Electronic Supplementary Information for

Ring expansion of spirocyclopropanes with stabilized sulfonium ylides: highly diastereoselective synthesis of cyclobutanes

Hisanori Nambu,^{*ab} Yuta Onuki,^a Kana Aso,^a Momoka Kanamori,^a Keisuke Tomohara,^b Kiyoshi Tsuge^c and Takayuki Yakura^{*a}

^a Faculty of Pharmaceutical Sciences, University of Toyama, Sugitani, Toyama 930-0194, Japan.

^b Laboratory of Pharmaceutical Manufacturing Chemistry, Kyoto Pharmaceutical University, Kyoto 607-8412, Japan.

^c Graduate School of Science and Engineering, University of Toyama, Gofuku, Toyama 930-8555, Japan.

Contents:

Experimental section

General	S2
I. Preparation of spirocyclopropanes 2a-h and 6	S3–S7
II. Ring expansion of spirocyclopropanes with sulfonium ylides	S8–S15
III. Conversion of spirocyclopropane 3a into cyclobutane 4	S16
References	S17
¹ H and ¹³ C NMR spectra of 2a–h , 6 , 3a–o , 4 , 7a , 8a , 7b and 8b	S18–S46

Experimental section

General. Melting points are uncorrected. IR spectra were recorded on a JASCO FT/IR-460 Plus spectrophotometer and absorbance bands are reported in wavenumber (cm⁻¹). All NMR spectra were recorded using Bruker Ascend 500 (500 MHz), JEOL JNM-ECX400P (400 MHz) and Bruker UltrashieldTM 300 (300 MHz) spectrometers. ¹H NMR spectra were recorded at 500 or 400 MHz. Chemical shifts are reported relative to internal standard (tetramethylsilane at $\delta_{\rm H}$ 0.00 or CDCl₃ at $\delta_{\rm H}$ 7.26). Data are presented as follows: chemical shift ($\delta_{\rm h}$ ppm), multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet), coupling constant and integration. ¹³C NMR spectra were recorded at 100 or 75 MHz. The following internal reference was used (CDCl₃ at δ 77.0). All ¹³C NMR spectra were determined with complete proton decoupling. High-resolution mass spectra (HRMS) were determined with Thermo Scientific LTQ Orbitrap XL ETD [electrospray ionization (ESI)]. Column chromatography was performed on Silica Gel 60 PF₂₅₄ (Nacalai Tesque) and Kanto silica gel 60 N (63–210 mesh) under pressure. Analytical thin layer chromatography (TLC) was carried out on Merck Kieselgel 60 F₂₅₄ plates. Visualization was accomplished with UV light and phosphomolybdic acid stain solution or basic potassium permanganate stain solution followed by heating.

All reagents, such as Meldrum's acid, 1,3-dimethylbarbituric acid, powdered K₂CO₃, Rh₂(esp)₂, 4-acetoxystyrene, 3-methoxystyrene, 2-vinylnaphthalene, 1,4-dibromobut-2-ene, conc. H₂SO₄, C_6H_5Cl , dehydrated EtOAc, CH_2Cl_2 , DMF, Et_2O and MeOH are commercially available and were purchased from suppliers such as Sigma-Aldrich Co.; Wako Pure Chemical Industries, Ltd.; Tokyo Chemical Industry Co., Ltd.; Nacalai Tesque, INC. Purchased C₆H₅Cl was distilled and used as an anhydrous solvent. (2-Bromo-1-phenylethyl)dimethylsulfonium bromide,¹ [2-bromo-1-(4-methylphenyl)ethyl]dimethylsulfonium bromide,¹ [2-bromo-1-(4-bromophenyl)ethyl]dimethylsulfonium bromide,¹ (2-bromoethyl)diphenylsulfonium trifluoromethanesulfonate,² dimethylsulfonium benzoylmethylide (1a),³ dimethylsulfonium 4-methoxybenzoylmethylide $(1b),^{3}$ dimethylsulfonium 3-methoxybenzoylmethylide $(1c),^4$ dimethylsulfonium 2- $(1d),^5$ dimethylsulfonium 4-nitrobenzoyl-methylide $(1e)^{3}$ methoxybenzoylmethylide dimethylsulfonium 4-chlorobenzoylmethylide (1f),³ and tetrahydrothiophenium acetylmethylide $(1g)^3$, dimethylsulfonium ethoxycarbonylmethylide $(1h)^3$ were prepared according to literature procedures.

I. Preparation of spirocyclopropanes 2a-h and 6

6,6-Dimethyl-1-phenyl-5,7-dioxaspiro[2.5]octane-4,8-dione (2a).⁶

Meldrum's acid (288 mg, 2.0 mmol) and powdered K₂CO₃ (830 mg, 6.0 mmol) were added to a suspension of (2-bromo-1-phenylethyl)dimethylsulfonium bromide (782 mg, 2.4 mmol) in EtOAc (20 mL). After stirring at room temperature for 3 h, the reaction was quenched with water (20 mL), and the resulting mixture was extracted with EtOAc (3×20 mL). The combined organic layers were washed with brine (20 mL) and dried over anhydrous MgSO₄. The filtrate was concentrated in vacuo, and the residue was purified by column chromatography (silica gel, 25% EtOAc in hexane) to provide **2a** (422 mg, 86%) as a white solid: mp 134.2–135.8 °C [lit.,⁶ mp 130–131 °C]; IR (film, cm⁻¹) v 3002, 1766, 1741, 1328, 1292, 1203, 1176; ¹H NMR (400 MHz, CDCl₃) δ 7.37–7.30 (m, 5H), 3.45 (t, *J* = 9.4 Hz, 1H), 2.69 (dd, *J* = 9.4, 4.8 Hz, 1H), 2.55 (dd, *J* = 9.4, 4.8 Hz, 1H), 1.73 (s, 3H), 1.72 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 167.7, 163.4, 131.0, 129.4, 128.7, 128.4, 104.9, 44.6, 33.1, 27.9, 27.6, 22.9.

