\begin{array}{l} 0.15 \times 0.06 \times 0.05 \\ \\ Cu \ K\alpha \ (\lambda = 1.54184) \\ 6.736 \ to \ 153.512 \\ -12 \le h \le 13, \ -22 \le k \le 22, \ -33 \le 1 \le 33 \\ \\ 148366 \\ \\ 10285 \ [R_{int} = 0.0684, \ R_{sigma} = 0.0237] \\ 10285/9/617 \\ \\ 1.026 \\ \\ R_1 = 0.0445, \ wR_2 = 0.1235 \end{array}$
Crystal size/mm ³ Radiation 2Θ range for data collection/° Index ranges Reflections collected Independent reflections Data/restraints/parameters Goodness-of-fit on F ² Final R indexes [I>=2σ (I)] Final R indexes [all data]	$\begin{array}{l} 0.15 \times 0.06 \times 0.05 \\ \\ Cu \ K\alpha \ (\lambda = 1.54184) \\ 6.736 \ to \ 153.512 \\ \\ -12 \le h \le 13, \ -22 \le k \le 22, \ -33 \le 1 \le 33 \\ \\ 148366 \\ \\ 10285 \ [R_{int} = 0.0684, \ R_{sigma} = 0.0237] \\ \\ 10285/9/617 \\ \\ 1.026 \\ \\ R_1 = 0.0445, \ wR_2 = 0.1235 \\ \\ R_1 = 0.0558, \ wR_2 = 0.1342 \end{array}$
Crystal size/mm ³ Radiation 2Θ range for data collection/° Index ranges Reflections collected Independent reflections Data/restraints/parameters Goodness-of-fit on F ² Final R indexes [I>=2σ (I)] Final R indexes [all data] Largest diff. peak/hole / e Å ⁻³	$\begin{array}{l} 0.15 \times 0.06 \times 0.05 \\ \\ Cu \ K\alpha \ (\lambda = 1.54184) \\ 6.736 \ to \ 153.512 \\ -12 \le h \le 13, \ -22 \le k \le 22, \ -33 \le 1 \le 33 \\ \\ 148366 \\ \\ 10285 \ [R_{int} = 0.0684, \ R_{sigma} = 0.0237] \\ 10285/9/617 \\ \\ 1.026 \\ \\ R_1 = 0.0445, \ wR_2 = 0.1235 \\ \\ R_1 = 0.0558, \ wR_2 = 0.1342 \\ \\ 0.35/-0.24 \end{array}$

X-Ray Crystallography Data Crystallographic data for the product **5b** has been deposited with the Cambridge Crystallographic Data Centre as deposition number CCDC 2270182. These data can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif, or by emailing data_request@ccdc.cam.ac.uk, or by contacting The Cambridge Crystallographic Data Centre, 12, Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223 336033.

Single crystals of the product **5b** were obtained by slow evaporation of a solution containing **5b** in the mixture of petroleum ether and ethyl acetate at room temperature. A suitable crystal was selected and the crystal data and structure refinement results for compound **5b** are listed in the Table S5.

Figure S5. ORTEP view of the compound 5b with thermal ellipsoids drawn at the 50% probability level

Table S5. Crystal data and structure refinement for 5b.

Identification code	5b
Empirical formula	$C_{24}H_{20}Br_3N_3O_3S$
Formula weight	670.22
Temperature	213(2) K
Wavelength	0.71073

Crystal system	Triclinic
Space group	P -1
a/Å	a = 10.8989(7)
b/Å	b = 11.4714(7)
c/Å	c = 11.6523(8)
α/°	1246.00(14)
β/°	2
γ/°	1.786 Mg/m ³
Absorption coefficient	4.972 mm ⁻¹
F(000)	660
Crystal size	0.180 x 0.150 x 0.130 mm ³
Theta range for data collection	3.059 to 25.496?
Index ranges	-13<=h<=13, -13<=k<=13, -14<=l<=14
Reflections collected	22982
Independent reflections	4620 [R(int) = 0.0698]
Completeness to theta = 25.242?	99.7 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.7456 and 0.4091
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	4620 / 0 / 317
Goodness-of-fit on F ²	1.115
Final R indices [I>2sigma(I)]	R1 = 0.0569, wR2 = 0.1368
R indices (all data)	R1 = 0.0823, wR2 = 0.1502