Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2024

Supporting Information

Backbone-Enabled Modification of Peptides with Benzoquinone via

Palladium-Catalyzed δ -C(sp²)-H Functionalization

Fengjie Lu,^a Yi Sun,^a Ya-ning Liu,^a Yujie Geng,^a Ensheng Zhang,^a Jian Tang*^{a,b,c}

^{*a*}Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China

^bZhejiang Sci-Tech University Shengzhou Innovation Research Institute, Shengzhou 312400, P.R. China

^cSchool of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210096, China

*E-mail: tangjian3613@163.com

Table of Contents

1.	General Information	32
2.	Experiment Section	S2
2.1.	General procedure for synthesis of peptides	.S2
2.2.	General procedure for modification of peptide with BQ	S3
2.3.	Gram-Scale Experiments	S4
2.4.	Control experiments	S4
2.5.	Measurement of cytotoxicity of peptide by MTT assays	S5
3. C	Characterization	S6
4. C	Copies of NMR Spectra	S47

1. General Information

All the solvents were obtained from Sigma-Aldrich, Alfa-Aesar and Acros, and used directly without further purification. Amino acids and derivatives were obtained from (N-(3-Dimethylaminopropyl)-N'-ethylcarbodiimide commercial sources. EDCI hydrochloride), palladium diacetate, silver acetate, HFIP (hexafluoro-2-propanol) and sodium acetate were commercially available and used without any purification. Analytical thin layer chromatography was performed on 0.25 mm silica gel 60-F254. Visualization was carried out with UV light. For flash chromatography silica gel (60 Å, 200-400 mesh) was used. NMR spectra were recorded on Bruker AMX-500 instrument for ¹HNMR at 500 MHz and ¹³CNMR at 126 MHz, using TMS as internal standard. The following abbreviations (or combinations thereof) were used to explain multiplicities: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br = broad. Coupling constants, J, were reported in Hertz unit (Hz). High-resolution mass spectra (HRMS) were recorded on an Agilent Mass spectrometer using ESI-TOF (electrospray ionization-time of flight).

2. Experimental Section

2.1 General procedure for synthesis of peptides

(I) To a stirring solution of Boc-AA-OH (1.0 mmol) in DMF (20 mL) were added 4-Methylmorpholine (NMM, 1.7 mmol, 1.7 equiv.), 1-Hydroxybenzotriazole (HOBt, 1.2 mmol, 1.2 equiv.), H-AA-OMe (1.2 mmol, 1.2 equiv.) and 1-(3-Dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (EDCI, 1.2 mmol, 1.2 equiv.) successively. The reaction mixture was stirred at 0 °C for 2 h, then removed the ice bath and stirred at room temperature for 10 h. Upon reaction completion, quenched the reaction mixture with 20 mL water, afterwards, the solution was extracted with ethyl acetate for three times. The combined organic extracts were washed with 1M HCl, sat. NaHCO₃ and sat. NaCl, then dried over anhydrous Na₂SO₄, filtered and concentrated under vacuum to afford the desired substrate Boc-AA-AA-OMe.

(II) To the solution of Boc-AA-AA-OMe (1.0 mmol) in THF (10 mL) and H₂O (5 mL) was added LiOH (2.0 mmol). After stirring at room temperature for 3 h, the mixture was acid to pH=2 with 0.5 M HCl. Afterwards, the solution was extracted with ethyl acetate for three times. The organic layer was combined and dried over anhydrous Na₂SO₄, the desired product Boc-AA-AA-OH was obtained after concentrated under vacuum.

Typically, the above procedure I and II was repeated to elongated oligopeptides until the desired peptide was achieved.

2.2 General procedure for modification of peptide with BQ

Typically, substrate Boc-AA-Phe-OR (0.1 mmol), BQ (0.2 mmol, 2.0 equiv), Pd(OAc)₂ (0.01 mmol, 10 mmol%), Ag₃PO₄ (0.2 mmol, 2.0 equiv.), and DCM (2 mL) was added to a 35 mL sealed tube. The reaction mixture was heat to 80 °C in an oil bath for 6 h under air atmosphere. Upon completion, the reaction mixture was diluted by DCM. The result solution was filtered through celite pad. Concentrated under vacuum and further purified by flash column chromatography (petroleum ether: ethyl acetate=6:1-4:1 as the

eluent, Rf=0.52). The corresponding desired product was obtained in good isolated yield as viscous liquid.

2.3 Gram-Scale Experiments

According to the detailed general experimental procedure, to a 150 mL sealed Schlenk tube, dipeptide **1a** (2.0 mmol), BQ (4.0 mmol, 2.0 equiv.), $Pd(OAc)_2$ (0.1mmol, 10 mmol%), Ag₃PO₄ (4.0 mmol, 2.0 equiv.) were dissolved in 25 mL DCM and the reaction mixture was stirred at 80 °C in an oil bath for 6 h. After completion, diluted the reaction mixture with ethyl acetate and filtered with celite pad, then concentrate the filtrate under reduced pressure. The resulting residue was purified by flash column chromatography (petroleum ether: ethyl acetate=6:1-4:1 as the eluent), affording **3aa** in 83% (0.83 g) isolated yield.

2.4 Control Experiments

Generally, according to the detailed experimental procedure, a mixture of substrate Boc-AA-Phe-OR (1y or 1z, 0.1 mmol), BQ (2a, 0.2 mmol, 2.0 equiv), Pd(OAc)₂ (0.01 mmol, 10 mmol%), Ag₃PO₄ (0.2 mmol, 2.0 equiv.), and DCM (2 mL) in a 35 mL sealed tube was heated at 80 °C in an oil bath for 6 h under air atmosphere. Upon completion, the reaction mixture was cooled to room temperature, and monitored with thin layer chromatography (TLC), which was found only trace mount of desired product was obtained. These results demonstrate that the peptide coordinate to Pd through two nitrogen atoms, which offer a low energy pathway for C-H activation when the Phe residues is not at N-terminal of the peptides.

2.5 Measurement of cytotoxicity of peptide by MTT assays

Generally, Hela and U87 cells were cultured in DMEM medium supplemented with 10% FBS and 1% penicillin/streptomycin at 37 °C and 5% CO₂. Cells were seeded into 96well plates at a density of 10000 cells/well and grown over night. The next day, the cells were treated with a serial 2-fold dilution of benzoquinone-containing peptides, ranging from 200 to 3.125 μ M. After 24 h of incubation at 37 °C and 5% CO₂, 50 μ L of MTT (((3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide) was added to each well and incubated for 4 h at 37 °C. After 4 h of incubation, the supernatant was removed and formazan crystals were dissolved by adding 150 μ L/well of DMSO. Plates were shaken for 10 min, and then absorbance was read in a Tecan Infinite M200 Pro microplate reader at 490 nm. Relative viabilities were calculated by dividing average absorbance values of duplicate wells containing treated cells by values of wells containing untreated cells (100%). All experiments were performed three times independently in duplicate. Errors are given as +/– S.E.M. in the graphic representation of the data.

3. Characterization

methyl ((S)-2-((tert-butoxycarbonyl)amino)-3,3-dimethylbutanoyl)-L-

phenylalaninate (1a)

COOMe

purified by flash column chromatography on silica gel (petroleum ether: ethyl acetate= 5:1; $R_f = 0.56$) to produce compound 1a (1.41 g, 91% yield) as white oil. ¹H NMR (500 MHz, CDCl₃) δ 7.30 – 7.21 (m, 3H), 7.14-7.07 (m, 2H), 6.27 (d, J = 7.0 Hz, 1H), 5.26 (d, J = 9.1 Hz, 1H), 4.86 (dd, J = 13.4, 6.1 Hz, 1H), 3.85 (d, J = 9.2 Hz, 1H), 3.70 (s, 3H), 3.10 (qd, J = 13.9, 5.9 Hz, 2H), 1.45 (s, 9H), 0.95 (s, 9H). ¹³C NMR (126 MHz, CDCl₃) δ 171.7, 170.6, 155.7, 135.6, 129.2, 128.6, 127.2, 79.6, 62.3, 53.1, 52.3, 37.8, 34.5, 28.3, 26.5. HRMS (ESI) $[M+Na]^+$ m/z calcd for C₂₁H₃₂N₂O₅Na 415.2209, found 415.2205.

According to the general procedure, the crude residue was

methyl (tert-butoxycarbonyl)-L-valyl-L-phenylalaninate (1b)

According to the general procedure, the crude residue was purified by flash column chromatography on silica gel (petroleum ether: ethyl acetate= 5:1; $R_f = 0.52$) to produce

compound 1b (1.45 g, 86% yield) as white oil. ¹H NMR (500 MHz, CDCl₃) δ 7.27 (dd, *J* = 14.3, 7.3 Hz, 2H), 7.21 (dd, *J* = 8.5, 6.0 Hz, 1H), 7.12 (d, *J* = 7.1 Hz, 2H), 6.67 (d, J = 7.3 Hz, 1H), 5.23 (d, J = 8.8 Hz, 1H), 4.86 (dd, J = 13.7, 6.3 Hz, 1H), 3.97 (s, 1H), 3.68 (s, 3H), 3.08 (tt, J = 13.8, 7.1 Hz, 2H), 2.07 (dd, J = 12.6, 6.2 Hz, 1H), 1.44 (s, 9H), 0.89 (dd, J = 22.7, 6.4 Hz, 6H). ¹³C NMR (126 MHz, CDCl₃) δ 171.8, 171.5, 155.8, 135.8, 129.2, 128.6, 127.1, 79.7, 59.8, 53.2, 52.2, 38.0, 30.9, 28.3, 19.1, 17.8. **HRMS (ESI)** $[M+Na]^+$ m/z calcd for C₂₀H₃₀N₂O₅Na 401.2052, found 401.2055.

methyl (tert-butoxycarbonyl)-L-valyl-L-phenylalaninate (1c)

According to the general procedure, the crude residue was purified by flash column chromatography on silica gel (petroleum ether: ethyl acetate= 5:1; R_f = 0.49) to produce compound **1c** (1.50

g, 87% yield) as white oil. ¹H NMR (500 MHz, CDCl₃) δ 7.28 (d, J = 4.9 Hz, 2H), 7.24 – 7.19 (m, 1H), 7.11 (d, J = 7.0 Hz, 2H), 6.66 (s, 1H), 4.99 (s, 1H), 4.84 (d, J = 6.4 Hz, 1H), 4.12 (s, 1H), 3.69 (s, 3H), 3.11 (ddd, J = 35.4, 13.8, 5.8 Hz, 2H), 1.62 (dt, J = 32.8, 13.7 Hz, 2H), 1.43 (s, 9H), 1.31 (s, 1H), 0.91 (t, J = 6.7 Hz, 6H). ¹³C NMR (126 MHz, CDCl₃) δ 172.1, 155.6, 135.8, 129.2, 128.6, 127.1, 80.0, 53.1, 52.3, 41.2, 37.9, 28.3, 24.7, 22.9, 21.9. **HRMS (ESI)** [M+Na]⁺ m/z calcd for C₂₁H₃₂N₂O₅Na 415.2209, found 415.2207.

methyl (tert-butoxycarbonyl)-L-alloisoleucyl-L-phenylalaninate (1d)

According to the general procedure, the crude residue was purified by flash column chromatography on silica gel (petroleum ether: ethyl acetate= 5:1; R_f = 0.53) to produce compound **1d** (1.42 g, 81%)

yield) as white oil. ¹H NMR (500 MHz, CDCl₃) δ 7.25 (dt, J = 25.0, 7.0 Hz, 3H), 7.12 (d, J = 7.4 Hz, 2H), 6.47 (d, J = 7.5 Hz, 1H), 5.09 (s, 1H), 4.87 (dd, J = 13.0, 6.3 Hz, 1H), 3.96 (s, 1H), 3.70 (s, 3H), 3.10 (dd, J = 11.2, 5.3 Hz, 2H), 1.82 (d, J = 4.4 Hz, 1H), 1.44 (s, 9H), 1.42 – 1.34 (m, 1H), 1.08 (d, J = 6.7 Hz, 1H), 0.93 – 0.80 (m, 6H). ¹³C NMR (126 MHz, CDCl₃) δ 171.7, 171.3, 155.7, 135.7, 129.3, 128.6, 127.1, 79.8, 59.2, 53.1, 52.3, 38.0, 37.2, 28.3, 24.7, 15.4, 11.4. HRMS (ESI) [M+Na]⁺ m/z calcd for C₂₁H₃₂N₂O₅Na 415.2209, found 415.2204.

methyl (tert-butoxycarbonyl)-L-alanyl-L-phenylalaninate (1e)

According to the general procedure, the crude residue was purified by flash column chromatography on silica gel (petroleum ether: ethyl acetate= 5:1; $R_f = 0.50$) to produce

compound 1e (1.45 g, 83% yield) as white oil. ¹H NMR (500 MHz, CDCl₃) δ 7.28 –

7.19 (m, 3H), 7.11 (d, J = 7.1 Hz, 2H), 6.80 (s, 1H), 5.23 (d, J = 6.2 Hz, 1H), 4.84 (d, J = 7.0 Hz, 1H), 4.18 (s, 1H), 3.68 (s, 3H), 3.14 (dd, J = 13.8, 5.9 Hz, 1H), 3.07 (dd, J = 13.8, 6.3 Hz, 1H), 1.43 (s, 9H), 1.30 (d, J = 7.0 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 172.5, 171.8, 155.4, 135.9, 129.3, 128.5, 127.1, 79.9, 53.3, 52.3, 50.0, 37.9, 28.3, 18.3. HRMS (ESI) [M+Na]⁺ m/z calcd for C₁₈H₂₆N₂O₅Na 373.1739, found 373.1736.

methyl (tert-butoxycarbonyl)glycyl-L-phenylalaninate (1f)

BOCHN H COOME

According to the general procedure, the crude residue was purified by flash column chromatography on silica gel (petroleum ether: ethyl acetate= 5:1; $R_f = 0.46$) to produce

compound **1f** (1.33 g, 75% yield) as white oil. ¹**H NMR (500 MHz, CDCl₃)** δ 7.25 (qd, J = 7.1, 3.4 Hz, 3H), 7.10 (d, J = 6.9 Hz, 2H), 6.79 (s, 1H), 5.34 (s, 1H), 4.86 (dd, J = 13.6, 6.1 Hz, 1H), 3.76 (dt, J = 16.8, 11.8 Hz, 2H), 3.69 (s, 3H), 3.10 (qd, J = 13.9, 6.0 Hz, 2H), 1.44 (s, 9H). ¹³**C NMR (126 MHz, CDCl₃)** δ 171.8, 169.4, 156.0, 135.8, 129.2, 128.6, 127.1, 80.1, 53.2, 52.4, 44.1, 37.9, 28.3. **HRMS (ESI)** [M+Na]⁺ m/z calcd for C₁₇H₂₄N₂O₅Na 359.1583, found 359.1580.

methyl N-(tert-butoxycarbonyl)-O-(tert-butyl)-L-seryl-L-phenylalaninate (1g)

According to the general procedure, the crude residue was purified by flash column chromatography on silica gel (petroleum ether: ethyl acetate= 5:1; $R_f = 0.42$) to produce

compound **1g** (1.28 g, 79% yield) as white oil. ¹**H NMR (500 MHz, CDCl₃)** δ 7.32 – 7.19 (m, 4H), 7.11 (d, *J* = 7.1 Hz, 2H), 5.44 (s, 1H), 4.88 (dd, *J* = 13.1, 5.7 Hz, 1H), 4.15 (d, *J* = 24.4 Hz, 1H), 3.78 (s, 1H), 3.68 (s, 3H), 3.37 (t, *J* = 7.7 Hz, 1H), 3.15 – 3.04 (m, 2H), 1.44 (s, 9H), 1.16 (s, 9H). ¹³**C NMR (126 MHz, CDCl₃)** δ 171.4, 170.3, 155.5, 135.9, 129.3, 128.5, 127.1, 80.0, 74.0, 61.7, 53.7, 53.3, 52.1, 38.0, 28.3, 27.3. **HRMS (ESI)** [M+Na]⁺ m/z calcd for C₂₂H₃₄N₂O₆Na 445.2315, found 445.2312.

methyl (tert-butoxycarbonyl)-L-methionyl-L-phenylalaninate (1h)

According to the general procedure, the crude residue was B_{OCHN} by flash column chromatography on silica gel (petroleum ether: ethyl acetate= 5:1; R_f = 0.40) to produce compound **1h** (1.35 g, 82%) yield) as white oil. ¹**H NMR (500 MHz, CDCl₃)** δ 7.28 (t, J = 7.2 Hz, 2H), 7.25 – 7.21 (m, 1H), 7.12 (d, J = 7.0 Hz, 2H), 6.74 (s, 1H), 5.29 (s, 1H), 4.85 (dd, J = 13.3, 6.3 Hz, 1H), 4.27 (s, 1H), 3.70 (s, 3H), 3.11 (qd, J = 13.9, 6.0 Hz, 2H), 2.52 (t, J = 7.0 Hz, 2H), 2.05 (s, 3H), 2.00 (dd, J = 13.8, 7.0 Hz, 1H), 1.94 – 1.84 (m, 1H), 1.44 (s, 9H). ¹³C NMR (126 MHz, CDCl₃) δ 171.6, 171.3, 155.4, 135.7, 129.2, 128.6, 127.2, 80.1, 53.2, 52.3, 37.9, 31.7, 30.1, 28.3, 15.1. **HRMS (ESI)** [M+Na]⁺ m/z calcd for C₂₀H₃₀N₂O₅SNa 433.1773, found 433.1769.

<u>methyl</u> (S)-3-((tert-butoxycarbonyl)amino)-4-(((S)-1-methoxy-1-oxo-3phenylpropan-2-yl)amino)-4-oxobutanoate (1i)

According to the general procedure, the crude residue was purified by flash column chromatography on silica gel (petroleum ether: ethyl acetate= 5:1; $R_f = 0.52$) to produce

compound **1i** (1.46 g, 88% yield) as white oil. ¹**H NMR (500 MHz, CDCl₃)** δ 7.28 (t, J = 7.2 Hz, 2H), 7.22 (dd, J = 13.3, 6.1 Hz, 1H), 7.12 (t, J = 12.1 Hz, 2H), 7.02 (d, J = 6.7 Hz, 1H), 5.80 – 5.62 (m, 1H), 4.80 (dd, J = 13.0, 6.0 Hz, 1H), 4.52 (s, 1H), 3.67 (d, J = 4.8 Hz, 6H), 3.16 – 3.03 (m, 2H), 2.93 (d, J = 16.8 Hz, 1H), 2.68 (dd, J = 16.8, 5.5 Hz, 1H), 1.42 (s, 9H). ¹³C NMR (126 MHz, CDCl₃) δ 172.1, 171.4, 170.5, 155.4, 135.8, 129.3, 128.5, 127.1, 80.3, 53.4, 52.2, 52.0, 50.5, 37.8, 35.8, 28.2. HRMS (ESI) [M+Na]⁺ m/z calcd for C₂₀H₂₈N₂O₇Na 431.1794, found 431.1792.