6,6-Dimethyl-1-p-tolyl-5,7-dioxaspiro[2.5]octane-4,8-dione (2c).⁶

According to the procedure for the synthesis of **2a**, **2c** was prepared from Meldrum's acid (288 mg, 2.0 mmol) with [2-bromo-1-(4-methylphenyl)ethyl]dimethylsulfonium bromide (819 mg, 2.4 mmol) for 3 h. The crude product was purified by column chromatography

(silica gel, 20% EtOAc in hexane) to provide **2c** (362 mg, 65%) as a white solid: mp 151.0– 153.0 °C [lit.,⁶ mp 137–138 °C]; IR (KBr, cm⁻¹) v 3001, 1760, 1736, 1357, 1200, 1186; ¹H NMR (400 MHz, CDCl₃) δ 7.22 (d, *J* = 8.0 Hz, 2H), 7.15 (d, *J* = 8.0 Hz, 2H), 3.42 (t, *J* = 9.5 Hz, 1H), 2.68 (dd, *J* = 9.2, 4.6 Hz, 1H), 2.54 (dd, *J* = 9.5, 4.6 Hz, 1H), 2.33 (s, 3H), 1.73 (s, 3H), 1.72 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 167.8, 163.5, 138,7, 129.3, 129.1, 128.0, 104.9, 44.8, 33.2, 27.9, 27.7, 22.9, 21.2.

1-(4-Bromophenyl)-6,6-dimethyl-5,7-dioxaspiro[2.5]octane-4,8-dione (2d).⁷

According to the procedure for the synthesis of **2a**, **2d** was prepared from Meldrum's acid (288 mg, 2.0 mmol) with [2-bromo-1-(4-bromophenyl)ethyl]dimethylsulfonium bromide (974 mg, 2.4 mmol) for 1 h. The crude product was purified by column chromatography

(silica gel, 20% EtOAc in hexane) to provide **2d** (527 mg, 87%) as a white solid: mp 156.0–156.5 °C; IR (KBr, cm⁻¹) v 3003, 1766, 1740, 1329, 1295, 1203; ¹H NMR (400 MHz, CDCl₃) δ 7.48 (d, *J* = 8.2 Hz, 1H), 7.21 (d, *J* = 8.2 Hz, 1H), 3.39 (t, *J* = 9.4 Hz, 1H), 2.63 (dd, *J* = 9.2, 5.0 Hz, 1H), 2.55 (dd, *J* = 9.4, 4.8 Hz, 1H), 1.74 (s, 3H), 1.71 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 167.5, 163.5, 131.6, 131.0, 130.2, 123.0, 105.0, 43.5, 32.9, 28.0, 27.6, 23.1.

1-(4-Acetoxyphenyl)-6,6-dimethyl-5,7-dioxaspiro[2.5]octane-4,8-dione (2b).⁶

Rh₂(esp)₂ (7.6 mg, 0.01 mmol, 1 mol%) was added to a solution of 5-diazo-2,2-dimethyl-1,3dioxane-4,6-dione (170 mg, 1.0 mmol), 4-acetoxystyrene (324 mg, 2.0 mmol) in CH₂Cl₂ (2.0 mL) at room temperature. After stirring at reflux for 21 h, the reaction was cooled to room temperature. Evaporation in vacuo furnished the crude product, which was purified by column chromatography (silica gel, 10% EtOAc in hexane) to provide **2b** (226 mg, 70%) as a white solid: mp 181.2–182.0 °C [lit.,⁶ mp 174–175 °C]; IR (film, cm⁻¹) v 2997, 1761, 1739, 1335, 1296, 1197, 1169; ¹H NMR (400 MHz, CDCl₃) δ 7.35 (d, *J* = 8.7 Hz, 2H), 7.09 (d, *J* = 8.7 Hz, 2H), 3.42 (t, *J* = 9.4 Hz, 1H), 2.65 (dd, *J* = 9.4, 4.8 Hz, 1H), 2.55 (dd, *J* = 9.6, 4.6 Hz, 1H), 2.29 (s, 3H), 1.74 (s, 3H), 1.72 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 169.1, 167.6, 163.5, 150.9, 130.5, 128.6, 121.6, 105.0, 43.8, 33.1, 28.0, 27.6, 23.1, 21.1.

1-(3-Methoxyphenyl)-6,6-dimethyl-5,7-dioxaspiro[2.5]octane-4,8-dione (2e).⁶

According to the procedure for the synthesis of **2b**, **2e** was prepared from 5-diazo-2,2-dimethyl-1,3-dioxane-4,6-dione (170 mg, 1.0 mmol) with 3-methoxystyrene (268 mg, 2.0 mmol) for 9.5 h. The crude product was purified by column chromatography (silica gel,

10% EtOAc in hexane) to provide 2e (237 mg, 81%) as a white solid: mp 92.0–93.0 °C [lit.,⁶ mp

84–85 °C]; IR (KBr, cm⁻¹) v 3003, 1766, 1741, 1329, 1296, 1205; ¹H NMR (400 MHz, CDCl₃) δ 7.25 (m, 1H), 6.92 (d, *J* = 7.8 Hz, 1H), 6.87–6.85 (m, 2H), 3.80 (s, 3H), 3.41 (t, *J* = 9.4 Hz, 1H), 2.66 (dd, *J* = 9.4, 4.8 Hz, 1H), 2.53 (dd, *J* = 9.4, 4.8 Hz, 1H), 1.74 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 167.8, 163.5, 159.5, 132.7, 129.4, 121.9, 115.1, 114.1, 104.9, 55.2, 44.5, 33.0, 27.9, 27.7, 23.0.

6,6-Dimethyl-1-naphthalen-2-yl-5,7-dioxaspiro[2.5]octane-4,8-dione (2f).⁶

According to the procedure for the synthesis of **2b**, **2f** was prepared from 5-diazo-2,2-dimethyl-1,3-dioxane-4,6-dione (170 mg, 1.0 mmol) with 2-vinylnaphthalene (308 mg, 2.0 mmol) for 24 h. The crude product was purified by column chromatography (silica gel,

10% EtOAc in hexane) to provide **2f** (234 mg, 75%) as a white solid: mp 142.3–143.8 °C [lit.,⁶ mp 141–142 °C]; IR (KBr, cm⁻¹) v 2998, 1766, 1740, 1332, 1296, 1200; ¹H NMR (400 MHz, CDCl₃) δ 7.85–7.80 (m, 4H), 7.51–7.48 (m, 2H), 7.42 (dd, *J* = 8.3, 2.0 Hz, 1H), 3.61 (t, *J* = 9.5 Hz, 1H), 2.83 (dd, *J* = 9.2, 4.6 Hz, 1H), 2.63 (dd, *J* = 9.5, 4.9 Hz, 1H), 1.74 (s, 3H), 1.73 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 167.7, 163.5, 133.2, 132.9, 129.1, 128.5, 128.1, 128.0, 127.6, 126.7, 126.6, 126.5, 104.9, 44.9, 33.3, 27.9, 27.7, 23.2.