<u>tert-butyl</u> (S)-4-((tert-butoxycarbonyl)amino)-5-(((S)-1-methoxy-1-oxo-3phenylpropan-2-yl)amino)-5-oxopentanoate (1j)

According to the general procedure, the crude residue was purified by flash column chromatography on silica gel (petroleum ether: ethyl acetate= 5:1; R_f = 0.53) to produce compound **1j** (1.51 g, 85% yield) as white oil. ¹H NMR (500 MHz, CDCl₃) δ 7.26 (t, J = 7.3 Hz, 2H), 7.21 (t, J = 7.2 Hz, 1H), 7.13 (d, J = 7.2 Hz, 2H), 6.98 (s, 1H), 5.45 (d, J = 5.2 Hz, 1H), 4.83(dd, J = 13.2, 6.4 Hz, 1H), 4.15 (s, 1H), 3.68 (s, 3H), 3.14 (dd, J = 13.8, 5.7 Hz, 1H),3.05 (dd, J = 13.8, 6.6 Hz, 1H), 2.36 - 2.22 (m, 2H), 2.02 (dd, J = 13.4, 6.4 Hz, 1H),1.85 (dd, J = 13.7, 7.0 Hz, 1H), 1.44 (s, 9H), 1.42 (s, 9H). ¹³C NMR (126 MHz, CDCl₃) δ 172.6, 171.6, 171.5, 155.5, 135.9, 129.2, 128.5, 127.0, 80.7, 79.8, 53.9, 53.3, 52.2, 37.9, 31.7, 28.3, 28.0, 27.8. **HRMS (ESI)** $[M+Na]^+$ m/z calcd for C₂₄H₃₆N₂O₇Na 487.2420, found 487.2417.

methyl (tert-butoxycarbonyl)-L-seryl-L-phenylalaninate (1k)

COOMe HO BocHN

purified by flash column chromatography on silica gel (petroleum ether: ethyl acetate= 5:1; $R_f = 0.39$) to produce compound 1k (1.40 g, 75% yield) as white oil. ¹H NMR (500 MHz, CDCl₃) δ 7.28 (s, 1H), 7.26 (d, J = 7.5 Hz, 2H), 7.22 (t, J = 7.2 Hz, 1H), 7.21 (s, 1H), 7.13 (d, J = 7.1 Hz, 2H), 5.65 (d, J = 5.1 Hz, 1H), 4.83 (d, J = 6.2 Hz, 1H), 4.18 (s, 1H), 3.92 (d, J = 9.1 Hz, 1H), 3.69 (s, 3H), 3.62 (dd, J = 10.1, 5.0 Hz, 1H), 3.17 – 3.10 (m, 1H), 3.05 (dd, J =13.9, 6.9 Hz, 1H), 1.42 (s, 9H). ¹³C NMR (126 MHz, CDCl₃) δ 171.9, 171.1, 155.9, 135.8, 129.2, 128.6, 127.1, 80.3, 62.8, 55.4, 53.5, 52.4, 37.7, 28.3. HRMS (ESI) $[M+Na]^+$ m/z calcd for $C_{18}H_{26}N_2O_6Na$ 389.1689, found 389.1685.

methyl (tert-butoxycarbonyl)-L-threonyl-L-phenylalaninate (11)

According to the general procedure, the crude residue was purified by flash column chromatography on silica gel (petroleum ether: ethyl acetate= 5:1; $R_f = 0.41$) to produce

According to the general procedure, the crude residue was

compound 11 (1.45 g, 73% yield) as white oil. ¹H NMR (500 MHz, CDCl₃) δ 7.26 (dd, J = 15.9, 8.4 Hz, 3H, 7.21 (d, J = 7.2 Hz, 1H), 7.15 (d, J = 1.5 Hz, 1H), 7.14 – 7.11 (m, 2H), 5.53 (d, *J* = 4.9 Hz, 1H), 4.84 (d, *J* = 6.3 Hz, 1H), 4.27 (d, *J* = 4.4 Hz, 1H), 4.10 (t, J = 7.3 Hz, 1H), 3.70 (s, 3H), 3.16 - 3.10 (m, 1H), 3.08 - 3.02 (m, 1H), 1.43 (s, 9H),

1.15 (d, J = 6.4 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 171.7, 171.0, 156.2, 135.8, 129.2, 128.6, 127.1, 80.2, 67.0, 58.4, 53.4, 52.4, 37.8, 28.3, 18.1. HRMS (ESI) $[M+Na]^+$ m/z calcd for C₁₉H₂₈N₂O₆Na 403.1845, found 403.1841.

methyl (tert-butoxycarbonyl)-L-valyl-D-phenylalaninate (1m)

According to the general procedure, the crude residue was purified by flash column chromatography on silica gel (petroleum ether: ethyl acetate= 5:1; $R_f = 0.57$) to produce compound 1m (1.56 g, 88% yield) as white oil. ¹H NMR (500 MHz, CDCl₃) δ 7.27 (dd, J = 9.3, 5.0 Hz, 2H), 7.22 (t, J = 7.2 Hz, 1H), 7.15 - 7.07 (m, 2H), 6.65 (s, 1H),5.09 (d, *J* = 7.9 Hz, 1H), 4.89 (dd, *J* = 13.5, 7.1 Hz, 1H), 4.00 (s, 1H), 3.69 (s, 3H), 3.13 (dd, J = 13.9, 5.6 Hz, 1H), 3.05 (dd, J = 13.9, 7.0 Hz, 1H), 2.13 – 2.02 (m, 1H), 1.43 (s, 9H), 0.86 (d, J = 6.2 Hz, 3H), 0.79 (d, J = 6.7 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 171.9, 171.4, 155.8, 135.9, 129.2, 128.6, 127.1, 79.8, 59.6, 53.1, 52.3, 38.0, 30.8, 28.3, 19.2, 17.2. **HRMS (ESI)** $[M+Na]^+$ m/z calcd for C₂₀H₃₀N₂O₅Na 401.2052, found 401.2050.

(S)-2-((S)-2-((tert-butoxycarbonyl)amino)propanamido)-3-(pmethyl tolyl)propanoate (1n)

According to the general procedure, the crude residue was purified by flash column chromatography on silica gel (petroleum ether: ethyl acetate= 5:1; $R_f = 0.45$) to produce

compound **1n** (1.46 g, 83% yield) as white oil. ¹H NMR (500 MHz, CDCl₃) δ 7.08 (d, J = 7.8 Hz, 2H), 6.98 (d, J = 7.8 Hz, 2H), 6.58 (d, J = 7.4 Hz, 1H), 5.04 (s, 1H), 4.81 (dd, *J* = 13.3, 5.9 Hz, 1H), 4.15 (s, 1H), 3.71 (s, 3H), 3.07 (ddd, *J* = 32.3, 13.9, 5.8 Hz, 2H), 2.30 (s, 3H), 1.43 (s, 9H), 1.31 (d, J = 7.0 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 172.3, 171.8, 155.3, 136.7, 132.6 129.2, 80.0, 53.3, 52.3, 50.1, 37.4, 28.3, 21.1, 18.4. **HRMS (ESI)** $[M+Na]^+$ m/z calcd for C₁₉H₂₈N₂O₅Na 387.1896, found 387.1892.

<u>methyl (S)-2-((S)-2-((tert-butoxycarbonyl)amino)propanamido)-3-(4-</u> <u>methoxyphenyl)propanoate (10)</u>

According to the general procedure, the crude residue was purified by flash column chromatography on silica gel (petroleum ether: ethyl acetate= 4:1; R_f = 0.46) to produce compound **10** (1.40 g, 80% yield) as white oil. ¹H NMR (500 MHz, CDCl₃) δ 7.02 (d, *J* = 8.5

Hz, 2H), 6.81 (d, J = 8.5 Hz, 2H), 6.65 (d, J = 6.9 Hz, 1H), 5.09 (d, J = 6.8 Hz, 1H), 4.80 (dd, J = 13.4, 6.0 Hz, 1H), 4.16 (s, 1H), 3.77 (s, 3H), 3.70 (s, 3H), 3.12 – 2.98 (m, 2H), 1.43 (s, 9H), 1.31 (d, J = 7.0 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 172.4, 171.8, 162.7, 158.7, 155.3, 130.3, 127.7, 114.0, 80.1, 55.2, 53.4, 52.3, 37.0, 28.3, 18.3. **HRMS** (ESI) [M+Na]⁺ m/z calcd for C₁₉H₂₈N₂O₆Na 403.1845, found 403.1841.

methyl(S)-3-([1,1'-biphenyl]-4-yl)-2-((S)-2-((tert-

butoxycarbonyl)amino)propanamido)propanoate (1p)

BocHN H COOMe

According to the general procedure, the crude residue was purified by flash column chromatography on silica gel (petroleum ether: ethyl acetate= 5:1; $R_f = 0.50$) to produce

compound **1p** (1.53 g, 85% yield) as white oil. ¹**H NMR (500 MHz, CDCl₃)** δ 7.53 (d, J = 7.3 Hz, 2H), 7.48 (d, J = 8.1 Hz, 2H), 7.38 (t, J = 7.6 Hz, 2H), 7.29 (t, J = 7.4 Hz, 1H), 7.19 (d, J = 8.1 Hz, 2H), 7.09 (s, 1H), 5.47 (s, 1H), 4.87 (d, J = 6.6 Hz, 1H), 4.26 (s, 1H), 3.66 (s, 3H), 3.18 (dd, J = 13.8, 5.7 Hz, 1H), 3.09 (dd, J = 13.9, 6.5 Hz, 1H), 1.42 (d, J = 9.8 Hz, 9H), 1.30 (d, J = 7.0 Hz, 3H). ¹³C **NMR (126 MHz, CDCl₃)** δ 172.8, 171.9, 155.5, 140.7, 139.8, 135.1, 129.8, 128.8, 127.3, 127.2, 126.9, 79.8, 53.4, 52.3, 50.1, 37.5, 28.4, 18.4. **HRMS (ESI)** [M+Na]⁺ m/z calcd for C₂₄H₃₀N₂O₅Na 449.2052, found 449.2047.

methyl (S)-2-((S)-2-((tert-butoxycarbonyl)amino)propanamido)-3-(4-

fluorophenyl)propanoate (1q)

According to the general procedure, the crude residue was purified by flash column chromatography on silica gel (petroleum ether: ethyl acetate= 5:1; $R_f = 0.46$) to produce

compound **1q** (1.46 g, 80% yield) as white oil. ¹**H NMR (500 MHz, CDCl₃)** δ 7.08 (dd, J = 8.3, 5.5 Hz, 2H), 6.96 (t, J = 8.6 Hz, 2H), 6.72 (s, 1H), 5.08 (t, J = 7.0 Hz, 1H), 4.82 (dd, J = 13.2, 6.1 Hz, 1H), 4.16 (s, 1H), 3.71 (s, 3H), 3.14 (dd, J = 14.0, 5.8 Hz, 1H), 3.04 (dd, J = 14.0, 6.1 Hz, 1H), 1.44 (s, 9H), 1.31 (d, J = 7.0 Hz, 3H). ¹³**C NMR (126 MHz, CDCl₃)** δ 172.4, 171.6, 163.0, 161.0, 155.4, 131.6 (d, J = 204.1 Hz), 130.8, 115.5, 115.3, 80.1, 53.2, 52.4, 50.1, 37.1, 28.3, 18.2. **HRMS (ESI)** [M+Na]⁺ m/z calcd for C₁₈H₂₅FN₂O₅Na 391.1645, found 391.1642.

methyl(S)-3-(4-bromophenyl)-2-((S)-2-((tert-

butoxycarbonyl)amino)propanamido)propanoate (1r)

According to the general procedure, the crude residue was purified by flash column chromatography on silica gel (petroleum ether: ethyl acetate= 5:1; $R_f = 0.43$) to produce

compound **1r** (1.49 g, 83% yield) as white oil. ¹**H NMR (500 MHz, CDCl₃)** δ 7.38 (d, J = 8.3 Hz, 2H), 7.10 (s, 1H), 7.02 (d, J = 8.3 Hz, 2H), 5.46 (s, 1H), 4.81 (d, J = 6.6 Hz, 1H), 4.22 (s, 1H), 3.70 (s, 3H), 3.11 (dt, J = 17.1, 8.6 Hz, 1H), 3.01 (dd, J = 13.9, 6.5 Hz, 1H), 1.43 (s, 9H), 1.30 (d, J = 7.1 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 173.9, 172.8, 171.5, 155.4, 155.2, 135.0, 131.5, 131.0, 120.9, 79.7, 53.1, 52.3, 50.0, 37.1, 28.3, 18.2. HRMS (ESI) [M+Na]⁺ m/z calcd for C₁₈H₂₅BrN₂O₅Na 451.0845, found 451.0840.

<u>methyl</u> (S)-2-((S)-2-((tert-butoxycarbonyl)amino)propanamido)-3-(mtolyl)propanoate (1s)

According to the general procedure, the crude residue was purified by flash column chromatography on silica gel (petroleum ether: ethyl acetate= 5:1; R_f = 0.55) to produce compound **1s** (1.53 g, 87% yield) as white oil. ¹H NMR (500 MHz, CDCl₃) δ 7.15 (dd, J = 9.6, 5.5 Hz, 1H), 7.03 (d, J = 7.4 Hz, 1H), 6.93 (s, 1H), 6.90 (d, J = 7.6 Hz, 1H), 6.82 (s, 1H), 5.26 (s, 1H), 4.87 – 4.74 (m, 1H), 4.19 (s, 1H), 3.68 (s, 3H), 3.10 (dd, J = 13.8, 5.8 Hz, 1H), 3.03 (dd, J = 13.8, 6.2 Hz, 1H), 2.30 (s, 3H), 1.42 (s, 9H), 1.30 (d, J = 6.9 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 172.6, 171.9, 155.4, 138.1, 135.8, 130.1, 128.4, 127.8, 126.2, 79.9, 53.3, 52.2, 50.1, 37.8, 28.3, 21.3, 18.4. HRMS (ESI) [M+Na]⁺ m/z calcd for C₁₉H₂₈N₂O₅Na 387.1896, found 387.1893.

<u>methyl</u> (S)-2-((S)-2-((tert-butoxycarbonyl)amino)propanamido)-3-(otolyl)propanoate (1t)

According to the general procedure, the crude residue was purified by flash column chromatography on silica gel (petroleum ether: ethyl acetate= 5:1; R_f = 0.56) to produce compound **1t** (1.42)

g, 80% yield) as white oil. ¹H NMR (500 MHz, CDCl₃) δ 7.17 – 7.07 (m, 3H), 7.03 (d, J = 7.2 Hz, 1H), 6.80 (s, 1H), 5.09 (d, J = 5.2 Hz, 1H), 4.81 (d, J = 7.1 Hz, 1H), 4.18 (s, 1H), 3.66 (s, 3H), 3.14 (dd, J = 14.0, 6.7 Hz, 1H), 3.01 (dd, J = 14.0, 7.5 Hz, 1H), 2.33 (s, 3H), 1.44 (s, 9H), 1.28 (d, J = 5.9 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 172.4, 172.3, 155.4, 136.6, 134.3, 130.5, 129.8, 127.2, 125.9, 80.1, 52.3, 50.0, 35.9, 28.3, 19.3, 18.3. HRMS (ESI) [M+Na]⁺ m/z calcd for C₁₉H₂₈N₂O₅Na 387.1896, found 387.1898.

<u>methyl</u> (S)-2-((S)-2-((tert-butoxycarbonyl)amino)propanamido)-3-(4nitrophenyl)propanoate (1u)

According to the general procedure, the crude residue was purified by flash column chromatography on silica gel (petroleum ether: ethyl acetate= 5:1; $R_f = 0.47$) to produce

compound **1u** (1.43 g, 82% yield) as white oil. ¹**H NMR (500 MHz, CDCl₃)** δ 8.12 (d, J = 5.8 Hz, 2H), 7.53 – 7.31 (m, 2H), 7.19 (s, 1H), 5.43 (s, 1H), 4.90 (s, 1H), 4.21 (s, 1H), 3.74 (s, 3H), 3.37 – 3.27 (m, 1H), 3.16 (dd, J = 12.8, 5.4 Hz, 1H), 1.43 (d, J = 5.3 Hz, 9H), 1.31 (d, J = 4.7 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 173.9, 172.9, 171.2,

155.5, 155.2, 147.0, 144.0, 130.3, 123.5, 80.0, 52.9, 52.5, 37.6, 28.3, 28.2, 18.0. **HRMS** (ESI) [M+Na]⁺ m/z calcd for C₁₈H₂₅N₃O₇Na 418.1590, found 418.1587.

<u>methyl</u> (S)-2-((S)-2-((tert-butoxycarbonyl)amino)propanamido)-3-(4cyanophenyl)propanoate (1v)

According to the general procedure, the crude residue was purified by flash column chromatography on silica gel (petroleum ether: ethyl acetate= 5:1; $R_f = 0.43$) to produce

compound **1v** (1.33 g, 72% yield) as white oil. ¹**H NMR (500 MHz, CDCl₃)** δ 7.57 (d, J = 8.2 Hz, 2H), 7.30 (d, J = 8.1 Hz, 2H), 7.24 – 7.19 (m, 1H), 5.47 (s, 1H), 4.86 (d, J = 6.0 Hz, 1H), 4.20 (s, 1H), 3.72 (s, 3H), 3.25 (dt, J = 12.8, 6.4 Hz, 1H), 3.13 – 3.07 (m, 1H), 1.43 (s, 9H), 1.30 (d, J = 6.5 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 173.9, 172.9, 171.3, 155.4, 155.2, 141.9, 132.1, 130.2, 118.6, 110.7, 79.9, 52.4, 50.0, 37.8, 28.3, 18.1. HRMS (ESI) [M+Na]⁺ m/z calcd for C₁₉H₂₅N₃O₅Na 398.1692, found 398.1689.

methyl (tert-butoxycarbonyl)-L-tyrosyl-L-phenylalaninate (1w)

According to the general procedure, the crude residue was purified by flash column chromatography on silica gel (petroleum ether: ethyl acetate= 5:1; R_f = 0.43) to produce compound **1w** (1.28 g, 75% yield)

as white oil. ¹H NMR (500 MHz, CDCl₃) δ 7.22 (d, J = 6.4 Hz, 4H), 6.98 (dd, J = 22.9, 5.2 Hz, 4H), 6.73 (d, J = 7.0 Hz, 2H), 6.52 (s, 1H), 5.12 (s, 1H), 4.77 (s, 1H), 4.28 (s, 1H), 3.63 (s, 3H), 3.03 (d, J = 5.9 Hz, 2H), 2.93 (d, J = 14.4 Hz, 2H), 1.39 (s, 9H). ¹³C NMR (126 MHz, CDCl₃) δ 171.4, 155.6, 135.6, 130.4, 129.2, 128.6, 127.1, 115.7, 80.5, 56.0, 53.4, 52.3, 38.0, 37.5, 28.3. **HRMS (ESI)** [M+Na]⁺ m/z calcd for C₂₄H₃₀N₂NaO₆ 465.2002, found 465.2001.

<u>benzyl</u> ((S)-2-((tert-butoxycarbonyl)amino)-3,3-dimethylbutanoyl)-Lphenylalaninate (1xa)

According to the general procedure, the crude residue was purified by flash column chromatography on silica gel (petroleum ether: ethyl acetate= 5:1; $R_f = 0.58$) to produce compound **1xa**

(1.63 g, 87% yield) as white oil. ¹H NMR (500 MHz, CDCl₃) δ 7.34 (d, J = 5.0 Hz, 3H), 7.30 – 7.24 (m, 2H), 7.24 – 7.18 (m, 3H), 7.01 (dd, J = 6.5, 2.7 Hz, 2H), 6.25 (d, J = 5.9 Hz, 1H), 5.26 (d, J = 7.5 Hz, 1H), 5.11 (dd, J = 33.2, 12.1 Hz, 2H), 4.90 (dd, J = 13.6, 6.0 Hz, 1H), 3.84 (d, J = 8.4 Hz, 1H), 3.09 (d, J = 5.6 Hz, 2H), 1.44 (s, 9H), 0.93 (s, 9H). ¹³C NMR (126 MHz, CDCl₃) δ 171.1, 170.6, 155.7, 135.5, 135.0, 129.3, 128.7, 128.6, 128.5, 127.1, 79.6, 67.3, 62.4, 53.2, 37.8, 34.6, 28.4, 26.5. HRMS (ESI) [M+Na]⁺ m/z calcd for C₂₇H₃₆N₂O₅Na 491.2522, found 491.2520.

ethyl (tert-butoxycarbonyl)-L-alanyl-L-phenylalaninate (1ya)

According to the general procedure, the crude residue was purified by flash column chromatography on silica gel (petroleum ether: ethyl acetate= 5:1; R_f = 0.51) to produce compound **1ya** (1.63 g, 87% yield) as white oil. ¹**H NMR (500 MHz, CDCl3)** δ 7.27 (t, *J* = 5.5 Hz, 2H), 7.23 – 7.19 (m, 1H), 7.14 – 7.10 (m, 2H), 6.66 (s, 1H), 5.09 (s, 1H), 4.82 (dd, *J* = 13.6, 6.2 Hz, 1H), 4.19 – 4.09 (m, 3H), 3.11 (qd, *J* = 13.8, 6.0 Hz, 2H), 1.43 (d, *J* = 4.1 Hz, 9H), 1.31 (d, *J* = 6.9 Hz, 3H), 1.21 (t, *J* = 7.1 Hz, 3H). ¹³**C NMR (126 MHz, CDCl3)** δ 172.3, 171.3, 155.4, 135.9, 129.4, 129.3, 128.6, 128.5, 127.1, 80.0, 61.5, 53.3, 50.1, 38.0, 28.3, 18.4, 14.1. **HRMS (ESI)** [M+Na]⁺ m/z calcd for C₁₉H₂₈N₂O₅Na 387.1896, found 387.1891.

tert-butyl (tert-butoxycarbonyl)-L-alanyl-L-phenylalaninate (1za)

According to the general procedure, the crude residue was purified by flash column chromatography on silica gel (petroleum ether: ethyl acetate= 5:1; $R_f = 0.55$) to produce

compound **1za** (1.63 g, 87% yield) as white oil. ¹**H NMR (500 MHz, CDCl₃)** δ 7.28 – 7.20 (m, 3H), 7.16 (d, *J* = 7.1 Hz, 2H), 6.68 (d, *J* = 7.6 Hz, 1H), 5.16 (d, *J* = 7.4 Hz, 1H), 4.71 (dd, *J* = 13.5, 6.3 Hz, 1H), 4.17 (s, 1H), 3.08 (dd, *J* = 6.0, 1.7 Hz, 2H), 1.43 (s, 9H), 1.39 (s, 9H), 1.32 (d, *J* = 7.1 Hz, 3H). ¹³**C NMR (126 MHz, CDCl₃)** δ 172.2, 170.3, 155.3, 136.2, 129.5, 128.3, 126.9, 82.3, 79.9, 53.6, 50.1, 38.0, 28.3, 27.9, 18.5. **HRMS (ESI)** [M+Na]⁺ m/z calcd for C₂₁H₃₂N₂O₅Na 415.2209, found 415.2206.

yl)carbamoyl)pyrrolidine-1-carboxylate (1y)

According to the general procedure, the crude residue was purified by flash column chromatography on silica gel (petroleum ether: ethyl acetate= 4:1; $R_f = 0.44$) to produce

compound **1y** (1.41 g, 83% yield) as white oil. ¹**H NMR (500 MHz, CDCl₃)** δ 7.25 (d, J = 6.9 Hz, 2H), 7.22 (dd, J = 15.2, 8.4 Hz, 2H), 7.10 (d, J = 7.2 Hz, 2H), 4.86 (s, 1H), 4.24 (d, J = 40.1 Hz, 1H), 3.71 (s, 3H), 3.38 (s, 1H), 3.30 (s, 1H), 3.20 – 3.14 (m, 1H), 3.01 (dd, J = 13.9, 7.0 Hz, 1H), 2.38 – 1.87 (m, 2H), 1.77 (s, 2H), 1.42 (s, 9H). ¹³**C NMR (126 MHz, CDCl₃)** δ 171.6, 154.5, 136.0, 129.2, 129.1, 128.5, 127.0, 80.6, 60.9, 52.2, 46.9, 38.0, 30.6, 28.2, 23.4. **HRMS (ESI)** [M+Na]⁺ m/z calcd for C₂₀H₂₈N₂O₅Na 399.1896, found 399.1892.

methyl (tert-butoxycarbonyl)-L-phenylalanyl-L-valinate (1z)

According to the general procedure, the crude residue was purified by flash column chromatography on silica gel (petroleum ether: ethyl acetate= 5:1; R_f = 0.52) to produce compound 1z (1.55 g, 87% yield) as white oil. ¹H NMR (500 MHz, CDCl₃) δ 7.28 – 7.23 (m, 2H), 7.23 –

7.17 (m, 3H), 6.66 (s, 1H), 5.30 (s, 1H), 4.47 (dd, J = 8.6, 5.2 Hz, 1H), 4.42 (s, 1H), 3.68 (s, 3H), 3.13 – 2.97 (m, 2H), 2.10 (dt, J = 13.5, 6.8 Hz, 1H), 1.40 (s, 9H), 0.87 (dd, J = 15.3, 6.9 Hz, 6H). ¹³C NMR (126 MHz, CDCl₃) δ 171.8, 171.4, 155.5, 136.8, 129.3, 128.5, 126.8, 80.0, 57.3, 55.8, 52.0, 38.0, 31.2, 28.2, 18.8, 17.8. HRMS (ESI) [M+Na]⁺ m/z calcd for C₂₀H₃₀N₂O₅Na 401.2052, found 401.2051.

<u>methyl ((S)-2-(2-((tert-butoxycarbonyl)amino)acetamido)-3,3-dimethylbutanoyl)-</u> L-phenylalaninate (1ab)

According to the general procedure, the crude residue was purified by flash column chromatography on silica gel (petroleum ether: ethyl acetate= 4:1; $R_f = 0.45$) to produce compound **1ab** (1.32 g, 77% yield) as white oil. ¹H NMR (500

MHz, CDCl₃) δ 7.44-7.29 (m, 1H), 7.28 – 7.15 (m, 4H), 7.10 (d, J = 7.1 Hz, 2H), 5.65 (s, 1H), 4.88 (dd, J = 13.7, 6.6 Hz, 1H), 4.51 (d, J = 4.9 Hz, 1H), 3.75 (dd, J = 28.1, 13.5 Hz, 2H), 3.68 (s, 3H), 3.06 (ddd, J = 32.0, 13.7, 6.5 Hz, 2H), 1.45 (s, 9H), 0.97 (s, 9H). ¹³C NMR (126 MHz, CDCl₃) δ 173.5, 172.2, 171.9, 168.7, 155.5, 135.9, 129.2, 128.6, 127.1, 80.1, 53.5, 53.2, 52.3, 50.2, 43.0, 37.9, 28.3, 18.5. **HRMS (ESI)** [M+Na]⁺ m/z calcd for C₂₃H₃₅N₃O₆Na 472.2424, found 472.2422.

methyl (tert-butoxycarbonyl)-L-alanylglycyl-L-phenylalaninate (1bb)

According to the general procedure, the crude residue was СООМе purified by flash column chromatography on silica gel (petroleum ether: ethyl acetate= 5:1; $R_f = 0.40$) to produce compound 1bb (1.35 g, 79% yield) as white oil. ¹H NMR (500 MHz, CDCl₃) δ 7.26 (d, J = 7.5 Hz, 2H), 7.23 - 7.19 (m, 2H), 7.11 (d, J = 7.1 Hz, 2H), 7.05 (s, 1H), 5.32 (s, 1H), 5.1H), 4.84 - 4.78 (m, 1H), 4.20 (s, 1H), 3.98 (dd, J = 16.7, 5.6 Hz, 1H), 3.84 (dd, J =16.8, 5.2 Hz, 1H), 3.68 (s, 3H), 3.09 (dt, J = 13.9, 7.5 Hz, 2H), 1.43 (s, 9H), 1.33 (d, J = 7.1 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 172.9, 171.8, 170.9, 168.3, 155.6, 135.9, 129.29, 128.6, 127.1, 79.9, 58.4, 53.3, 52.2, 37.9, 31.0, 28.3, 19.1. HRMS (ESI) $[M+Na]^+$ m/z calcd for C₂₀H₂₉N₃O₆Na 430.1954, found 430.1950.

((S)-2-((tert-butoxycarbonyl)amino)-3,3-dimethylbutanoyl)glycyl-Lmethyl phenylalaninate (1cb)

According to the general procedure, the crude residue was BOCHN O O NH BOCHN O O NH COOME purified by flash column chromatography on silica gel (petroleum ether: ethyl acetate= 5:1; $R_f = 0.42$) to produce compound 1cb (1.40 g, 83% yield) as white oil. ¹H NMR (500

MHz, **CDCl**₃) δ 7.37 – 7.30 (m, 1H), 7.28 – 7.19 (m, 4H), 7.15 – 7.11 (m, 2H), 5.60 – 5.52 (m, 1H), 4.85 (dd, J = 14.0, 6.8 Hz, 1H), 3.99 (d, J = 9.2 Hz, 1H), 3.94 (d, J = 5.4 Hz, 2H), 3.67 (s, 3H), 3.08 (ddd, J = 20.7, 13.8, 6.5 Hz, 2H), 1.42 (s, 9H), 0.98 (s, 9H). ¹³C NMR (126 MHz, CDCl₃) δ 172.0, 171.6, 168.6, 162.7, 155.9, 136.0, 129.2, 128.5, 127.0, 79.6, 62.2, 53.6, 52.3, 42.9, 38.0, 34.5, 28.4, 26.6. HRMS (ESI) [M+Na]⁺ m/z calcd for C₂₃H₃₅N₃O₆Na 472.2424, found 472.2420.

tert-butyl (S)-2-(((S)-1-(((S)-1-methoxy-1-oxo-3-phenylpropan-2-yl)amino)-3,3dimethyl-1-oxobutan-2-yl)carbamoyl)pyrrolidine-1-carboxylate (1db)

According to the general procedure, the crude residue was COOMe purified by flash column chromatography on silica gel (petroleum ether: ethyl acetate= 5:1; $R_f = 0.37$) to produce compound 1db (1.40 g, 83% yield) as white oil. ¹H NMR (500 MHz, CDCl₃) δ 7.26 (dd, J = 7.0, 5.0 Hz, 2H), 7.19 (d, J = 7.5 Hz, 1H), 7.12 (d, J = 6.9 Hz, 2H), 6.96 (d, J = 54.1 Hz, 1H), 4.85 - 4.79 (m, 1H), 4.37 (d, J = 65.0 Hz, 2H), 3.68 (s, 1H), 3.65 (d, J= 7.7 Hz, 3H), 3.44 (dd, *J* = 52.3, 23.1 Hz, 2H), 3.06 (d, *J* = 6.3 Hz, 2H), 2.14 (dd, *J* = 50.9, 40.1 Hz, 2H), 1.88 (s, 2H), 1.47 (s, 9H), 0.96 (s, 9H). ¹³C NMR (126 MHz, CDCl₃) δ 172.4, 171.8, 170.0, 155.6, 136.1, 135.9, 129.1, 128.5, 127.0, 80.3, 59.9, 53.3, 52.2,

47.0, 37.8, 37.7, 28.3, 26.5, 26.4, 22.9. HRMS (ESI) [M+Na]⁺ m/z calcd for C₂₆H₃₉N₃O₆Na 512.2737, found 512.2733.

methyl (tert-butoxycarbonyl)-L-alanyl-L-leucyl-L-phenylalaninate (1eb)

According to the general procedure, the crude residue was purified by flash column chromatography on silica gel (petroleum ether: ethyl acetate= 5:1; $R_f = 0.46$) to produce compound 1eb (1.32 g, 76% yield) as white oil. ¹H NMR (500

MHz, CDCl₃) δ 7.26 (dd, J = 15.1, 7.5 Hz, 3H), 7.21 – 7.18 (m, 2H), 7.11 (d, J = 7.6Hz, 2H), 5.52 (d, *J* = 5.4 Hz, 1H), 4.82 (d, *J* = 7.1 Hz, 1H), 4.52 (d, *J* = 5.2 Hz, 1H), 4.25 (s, 1H), 3.67 (s, 3H), 3.07 (ddd, J = 20.3, 12.1, 5.6 Hz, 2H), 1.63 (dd, J = 13.3, 7.2) Hz, 2H), 1.56 – 1.49 (m, 1H), 1.43 (s, 9H), 1.28 (d, *J* = 6.8 Hz, 3H), 0.88 (dd, *J* = 12.7, 5.7 Hz, 6H). ¹³C NMR (126 MHz, CDCl₃) δ 173.0, 172.4, 171.9, 171.8, 170.0, 155.6, 136.0, 129.2, 128.5, 127.0, 79.9, 53.4, 52.2, 51.7, 37.8, 28.3, 24.6, 22.8, 22.0, 18.3. **HRMS (ESI)** $[M+Na]^+$ m/z calcd for C₂₄H₃₇N₃O₆Na 486.2580, found 486.2581.

methyl (tert-butoxycarbonyl)-L-alanyl-L-valyl-L-phenylalaninate (1fb)

According to the general procedure, the crude residue was purified by flash column chromatography on silica gel (petroleum ether: ethyl acetate= 5:1; $R_f = 0.42$) to produce compound **1fb** (1.32 g, 76% yield) as white oil. ¹H NMR (500

MHz, CDCl₃) δ 7.28 – 7.25 (m, 1H), 7.22 (d, J = 10.9 Hz, 1H), 7.20 – 7.15 (m, 1H), 7.12 – 7.09 (m, 2H), 7.05 (s, 2H), 5.45 (s, 1H), 4.86 (dd, J = 14.2, 6.6 Hz, 1H), 4.38 – 4.31 (m, 1H), 4.25 (s, 1H), 3.68 (s, 3H), 3.14 – 3.04 (m, 2H), 2.08 (dd, J = 13.4, 6.7 Hz, 1H), 1.43 (s, 9H), 1.30 (d, J = 7.0 Hz, 3H), 0.90 (dd, J = 12.6, 6.8 Hz, 6H). ¹³C **NMR** (**126 MHz, CDCl₃**) δ 171.8, 170.2, 169.5, 156.1, 135.9, 129.3, 129.2, 128.5, 127.0, 79.9, 60.1, 53.5, 53.3, 52.2, 44.3, 38.0, 34.9, 28.3, 26.5. **HRMS (ESI)** [M+Na]⁺ m/z calcd for C₂₃H₃₅N₃O₆Na 472.2424, found 472.2426.

<u>methyl</u> ((S)-2-((S)-2-((tert-butoxycarbonyl)amino)propanamido)-3,3dimethylbutanoyl)-L-phenylalaninate (1gb)

According to the general procedure, the crude residue was purified by flash column chromatography on silica gel (petroleum ether: ethyl acetate= 5:1; $R_f = 0.49$) to produce compound **1gb** (1.32 g, 76% yield) as white oil. ¹H NMR (500

MHz, CDCl3) δ 7.32 – 7.15 (m, 4H), 7.12 (d, J = 26.1 Hz, 2H), 6.86 (s, 1H), 5.06 (dd, J = 25.6, 19.1 Hz, 1H), 4.87 (dd, J = 20.2, 7.0 Hz, 1H), 4.23 – 4.17 (m, 1H), 3.79 – 3.69 (m, 3H), 3.69 (s, 1H), 3.17 – 3.03 (m, 2H), 1.44 (s, 9H), 1.33 (d, J = 6.8 Hz, 3H), 0.95 (s, 9H). ¹³C **NMR (126 MHz, DMSO)** δ 172.1, 170.4, 155.6, 137.5, 129.6, 129.5, 129.3, 128.7, 126.9, 78.6, 59.3, 53.8, 52.1, 50.3, 36.9, 35.2, 28.6, 26.8, 18.1.**HRMS (ESI)** [M+Na]⁺ m/z calcd for C₂₄H₃₇N₃O₆Na 486.2580, found 486.2577.

<u>methyl</u> ((S)-2-((tert-butoxycarbonyl)amino)-3,3-dimethylbutanoyl)-Lphenylalanyl-L-leucinate (1hb)

According to the general procedure, the crude residue was purified by flash column chromatography on silica gel (petroleum ether: ethyl acetate= 5:1; $R_f = 0.47$) to produce compound **1hb** (1.36 g, 80% yield) as white oil. ¹H NMR (500

MHz, CDCl₃) δ 7.23 (d, J = 7.0 Hz, 2H), 7.18 (t, J = 7.1 Hz, 3H), 7.08 (d, J = 7.6 Hz, 1H), 6.93 (d, J = 7.9 Hz, 1H), 5.48 (d, J = 9.0 Hz, 1H), 4.77 (dd, J = 14.7, 7.3 Hz, 1H), 4.52 (td, J = 8.6, 5.0 Hz, 1H), 3.99 (d, J = 9.0 Hz, 1H), 3.66 (s, 3H), 3.07 (dd, J = 13.7, 7.4 Hz, 1H), 2.99 (dd, J = 13.7, 6.6 Hz, 1H), 1.70 – 1.61 (m, 1H), 1.58-1.51 (m, 2H), 1.43 (s, 9H), 0.94 (s, 9H), 0.87 (d, J = 5.9 Hz, 6H). ¹³C NMR (126 MHz, CDCl₃) δ 174.2, 172.7, 170.9, 170.2, 162.7, 155.7, 136.4, 129.3, 128.4, 126.8, 79.5, 62.2, 54.2, 52.1, 50.8, 41.1, 38.1, 34.6, 28.3, 26.5, 24.6, 21.8. HRMS (ESI) [M+Na]⁺ m/z calcd for C₂₇H₄₃N₃O₆Na 528.3050, found 528.3046.