6,6-Dimethyl-1-vinyl-5,7-dioxaspiro[2.5]octane-4,8-dione (2g).8

K₂CO₃ (173 mg, 1.25 mmol) was added to a suspension of Meldrum's acid (144 mg, 1.0 mmol) in DMF (20 mL) at 0 °C. After stirring at 0 °C for 10 min, 1,4-dibromobut-2-ene (257 mg, 1.2 mmol) was added in a single portion and the reaction was additionally stirred at 0 °C for 1 h and at room temperature for 2 h. A further portion of K₂CO₃ (173 mg, 1.25 mmol) was added, and then the reaction was stirred at room temperature for 16 h. The reaction was quenched with sat. aq. NH₄Cl (10 mL), and the resulting mixture was extracted with Et₂O (3 × 20 mL). The combined organic layers were washed with brine (20 mL) and dried over anhydrous MgSO₄. The filtrate was concentrated in vacuo, and the residue was purified by column chromatography (silica gel, 1:1 Et₂O/hexane) to provide **2g** (112 mg, 57%) as a white solid: mp 48.0–48.5 °C; IR (film, cm⁻¹) v 3002, 1768, 1742, 1353, 1326, 1284, 1198; ¹H NMR (400 MHz, CDCl₃) δ 5.76 (dt, *J* =

16.9, 10.1 Hz, 1H), 5.47 (dd, J = 16.9, 0.9 Hz, 1H), 5.35 (dd, J = 10.1, 0.9 Hz, 1H), 2.78 (q, J = 9.2 Hz, 1H), 2.37 (dd, J = 9.2, 4.6 Hz, 1H), 2.23 (dd, J = 8.7, 4.6 Hz, 1H), 1.78 (s, 3H), 1.73 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 167.4, 165.1, 131.2, 121.8, 105.0, 42.9, 31.4, 27.6, 27.5, 24.5.

6,6-Dimethyl-5,7-dioxaspiro[2.5]octane-4,8-dione (2h).²

Meldrum's acid (288 mg, 2.0 mmol) and powdered K₂CO₃ (829 mg, 6.0 mmol) were added to a suspension of (2-bromoethyl)diphenylsulfonium trifluoromethanesulfonate (1.33 g, 3.0 mmol) in EtOAc (20 mL). After stirring at room temperature for 1 h, the reaction was quenched with water (10 mL), and the resulting mixture was extracted with EtOAc (3×10 mL). The combined organic layers were washed with brine (10 mL) and dried over anhydrous MgSO₄. The filtrate was concentrated in vacuo, and the residue was purified by column chromatography (silica gel, 20% EtOAc in hexane) to provide **2h** (297 mg, 87%) as a white solid: mp 65.5–66.3 °C [lit.,² mp 60.5–61.5 °C]; IR (film, cm⁻¹) v 3021, 1775, 1752, 1399, 1337, 1205; ¹H NMR (400 MHz, CDCl₃) δ 1.99 (s, 4H), 1.82 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 168.1, 105.1, 27.6, 24.1 23.9.

5,7-dimethyl-1-phenyl-5,7-diazaspiro[2.5]octane-4,6,8-trione (6).9

1,3-Dimethylbarbituric acid (156 mg, 1.0 mmol) and powdered K₂CO₃ (415 mg, 3.0 mmol) were added to a suspension of (2-bromo-1-phenylethyl)dimethylsulfonium bromide (391 mg, 1.2 mmol) in EtOAc (20 mL). After stirring at room temperature for 9 h, the reaction was quenched with water (20 mL), and the resulting mixture was extracted with EtOAc (3 × 20 mL). The combined organic layers were washed with brine (20 mL) and dried over anhydrous MgSO₄. The filtrate was concentrated in vacuo, and the residue was purified by column chromatography (silica gel, 40% EtOAc in hexane) to provide **6** (175 mg, 68%) as a white solid: mp 93.0–93.5 °C [lit.,^{9a} mp 78–80 °C, lit.,^{9b} mp 87–88 °C]; IR (film, cm⁻¹) v 3019, 1737, 1690, 1673, 1420, 1387, 1214; ¹H NMR (400 MHz, CDCl₃) δ 7.29–7.26 (m, 5H), 3.52 (t, *J* = 9.2 Hz, 1H), 3.37 (s, 3H), 3.11 (s,

3H), 2.59 (dd, *J* = 9.2, 3.2 Hz, 1H), 2.45 (dd, *J* = 9.2, 3.2 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 168.2, 164.8, 151.8, 132.4, 129.6, 128.1, 127.9, 46.2, 35.8, 28.7, 28.4, 24.5.

II. Ring expansion of spirocyclopropanes with sulfonium ylides

Typical procedure for the ring expansion of spirocyclopropane 2a with sulfonium ylide 1a (Table 1, entry 6):

rac-(1R,2S)-1-Benzoyl-7,7-dimethyl-2-phenyl-6,8-dioxaspiro[3.5]nonane-5,9-dione (3a).