<u>methyl</u> ((S)-2-((tert-butoxycarbonyl)amino)-3,3-dimethylbutanoyl)-Lphenylalanyl-L-alaninate (1ib)

According to the general procedure, the crude residue was purified by flash column chromatography on silica gel (petroleum ether: ethyl acetate= 5:1; $R_f = 0.43$) to produce compound **1ib** (1.30 g, 74% yield) as white oil. ¹H NMR (500

MHz, CDCl₃) δ 7.25 – 7.20 (m, 2H), 7.19 – 7.13 (m, 3H), 7.08 (dd, J = 17.5, 7.2 Hz, 2H), 5.50 (d, J = 9.0 Hz, 1H), 4.80 (dd, J = 14.6, 7.1 Hz, 1H), 4.56 – 4.43 (m, 1H), 4.00 (d, J = 8.7 Hz, 1H), 3.69 (s, 3 H), 3.09 (dd, J = 13.9, 7.0 Hz, 1H), 3.01 (dd, J = 13.9, 6.8 Hz, 1H), 1.43 (s, 9H), 1.32 (d, J = 7.2 Hz, 3H), 0.94 (s, 9H). ¹³C NMR (126 MHz, CDCl₃) δ 172.8, 171.0, 170.4, 162.7, 155.8, 148.5, 136.4, 129.3, 128.5, 126.8, 79.6, 62.4, 54.1, 52.3, 48.1, 38.1, 34.5, 28.4, 26.6, 18.0. HRMS (ESI) [M+Na]⁺ m/z calcd for C₂₄H₃₇N₃O₆Na 486.2580, found 486.2578.

<u>methyl</u> ((S)-2-((tert-butoxycarbonyl)amino)-3,3-dimethylbutanoyl)-Lphenylalanyl-L-valinate (1jb)

According to the general procedure, the crude residue was purified by flash column chromatography on silica gel (petroleum ether: ethyl acetate= 5:1; $R_f = 0.48$) to produce compound **1jb** (1.33 g, 72% yield) as white oil. ¹H NMR (500

MHz, CDCl₃) δ 7.46 (d, J = 7.6 Hz, 1H), 7.21 (t, J = 7.6 Hz, 3H), 7.14 (t, J = 8.9 Hz, 3H), 5.76 (d, J = 9.5 Hz, 1H), 4.87 (q, J = 7.4 Hz, 1H), 4.48 (dd, J = 8.5, 6.0 Hz, 1H), 4.15 (d, J = 9.8 Hz, 1H), 3.65 (s, 3H), 3.04 – 2.98 (m, 1H), 2.97 (d, J = 6.6 Hz, 1H), 2.06 (dd, J = 13.1, 6.6 Hz, 1H), 1.44 (s, 9H), 0.95 (s, 9H), 0.85 (dd, J = 17.8, 6.8 Hz, 6H). ¹³C NMR (126 MHz, CDCl₃) δ 173.2, 171.8, 171.1, 170.39, 162.7, 155.8, 136.4, 129.3, 128.3, 126.6, 79.2, 61.9, 57.3, 54.4, 51.9, 38.3, 34.8, 31.0, 28.4, 26.6, 18.9, 18.0. HRMS (ESI) [M+Na]⁺ m/z calcd for C₂₆H₄₁N₃O₆Na 514.2893, found 514.2891.

<u>methyl</u> ((S)-2-((tert-butoxycarbonyl)amino)-3,3-dimethylbutanoyl)-Lphenylalanyl-L-valyl-L-leucinate (1kb)

According to the general procedure, the crude residue was purified by flash column chromatography on silica gel (petroleum ether: ethyl acetate= 3:1; $R_f = 0.39$) to produce compound **1kb** (1.29 g, 70% yield) as white oil. ¹H NMR

(500 MHz, CDCl₃) δ 8.03 (d, J = 16.7 Hz, 1H), 7.81 (s, 1H), 7.58 (s, 1H), 7.14 (d, J = 11.2 Hz, 5H), 5.63 (s, 1H), 5.08 (d, J = 7.1 Hz, 1H), 4.66 (d, J = 7.6 Hz, 2H), 4.27 (s, 1H), 3.74 (s, 3H), 2.95 (s, 2H), 2.05 – 2.01 (m, 1H), 1.72 – 1.65 (m, 2H), 1.62 – 1.57 (m, 1H), 1.45 (s, 9H), 0.93 (d, J = 8.1 Hz, 9H), 0.92 – 0.91 (m, 6H), 0.89 (d, J = 6.6 Hz, 6H). ¹³C NMR (126 MHz, CDCl₃) δ 173.3, 171.4, 171.3, 170.8, 162.6, 155.7, 136.6, 129.4, 129.3, 128.3, 126.5, 78.9, 61.6, 58.3, 52.1, 50.7, 40.8, 39.0, 36.5, 34.9, 31.1, 28.5, 26.7, 25.0, 22.7, 22.1, 18.8. HRMS (ESI) [M+Na]⁺ m/z calcd for C₃₂H₅₂N₄O₇Na 627.3734, found 627.3733.

<u>methyl</u> ((S)-2-((tert-butoxycarbonyl)amino)-3,3-dimethylbutanoyl)-Lphenylalanyl-L-valyl-L-prolinate (11b)

According to the general procedure, the crude residue was purified by flash column chromatography on silica gel (petroleum ether: ethyl acetate= 5:1; $R_f = 0.37$) to produce compound **1lb** (1.29 g, 70% yield) as white oil. ¹H NMR (500

MHz, CDCl3) δ 7.25 (d, J = 7.3 Hz, 1H), 7.19 (dd, J = 16.3, 8.8 Hz, 3H), 7.13 (dd, J = 14.3, 7.2 Hz, 2H), 7.03 – 6.89 (m, 1H), 6.84 (dd, J = 30.4, 8.1 Hz, 1H), 4.80 (td, J = 14.3, 7.1 Hz, 1H), 4.58 – 4.43 (m, 1H), 3.93 (d, J = 15.4 Hz, 1H), 3.70 (s, 3H), 3.54 (dd, J = 8.3, 5.4 Hz, 1H), 3.07 (dd, J = 16.2, 9.7 Hz, 1H), 3.04 – 2.96 (m, 1H), 2.72 (d, J = 33.7 Hz, 1H), 2.26 – 2.14 (m, 1H), 2.12 – 1.90 (m, 4H), 1.44 (s, 9H), 1.03 – 0.90 (m, 9H), 0.91 – 0.73 (m, 6H), 0.72 (d, J = 6.6 Hz, 1H). ¹³C NMR (126 MHz, CDCl3) δ 172.3, 170.7, 170.1, 155.7, 136.5, 136.3, 129.3, 128.6, 128.3, 126.7, 79.4, 62.3, 58.9, 55.9, 54.2, 52.1, 47.2, 38.4, 34.5, 31.4, 29.1, 28.3, 26.5, 24.9, 19.4, 18.0, 14.2. HRMS (ESI) [M+Na]⁺ m/z calcd for C₃₁H₄₈N₄O₇Na 611.3421, found 611.3423.

<u>methyl</u> ((S)-2-((tert-butoxycarbonyl)amino)-3,3-dimethylbutanoyl)-Lphenylalanyl-L-leucyl-L-valinate (1mb)

According to the general procedure, the crude residue was purified by flash column chromatography on silica gel (petroleum ether: ethyl acetate= 5:1; $R_f = 0.36$) to produce compound **1mb** (1.37 g, 76% yield) as white oil. ¹H NMR

(500 MHz, CDCl₃) δ 7.84 (d, J = 7.8 Hz, 1H), 7.73 (s, 1H), 7.56 (d, J = 8.3 Hz, 1H), 7.18 (d, J = 6.5 Hz, 2H), 7.13 (s, 3H), 5.49 (d, J = 8.2 Hz, 1H), 4.99 (d, J = 5.3 Hz, 1H), 4.84 (d, J = 7.5 Hz, 1H), 4.59 (d, J = 4.5 Hz, 1H), 4.17 (d, J = 8.5 Hz, 1H), 3.76 (s, 3H), 3.02 (d, J = 8.7 Hz, 1H), 2.96 (d, J = 7.5 Hz, 1H), 2.13 (d, J = 5.9 Hz, 1H), 1.69 – 1.64 (m, 1H), 1.63 – 1.52 (m, 2H), 1.43 (s, 9H), 0.94 (d, J = 16.0 Hz, 9H), 0.90 (s, 6H), 0.85 – 0.79 (m, 6H). ¹³C NMR (126 MHz, CDCl₃) δ 172.9, 172.5, 172.2, 171.2, 170.9, 170.5, 155.6, 136.6, 129.3, 128.3, 126.6, 79.1, 61.8, 57.3, 53.9, 52.1, 41.4, 38.6, 34.6, 28.4, 26.6, 24.6, 22.5, 19.0, 18.3. HRMS (ESI) [M+Na]⁺ m/z calcd for C₃₂H₅₂N₄O₇Na 627.3734, found 627.3736.

<u>methyl</u> ((S)-2-((tert-butoxycarbonyl)amino)-3,3-dimethylbutanoyl)-Lphenylalanyl-L-leucyl-L-alaninate (1nb)

According to the general procedure, the crude residue was purified by flash column chromatography on silica gel (petroleum ether: ethyl acetate= 5:1; R_f = 0.33) to produce compound **1nb** (1.30 g, 71% yield) as white oil. ¹H NMR

(500 MHz, CDCl₃) δ 7.54 (s, 1H), 7.38 (s, 1H), 7.22 (dd, J = 9.5, 4.6 Hz, 3H), 7.17 (d, J = 7.2 Hz, 1H), 7.14 (d, J = 7.3 Hz, 2H), 5.37 (d, J = 7.2 Hz, 1H), 4.84 (d, J = 6.5 Hz, 1H), 4.68 (dt, J = 14.7, 7.5 Hz, 1H), 4.61 – 4.55 (m, 1H), 4.04 (d, J = 7.2 Hz, 1H), 3.74 (s, 3H), 3.06 – 2.95 (m, 2H), 1.73 – 1.66 (m, 1H), 1.58 (dd, J = 13.3, 6.7 Hz, 1H), 1.46 (dd, J = 10.4, 5.3 Hz, 1H), 1.41 (s, 9H), 1.37 (d, J = 7.3 Hz, 3H), 0.93 (s, 9H), 0.85 (dd, J = 13.6, 6.4 Hz, 6H). ¹³C NMR (126 MHz, CDCl₃) δ 173.2, 171.6, 171.0, 170.8, 170.2, 156.0, 136.3, 129.3, 128.6, 127.0, 79.9, 62.8, 54.2, 52.3, 51.6, 47.9, 41.0, 38.2, 34.2, 28.3, 26.7, 24.5, 22.8, 17.8. HRMS (ESI) [M+Na]⁺ m/z calcd for C₃₀H₄₈N₄O₇Na 599.3421, found 599.3417.

<u>methyl</u> (S)-2-((S)-2-((tert-butoxycarbonyl)amino)-3,3-dimethylbutanamido)-3-(2',5'-dioxo-2',5'-dihydro-[1,1'-biphenyl]-2-yl)propanoate (3aa)

According to the general procedure, the crude residue was purified by flash column chromatography on silica gel (petroleum ether: ethyl acetate= 4:1; $R_f = 0.43$) to produce compound **3aa** (89 mg, 87% yield) as yellow oil. ¹H NMR (500

MHz, CDCl₃) δ 7.37 (d, J = 7.6 Hz, 1H), 7.29 (t, J = 7.1 Hz, 2H), 7.21 (t, J = 4.2 Hz, 1H), 7.11 – 7.06 (m, 1H), 6.89 (dt, J = 10.4, 6.3 Hz, 2H), 6.76 (d, J = 2.3 Hz, 1H), 5.18 (d, J = 9.0 Hz, 1H), 4.81 (dd, J = 14.2, 8.0 Hz, 1H), 3.81 (d, J = 9.2 Hz, 1H), 3.65 (s, 3H), 3.05 (dd, J = 14.7, 5.8 Hz, 1H), 2.77 (d, J = 9.4 Hz, 1H), 1.42 (s, 9H), 0.94 (s, 9H). ¹³C NMR (126 MHz, CDCl₃) δ 187.3, 171.8, 170.8, 155.5, 147.9, 136.9, 136.6, 135.6, 134.3, 133.4, 129.9, 129.2, 128.7, 127.4, 79.5, 62.2, 52.4, 35.3, 34.8, 28.3, 26.4. HRMS (ESI) [M+Na]⁺ m/z calcd for C₂₇H₃₄N₂O₇Na 521.2264, found 521.2262.

<u>methyl</u> (S)-2-((S)-2-((tert-butoxycarbonyl)amino)-3-methylbutanamido)-3-(2',5'dioxo-2',5'-dihydro-[1,1'-biphenyl]-2-yl)propanoate (3ba)

According to the general procedure, the crude residue was purified by flash column chromatography on silica gel (petroleum ether: ethyl acetate= 4:1; $R_f = 0.45$) to produce compound **3ba** (81 mg, 82% yield) as yellow oil. ¹H NMR (500

MHz, CDCl₃) δ 7.41 – 7.35 (m, 1H), 7.30 (d, J = 7.3 Hz, 2H), 7.10 (d, J = 7.3 Hz, 1H), 6.89 (dt, J = 10.2, 6.3 Hz, 2H), 6.76 (d, J = 2.3 Hz, 1H), 6.67 (s, 1H), 5.06 (d, J = 6.9 Hz, 1H), 4.82 (d, J = 5.9 Hz, 1H), 3.92 (s, 1H), 3.65 (s, 3H), 3.06 (dd, J = 14.6, 5.8 Hz, 1H), 2.77 (s, 1H), 2.11 – 2.03 (m, 1H), 1.43 (s, 9H), 0.90 (d, J = 6.7 Hz, 3H), 0.78 (d, J = 4.6 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 187.3, 187.1, 171.8, 171.5, 155.7, 147.8, 136.9, 136.6, 135.6, 134.4, 133.5, 129.9, 129.8, 129.4, 127.3, 79.7, 59.5, 52.4, 35.4, 31.0, 28.3, 27.1, 19.1, 17.3. HRMS (ESI) [M+Na]⁺ m/z calcd for C₂₆H₃₂N₂O₇Na 507.2107, found 507.2103.

<u>methyl (S)-2-((S)-2-((tert-butoxycarbonyl)amino)-4-methylpentanamido)-3-(2',5'-</u> <u>dioxo-2',5'-dihydro-[1,1'-biphenyl]-2-yl)propanoate (3ca)</u>

According to the general procedure, the crude residue was purified by flash column chromatography on silica gel (petroleum ether: ethyl acetate= 4:1; R_f = 0.40) to produce compound **3ca** (79 mg, 78% yield) as yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 7.37 (t, *J* = 7.5

Hz, 1H), 7.29 (dd, J = 8.8, 6.5 Hz, 2H), 7.10 (d, J = 7.4 Hz, 1H), 6.92 – 6.85 (m, 2H), 6.77 (d, J = 2.2 Hz, 1H), 6.71 (s, 1H), 4.81 (d, J = 35.2 Hz, 2H), 4.11 – 4.02 (m, 1H), 3.64 (s, 3H), 3.04 (dd, J = 14.3, 5.8 Hz, 1H), 2.80 (s, 1H), 1.62 (d, J = 7.5 Hz, 1H), 1.57 – 1.49 (m, 1H), 1.42 (s, 9H), 1.33 (d, J = 6.5 Hz, 1H), 0.90 (d, J = 6.2 Hz, 6H). ¹³C **NMR (126 MHz, CDCl3)** δ 187.3, 172.4, 171.8, 147.8, 136.9, 136.6, 135.6, 134.5, 133.5, 129.9, 129.7, 127.2, 79.9, 60.4, 52.4, 41.4, 35.7, 28.3, 24.6, 22.9, 14.2. **HRMS (ESI)** [M+Na]⁺ m/z calcd for C₂₇H₃₄N₂O₇Na 521.2264, found 521.2260.

<u>methyl</u> (S)-2-((2S,3R)-2-((tert-butoxycarbonyl)amino)-3-methylpentanamido)-3-(2',5'-dioxo-2',5'-dihydro-[1,1'-biphenyl]-2-yl)propanoate (3da)

According to the general procedure, the crude residue was purified by flash column chromatography on silica gel (petroleum ether: ethyl acetate= 4:1; $R_f = 0.41$) to produce compound **3da** (82 mg,

83% yield) as yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 7.38 (t, J = 7.5 Hz, 1H), 7.34 – 7.28 (m, 2H), 7.10 (d, J = 7.6 Hz, 1H), 6.93 – 6.87 (m, 2H), 6.76 (d, J = 2.2 Hz, 1H), 6.69 (s, 1H), 5.04 (d, J = 7.7 Hz, 1H), 4.83 (s, 1H), 3.95 (s, 1H), 3.65 (s, 3H), 3.06 (dd, J = 14.4, 5.6 Hz, 1H), 2.77 (s, 1H), 1.43 (s, 9H), 1.33 – 1.18 (m, 2H), 0.99 (d, J = 9.9Hz, 1H), 0.89 – 0.80 (m, 6H). ¹³C NMR (126 MHz, CDCl₃) δ 187.3, 171.8, 171.5, 155.4, 147.8, 136.9, 136.6, 135.6, 134.4, 133.5, 129.8, 129.5, 127.3, 79.8, 59.1, 52.4, 37.4, 35.5, 28.3, 24.4, 15.4, 11.5. HRMS (ESI) [M+Na]⁺ m/z calcd for C₂₇H₃₄N₂O₇Na 521.2264, found 521.2261.

<u>ethyl (S)-2-((S)-2-((tert-butoxycarbonyl)amino)propanamido)-3-(2',5'-dioxo-2',5'-</u> dihydro-[1,1'-biphenyl]-2-yl)propanoate (3ea)

BocHN

According to the general procedure, the crude residue was purified by flash column chromatography on silica gel (petroleum ether: ethyl acetate= 4:1; R_f = 0.43) to produce compound **3ea** (83 mg, 85% yield) as yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 7.33 –

7.28 (m, 1H), 7.27 – 7.21 (m, 3H), 7.18 (d, J = 7.2 Hz, 1H), 7.03 – 7.00 (m, 1H), 6.89 (dd, J = 12.3, 6.2 Hz, 1H), 6.76 (t, J = 5.7 Hz, 1H), 5.06 – 4.94 (m, 1H), 4.72 (dd, J = 13.7, 6.3 Hz, 1H), 4.12 (dd, J = 13.1, 7.0 Hz, 2H), 4.08 – 4.04 (m, 1H), 3.04 (dd, J = 4.8, 2.2 Hz, 1H), 3.02 – 2.97 (m, 1H), 1.43 (t, J = 3.5 Hz, 9H), 1.25 (d, J = 7.0 Hz, 3H), 1.20 – 1.13 (m, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 187.3, 172.5, 171.4, 170.9, 170.2, 147.8, 136.9, 136.6, 135.6, 134.6, 133.5, 129.9, 129.3, 128.5, 127.2, 61.6, 53.5, 37.9, 35.9, 28.3, 18.5, 14.1. HRMS (ESI) [M+Na]⁺ m/z calcd for C₂₅H₃₀N₂O₇Na 493.1951, found 493.1949.

<u>methyl</u> (S)-2-(2-((tert-butoxycarbonyl)amino)acetamido)-3-(2',5'-dioxo-2',5'dihydro-[1,1'-biphenyl]-2-yl)propanoate (3fa)

According to the general procedure, the crude residue was purified by flash column chromatography on silica gel (petroleum ether: ethyl acetate= 4:1; R_f = 0.35) to produce compound **3fa** (71 mg, 68% yield) as yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 7.38

(td, J = 7.5, 0.9 Hz, 1H), 7.30 (t, J = 7.2 Hz, 1H), 7.25 (d, J = 7.6 Hz, 1H), 7.10 (d, J = 6.8 Hz, 1H), 6.91 – 6.84 (m, 2H), 6.76 (d, J = 1.8 Hz, 2H), 5.10 (s, 1H), 4.75 (d, J = 6.5 Hz, 1H), 3.71 (d, J = 5.2 Hz, 2H), 3.65 (s, 3H), 3.05 (dd, J = 14.5, 6.3 Hz, 1H), 2.89-2.79 (m, 1H), 1.42 (s, 9H).¹³C NMR (126 MHz, CDCl₃) δ 187.3, 187.0, 171.8, 169.3, 147.7, 136.9, 136.6, 135.5, 134.4, 133.6, 129.9, 129.7, 129.6, 127.3, 100.0, 80.2, 52.7, 52.5, 44.1, 35.5, 28.3. HRMS (ESI) [M+Na]⁺ m/z calcd for C₂₃H₂₆N₂O₇Na 465.1638, found 465.1636.

<u>methyl</u> (S)-2-((S)-3-(tert-butoxy)-2-((tert-butoxycarbonyl)amino)propanamido)-3-(2',5'-dioxo-2',5'-dihydro-[1,1'-biphenyl]-2-yl)propanoate (3ga)

According to the general procedure, the crude residue was purified by flash column chromatography on silica gel (petroleum ether: ethyl acetate= 4:1; R_f = 0.36) to produce compound **3ga** (75

mg, 72% yield) as yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 7.37 (t, J = 7.5 Hz, 1H), 7.30 (t, J = 7.5 Hz, 1H), 7.27 – 7.18 (m, 2H), 7.11 (d, J = 7.5 Hz, 1H), 6.91 – 6.83 (m, 2H), 6.76 (d, J = 2.2 Hz, 1H), 5.35 (s, 1H), 4.72 (d, J = 7.0 Hz, 1H), 4.09 (s, 1H), 3.72 (d, J = 5.8 Hz, 1H), 3.59 (s, 3H), 3.31 (t, J = 7.9 Hz, 1H), 2.94 (ddd, J = 31.3, 14.4, 7.1 Hz, 2H), 1.45 (s, 9H), 1.14 (s, 9H). ¹³C NMR (126 MHz, CDCl₃) δ 187.4, 186.6, 171.6, 170.4, 147.8, 136.9, 136.4, 135.3, 134.6, 133.5, 129.9, 129.6, 128.5, 127.2, 80.1, 74.0, 61.7, 54.1, 52.9, 52.3, 36.3, 28.3, 27.3. HRMS (ESI) [M+Na]⁺ m/z calcd for C₂₈H₃₆N₂O₈Na 551.2369, found 551.2365.

<u>methyl</u> (S)-2-((S)-2-((tert-butoxycarbonyl)amino)-4-(methylthio)butanamido)-3-(2',5'-dioxo-2',5'-dihydro-[1,1'-biphenyl]-2-yl)propanoate (3ha)

According to the general procedure, the crude residue was BOCHN by flash column chromatography on silica gel (petroleum ether: ethyl acetate= 4:1; $R_f = 0.41$) to produce compound **3ha** (78 mg, 79% yield) as yellow oil. ¹**H NMR (500 MHz, CDCl3**) δ 7.39 (t, J = 7.3 Hz, 1H), 7.35 – 7.29 (m, 2H), 7.11 (d, J = 7.1 Hz, 1H), 6.89 (dt, J = 10.1, 6.2Hz, 3H), 6.78 (t, J = 3.4 Hz, 1H), 5.18 (d, J = 6.5 Hz, 1H), 4.78 (s, 1H), 4.22 (d, J = 5.4Hz, 1H), 3.66 (s, 3H), 3.07 (dd, J = 14.6, 5.6 Hz, 1H), 2.83 – 2.72 (m, 1H), 2.47 (s, 2H), 2.07 (s, 3H), 2.00 – 1.94 (m, 1H), 1.89 – 1.80 (m, 1H), 1.42 (s, 9H). ¹³C NMR (126 MHz, CDCl3) δ 187.2, 171.7, 171.4, 147.8, 136.9, 136.6, 135.6, 134.4, 133.5, 130.0, 129.8, 129.5, 129.3, 128.7, 127.3, 80.0, 53.3, 52.6, 52.5, 35.5, 31.9, 29.8, 28.3, 15.2. HRMS (ESI) [M+Na]⁺ m/z calcd for C₂₆H₃₂N₂O₇SNa 539.1828, found 539.1823.

<u>methyl</u> (S)-3-((tert-butoxycarbonyl)amino)-4-(((S)-3-(2',5'-dioxo-2',5'-dihydro-[1,1'-biphenyl]-2-yl)-1-methoxy-1-oxopropan-2-yl)amino)-4-oxobutanoate (3ia)

MeOOC

According to the general procedure, the crude residue was purified by flash column chromatography on silica gel (petroleum ether: ethyl acetate= 4:1; $R_f = 0.38$) to produce

compound **3ia** (75 mg, 70% yield) as yellow oil. ¹**H NMR (500 MHz, CDCl₃)** δ 7.38 (d, J = 7.5 Hz, 1H), 7.30 (dd, J = 13.1, 5.4 Hz, 2H), 7.11 (d, J = 7.5 Hz, 1H), 7.03 (d, J = 6.7 Hz, 1H), 6.91 – 6.84 (m, 2H), 6.78 (d, J = 1.7 Hz, 1H), 5.52 (s, 1H), 4.68 (d, J = 7.2 Hz, 1H), 4.44 (d, J = 12.4 Hz, 1H), 3.66 (s, 3H), 3.62 (s, 3H), 3.01 (dd, J = 14.6, 6.5 Hz, 1H), 2.94 – 2.83 (m, 2H), 2.61 (dd, J = 17.1, 6.2 Hz, 1H), 1.43 (s, 9H). ¹³**C NMR (126 MHz, CDCl₃)** δ 187.4, 171.6, 170.5, 147.7, 136.9, 136.5, 135.4, 134.5, 133.5, 129.9, 129.8, 129.7, 127.2, 80.3, 52.9, 52.5, 52.0, 50.4, 36.0, 35.8, 28.3. **HRMS (ESI)** [M+Na]⁺ m/z calcd for C₂₆H₃₀N₂O₉Na 537.1849, found 537.1846.

<u>tert-butyl (S)-4-((tert-butoxycarbonyl)amino)-5-(((S)-3-(2',5'-dioxo-2',5'-dihydro-</u> [1,1'-biphenyl]-2-yl)-1-methoxy-1-oxopropan-2-yl)amino)-5-oxopentanoate (3ja)

According to the general procedure, the crude residue was purified by flash column chromatography on silica gel (petroleum ether: ethyl acetate= 4:1; $R_f = 0.43$) to produce compound **3ja** (77 mg, 73% yield) as yellow oil. ¹H NMR (500

MHz, CDCl₃) δ 7.38 (t, J = 7.5 Hz, 1H), 7.31 – 7.28 (m, 2H), 7.10 (d, J = 7.4 Hz, 1H), 6.95 (d, J = 6.2 Hz, 1H), 6.92 – 6.85 (m, 2H), 6.78 (d, J = 2.2 Hz, 1H), 5.26 (d, J = 7.9 Hz, 1H), 4.75 (d, J = 5.1 Hz, 1H), 4.13 – 4.04 (m, 1H), 3.64 (s, 3H), 3.05 (dd, J = 14.5, 5.8 Hz, 1H), 2.81 (dd, J = 13.8, 8.6 Hz, 1H), 2.26 (dd, J = 15.9, 8.3 Hz, 2H), 1.97 (s, 1H), 1.80 (d, J = 6.3 Hz, 1H), 1.44 (s, 9H), 1.42 (s, 9H). ¹³C NMR (126 MHz, CDCl₃) δ 187.3, 187.0, 172.7, 171.7, 171.5, 147.8, 136.9, 136.6, 135.5, 134.5, 133.5, 129.9, 129.7, 127.2, 80.8, 79.9, 53.8, 52.4, 35.7, 31.6, 29.7, 28.3, 28.0, 27.8. HRMS (ESI) [M+Na]⁺ m/z calcd for C₃₀H₃₈N₂O₉Na 593.2475, found 593.2472.

<u>methyl</u> (S)-2-((S)-2-((tert-butoxycarbonyl)amino)-3-hydroxypropanamido)-3-(2',5'-dioxo-2',5'-dihydro-[1,1'-biphenyl]-2-yl)propanoate (3ka)

According to the general procedure, the crude residue was purified by flash column chromatography on silica gel (petroleum ether: ethyl acetate= 3:1; $R_f = 0.40$) to produce

compound **3ka** (70 mg, 66% yield) as yellow oil. ¹**H NMR (500 MHz, CDCl₃)** δ 7.40 – 7.36 (m, 1H), 7.30 (dd, J = 14.5, 7.7 Hz, 2H), 7.13 (s, 1H), 7.12 – 7.10 (m, 1H), 6.93 – 6.84 (m, 2H), 6.78 (d, J = 2.3 Hz, 1H), 5.43 (s, 1H), 4.88 (d, J = 6.2 Hz, 1H), 4.77 (s, 1H), 4.17 – 4.08 (m, 1H), 3.95 (s, 1H), 3.67 (s, 3H), 3.61 – 3.56 (m, 1H), 3.11 – 3.06 (m, 1H), 2.79 (dd, J = 14.5, 9.0 Hz, 1H), 1.43 (s, 9H). ¹³**C NMR (126 MHz, CDCl₃)** δ 187.3, 187.0, 172.0, 171.2, 147.7, 136.9, 136.7, 135.6, 134.5, 133.5, 130.0, 129.7, 129.6, 128.7, 127.4, 80.3, 63.1, 55.3, 52.7, 35.4, 28.3. **HRMS (ESI)** [M+Na]⁺ m/z calcd for C₂₄H₂₈N₂O₈Na 495.1743, found 495.1739.

<u>methyl</u> (S)-2-((2S,3R)-2-((tert-butoxycarbonyl)amino)-3-hydroxybutanamido)-3-(2',5'-dioxo-2',5'-dihydro-[1,1'-biphenyl]-2-yl)propanoate (3la)

According to the general procedure, the crude residue was purified by flash column chromatography on silica gel (petroleum ether: ethyl acetate= 4:1; $R_f = 0.45$) to produce compound **3la** (73 mg, 69% yield) as yellow oil. ¹**H NMR (500 MHz, CDCl3**) δ 7.38 (dd, J = 7.4, 1.2 Hz, 1H), 7.33 – 7.28 (m, 2H), 7.11 (dd, J = 7.5, 1.1 Hz, 2H), 6.91 – 6.85 (m, 2H), 6.78 (d, J = 2.3 Hz, 1H), 5.36 (d, J = 7.6 Hz, 1H), 4.97 – 4.78 (m, 1H), 4.77 (d, J = 6.2 Hz, 1H), 4.25 (d, J = 5.2 Hz, 1H), 4.03 (d, J = 7.4 Hz, 1H), 3.66 (s, 3H), 3.10 (dd, J = 14.2, 8.2 Hz, 1H), 2.79 (dd, J = 14.6, 9.0 Hz, 1H), 1.44 (s, 9H), 1.12 (d, J = 6.5 Hz, 3H). ¹³C NMR (126 MHz, CDCl3) δ 187.3, 171.8, 171.2, 147.7, 136.9, 136.6, 135.6, 134.5, 133.5, 130.0, 129.6, 128.6, 127.3, 79.9, 67.1, 58.3, 52.6, 35.5, 28.3, 18.0. HRMS (ESI) [M+Na]⁺ m/z calcd for C₂₅H₃₀N₂O₈Na 509.1900, found 509.1902.

<u>methyl (R)-2-((S)-2-((tert-butoxycarbonyl)amino)-3-methylbutanamido)-3-(2',5'-dioxo-2',5'-dihydro-[1,1'-biphenyl]-2-yl)propanoate (3ma)</u>

According to the general procedure, the crude residue was purified by flash column chromatography on silica gel (petroleum ether: ethyl acetate= 4:1; R_f = 0.46) to produce compound **3ma** (83 mg, 81% yield) as yellow oil. ¹H NMR (500 MHz, CDCl₃) δ

7.40 – 7.35 (m, 1H), 7.29 (t, J = 7.7 Hz, 2H), 7.11 (d, J = 7.2 Hz, 1H), 6.89 (dt, J = 10.1, 6.2 Hz, 2H), 6.82 (dd, J = 19.3, 8.9 Hz, 1H), 6.77 (d, J = 2.1 Hz, 1H), 5.06 (d, J = 6.9 Hz, 1H), 4.81 (dd, J = 14.8, 8.0 Hz, 1H), 3.95 (s, 1H), 3.65 (s, 3H), 3.07 (dd, J = 14.7, 5.9 Hz, 1H), 2.71 (dd, J = 14.5, 9.8 Hz, 1H), 1.40 (s, 9H), 0.93 – 0.82 (m, 1H), 0.74 (dd, J = 34.8, 5.9 Hz, 6H). ¹³C NMR (126 MHz, CDCl₃) δ 187.3, 171.7, 155.7, 147.9, 136.9, 136.6, 135.7, 134.6, 133.5, 129.9, 129.3, 127.3, 79.7, 59.5, 52.5, 35.4, 30.9, 28.3, 27.2, 19.0, 17.3. HRMS (ESI) [M+Na]⁺ m/z calcd for C₂₆H₃₂N₂O₇Na 507.2107, found 507.2103.

<u>methyl</u> (S)-2-((S)-2-((tert-butoxycarbonyl)amino)propanamido)-3-(5-methyl-2',5'-dioxo-2',5'-dihydro-[1,1'-biphenyl]-2-yl)propanoate (3na)

According to the general procedure, the crude residue was purified by flash column chromatography on silica gel (petroleum ether: ethyl acetate= 4:1; R_f = 0.42) to produce compound **3na** (89 mg, 86% yield) as yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 7.17

 $(dd, J = 17.4, 7.9 Hz, 2H), 6.94 - 6.84 (m, 3H), 6.74 (d, J = 2.3 Hz, 2H), 5.04 (s, 1H), 4.73 (s, 1H), 4.12 (d, J = 7.1 Hz, 1H), 3.65 (s, 3H), 3.01 (dd, J = 14.5, 6.0 Hz, 1H), 2.77 (d, J = 7.9 Hz, 1H), 2.33 (s, 3H), 1.42 (s, 9H), 1.27 (d, J = 7.1 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) <math>\delta$ 187.3, 187.2, 172.5, 171.9, 155.2, 147.9, 136.9, 136.6, 135.4, 133.3, 131.3, 130.5, 129.5, 79.9, 52.4, 49.9, 35.1, 28.3, 20.9, 18.5. HRMS (ESI) [M+Na]⁺ m/z calcd for C₂₅H₃₀N₂O₇Na 493.1951, found 493.1950.

<u>methyl</u> (S)-2-((S)-2-((tert-butoxycarbonyl)amino)propanamido)-3-(5-methoxy-2',5'-dioxo-2',5'-dihydro-[1,1'-biphenyl]-2-yl)propanoate (30a)

According to the general procedure, the crude residue was purified by flash column chromatography on silica gel (petroleum ether: ethyl acetate= 4:1; $R_f = 0.43$) to produce compound **30a** (79 mg, 76% yield) as yellow oil. ¹H NMR (500

MHz, CDCl₃) δ 7.16 (d, J = 8.5 Hz, 1H), 6.92 – 6.87 (m, 3H), 6.75 (d, J = 2.2 Hz, 1H), 6.62 (d, J = 2.7 Hz, 2H), 4.97 (s, 1H), 4.71 (d, J = 5.7 Hz, 1H), 4.12 (d, J = 7.1 Hz, 1H), 3.79 (s, 3H), 3.65 (s, 3H), 2.97 (dd, J = 14.7, 6.2 Hz, 1H), 2.78 – 2.68 (m, 1H), 1.42 (d, J = 3.2 Hz, 9H), 1.27 (d, J = 7.0 Hz, 3H). ¹³C **NMR (126 MHz, CDCl₃)** δ 187.3, 171.9, 158.4, 147.6, 136.9, 136.6, 135.5, 134.5, 130.8, 126.2, 115.3, 80.0, 55.4, 52.7, 52.4, 34.8, 28.3, 18.4. **HRMS (ESI)** [M+Na]⁺ m/z calcd for C₂₅H₃₀N₂NaO₈ 509.1900, found 509.1901.