Dimethylsulfonium benzoylmethylide (**1a**) (81 mg, 0.45 mmol) was added to a solution of 6,6dimethyl-1-phenyl-5,7-dioxaspiro[2.5]octane-4,8-dione (**2a**) (74 mg, 0.30 mmol) in C₆H₅Cl (1.5 mL) at room temperature. After stirring at 80 °C for 6 h, the reaction was cooled to room temperature. Evaporation in vacuo furnished the crude product, which was purified by column chromatography (silica gel, 10% EtOAc in hexane) to provide **3a** (94 mg, 86%) as a white solid: mp 134.0–135.0 °C; IR (film, cm⁻¹) v 3003, 1771, 1739, 1685, 1301, 1203; ¹H NMR (400 MHz, CDCl₃) δ 7.48–7.23 (m, 10H), 4.86 (d, *J* = 10.1 Hz, 1H), 4.32 (dt, *J* = 10.1, 9.6 Hz, 1H), 2.92 (d, *J* = 9.6 Hz, 2H), 1.76 (s, 3H), 1.74 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 196.8, 170.0 168.4, 141.7, 134.6, 133.4, 129.0, 128.5, 128.3, 127.8, 127.7, 105.8, 57.4, 46.3, 39.1, 38.1, 29.1, 28.0; HRMS (ESI) *m/z* calcd for C₂₂H₂₁O₅ (M+H)⁺ 365.1384, found 365.1383.

rac-(1*R*,2*S*)-1-(4-Methoxybenzoyl)-7,7-dimethyl-2-phenyl-6,8-dioxaspiro[3.5]nonane-5,9-dione (3b) (Table 2, entry 2).

According to the typical procedure for the ring expansion of **2a** with **1a**, **3b** was prepared from **2a** (74 mg, 0.30 mmol) with **1b** (95 mg, 0.45 mmol) for 6 h. The crude product was purified by column chromatography (silica gel, 10% EtOAc in hexane) to

provide **3b** (87 mg, 74%) as a white solid: mp 116.8–117.6 °C; IR (KBr, cm⁻¹) v 3007, 1769, 1739, 1601, 1302, 1262, 1204, 1171; ¹H NMR (400 MHz, CDCl₃) δ 7.50–7.26 (m, 9H), 4.82 (d, J = 10.1 Hz, 1H), 4.31 (dt, J = 10.1, 9.6 Hz, 1H), 3.79 (s, 3H), 2.91 (d, J = 9.6 Hz, 2H), 1.79 (s, 3H), 1.74 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 194.9, 170.2, 168.6, 163.8, 141.8, 130.9, 129.0, 127.8, 127.3, 113.7, 105.7, 57.9, 55.4, 46.1, 39.6, 38.0, 29.1, 28.1; HRMS (ESI) *m/z* calcd for C₂₃H₂₃O₆ (M+H)⁺ 395.1489, found 395.1490.

rac-(1*R*,2*S*)-1-(3-Methoxybenzoyl)-7,7-dimethyl-2-phenyl-6,8-dioxaspiro[3.5]nonane-5,9-dione (3c) (Table 2, entry 3).

According to the typical procedure for the ring expansion of **2a** with **1a**, **3c** was prepared from **2a** (74 mg, 0.30 mmol) with **1c** (95 mg, 0.45 mmol) for 6 h. The crude product was purified by column chromatography (silica gel, 10% to 30% EtOAc in

hexane) to provide **3c** (102 mg, 86%) as a colorless amorphous: IR (ATR, cm⁻¹) v 1737, 1667, 1597, 1283, 1246, 1199; ¹H NMR (500 MHz, CDCl₃) δ 7.57–6.65 (m, 9H), 4.83 (d, 1H, *J* = 10.0 Hz), 4.15 (dt, 1H, *J* = 10.0, 9.5 Hz), 3.27 (s, 3H), 2.88 (dd, 1H, *J* = 11.0, 10.0 Hz), 2.80 (dd, 1H, *J* = 10.5, 10.0 Hz), 1.75 (s, 3H), 1.70 (s, 3H); ¹³C NMR (75 Hz, CDCl₃) δ 198.8, 170.0, 168.8, 157.0, 142.5, 133.5, 130.6, 128.4, 127.3, 127.0, 126.1, 120.8, 110.2, 105.3, 60.2, 54.1, 46.4, 38.8, 36.9, 29.2, 27.7; HRMS (FAB) *m/z* calcd for C₂₃H₂₃O₆ (M+H)⁺ 395.1489, found 395.1488.

rac-(1*R*,2*S*)-1-(2-Methoxybenzoyl)-7,7-dimethyl-2-phenyl-6,8-dioxaspiro[3.5]nonane-5,9dione (3d) (Table 2, entry 4).

According to the typical procedure for the ring expansion of 2a with 1a, 3d was prepared from 2a (74 mg, 0.30 mmol) with 1d (95 mg, 0.45 mmol) for 6 h. The crude product was purified by column chromatography (silica gel, 9% to 15% EtOAc in hexane) to provide

O O O O O O O O O O Me 3d

NO₂

О Зе

3d (103 mg, 87%) as a colorless amorphous: IR (ATR, cm⁻¹) v 3001, 1735, 1681, 1283, 1256, 1199; ¹H NMR (500 MHz, CDCl₃) δ 7.50–7.00 (m, 9H), 4.87 (d, 2H, *J* = 10.5 Hz), 3.56 (s, 3H), 2.91 (m, 2H), 1.77 (s, 3H), 1.74 (s, 3H); ¹³C NMR (75 Hz, CDCl₃) δ 196.5, 169.9, 168.2, 159.6, 141.7, 135.7, 129.4, 128.9, 127.6, 127.6, 121.0, 120.7, 111.5, 105.6, 57.1, 54.9, 46.3, 39.0, 38.1, 29.0, 27.9; HRMS (FAB) *m/z* calcd for C₂₃H₂₃O₆ (M+H)⁺ 395.1489, found 395.1483.

rac-(1*R*,2*S*)-7,7-Dimethyl-1-(4-nitrobenzoyl)-2-phenyl-6,8-dioxaspiro[3.5]nonane-5,9-dione (3e) (Table 2, entry 5).

According to the typical procedure for the ring expansion of **2a** with **1a**, **3e** was prepared from **2a** (74 mg, 0.30 mmol) with **1e** (102 mg, 0.45 mmol) for 24 h. The crude product was purified by column chromatography (silica gel, 10% EtOAc in hexane) to

provide **3e** (75 mg, 61%) as a white solid: mp 108.0–110.0 °C; IR (KBr, cm⁻¹) v 3003, 1771, 1738, 1696, 1526, 1302, 1202; ¹H NMR (400 MHz, CDCl₃) δ 7.26–8.11 (m, 9H), 4.88 (d, *J* = 10.1 Hz,

1H), 4.29 (dt, J = 10.1, 9.2 Hz, 1H), 2.94 (d, J = 9.2 Hz, 2H), 1.80 (s, 3H), 1.76 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 195.9, 169.5, 168.1, 150.4, 141.0, 139.4, 129.4, 128.2, 127.6, 123.7, 106.0, 56.8, 46.5, 39.0, 38.5, 29.0, 28.1; HRMS (ESI) *m*/*z* calcd for C₂₂H₁₉NNaO₇ (M+Na)⁺ 432.1054, found 432.1059.

rac-(1*R*,2*S*)-1-(4-Chlorobenzoyl)-7,7-dimethyl-2-phenyl-6,8-dioxaspiro[3.5]nonane-5,9dione (3f) (Table 2, entry 6).

According to the typical procedure for the ring expansion of 2a with 1a, 3f was prepared from 2a (74 mg, 0.30 mmol) with 1f (97 mg, 0.45 mmol) for 5 h. The crude product was purified by column chromatography (silica gel, 10% EtOAc in hexane) to provide 3f

(100 mg, 83%) as a white solid: mp 166.5–168.0 °C; IR (KBr, cm⁻¹) v 3007, 1771, 1739, 1684, 1302, 1202; ¹H NMR (400 MHz, CDCl₃) δ 7.58–7.21 (m, 9H), 4.82 (d, *J* = 10.1 Hz, 1H), 4.30 (dt, *J* = 9.6 Hz, 10.1 Hz, 1H), 2.91 (d, *J* = 9.6 Hz, 2H), 1.80 (s, 3H), 1.75 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 195.7, 169.9, 168.4, 141.4, 140.0, 132.8, 129.8, 129.0, 128.0, 127.7, 105.9, 57.3, 46.2, 39.3, 38.2, 29.1, 28.1; HRMS (ESI) *m/z* calcd for C₂₂H₁₉ClNaO₅ (M+Na)⁺ 421.0813, found 421.0817.

rac-(1*R*,2*S*)-1-Acetyl-7,7-dimethyl-2-phenyl-6,8-dioxaspiro[3.5]nonane-5,9-dione (3g) (Table 2, entry 7).

According to the typical procedure for the ring expansion of **2a** with **1a**, **3g** was prepared from **2a** (74 mg, 0.30 mmol) with **1g** (65 mg, 0.45 mmol) for 24 h. The crude product was purified by column chromatography (silica gel, 10% EtOAc in hexane) to provide **3g** (33 mg, 36%) as a white solid: mp

96.0–97.0 °C; IR (KBr, cm⁻¹) v 3003, 1771, 1739, 1711, 1301, 1202; ¹H NMR (400 MHz, CDCl₃) δ 7.51–7.26 (m, 5H), 4.19 (m, 1H), 2.84 (m, 1H), 2.76 (m, 2H), 1.99 (s, 3H), 1.87 (s, 3H), 1.75 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 204.6, 169.5, 168.8, 141.1, 129.1, 127.0, 105.9, 59.2, 45.7, 39.3, 38.5, 28.9, 28.1, 26.8; HRMS (ESI) *m/z* calcd for C₁₇H₁₈NaO₅ (M+Na)⁺ 325.1046, found 325.1047.

rac-(1*R*,2*S*)-Ethyl 7,7-dimethyl-5,9-dioxo-2-phenyl-6,8-dioxaspiro[3.5]nonane-1carboxylate (3h) (Table 2, entry 8).

According to the typical procedure for the ring expansion of **2a** with **1a**, **3h** was prepared from **2a** (74 mg, 0.30 mmol) with **1h** (67 mg, 0.45 mmol) for 23 h. The crude product was purified by column chromatography (silica gel, 10% EtOAc in hexane) to provide **3h** (53 mg, 53%) as a white solid:

mp 132.5–133.7 °C; IR (KBr, cm⁻¹) v 2997, 1773, 1743, 1720, 1698, 1303, 1202; ¹H NMR (400 MHz, CDCl₃) δ 7.43–7.26 (m, 5H), 4.32 (dt, *J* = 10.1, 9.6 Hz, 1H), 4.15 (m, 3H), 2.87 (dd, *J* = 10.5, 9.6 Hz, 1H), 2.78 (dd. *J* = 10.5, 10.1 Hz, 1H), 1.83 (s, 3H), 1.74 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 170.0, 169.1, 168.4, 141.4, 128.7, 127.3, 126.9, 105.6, 61.3, 50.3, 46.5, 38.0, 37.6, 29.0, 28.2, 14.0; HRMS (ESI) *m/z* calcd for C₁₈H₂₀NaO₆ (M+Na)⁺ 355.1152, found 355.1155.

rac-(1*R*,2*S*)-4-(1-Benzoyl-7,7-dimethyl-5,9-dioxo-6,8-dioxaspiro[3.5]nonan-2-yl)phenyl acetate (3i) (Table 3, entry 1).

According to the typical procedure for the ring expansion of **2a** with **1a**, **3i** was prepared from **2b** (97 mg, 0.30 mmol) with **1a** (81 mg, 0.45 mmol) for 3 h. The crude product was purified by column chromatography (silica gel, 10% EtOAc in hexane) to provide **3i** (81

δď

3j

mg, 64%) as a white solid: mp 148.5–149.7 °C; IR (KBr, cm⁻¹) v 3003, 1766, 1739, 1684, 1304, 1200; ¹H NMR (400 MHz, CDCl₃) δ 7.49–7.11 (m, 9H), 4.82 (d, *J* = 10.1 Hz, 1H), 4.33 (dt, *J* = 10.1, 9.2 Hz 1H), 2.91 (d, *J* = 9.2 Hz, 2H), 2.32 (s, 3H), 1.73 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 196.7, 170.0, 169.5, 168.2, 150.1, 139.3, 134.6, 133.5, 128.8, 128.6, 128.3, 122.1, 105.8, 57.4, 46.3, 38.4, 38.0, 29.2, 28.0, 21.1; HRMS (ESI) *m/z* calcd for C₂₄H₂₃O₇ (M+H)⁺ 423.1438, found 423.1437.

rac-(1*R*,2*S*)-1-Benzoyl-7,7-dimethyl-2-(4-methylphenyl)-6,8-dioxaspiro[3.5]nonane-5,9dione (3j) (Table 3, entry 2).