<u>methyl</u> (S)-2-((S)-2-((tert-butoxycarbonyl)amino)propanamido)-3-(2'',5''-dioxo-2'',5''-dihydro-[1,1':3',1''-terphenyl]-4'-yl)propanoate (3pa)

According to the general procedure, the crude residue was purified by flash column chromatography on silica gel (petroleum ether: ethyl acetate= 4:1; R_f = 0.43) to produce compound **3pa** (93 mg, 82% yield) as yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 7.60

(dd, J = 8.0, 1.8 Hz, 1H), 7.55 (d, J = 7.5 Hz, 2H), 7.43 (t, J = 7.6 Hz, 2H), 7.37 – 7.31 (m, 3H), 6.90 (dt, J = 10.1, 6.1 Hz, 2H), 6.82 (d, J = 2.3 Hz, 1H), 6.79 (s, 1H), 5.00 (s, 1H), 4.81 (s, 1H), 4.15-4.05 (m, 1H), 3.66 (s, 3H), 3.08 (dd, J = 14.6, 6.1 Hz, 1H), 2.86 (d, J = 8.2 Hz, 1H), 1.44-1.41 (m, 3H), 1.40 (s, 9H). ¹³C NMR (126 MHz, CDCl₃) δ 187.3, 171.8, 147.8, 140.3, 139.7, 136.9, 136.6, 135.7, 134.0, 133.4, 130.9, 130.1, 128.9, 128.5, 128.3, 127.8, 127.3, 127.0, 79.9, 52.5, 49.9, 35.3, 29.6, 28.3, 18.4. HRMS (ESI) [M+Na]⁺ m/z calcd for C₃₀H₃₂N₂O₇Na 555.2107, found 555.2103.

<u>methyl (S)-2-((S)-2-((tert-butoxycarbonyl)amino)propanamido)-3-(5-fluoro-2',5'-dioxo-2',5'-dihydro-[1,1'-biphenyl]-2-yl)propanoate (3qa)</u>

According to the general procedure, the crude residue was purified by flash column chromatography on silica gel (petroleum ether: ethyl acetate= 4:1; $R_f = 0.39$) to produce compound **3qa** (66 mg, 62% yield) as yellow oil. ¹H NMR

(500 MHz, CDCl₃) δ 7.24 (dd, J = 8.5, 5.6 Hz, 1H), 7.09 – 7.05 (m, 1H), 6.92 – 6.87 (m, 2H), 6.84 (dd, J = 8.8, 2.6 Hz, 1H), 6.78 (d, J = 1.9 Hz, 1H), 6.69 (d, J = 4.7 Hz, 1H), 4.93 (s, 1H), 4.72 (s, 1H), 4.12 – 4.04 (m, 1H), 3.65 (s, 3H), 3.02 – 2.96 (m, 1H), 2.79 (dd, J = 14.4, 8.1 Hz, 1H), 1.43 (s, 9H), 1.26 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 186.9, 172.5, 171.6, 162.1, 160.3, 146.5, 136.8, 136.7, 135.8 (d, J = 226.8 Hz), 135.1, 130.3 117.0, 116.8, 116.6, 116.5, 80.3, 52.5, 49.7, 35.1, 28.3, 18.2. ¹⁹F NMR (471 MHz, CDCl₃) δ -93.87 (s, 1F). HRMS (ESI) [M+Na]⁺ m/z calcd for C₂₄H₂₇N₂O₇FNa 497.1700, found 497.1698.

<u>methyl</u> (S)-3-(5-bromo-2',5'-dioxo-2',5'-dihydro-[1,1'-biphenyl]-2-yl)-2-((S)-2-((tert-butoxycarbonyl)amino)propanamido)propanoate (3ra)

According to the general procedure, the crude residue was purified by flash column chromatography on silica gel (petroleum ether: ethyl acetate= 4:1; $R_f = 0.37$) to produce compound **3ra** (73 mg, 65% yield) as yellow oil. ¹**H NMR (500 MHz, CDCl**₃) δ 7.49 (dd, J = 8.3, 1.9 Hz, 1H), 7.26 (d, J = 2.0 Hz, 1H), 7.15 (d, J = 8.3 Hz, 1H), 6.91 – 6.86 (m, 2H), 6.77 (t, J = 5.2 Hz, 2H), 4.97 (s, 1H), 4.72 (s, 1H), 4.10 (s, 1H), 3.65 (s, 3H), 2.98 (dd, J = 14.6, 6.3 Hz, 1H), 2.77 (dd, J = 13.9, 8.1 Hz, 1H), 1.43 (s, 9H), 1.26 (d, J = 5.8 Hz, 3H). ¹³**C NMR (126 MHz, CDCl**₃) δ 187.0, 186.5, 172.5, 171.6, 146.3, 136.7, 136.3, 135.8, 135.3, 133.7, 132.5, 131.3, 129.6, 129.5, 120.9, 80.3, 52.6, 49.8, 35.3, 28.3, 18.2. **HRMS (ESI)** [M+Na]⁺ m/z calcd for C₂₄H₂₇N₂O₇BrNa 557.0899, found 557.0896.

<u>methyl</u> (S)-2-((S)-2-((tert-butoxycarbonyl)amino)propanamido)-3-(4-methyl-2',5'-dioxo-2',5'-dihydro-[1,1'-biphenyl]-2-yl)propanoate (3sa)

According to the general procedure, the crude residue was purified by flash column chromatography on silica gel (petroleum ether: ethyl acetate= 4:1; R_f = 0.40) to produce compound **3sa** (85 mg, 83% yield) as yellow oil. ¹H NMR (**500** MHz, CDCl₃) δ 7.15

-7.07 (m, 2H), 6.99 (d, J = 7.7 Hz, 1H), 6.92 -6.85 (m, 2H), 6.78 (d, J = 4.2 Hz, 1H), 6.73 (d, J = 2.3 Hz, 1H), 5.02 (s, 1H), 4.75 (s, 1H), 4.12 (d, J = 6.8 Hz, 1H), 3.64 (s, 3H), 3.01 (dd, J = 14.5, 6.1 Hz, 1H), 2.80 -2.66 (m, 1H), 2.36 (s, 3H), 1.42 (s, 9H), 1.26 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 187.4, 187.3, 172.5, 171.9, 147.9, 139.8, 136.9, 136.6, 135.5, 134.3, 130.6, 130.3, 129.9, 128.1, 79.5, 52.4, 35.4, 28.3, 25.6, 21.3, 18.5. HRMS (ESI) [M+Na]⁺ m/z calcd for C₂₅H₃₀N₂O₇Na 493.1951, found 493.1950.

<u>methyl</u> (S)-2-((S)-2-((tert-butoxycarbonyl)amino)propanamido)-3-(3-methyl-2',5'-dioxo-2',5'-dihydro-[1,1'-biphenyl]-2-yl)propanoate (3ta)

According to the general procedure, the crude residue was purified by flash column chromatography on silica gel (petroleum ether: ethyl acetate= 4:1; R_f = 0.42) to produce compound **3ta** (81 mg, 80% yield) as yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 7.23 (d, *J* = 6.9

Hz, 1H), 7.19 (t, J = 7.5 Hz, 1H), 7.17 – 6.99 (m, 1H), 6.92 (d, J = 7.4 Hz, 1H), 6.89 (d, J = 3.1 Hz, 1H), 6.87 – 6.81 (m, 1H), 6.76 (d, J = 7.0 Hz, 1H), 4.93 – 4.83 (m, 1H), 4.06 (s, 1H), 3.72 (t, J = 7.3 Hz, 1H), 3.70 – 3.48 (m, 3H), 3.09 – 2.98 (m, 1H), 2.88 (s, 1H), 2.41 (s, 3H), 1.43 (d, J = 6.2 Hz, 9H), 1.24 (d, J = 14.2 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 187.1, 172.1, 161.5, 155.3, 148.5, 139.5, 138.2, 136.9, 136.2, 132.5, 131.9, 130.6, 127.5, 127.1, 80.0, 52.5, 46.1, 33.8, 29.9, 28.3, 20.1, 18.3. HRMS (ESI) [M+Na]⁺ m/z calcd for C₂₅H₃₀N₂O₇Na 493.1951, found 493.1953.

<u>methyl</u> (S)-2-((S)-2-((tert-butoxycarbonyl)amino)-3-(4hydroxyphenyl)propanamido)-3-(2',5'-dioxo-2',5'-dihydro-[1,1'-biphenyl]-2yl)propanoate (3wa)

According to the general procedure, the crude residue was purified by flash column chromatography on silica gel (petroleum ether: ethyl acetate= 4:1; R_f = 0.42) to produce compound **3wa** (78 mg, 73% yield) as yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 7.28 (d, J= 7.5 Hz, 1H), 7.25 – 7.20 (m, 3H), 7.09 (d, J= 6.9 Hz, 2H), 7.03

- 6.99 (m, 2H), 6.97 (d, J = 1.7 Hz, 1H), 6.83 – 6.78 (m, 3H), 6.38 (d, J = 7.4 Hz, 1H), 5.11 (s, 1H), 4.78 (d, J = 6.0 Hz, 1H), 4.29 (s, 1H), 3.66 (s, 3H), 3.12 (dd, J = 14.4, 5.8 Hz, 1H), 3.10 – 3.05 (m, 1H), 3.02 (t, J = 6.9 Hz, 1H), 2.95 (d, J = 6.7 Hz, 1H), 1.41 (s, 9H). ¹³C NMR (126 MHz, CDCl₃) δ 187.4, 172.1, 171.4, 170.8, 169.9, 137.1, 136.3, 135.8, 135.6, 135.1, 131.8, 129.2, 128.6, 127.2, 121.2, 117.8, 53.2, 52.4, 37.9, 37.5, 28.3, 23.1. **HRMS (ESI)** [M+Na]⁺ m/z calcd for C₃₀H₃₂N₂O₈Na 571.2056, found 571.2052.

<u>methyl</u> (S)-2-((S)-2-((tert-butoxycarbonyl)amino)-3,3-dimethylbutanamido)-3-(4'-methyl-2',5'-dioxo-2',5'-dihydro-[1,1'-biphenyl]-2-yl)propanoate (4ab)

According to the general procedure, the crude residue was purified by flash column chromatography on silica gel (petroleum ether: ethyl acetate= 3:1; $R_f = 0.52$) to produce compound **4ab** (83 mg, 79% yield) as yellow oil.¹**H** NMR (500 MHz, CDCl₃) δ 7.39 – 7.35 (m, 1H), 7.29 (dd, J = 7.3, 3.3 Hz, 2H), 7.25 – 7.13 (m, 1H), 7.09 (d, J = 7.5 Hz, 1H), 6.75 – 6.68 (m, 2H), 5.18 (d, J = 8.8 Hz, 1H), 4.82 (dd, J = 14.3, 8.0 Hz, 1H), 3.83 (t, J = 9.5 Hz, 1H), 3.66 (s, 3H), 3.10 – 3.01 (m, 1H), 2.72 (s, 1H), 2.13 (s, 3H), 1.42 (s, 9H), 0.95 (s, 9H). ¹³C NMR (126 MHz, CDCl₃) δ 187.8, 171.6, 170.9, 155.2, 147.8, 135.9, 133.6, 130.0, 129.3, 129.2, 127.3, 79.9, 52.5, 52.4, 34.8, 28.3, 26.4, 16.3, 15.6. HRMS (ESI) [M+Na]⁺ m/z calcd for C₂₈H₃₆N₂O₇Na 535.2420, found 535.2417.

<u>methyl</u> (S)-2-((S)-2-((tert-butoxycarbonyl)amino)-3,3-dimethylbutanamido)-3-(4'-(tert-butyl)-2',5'-dioxo-2',5'-dihydro-[1,1'-biphenyl]-2-yl)propanoate (4ac)

According to the general procedure, the crude residue was purified by flash column chromatography on silica gel (petroleum ether: ethyl acetate= 3:1; R_f = 0.50) to produce compound **4ac** (87 mg, 83% yield) as yellow oil. ¹H NMR

(500 MHz, CDCl₃) δ 7.38 – 7.33 (m, 1H), 7.30 (s, 2H), 7.27 – 7.18 (m, 1H), 7.11 (t, *J* = 8.2 Hz, 1H), 6.71 – 6.64 (m, 2H), 5.21 (dd, *J* = 21.8, 11.6 Hz, 1H), 4.83 (dt, *J* = 15.5, 8.1 Hz, 1H), 3.87 – 3.77 (m, 1H), 3.66 (s, 3H), 3.05 (dt, *J* = 15.6, 8.0 Hz, 1H), 2.76 – 2.61 (m, 1H), 1.42 (s, 9H), 1.35 (s, 9H), 0.95 (s, 9H). ¹³C NMR (126 MHz, CDCl₃) δ 187.4, 171.9, 170.9, 156.4, 155.5, 149.7, 146.3, 137.7, 131.9, 129.8, 130.0, 129.7, 129.2, 128.6, 127.3, 79.4, 62.2, 52.5, 52.3, 35.5, 35.3, 34.8, 29.2, 28.3, 26.4. HRMS (ESI) [M+Na]⁺ m/z calcd for C₃₁H₄₂N₂O₇Na 577.2890, found 577.2885.

<u>methyl</u> (S)-2-((S)-2-((tert-butoxycarbonyl)amino)-3,3-dimethylbutanamido)-3-(4'-chloro-2',5'-dioxo-2',5'-dihydro-[1,1'-biphenyl]-2-yl)propanoate (4ad)

According to the general procedure, the crude residue was purified by flash column chromatography on silica gel (petroleum ether: ethyl acetate= 3:1; $R_f = 0.49$) to produce

compound **4ad** (73 mg, 72% yield) as yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 7.38 (d, *J* = 7.4 Hz, 1H), 7.30 (t, *J* = 7.5 Hz, 2H), 7.14 (s, 1H), 7.10 (t, *J* = 5.2 Hz, 2H), 6.39 (s, 1H), 5.15 (d, *J* = 7.3 Hz, 1H), 4.77 (dd, *J* = 14.6, 7.0 Hz, 1H), 3.79 (d, *J* = 8.6 Hz, 1H), 3.65 (s, 3H), 3.06 – 2.97 (m, 1H), 2.78 (dd, *J* = 14.4, 8.1 Hz, 1H), 1.42 (s, 9H), 0.94 (s, 9H). ¹³C NMR (126 MHz, CDCl₃) δ 184.8, 179.4, 171.8, 170.8, 155.6, 148.3, 144.5, 135.7, 135.1, 134.5, 133.9, 133.7, 129.9, 127.4, 79.6, 62.2, 52.4, 31.9, 29.7, 28.3, 26.4, 22.7. **HRMS (ESI)** [M+Na]⁺ m/z calcd for C₂₇H₃₃ClN₂O₇Na 555.1874, found 555.1872.

<u>methyl</u> (S)-2-((S)-2-((tert-butoxycarbonyl)amino)-3,3-dimethylbutanamido)-3-(4''-methyl-2',5'-dioxo-2',5'-dihydro-[1,1':4',1''-terphenyl]-2-yl)propanoate (4ae)

BocHN H COOMe

According to the general procedure, the crude residue was purified by flash column chromatography on silica gel (petroleum ether: ethyl acetate= 4:1; $R_f = 0.41$) to

produce compound **4ae** (76 mg, 75% yield) as yellow oil. ¹**H NMR (500 MHz, CDCl3)** δ 7.48 (d, J = 8.0 Hz, 1H), 7.42 (d, J = 8.1 Hz, 1H), 7.38 (d, J = 7.4 Hz, 1H), 7.33 – 7.28 (m, 3H), 7.25 (d, J = 8.0 Hz, 1H), 7.16 (t, J = 7.5 Hz, 1H), 6.98 – 6.93 (m, 1H), 6.84 – 6.80 (m, 1H), 6.62 (s, 1H), 5.17 (dd, J = 19.8, 8.9 Hz, 1H), 4.83 (dd, J = 15.0, 8.0 Hz, 1H), 3.82 (dd, J = 28.1, 9.2 Hz, 1H), 3.66 (s, 3H), 3.09 (dd, J = 14.1, 6.9 Hz, 1H), 2.78 (s, 1H), 2.42 (s, 3H), 1.40 (s, 9H), 0.89 (s, 9H). ¹³**C NMR (126 MHz, CDCl3)** δ 186.9, 172.0, 170.9, 155.5, 147.6, 146.4, 140.8, 140.6, 136.2, 134.4, 134.0, 133.4, 132.1, 130.0, 129.3, 127.4, 79.4, 62.1, 52.6, 52.4, 35.0, 34.7, 34.5, 28.3, 26.4, 21.4. **HRMS (ESI)** [M+Na]⁺ m/z calcd for C₃₄H₄₀N₂O₇Na 611.2733, found 611.2732.
<u>methyl</u> (S)-3-(4"-bromo-2',5'-dioxo-2',5'-dihydro-[1,1':4',1"-terphenyl]-2-yl)-2-((S)-2-((tert-butoxycarbonyl)amino)-3,3-dimethylbutanamido)propanoate (4af)

According to the general procedure, the crude residue was purified by flash column chromatography on silica gel (petroleum ether: ethyl acetate= 4:1; $R_f = 0.41$) to produce

compound **4af** (75 mg, 70% yield) as yellow oil.¹H NMR (500 MHz, CDCl₃) δ 7.60 (dd, J = 16.3, 8.4 Hz, 2H), 7.46 (d, J = 8.4 Hz, 1H), 7.42 – 7.36 (m, 2H), 7.31 (dd, J = 13.2, 6.8 Hz, 2H), 7.16 (t, J = 7.5 Hz, 1H), 6.98 (d, J = 28.0 Hz, 1H), 6.84 (d, J = 5.0 Hz, 1H), 6.49 (s, 1H), 5.18 – 5.07 (m, 1H), 4.86 – 4.75 (m, 1H), 3.79 (dd, J = 25.5, 8.5 Hz, 1H), 3.66 (s, 3H), 3.07 (dd, J = 14.4, 9.0 Hz, 1H), 2.78 (s, 1H), 1.40 (s, 9H), 0.89 (s, 9H). ¹³C NMR (126 MHz, CDCl₃) δ 186.3, 171.7, 156.0, 148.6, 147.7, 146.9, 140.8, 138.1, 134.9, 133.1, 132.8, 131.9, 131.0, 127.6, 79.2, 52.4, 31.9, 29.7, 28.3, 26.4, 14.1. **HRMS (ESI)** [M+Na]⁺ m/z calcd for C₃₃H₃₇BrN₂O₇Na 675.1682, found 675.1678.

<u>methyl (S)-2-((S)-2-((tert-butoxycarbonyl)amino)-3,3-dimethylbutanamido)-3-(2-</u> (1,4-dioxo-1,4-dihydronaphthalen-2-yl)phenyl)propanoate (4ag)

According to the general procedure, the crude residue was purified by flash column chromatography on silica gel (petroleum ether: ethyl acetate= 4:1; $R_f = 0.41$) to produce

compound **4ag** (72 mg, 71% yield) as yellow oil.¹H NMR (500 MHz, CDCl₃) δ 8.20 – 8.13 (m, 2H), 7.82 – 7.77 (m, 2H), 7.44 – 7.38 (m, 2H), 7.33 (dd, *J* = 17.0, 9.5 Hz, 2H), 7.17 (d, *J* = 7.4 Hz, 1H), 6.97 (s, 1H), 5.28 (d, *J* = 21.8 Hz, 1H), 4.85 (s, 1H), 3.91 (d, *J* = 8.9 Hz, 1H), 3.62 (s, 3H), 3.12 (dd, *J* = 14.8, 4.9 Hz, 1H), 2.73 (s, 1H), 1.40 (s, 9H), 0.96 (s, 9H). ¹³C NMR (126 MHz, CDCl₃) δ 196.6, 191.0, 188.4, 172.2, 170.7, 149.9, 148.0, 134.4, 129.9, 128.5, 127.4, 126.3, 79.3, 67.0, 58.9, 52.3, 34.4, 28.4, 26.5. **HRMS** (**ESI**) [M+Na]⁺ m/z calcd for C₃₁H₃₆N₂O₇Na 571.2420, found 571.2417.

<u>benzyl</u> (S)-2-((S)-2-((tert-butoxycarbonyl)amino)-3,3-dimethylbutanamido)-3-(2',5'-dioxo-2',5'-dihydro-[1,1'-biphenyl]-2-yl)propanoate (4xa)

According to the general procedure, the crude residue was purified by flash column chromatography on silica gel (petroleum ether: ethyl acetate= 4:1; R_f = 0.45) to produce compound **4xa** (91 mg, 85% yield) as yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 7.37 – 7.28 (m, 5H), 7.24 – 7.18 (m, 3H), 7.07 (dd, *J* = 7.5, 1.2 Hz, 1H), 6.85 – 6.77

(m, 2H), 6.70 (d, J = 2.3 Hz, 1H), 6.46 (dd, J = 47.6, 15.9 Hz, 1H), 5.18 (t, J = 8.2 Hz, 1H), 5.07 (d, J = 2.3 Hz, 2H), 4.84 (dd, J = 14.3, 8.0 Hz, 1H), 3.80 (d, J = 9.2 Hz, 1H), 3.02 (dd, J = 14.5, 5.9 Hz, 1H), 2.77 (s, 1H), 1.42 (s, 9H), 0.91 (s, 9H). ¹³C NMR (126 MHz, CDCl₃) δ 187.3, 171.2, 170.8, 155.5, 147.9, 136.8, 136.5, 135.6, 135.0, 134.3, 133.5, 129.9, 129.8, 128.6, 128.5, 128.4, 127.3, 79.5, 67.3, 62.1, 52.6, 34.8, 29.7, 28.3, 26.4. HRMS (ESI) [M+Na]⁺ m/z calcd for C₃₃H₃₈N₂O₇Na 597.2577, found 597.2575.

ethyl (S)-2-((S)-2-((tert-butoxycarbonyl)amino)propanamido)-3-(2',5'-dioxo-2',5'dihydro-[1,1'-biphenyl]-2-yl)propanoate (4ya)

According to the general procedure, the crude residue was purified by flash column chromatography on silica gel (petroleum ether: ethyl acetate= 4:1; R_f = 0.40) to produce compound **4ya** (86 mg, 83% yield) as yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 7.33 – 7.28 (m,

1H), 7.27 – 7.21 (m, 3H), 7.18 (d, J = 7.2 Hz, 1H), 7.03 – 7.00 (m, 1H), 6.89 (dd, J = 12.3, 6.2 Hz, 1H), 6.76 (t, J = 5.7 Hz, 1H), 5.06 – 4.94 (m, 1H), 4.72 (dd, J = 13.7, 6.3 Hz, 1H), 4.12 (dd, J = 13.1, 7.0 Hz, 2H), 4.08 – 4.04 (m, 1H), 3.04 (dd, J = 4.8, 2.2 Hz, 1H), 3.02 – 2.97 (m, 1H), 1.43 (t, J = 3.5 Hz, 9H), 1.25 (d, J = 7.0 Hz, 3H), 1.20 – 1.13 (m, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 187.3, 172.5, 171.4, 170.9, 170.2, 147.8, 136.9, 136.6, 135.6, 134.6, 133.5, 129.9, 129.3, 128.5, 127.2, 61.6, 53.5, 37.9, 35.9, 28.3, 18.5, 14.1. HRMS (ESI) [M+Na]⁺ m/z calcd for C₂₅H₃₀N₂O₇Na 493.1951, found 493.1955.

<u>tert-butyl (S)-2-((S)-2-((tert-butoxycarbonyl)amino)propanamido)-3-(2',5'-dioxo-2',5'-dihydro-[1,1'-biphenyl]-2-yl)propanoate (4za)</u>

According to the general procedure, the crude residue was purified by flash column chromatography on silica gel (petroleum ether: ethyl acetate= 4:1; R_f = 0.44) to produce compound **4za** (78 mg, 76% yield) as yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 7.38 – 7.34 (m,

1H), 7.29 (dd, J = 14.0, 5.5 Hz, 2H), 7.10 (d, J = 7.5 Hz, 1H), 6.92 – 6.83 (m, 2H), 6.79 (d, J = 2.1 Hz, 1H), 6.66 (s, 1H), 5.00 (s, 1H), 4.59 (d, J = 6.1 Hz, 1H), 4.09 (s, 1H), 2.97 – 2.76 (m, 2H), 1.43 (s, 9H), 1.33 (s, 9H), 1.26 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 187.4, 186.9, 172.2, 170.5, 155.4, 147.9, 137.0, 136.5, 135.5, 134.8, 133.6, 130.0, 129.8, 129.5, 127.1, 82.4, 80.1, 53.0, 50.0, 36.6, 28.3, 27.8, 18.5. HRMS (ESI) [M+Na]⁺ m/z calcd for C₂₇H₃₄N₂O₇Na 521.2264, found 521.2262.

<u>methyl</u> (98,128)-9-(tert-butyl)-12-((2',5'-dioxo-2',5'-dihydro-[1,1'-biphenyl]-2yl)methyl)-2,2-dimethyl-4,7,10-trioxo-3-oxa-5,8,11-triazatridecan-13-oate (3ab)

According to the general procedure, the crude residue was purified by flash column chromatography on silica gel (petroleum ether: ethyl acetate= 3:1; $R_f = 0.41$) to produce compound **3ab** (76 mg, 70% yield) as yellow oil. ¹H NMR (500

MHz, CDCl₃) δ 7.33 (dd, J = 18.7, 11.2 Hz, 1H), 7.26 – 7.19 (m, 2H), 7.17 (d, J = 7.0 Hz, 1H), 7.12 – 7.03 (m, 1H), 7.00 (s, 1H), 6.92 – 6.83 (m, 2H), 6.75 (d, J = 2.2 Hz, 1H), 5.44 – 5.36 (m, 1H), 4.87 – 4.75 (m, 1H), 4.31 (dd, J = 16.0, 9.5 Hz, 1H), 3.84 (dd, J = 15.9, 10.2 Hz, 1H), 3.80 – 3.69 (m, 2H), 3.66 (s, 3H), 3.05 (dd, J = 14.3, 5.9 Hz, 1H), 1.45 (s, 9H), 0.94 (s, 9H). ¹³C **NMR (126 MHz, CDCl₃)** δ 187.4, 172.0, 171.8, 170.2, 169.2, 147.7, 136.9, 136.6, 136.1, 135.5, 134.4, 133.4, 129.9, 129.2, 128.6, 127.3, 80.2, 60.4, 60.2, 53.5, 52.4, 44.3, 38.0, 35.0, 28.3, 26.4. **HRMS (ESI)** [M+Na]⁺ m/z calcd for C₂₉H₃₇N₃O₈Na 578.2478, found 578.2475.

<u>methyl</u> (6S,12S)-12-((2',5'-dioxo-2',5'-dihydro-[1,1'-biphenyl]-2-yl)methyl)-2,2,6trimethyl-4,7,10-trioxo-3-oxa-5,8,11-triazatridecan-13-oate (3bb)

According to the general procedure, the crude residue was • purified by flash column chromatography on silica gel (petroleum ether: ethyl acetate= 3:1; $R_f = 0.36$) to produce compound **3bb** (71 mg, 69% yield) as yellow oil. ¹H NMR

(500 MHz, CDCl₃) δ 7.39 (t, J = 7.7 Hz, 1H), 7.31 (t, J = 7.5 Hz, 1H), 7.21 (d, J = 5.6 Hz, 1H), 7.10 (d, J = 7.6 Hz, 1H), 6.92 – 6.84 (m, 3H), 6.76 (t, J = 4.3 Hz, 2H), 5.06 (d, J = 6.2 Hz, 1H), 4.73 (dd, J = 14.4, 7.7 Hz, 1H), 4.14 (s, 1H), 3.97 – 3.90 (m, 1H), 3.80 – 3.74 (m, 1H), 3.66 (s, 3H), 3.09 – 3.04 (m, 1H), 2.81 (dd, J = 14.4, 8.8 Hz, 1H), 1.43 (s, 9H), 1.31 (d, J = 7.1 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 187.3, 173.0, 171.7, 168.7, 147.7, 136.9, 136.7, 135.6, 134.4, 133.5, 129.9, 129.8, 127.3, 80.5, 65.5, 52.9, 52.6, 42.9, 35.2, 29.8, 28.4. HRMS (ESI) [M+Na]⁺ m/z calcd for C₂₆H₃₁N₃O₈Na 536.2009, found 536.2005.

<u>methyl</u> (6S,12S)-6-(tert-butyl)-12-((2',5'-dioxo-2',5'-dihydro-[1,1'-biphenyl]-2yl)methyl)-2,2-dimethyl-4,7,10-trioxo-3-oxa-5,8,11-triazatridecan-13-oate (3cb)

According to the general procedure, the crude residue was purified by flash column chromatography on silica gel (petroleum ether: ethyl acetate= 3:1; $R_f = 0.47$) to produce compound **3cb** (69 mg, 66% yield) as yellow oil. ¹H NMR

(500 MHz, CDCl₃) δ 7.38 (t, J = 7.5 Hz, 1H), 7.31 (d, J = 7.3 Hz, 1H), 7.25 (d, J = 7.6 Hz, 1H), 7.10 (d, J = 7.3 Hz, 1H), 7.02 (s, 1H), 6.88 (dt, J = 10.1, 6.2 Hz, 2H), 6.76 (d, J = 2.2 Hz, 1H), 6.64 (s, 1H), 5.31 (d, J = 8.5 Hz, 1H), 4.72 (dd, J = 14.4, 7.7 Hz, 1H), 3.87 (dd, J = 14.7, 5.1 Hz, 3H), 3.64 (s, 3H), 3.04 (dd, J = 14.5, 6.2 Hz, 1H), 2.84 (dd, J = 14.3, 8.2 Hz, 1H), 1.42 (s, 9H), 0.96 (s, 9H). ¹³C NMR (126 MHz, CDCl₃) δ 187.3, 171.7, 171.3, 168.5, 147.7, 136.9, 136.6, 135.6, 134.5, 133.5, 129.9, 129.7, 129.4, 128.6, 127.3, 79.8, 53.0, 52.5, 42.7, 35.5, 34.5, 28.4, 26.6, 25.5. HRMS (ESI) [M+Na]⁺ m/z calcd for C₂₉H₃₇N₃O₈Na 578.2478, found 578.2476.

<u>tert-butyl</u> (S)-2-(((S)-1-(((S)-3-(2',5'-dioxo-2',5'-dihydro-[1,1'-biphenyl]-2-yl)-1-<u>methoxy-1-oxopropan-2-yl)amino)-3,3-dimethyl-1-oxobutan-2-</u>

yl)carbamoyl)pyrrolidine-1-carboxylate (3db)

According to the general procedure, the crude residue was purified by flash column chromatography on silica gel (petroleum ether: ethyl acetate= 3:1; $R_f = 0.45$) to produce compound **3db** (70 mg, 68% yield) as yellow oil. ¹H NMR (500

MHz, CDCl₃) δ 7.48 (s, 1H), 7.37 (d, J = 7.6 Hz, 1H), 7.31 (s,

1H), 7.22 (dd, J = 13.6, 6.1 Hz, 1H), 7.10 (d, J = 7.4 Hz, 1H), 6.88 (dd, J = 13.1, 7.9 Hz, 2H), 6.76 (d, J = 8.7 Hz, 1H), 4.75 (dd, J = 14.2, 7.3 Hz, 1H), 4.26 (d, J = 19.0 Hz, 1H), 4.13 (dd, J = 25.6, 18.4 Hz, 1H), 3.76 – 3.67 (m, 1H), 3.65 (d, J = 13.2 Hz, 3H), 3.48 (d, J = 7.0 Hz, 1H), 3.34 (s, 1H), 3.01 (dt, J = 12.6, 6.3 Hz, 1H), 2.79 (s, 1H), 2.31 (s, 1H), 2.09 (s, 1H), 1.88 (s, 2H), 1.46 (s, 9H), 0.94 (s, 9H). ¹³C NMR (126 MHz, CDCl₃) δ 187.2, 171.8, 170.2, 156.1, 147.9, 146.4, 136.9, 136.6, 135.5, 135.1, 133.4, 131.4, 129.8, 129.1, 80.5, 60.1, 53.6, 52.4, 46.8, 35.5, 28.4, 26.5, 24.8. HRMS (ESI) [M+Na]⁺ m/z calcd for C₃₂H₄₁N₃O₈Na 618.2791, found 618.2787.

<u>methyl</u> (68,98,128)-12-((2',5'-dioxo-2',5'-dihydro-[1,1'-biphenyl]-2-yl)methyl)-9isobutyl-2,2,6-trimethyl-4,7,10-trioxo-3-oxa-5,8,11-triazatridecan-13-oate (3eb)

According to the general procedure, the crude residue was purified by flash column chromatography on silica gel (petroleum ether: ethyl acetate= 3:1; $R_f = 0.40$) to produce compound **3eb** (68 mg, 72% yield) as yellow oil. ¹H NMR (**500 MHz, CDCl**₃) δ 7.36 (d, J = 7.6 Hz, 1H), 7.30 (s, 1H),

7.25 – 7.21 (m, 2H), 7.13 – 7.10 (m, 2H), 6.88 (dd, J = 6.3, 4.6 Hz, 2H), 6.77 (d, J = 2.2 Hz, 1H), 5.05 (d, J = 7.5 Hz, 1H), 4.81 (d, J = 6.8 Hz, 1H), 4.42 – 4.39 (m, 1H), 4.11 – 4.08 (m, 1H), 3.64 (s, 3H), 3.14 (dd, J = 10.3, 5.7 Hz, 1H), 2.78 (dd, J = 14.4, 8.8 Hz, 1H), 1.45 (s, 3H), 1.43 (s, 9H), 0.93 (d, J = 3.0 Hz, 1H), 0.89 (s, 2H), 0.87 (d, J = 4.8 Hz, 6H). ¹³C NMR (126 MHz, CDCl₃) δ 187.3, 172.5, 171.8, 147.8, 136.9,

136.7, 135.6, 134.4, 133.5, 129.9, 129.8, 129.3, 128.5, 127.3, 80.6, 52.5, 51.6, 37.8, 35.3, 28.3, 24.6, 23.0, 21.8, 17.8. **HRMS (ESI)** [M+Na]⁺ m/z calcd for C₃₀H₃₉N₃O₈Na 592.2635, found 592.2633.

<u>methyl</u> (68,98,128)-12-((2',5'-dioxo-2',5'-dihydro-[1,1'-biphenyl]-2-yl)methyl)-9isopropyl-2,2,6-trimethyl-4,7,10-trioxo-3-oxa-5,8,11-triazatridecan-13-oate (3fb)

According to the general procedure, the crude residue was purified by flash column chromatography on silica gel (petroleum ether: ethyl acetate= 3:1; $R_f = 0.49$) to produce compound **3fb** (65 mg, 67% yield) as yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 7.39 – 7.34 (m, 1H), 7.30 (t, J = 7.7 Hz,

2H), 7.24 – 7.15 (m, 2H), 7.10 (d, J = 7.5 Hz, 1H), 6.93 – 6.86 (m, 2H), 6.77 (d, J = 2.3 Hz, 1H), 5.05 (d, J = 7.3 Hz, 1H), 4.79 (d, J = 6.2 Hz, 1H), 4.26 (dd, J = 8.7, 5.8 Hz, 1H), 4.14 (d, J = 11.5 Hz, 1H), 3.65 (s, 3H), 3.17 (dt, J = 22.8, 11.4 Hz, 1H), 3.00 (dd, J = 14.0, 8.3 Hz, 1H), 1.43 (s, 9H), 1.31 (d, J = 7.1 Hz, 3H), 0.90 (t, J = 8.2 Hz, 3H), 0.86 (d, J = 7.5 Hz, 1H), 0.80 (dd, J = 6.5, 3.6 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 187.3, 172.6, 171.8, 170.9, 147.8, 136.9, 136.7, 135.7, 134.4, 133.5, 130.0, 129.9, 129.2, 128.6, 127.4, 127.0, 100.0, 63.6, 58.0, 52.5, 38.0, 35.2, 28.3, 19.1. HRMS (ESI) [M+Na]⁺ m/z calcd for C₂₉H₃₇N₃O₈Na 578.2478, found 578.2476.

<u>methyl (68,98,128)-9-(tert-butyl)-12-((2',5'-dioxo-2',5'-dihydro-[1,1'-biphenyl]-2-</u> yl)methyl)-2,2,6-trimethyl-4,7,10-trioxo-3-oxa-5,8,11-triazatridecan-13-oate (3gb)

According to the general procedure, the crude residue was purified by flash column chromatography on silica gel (petroleum ether: ethyl acetate= 3:1; $R_f = 0.39$) to produce compound **3gb** (65 mg, 67% yield) as yellow oil. ¹H NMR (500

MHz, CDCl₃) δ 7.36 (dd, *J* = 7.6, 1.3 Hz, 1H), 7.31 – 7.27 (m, 2H), 7.20 (dd, *J* = 9.1, 2.6 Hz, 1H), 7.09 (dd, *J* = 7.6, 1.1 Hz, 1H), 6.88 (dt, *J* = 10.1, 6.2 Hz, 3H), 6.76 (d, *J* = 2.3 Hz, 1H), 5.04 (d, *J* = 7.3 Hz, 1H), 4.79 (dd, *J* = 14.2, 8.2 Hz, 1H), 4.19 (d, *J* = 9.2 Hz, 1H), 4.13 (s, 1H), 3.65 (s, 3H), 3.06 – 3.02 (m, 1H), 2.74 (dd, *J* = 14.4, 9.1 Hz, 1H),

1.43 (s, 9H), 1.29 (d, J = 7.0 Hz, 3H), 0.94 (s, 9H). ¹³C NMR (126 MHz, CDCl₃) δ 187.3, 172.2, 171.8, 170.1, 147.8, 136.9, 136.7, 135.6, 134.3, 133.4, 130.0, 129.8, 129.2, 128.5, 127.4, 80.1, 60.5, 52.4, 37.9, 35.9, 35.2, 34.9, 28.3, 26.4. HRMS (ESI) [M+Na]⁺ m/z calcd for C₃₀H₃₉N₃O₈Na 592.2635, found 592.2632.