According to the typical procedure for the ring expansion of 2a with 1a, 3j was prepared from 2c (83 mg, 0.30 mmol) with 1a (81 mg, 0.45 mmol) for 6 h. The crude product was purified by column chromatography (silica gel, 10% EtOAc in hexane) to provide 3j (84

mg, 74%) as a white solid: mp 181.5–183.0 °C; IR (KBr, cm⁻¹) v 3003, 1771, 1739, 1685, 1301, 1203; ¹H NMR (400 MHz, CDCl₃) δ 7.48–7.20 (m, 9H), 4.83 (d, *J* = 9.6 Hz, 1H), 4.27 (t, *J* = 9.6 Hz)

OEt

Me

3h

Hz, 1H), 2.88 (d, J = 9.6 Hz, 2H), 1.76 (s, 3H), 1.73 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 197.0, 170.1, 168.5, 138.7, 137.5, 134.6, 133.4, 129.6, 128.5, 128.4, 127.6, 105.7, 57.7, 46.3, 38.9, 38.2, 29.1, 28.0, 21.1; HRMS (ESI) *m*/*z* calcd for C₂₃H₂₃O₅ (M+H)⁺ 379.1540, found 379.1540.

rac-(1*R*,2*S*)-1-Benzoyl-2-(4-bromophenyl)-7,7-dimethyl-6,8-dioxaspiro[3.5]nonane-5,9dione (3k) (Table 3, entry 3).

According to the typical procedure for the ring expansion of **2a** with **1a**, **3k** was prepared from **2d** (90 mg, 0.30 mmol) with **1a** (81 mg, 0.45 mmol) for 6 h. The crude product was purified by column chromatography (silica gel, 10% EtOAc in hexane) to provide **3k** (91

mg, 80%) as a white solid: mp 163.0–164.0 °C; IR (KBr, cm⁻¹) v 2942, 1772, 1738, 1685, 1307, 1298, 1203; ¹H NMR (400 MHz, CDCl₃) δ 7.50–6.87 (m, 9H), 4.79 (d, *J* = 10.1 Hz, 1H), 4.30 (q, *J* = 9.6 Hz, 1H), 2.89 (m, 2H), 1.73 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 196.6, 169.9, 168.1, 140.7, 134.6, 133.6, 132.0, 129.4, 128.7, 128.2, 121.6, 105.9, 56.9, 46.4, 38.2, 37.8, 29.1, 28.0; HRMS (ESI) *m/z* calcd for C₂₂H₂₀Br O₅ (M+H)⁺ 443.0489, found 443.0489.

rac-(1*R*,2*S*)-1-Benzoyl-2-(3-methoxyphenyl)-7,7-dimethyl-6,8-dioxaspiro[3.5]nonane-5,9dione (31) (Table 3, entry 4).

According to the typical procedure for the ring expansion of **2a** with **1a**, **3l** was prepared from **2e** (88 mg, 0.30 mmol) with **1a** (81 mg, 0.45 mmol) for 12 h. The crude product was purified by column chromatography (silica gel, 10% EtOAc in hexane) to provide **3l**

(81 mg, 69%) as a white solid: mp 116.1–118.0 °C; IR (KBr, cm⁻¹) v 2924, 1771, 1738, 1684, 1303, 1203; ¹H NMR (400 MHz, CDCl₃) δ 7.49–7.11 (m, 9H), 4.82 (d, *J* = 10.1 Hz, 1H), 4.33 (dt, *J* = 9.2 Hz, 10.1 Hz 1H), 2.91 (d, *J* = 9.2 Hz, 2H), 2.32 (s, 3H), 1.73 (s, 3H), 1.73 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 196.9, 169.9, 168.4, 160.0, 143.3, 134.6, 133.4, 130.0, 128.5, 128.4, 120.0, 113.3, 105.8, 57.2, 46.4, 39.2, 37.9, 29.1, 28.0; HRMS (ESI) *m/z* calcd for C₂₃H₂₃O₆ (M+H)⁺ 395.1489, found 395.1489.

rac-(1*R*,2*S*)-1-Benzoyl-7,7-dimethyl-2-(naphthalen-2-yl)-6,8-dioxaspiro[3.5]nonane-5,9-dione (3m) (Table 3, entry 5).

According to the typical procedure for the ring expansion of **2a** with **1a**, **3m** was prepared from **2f** (94 mg, 0.30 mmol) with **1a** (81 mg, 0.45 mmol) for 48 h. The crude product was purified by column chromatography (silica gel, 10% EtOAc in hexane) to provide **3m**

(99 mg, 80%) as a white solid: mp 212.5–214.0 °C; IR (KBr, cm⁻¹) v 3007, 1772, 1736, 1684, 1299, 1201; ¹H NMR (400 MHz, CDCl₃) δ 7.92–7.18 (m, 12H), 4.97 (d, *J* = 10.1 Hz, 1H), 4.50 (dt, *J* = 9.6 Hz, 10.1 Hz 1H), 3.03 (t, *J* = 10.1 Hz, 1H), 2.97 (t, *J* = 9.6 Hz, 1H) 1.77 (s, 3H), 1.75 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 196.9, 170.1, 168.4, 138.9, 134.6, 133.4, 133.3, 132.8, 129.0, 128.5, 128.4, 127.9, 127.7, 126.7, 126.4, 126.1, 125.3, 105.8, 57.2, 46.5, 39.3, 38.0, 29.2, 28.0; HRMS (ESI) *m/z* calcd for C₂₆H₂₃O₅ (M+H)⁺ 415.1540, found 415.1539.

rac-(1*R*,2*R*)-1-Benzoyl-7,7-dimethyl-2-vinyl-6,8-dioxaspiro[3.5]nonane-5,9-dione (3n) (Table 3, entry 6).

According to the typical procedure for the ring expansion of **2a** with **1a**, **3n** was prepared from **2g** (59 mg, 0.30 mmol) with **1a** (81 mg, 0.45 mmol) for 24 h. The crude product was purified by column chromatography (silica gel, 10% EtOAc in hexane) to provide **3n** (61 mg, 68%) as a white solid: mp

105.0–107.0 °C; IR (KBr, cm⁻¹) v 3001, 1772, 1740, 1684, 1295, 1204; ¹H NMR (400 MHz, CDCl₃) δ 7.76–7.27 (m, 5H), 6.12 (m, 1H), 5.19–5.26 (m, 2H), 4.54 (d, *J* = 9.6 Hz, 1H), 3.82 (m, 1H), 2.69 (dd, *J* = 11.0, 10.1 Hz, 1H), 2.59 (dd, *J* = 10.5, 9.6 Hz, 1H), 1.72 (s, 3H), 1.70 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 196.9, 169.7 168.2, 139.2, 134.8, 133.5, 128.6, 128.5, 117.9, 105.6, 55.4, 46.8, 37.7, 36.0, 29.1, 28.0; HRMS (ESI) *m/z* calcd for C₁₈H₁₉O₅ (M+H)⁺ 315.1227, found 315.1226.

1-Benzoyl-7,7-dimethyl-6,8-dioxaspiro[3.5]nonane-5,9-dione (30) (Table 3, entry 7).

According to the typical procedure for the ring expansion of **2a** with **1a**, **3o** was prepared from **2h** (51 mg, 0.30 mmol) with **1a** (81 mg, 0.45 mmol) for 24 h. The crude product was purified by column chromatography (silica gel, 10% EtOAc in hexane) to provide **3o** (22 mg, 26%) as a pale yellow oil; IR

(KBr, cm⁻¹) v 3003, 1771, 1739, 1683, 1305, 1284, 1203; ¹H NMR (400 MHz, CDCl₃) δ 7.77–7.26 (m, 5H), 4.75 (dd, *J* = 10.5, 9.6 Hz, 1H), 3.02 (m, 1H), 2.78 (m, 1H), 2.66 (m, 1H), 2.48 (m, 1H

Ö

3n

C

``O 30

3m

1H), 1.78 (s, 3H), 1.71 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 197.0, 169.7, 168.4, 134.4, 133.6, 128.8, 128.2, 105.5, 58.1, 49.3, 30.3, 29.1, 28.0, 27.8, 23.0; HRMS (ESI) *m/z* calcd for C₁₆H₁₆ NaO₅ (M+Na)⁺ 311.0890, found 311.0890.

rac-(1*R*,2*S*)-1-Benzoyl-6,8-dimethyl-2-phenyl-6,8-diazaspiro[3.5]nonane-5,7,9-trione (7a) and *rac-*(6*R*,7*S*)-7-benzoyl-1,3-dimethyl-6-phenyl-6,7-dihydro-4*H*-pyrano[2,3-*d*]pyrimidine-2,4(3*H*,5*H*)-dione (8a) (Scheme 4).

Sulfonium ylide **1a** (54 mg, 0.30 mmol) was added to a solution of 5,7-dimethyl-1-phenyl-5,7diazaspiro[2.5]-octane-4,6,8-trione (**6**) (52 mg, 0.20 mmol) in C₆H₅Cl (1.0 mL) at room temperature. After stirring at 50 °C for 4 h, the reaction was cooled to room temperature. Evaporation in vacuo furnished the crude product, which was purified by column chromatography (silica gel, 10% EtOAc in hexane) to provide **7a** (48 mg, 64%) as a white solid and **8a** (6 mg, 8%) as a pale yellow solid.

7a: mp 148.0–148.5 °C; IR (film, cm⁻¹) v 3020, 1744, 1674, 1457, 1421, 1383, 1215; ¹H NMR (400 MHz, CDCl₃) δ 7.51 (d, J = 6.9 Hz, 2H), 7.48–7.39 (m, 5H), 7.32 (tt, J = 7.3, 1.6 Hz, 1H), 7.23 (t, J = 8.0 Hz, 2H), 4.70 (d, J = 9.6 Hz, 1H), 4.31 (q, J = 9.6 Hz, 1H), 3.36 (s, 3H), 3.24 (s, 3H), 2.96 (t, J = 10.5 Hz, 1H), 2.80 (dd, J = 10.8, 9.4 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 197.3, 171.0, 170.6, 150.9, 142.2, 134.8, 133.5, 128.9, 128.4, 128.2, 127.8, 127.6, 60.5, 49.4, 38.9, 36.0, 28.9, 28.6; HRMS (ESI) *m/z* calcd for C₂₂H₂₀ N₂NaO₄ (M+Na)⁺ 399.1315, found 399.1317. **8a**: mp 180.5–181.0 °C; IR (film, cm⁻¹) v 3026, 2925, 1744, 1674, 1651, 1453, 1382, 1223; ¹H NMR (400 MHz, CDCl₃) δ 7.90 (d, J = 6.9 Hz, 2H), 7.63 (t, J = 7.6 Hz, 1H), 7.50 (t, J = 7.8 Hz, 2H), 7.31–7.24 (m, 5H), 5.87 (d, J = 4.6 Hz, 1H), 3.65 (q, J = 5.6 Hz, 1H), 3.38 (s, 3H), 3.37 (s, 3H), 2.80 (dd, J = 16.7, 5.3 Hz, 1H), 2.67 (dd, J = 16.7, 6.4 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 193.5, 162.7, 155.1, 150.9, 139.5, 134.3, 133.8, 129.1, 129.0, 128.5, 127.6, 127.3, 85.8, 82.1, 38.3, 28.8, 28.0, 22.0; HRMS (ESI) *m/z* calcd for C₂₂H₂₁N₂O₄ (M+H)⁺ 377.1496, found 377.1497.

rac-(1*R*,2*S*)-1-Benzoyl-7,7-dimethyl-2-phenyl-6,8-dioxaspiro[3.5]nonane-5,9-dione (7b) and *rac*-(2*R*,3*S*)-ethyl 6,8-dimethyl-5,7-dioxo-2-phenyl-2,3-dihydro-4*H*-pyrano[5,6-*d*]pyrimidine-2-carboxylate (8b) (Scheme 4).