<u>methyl</u> ((S)-2-((S)-2-((tert-butoxycarbonyl)amino)-3,3-dimethylbutanamido)-3-(2',5'-dioxo-2',5'-dihydro-[1,1'-biphenyl]-2-yl)propanoyl)-L-leucinate (3hb)

According to the general procedure, the crude residue was purified by flash column chromatography on silica gel (petroleum ether: ethyl acetate= 3:1; $R_f = 0.46$) to produce compound **3hb** (72 mg, 71% yield) as yellow oil. ¹H NMR (500

MHz, CDCI₃) δ 7.34 (dd, J = 14.0, 7.2 Hz, 2H), 7.24 (d, J = 15.4 Hz, 1H), 7.09 (d, J = 7.5 Hz, 1H), 6.96 (dd, J = 17.8, 9.1 Hz, 1H), 6.90 (d, J = 10.5 Hz, 2H), 6.84 – 6.64 (m, 2H), 5.15 (d, J = 8.0 Hz, 1H), 4.71 – 4.64 (m, 1H), 4.42 (dd, J = 7.9, 5.3 Hz, 1H), 3.81 (d, J = 8.2 Hz, 1H), 3.68 (s, 3H), 3.01 (dd, J = 14.6, 6.4 Hz, 1H), 2.78 (dd, J = 14.5, 9.7 Hz, 1H), 1.64 (dd, J = 7.9, 5.7 Hz, 1H), 1.62 – 1.58 (m, 1H), 1.52 (d, J = 8.2 Hz, 1H), 1.42 (s, 9H), 0.91 (dd, J = 22.6, 5.1 Hz, 6H), 0.86 (d, J = 8.6 Hz, 9H). ¹³C NMR (126 MHz, CDCI₃) δ 187.2, 173.8, 172.5, 171.4, 170.4, 169.8, 148.0, 136.9, 135.9, 135.1, 133.6, 130.0, 129.2, 129.1, 128.7, 127.2, 79.7, 62.8, 53.3, 52.2, 51.0, 41.7, 34.2, 28.3, 26.5, 24.7, 22.7, 21.9. HRMS (ESI) [M+Na]⁺ m/z calcd for C₃₃H₄₅N₃O₈Na 634.3104, found 634.3101.

<u>methyl</u> ((S)-2-((S)-2-((tert-butoxycarbonyl)amino)-3,3-dimethylbutanamido)-3-(2',5'-dioxo-2',5'-dihydro-[1,1'-biphenyl]-2-yl)propanoyl)-L-alaninate (3ib)

According to the general procedure, the crude residue was purified by flash column chromatography on silica gel (petroleum ether: ethyl acetate= 3:1; $R_f = 0.49$) to produce compound **3ib** (75 mg, 78% yield) as yellow oil. ¹H NMR (500

MHz, CDCl₃) δ 7.35 (q, *J* = 7.6 Hz, 2H), 7.26 (d, *J* = 6.7 Hz, 1H), 7.08 (t, *J* = 7.6 Hz, 2H), 6.95 (d, *J* = 9.9 Hz, 1H), 6.89 (s, 2H), 6.74 (s, 1H), 5.18 (d, *J* = 7.3 Hz, 1H), 4.75

(d, J = 7.4 Hz, 1H), 4.44 – 4.37 (m, 1H), 3.81 (d, J = 7.9 Hz, 1H), 3.70 (s, 3H), 3.06 (dd, J = 14.3, 6.2 Hz, 1H), 2.80 – 2.70 (m, 1H), 1.42 (s, 9H), 1.35 (s, 3H), 0.85 (s, 9H). ¹³C NMR (126 MHz, CDCl₃) δ 187.2, 172.6, 171.3, 170.3, 155.7, 148.0, 136.8, 135.9, 135.2, 133.5, 129.9, 129.1, 127.2, 79.7, 63.0, 53.2, 52.4, 48.3, 34.1, 28.3, 26.6, 17.9. HRMS (ESI) [M+Na]⁺ m/z calcd for C₃₀H₃₉N₃O₈Na 592.2635, found 592.2633.

<u>methyl</u> ((S)-2-((S)-2-((tert-butoxycarbonyl)amino)-3,3-dimethylbutanamido)-3-(2',5'-dioxo-2',5'-dihydro-[1,1'-biphenyl]-2-yl)propanoyl)-L-valinate (3jb)

According to the general procedure, the crude residue was purified by flash column chromatography on silica gel (petroleum ether: ethyl acetate= 3:1; $R_f = 0.43$) to produce compound **3jb** (71 mg, 79% yield) as yellow oil. ¹H NMR (500

MHz, CDCl₃) δ 7.33 (dd, J = 12.7, 7.3 Hz, 2H), 7.25 (dd, J = 14.9, 5.7 Hz, 2H), 7.09 (d, J = 7.6 Hz, 1H), 6.99 (d, J = 11.9 Hz, 1H), 6.89 (d, J = 2.0 Hz, 2H), 6.74 (d, J = 1.8 Hz, 1H), 5.23 (d, J = 8.7 Hz, 1H), 4.74 – 4.64 (m, 1H), 4.35 (dd, J = 8.4, 5.2 Hz, 1H), 3.86 (d, J = 8.9 Hz, 1H), 3.68 (s, 3H), 2.97 (dd, J = 14.7, 7.0 Hz, 1H), 2.81 (dd, J = 14.5, 9.1 Hz, 1H), 2.10 – 2.05 (m, 1H), 1.41 (s, 9H), 0.88 (d, J = 5.0 Hz, 9H), 0.87 – 0.80 (m, 6H). ¹³C NMR (126 MHz, CDCl₃) δ 187.2, 171.5, 171.4, 170.5, 155.5, 147.9, 136.9, 135.8, 134.9, 133.5, 129.9, 129.4, 129.0, 128.7, 128.6, 127.2, 79.6, 62.6, 57.5, 53.5, 52.1, 34.4, 31.1, 28.3, 26.5, 18.9, 17.8. HRMS (ESI) [M+Na]⁺ m/z calcd for C₃₂H₄₃N₃O₈Na 620.2948, found 620.2945.

<u>methyl</u> ((S)-2-((S)-2-((tert-butoxycarbonyl)amino)-3,3-dimethylbutanamido)-3-(2',5'-dioxo-2',5'-dihydro-[1,1'-biphenyl]-2-yl)propanoyl)-L-valyl-L-leucinate (3kb)

According to the general procedure, the crude residue was purified by flash column chromatography on silica gel (petroleum ether: ethyl acetate= 3:1; $R_f = 0.33$) to produce compound **3kb** (65 mg, 68% yield) as yellow oil. ¹H NMR

(500 MHz, CDCl₃) δ 7.50 (d, *J* = 13.1 Hz, 1H), 7.31 (s, 2H), 7.15 (s, 2H), 7.09 (d, *J* = 7.6 Hz, 1H), 6.92 (d, *J* = 10.4 Hz, 1H), 6.91 – 6.84 (m, 2H), 6.75 (d, *J* = 2.2 Hz, 1H), 5.29 (s, 1H), 4.76 (dd, *J* = 15.6, 7.5 Hz, 1H), 4.54 (dd, *J* = 14.6, 7.3 Hz, 1H), 4.33 (t, *J*

= 6.8 Hz, 1H), 3.97 (s, 1H), 3.73 (s, 3H), 2.97 (d, J = 11.8 Hz, 1H), 2.75 (dd, J = 14.2, 9.1 Hz, 1H), 2.08 (s, 1H), 1.42 (s, 9H), 1.40 (d, J = 7.1 Hz, 6H), 0.91 (dd, J = 7.2, 4.2 Hz, 6H), 0.88 (s, 3H), 0.86 (s, 9H). ¹³**C NMR (126 MHz, CDCl₃)** δ 187.3, 173.2, 171.3, 170.8, 170.3, 155.7, 147.9, 136.8, 136.7, 135.7, 135.0, 133.4, 129.9, 129.8, 129.3, 127.2, 79.6, 62.6, 58.5, 53.9, 52.4, 47.9, 34.4, 30.9, 28.4, 27.2, 26.6, 19.0, 18.2, 18.0. **HRMS (ESI)** [M+Na]⁺ m/z calcd for C₃₈H₅₄N₄O₉Na 733.3788, found 733.3785.

<u>methyl</u> ((S)-2-((S)-2-((tert-butoxycarbonyl)amino)-3,3-dimethylbutanamido)-3-(2',5'-dioxo-2',5'-dihydro-[1,1'-biphenyl]-2-yl)propanoyl)-L-valyl-L-prolinate (3lb)

According to the general procedure, the crude residue was purified by flash column chromatography on silica gel (petroleum ether: ethyl acetate= 3:1; $R_f = 0.36$) to produce compound **3lb** (69 mg, 65% yield) as yellow oil. ¹H NMR (500

MHz, CDCl₃) δ 7.40 – 7.31 (m, 2H), 7.25 (d, *J* = 6.8 Hz, 1H), 7.07 (d, *J* = 7.0 Hz, 1H), 6.88 (dd, *J* = 14.6, 6.3 Hz, 2H), 6.85 (s, 2H), 6.71 (d, *J* = 2.0 Hz, 1H), 5.26 – 5.15 (m, 1H), 4.68 (dd, *J* = 15.6, 7.5 Hz, 1H), 4.52 – 4.41 (m, 2H), 3.82 (s, 1H), 3.71 (d, *J* = 13.1 Hz, 3H), 3.64 (dd, *J* = 12.0, 7.7 Hz, 2H), 2.96 – 2.86 (m, 1H), 2.77 (dd, *J* = 14.5, 9.0 Hz, 1H), 2.27 – 2.15 (m, 2H), 2.06 – 1.92 (m, 6H), 1.43 (s, 2H), 1.41 (s, 9H), 0.88 (d, *J* = 7.1 Hz, 9H), 0.84 (d, *J* = 6.8 Hz, 1H). ¹³**C NMR (126 MHz, CDCl**₃) δ 187.3, 172.3, 170.4, 169.8, 155.5, 147.9, 136.9, 136.7, 135.6, 134.9, 133.5, 129.9, 129.2, 127.1, 79.5, 62.4, 58.9, 58.8, 55.6, 53.7, 52.2, 47.2, 34.6, 31.4, 29.0, 28.3, 26.5, 24.9, 19.1, 17.7. **HRMS (ESI)** [M+Na]⁺ m/z calcd for C₃₇H₅₀N₄O₉Na 717.3475, found 717.3472.

<u>methyl</u> ((S)-2-((S)-2-((tert-butoxycarbonyl)amino)-3,3-dimethylbutanamido)-3-(2',5'-dioxo-2',5'-dihydro-[1,1'-biphenyl]-2-yl)propanoyl)-L-leucyl-L-valinate (3mb)

According to the general procedure, the crude residue was purified by flash column chromatography on silica gel (petroleum ether: ethyl acetate= 3:1; $R_f = 0.38$) to produce compound **3mb** (64 mg, 63% yield) as yellow oil. ¹H NMR

(500 MHz, CDCl₃) δ 7.37 (d, J = 4.0 Hz, 2H), 7.28 – 7.25 (m, 1H), 7.23 (d, J = 6.0 Hz,

1H), 7.16 (s, 1H), 7.09 (d, J = 7.6 Hz, 1H), 7.03 (d, J = 7.8 Hz, 1H), 6.92 – 6.86 (m, 2H), 6.75 (d, J = 2.0 Hz, 1H), 5.08 (d, J = 5.4 Hz, 1H), 4.77 (s, 1H), 4.53 – 4.41 (m, 2H), 3.74 (d, J = 4.9 Hz, 1H), 3.72 (s, 3H), 3.20 (s, 1H), 2.60 (s, 1H), 2.18 (dd, J = 12.8, 6.4 Hz, 1H), 1.78 (s, 1H), 1.57 (dt, J = 22.3, 8.5 Hz, 2H), 1.43 (s, 9H), 0.93 (d, J = 6.8 Hz, 6H), 0.88 (t, J = 6.0 Hz, 6H), 0.82 (d, J = 14.9 Hz, 9H). ¹³C NMR (126 MHz, CDCI₃) δ 188.0, 187.0, 172.2, 171.9, 171.6, 170.8, 156.2, 148.0, 137.0, 136.6, 133.5, 130.1, 130.0, 128.7, 127.3, 80.1, 64.0, 57.6, 54.1, 52.2, 52.0, 40.6, 30.8, 28.4, 26.6, 24.8, 22.9, 21.8, 19.0, 18.1. HRMS (ESI) [M+Na]⁺ m/z calcd for C₃₈H₅₄N₄O₉Na 733.3788, found 733.3787.

<u>methyl</u> ((S)-2-((S)-2-((tert-butoxycarbonyl)amino)-3,3-dimethylbutanamido)-3-(2',5'-dioxo-2',5'-dihydro-[1,1'-biphenyl]-2-yl)propanoyl)-L-leucyl-L-alaninate (3nb)

According to the general procedure, the crude residue was purified by flash column chromatography on silica gel (petroleum ether: ethyl acetate= 3:1; $R_f = 0.32$) to produce compound **3nb** (72 mg, 69% yield) as yellow oil. ¹H NMR (500

MHz, CDCl₃) δ 7.38 (d, J = 3.8 Hz, 2H), 7.26 (d, J = 5.3 Hz, 1H), 7.22 (d, J = 7.0 Hz, 1H), 7.17 (d, J = 7.2 Hz, 2H), 7.09 (d, J = 7.6 Hz, 1H), 6.90 (dt, J = 22.8, 6.2 Hz, 2H), 6.75 (d, J = 2.3 Hz, 1H), 5.09 (s, 1H), 4.76 (s, 1H), 4.51 (dt, J = 14.6, 7.2 Hz, 2H), 3.72 (s, 3H), 3.68 (d, J = 4.6 Hz, 1H), 3.23 (s, 1H), 2.58 (s, 1H), 1.82 (s, 1H), 1.60 – 1.50 (m, 2H), 1.43 (s, 9H), 0.92 (s, 3H), 0.88 (dd, J = 6.2, 4.0 Hz, 6H), 0.80 (s, 9H). ¹³C **NMR (126 MHz, CDCl**₃) δ 188.1, 186.9, 173.2, 172.0, 171.6, 170.7, 156.4, 148.0, 137.1, 136.5, 136.2, 136.2, 133.5, 130.2, 130.0, 129.1, 128.9, 127.3, 80.2, 64.5, 54.5, 52.3, 51.8, 48.2, 40.5, 33.7, 28.4, 26.6, 24.8, 22.9, 21.7, 17.5. **HRMS (ESI)** [M+Na]⁺ m/z calcd for C₃₆H₅₀N₄O₉Na 705.3475, found 705.3472.

4. Copies of NMR spectra

S57

 $^{13}\mathrm{C}\{^{1}\mathrm{H}\}$ NMR (126 MHz, CDCl_3) spectrum of compound 10

¹³C{¹H} NMR (126 MHz, CDCl₃) spectrum of compound **1p**

S63

S64

 ^1H NMR (500 MHz, CDCl₃) spectrum of compound 1w

 $^{13}C\{^{1}H\}$ NMR (126 MHz, CDCl₃) spectrum of compound 1w

¹³C{¹H} NMR (126 MHz, CDCl₃) spectrum of compound 1xa

¹³C{¹H} NMR (126 MHz, CDCl₃) spectrum of compound **1ya**

 $^{13}C\{^1H\}$ NMR (126 MHz, CDCl_3) spectrum of compound 1za

 $^{13}C\{^1H\}$ NMR (126 MHz, CDCl_3) spectrum of compound 1cb

S81

¹H NMR (500 MHz, CDCl₃) spectrum of compound **1ib**

 $^{13}C\{^1H\}$ NMR (126 MHz, CDCl_3) spectrum of compound 11b

¹³C{¹H} NMR (126 MHz, CDCl₃) spectrum of compound **1lb**

 $^{13}\mathrm{C}\{^{1}\mathrm{H}\}$ NMR (126 MHz, CDCl_3) spectrum of compound 1mb

 $^{13}C\{^{1}H\}$ NMR (126 MHz, CDCl₃) spectrum of compound **3ea**

¹³C{¹H} NMR (126 MHz, CDCl₃) spectrum of compound **3fa**

 $^{13}C\{^{1}H\}$ NMR (126 MHz, CDCl₃) spectrum of compound **3ga**

 $^{13}C\{^1H\}$ NMR (126 MHz, CDCl_3) spectrum of compound 3ha

¹³C{¹H} NMR (126 MHz, CDCl₃) spectrum of compound **3ia**

S98

 $^{13}C\{^1H\}$ NMR (126 MHz, CDCl₃) spectrum of compound **30a**

 $^{13}C\{^{1}H\}$ NMR (126 MHz, CDCl₃) spectrum of compound **3pa**

 ^{19}F NMR (471 MHz, CDCl₃) spectrum of compound 3qa

¹H NMR (500 MHz, CDCl₃) spectrum of compound **3ra**

¹H NMR (500 MHz, CDCl₃) spectrum of compound **3sa**

3.00 H

3.5

3.0

3.07-J

2.0

2.5

1.02-

4.5 4.0 f1 (ppm)

0.81J

5.0

1.93 0.93 0.79 0.79 0.79

6.5

6.0

5.5

7.5 7.0

8.0

F78.0

-6000 -5000 -4000 -3000 -2000 -1000 -0

-1000

9.26₄ 3.12₄

1.0

0.5

0.0

1.5

¹H NMR (500 MHz, CDCl₃) spectrum of compound **3ta**

 $^{13}C\{^1H\}$ NMR (126 MHz, CDCl_3) spectrum of compound 3ta

¹H NMR (500 MHz, CDCl₃) spectrum of compound **3wa**

¹H NMR (500 MHz, CDCl₃) spectrum of compound **4ab**

¹H NMR (500 MHz, CDCl₃) spectrum of compound 4ac

¹H NMR (500 MHz, CDCl₃) spectrum of compound 4ae

 $^{13}C\{^1H\}$ NMR (126 MHz, CDCl₃) spectrum of compound 4ae

¹H NMR (500 MHz, CDCl₃) spectrum of compound 4af

¹H NMR (500 MHz, CDCl₃) spectrum of compound 4ag

¹H NMR (500 MHz, CDCl₃) spectrum of compound 4xa

¹H NMR (500 MHz, CDCl₃) spectrum of compound 4ya

S121

¹³C{¹H} NMR (126 MHz, CDCl₃) spectrum of compound **3fb**

¹H NMR (500 MHz, CDCl₃) spectrum of compound **3gb**

¹³C{¹H} NMR (126 MHz, CDCl₃) spectrum of compound **3gb**

¹H NMR (500 MHz, CDCl₃) spectrum of compound **3ib**

¹H NMR (500 MHz, CDCl₃) spectrum of compound **3mb**

¹H NMR (500 MHz, CDCl₃) spectrum of compound **3nb**

 $^{13}C\{^1H\}$ NMR (126 MHz, CDCl_3) spectrum of compound $\boldsymbol{3nb}$