Sulfonium ylide **1h** (67 mg, 0.45 mmol) was added to a solution of **6** (77 mg, 0.30 mmol) in C_6H_5Cl (1.5 mL) at room temperature. After stirring at 50 °C for 2 h, the reaction was cooled to room temperature. Evaporation in vacuo furnished the crude product, which was purified by column chromatography (silica gel, 25% EtOAc in hexane) to provide **7b** (85 mg, 83%) as a white solid and **8b** (9 mg, 9%) as a white solid.

7b: mp 80.5–81.0 °C; IR (film, cm⁻¹) v 3018, 1749, 1703, 1651, 1489, 1216, 1183; ¹H NMR (400 MHz, CDCl₃) δ 7.45 (d, *J* = 7.3 Hz, 2H), 7.37 (t, *J* = 7.5 Hz, 2H), 7.37 (m, 1H), 4.28 (q, *J* = 9.8 Hz, 1H), 4.11 (qd, *J* = 7.2, 2.2 Hz, 2H), 4.00 (d, *J* = 10.0 Hz, 1H), 3.37 (s, 3H), 3.36 (s, 3H), 2.84–2.73 (m, 2H), 1.19 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 170.4, 170.3, 170.2, 151.1, 142.0, 128.6, 127.2, 127.1, 61.2, 52.9, 49.2, 37.9, 35.9, 29.1, 28.7, 14.1; HRMS (ESI) *m/z* calcd for C₁₈H₂₀N₂NaO₅ (M+Na)⁺ 367.1264, found 367.1269.

8b: mp 146.0–147.0 °C; IR (film, cm⁻¹) v 3028, 2960, 1740, 1677, 1456, 1422, 1383, 1219; ¹H NMR (400 MHz, CDCl₃) δ 7.36–7.28 (m, 3H), 7.22 (dd, *J* = 5.3, 3.0 Hz, 2H), 4.90 (d, *J* = 6.0 Hz, 1H), 4.17–4.09 (m, 2H), 3.50 (q, *J* = 6.3 Hz, 1H), 3.39 (s, 3H), 3.36 (s, 3H), 2.78 (dd, *J* = 6.4, 3.2 Hz, 2H), 1.11 (t, *J* = 7.3 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 167.8, 162.7, 154.8, 150.9, 138.8, 128.9, 127.7, 127.4, 86.4, 80.4, 62.1, 39.2, 28.8, 28.1, 22.7, 13.8; HRMS (ESI) *m/z* calcd for C₁₈H₂₁N₂O₅ (M+H)⁺ 345.1445, found 345.1447.

III. Conversion of spirocyclopropane 3a into cyclobutane 4 (Scheme 3) *rac-*(1*R*,2*S*)-Dimethyl 2-benzoyl-3-phenylcyclobutane-1,1-dicarboxylate (4).

conc. H₂SO₄ (0.023 mL, 0.45 mmol) was added to a solution of **3a** (109 mg, 0.30 mmol) in Et₂O/MeOH (1:1, 1.5 mL) at room temperature. After stirring at 50 °C for 24 h, the reaction mixture was cooled to room temperature and diluted with Et₂O (10 mL). The resulting mixture was washed with saturated aqueous NaHCO₃ (5 mL) and brine (10 mL), and dried over anhydrous MgSO₄. Filtration and evaporation in vacuo furnished the crude product, which was purified by column chromatography (silica gel, 10% EtOAc in hexane) to provide **4** (87 mg, 82%) as a pale yellow oil; IR (film, cm⁻¹) v 2952, 1734, 1677, 1273, 1165; ¹H NMR (400 MHz, CDCl₃) δ 7.99–7.20 (m, 10H), 4.84 (d, *J* = 10.1 Hz, 1H), 4.19 (dt, *J* = 9.1 Hz, 10.1 Hz, 1H), 3.80 (s, 3H), 3.59 (s, 3H), 3.19 (dd, *J*=11.5, 9.1 Hz, 1H), 2.49 (dd, *J*=11.5, 10.1 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 196.9, 171.2, 169.2, 142.1, 136.2, 133.3, 128.6, 128.6, 128.5, 126.9, 126.8, 53.7, 53.0, 52.8, 52.6, 36.4, 33.4; HRMS (ESI) *m/z* calcd for C₂₁H₂₀O₅ (M+H)⁺ 353.1384, found 353.1382.

References

- 1. P. Gopinath and S. Chandrasekaran, J. Org. Chem., 2011, 76, 700–703.
- H. Nambu, N. Ono, W. Hirota, M. Fukumoto and T. Yakura, *Chem. Pharm. Bull.*, 2016, 64, 1763– 1768.
- 3. H. Nambu, Y. Onuki, N. Ono, K. Tsuge and T. Yakura, Chem. Commun., 2019, 55, 6539–6542.
- S. J. Sabounchei, A. Yousefi, M, Ahmadianpoor, A. Hashemi, M. Bayat, A. Sedghi, F. A. Bagherjeri, and R. W. Gable, *Polyhedron*, 2016, 117, 273–282.
- 5. S. K. Pagire, N. Kumagai, and M. Shibasaki, ACS Catal., 2021, 11, 11597–11606.
- 6. Y. R. Lee and J. H. Choi, Bull. Korean Chem. Soc., 2006, 27, 503–507.
- C. Guarino, Y. Hamon, C. Croix, A.-S. Lamort, S. Dallet-Choisy, S. Marchand-Adam, A. Lesner, T. Baranek, M.-C. Viaud-Massuard, C. Lauritzen, J. Pedersen, N. Heuzé-Vourc'h, M. Si-Tahar, E. Fıratlı, D. E. Jenne, F. Gauthier, M. S. Horwitz, N. Borregaard and B. Korkmaz, *Biochem. Pharmacol*, 2017, 131, 52–67.
- a) S. Danishefsky and R. K. Singh, J. Org. Chem., 1975, 40, 3807–3808; b) B. M. Trost, P. J. Morris and S. J. Sprague, J. Am. Chem. Soc., 2012, 134, 17823–17831.
- a) X. Wang and Y. R. Lee, *Bull. Korean Chem. Soc.*, 2013, 34, 1735–1740; b) P. Qian, B. Du, R. Song, X. Wu, H. Mei, J. Han and Y. Pan, *J. Org. Chem.*, 2016, 81, 6546–6553.

2.273

0.00

1.819

