Lead-free Cs₂AgBiBr₆ double perovskite microcrystals for

effective visible-light photocatalytic thio/selenocyanation

Ting Zhong, Haibo Zhu,^{*} Yeye Zheng, Gaowen Ren, Xinmei Xie, Qiangwen Fan,^{*} Zongbo Xie, Zhanggao Le^{*}

Jiangxi Province Key Laboratory of Synthetic Chemistry, East China University of Technology, Nanchang, 330013, China

 $* Corresponding \ authors: \ hbzhu@ecut.edu.cn, \ fanqw2019@ecut.edu.cn, \ zhgle@ecut.edu.cn, \ authors: \ hbzhu@ecut.edu.cn, \ fanqw2019@ecut.edu.cn, \ authors: \ hbzhu@ecut.edu.cn, \ fanqw2019@ecut.edu.cn, \ authors: \ hbzhu@ecut.edu.cn, \ authors: \ hbzhu@ecut.edu.cn, \ fanqw2019@ecut.edu.cn, \ authors: \ hbzhu@ecut.edu.cn, \ authors: \ a$

1.	General	2
2.	Experimental sections	2
	2.1 Preparation of Cs ₂ AgBiBr ₆	2
	2.2 characterization of CABB	2
	2.3 Fluorescence Quenching Experiments	3
	2.4 Optimization of reaction conditions	4
	2.5 General Procedure for the thiocyanation	5
	2.6 General Procedure for the recycle experiments	5
	2.7 HRMS spectrums of the intermediates	5
3.	Data for the thiocyanation indoles.	7
4.	¹ H NMR, ¹³ CNMR and ¹⁹ F NMR for the products.	19
5.	References	62

1. General

All commercial reagents were used directly without further purification, unless otherwise stated. 1,4-dioxane was purchased from J & K chemical, stored over 4 Å molecular sieves and handled under N₂. DMSO- d_6 and CDCl₃ were purchased from Shanghai aladdin Biochemical Technology Co. The following abbreviations were used to describe NMR signals: s = singlet, d = doublet, t = triplet, m = mulitplet, dd = doublet of doublets, q = quartet.

2. Experimental sections

2.1 Preparation of Cs₂AgBiBr₆

CABB was synthesized according to previously reported methods with a slight modification,¹ 2.130 g CsBr (10.0 mmol), 0.940 g AgBr (5.0 mmol) and 2.245 g BiBr₃ (5.0 mmol) were added into a 100 ml round bottom flask with 50 mL of 48 % HBr. The mixture was heated to 110 °C for 2 h, then cooled to room temperature. An orange powder precipitated from solution, centrifuged at 8000 rpm for 5 min and dried at 70 °C under reduced pressure for 4 h to obtain the CABB product. The CABB product was dissolved in DMSO giving 50 mM the transparent solution. 1 mL CABB transparent solution was added into 10 mL DCM, then precipitated, centrifuged at 8000 rpm for 5 min and dried at 70 °C under reduced pressure overnight to obtain the CABB nanoparticles.

2.2 characterization of CABB

Figure S1 Absorbance spectrum (a) and Tauc plot of UV-Vis absorption data showing the character of an indirect band gap (b)

Figure S2 Powder XRD patterns of CABB before and after reactions.

2.3 Fluorescence Quenching Experiments

The fluorescence quenching experiment was conducted using a Perkin Elmer LS55 fluorescence spectrophotometer (USA).

Add CABB powder (1 mg) to 1,4-dioxane (5 mL), 1,4-dioxane of indole (10⁻⁴ mol/L, 5 mL) and ammonium thiocyanate (10⁻⁴ mol/L, 5 mL), respectively. Prepare a solution of 1,4-dioxane (5 mL) containing CABB (1 mg). Then they were uniformly dispersed by ultrasound.

Figure S3 Fluorescence Quenching Experiments

2.4 Optimization of reaction conditions

Table S1. Optimization of the reaction	conditions ^a
--	-------------------------

	NH4SCN CABB (5 mol%) 1,4-dioxane Blue LED, rt, air 2a	
Entry	Variation from the standard conditions	Yield $(\%)^b$
1	none	97
2	DCE	48
3	MeCN	71
4	EtOH	30
5	EtOAc	78
6	THF	76
7	Without CABB	29
8	AgBr instead of CABB	30
9	BiBr ₃ instead of CABB	36
10	50 W green LED	32
11	50 W white LED	36
12	dark	nr
13	N_2 atmosphere	6
14	CsPbBr ₃ was used	82
15	KSCN	37

^{*a*} Standard reaction conditions: indoles **1a** (0.2 mmol), NH₄SCN (0.4 mmol), CABB (5 mol %), solvent (2 mL), 50 W 457 nm Blue LED, r.t., air, 20 h. ^{*b*} Isolated yield.

	•				SeCN
		→ + KSeCN	AcOH, C solvent, I Blue LEE	ABB rt, air D, 20 h	
Entry	KSeCN (equiv)	CABB (mol%)	AcOH (mol%)	Solvent	Yield $(\%)^b$
1	1.2	/	/	1,4-dioxane	14
2	1.2	5	/	1,4-dioxane	47
3	1.2	/	5	1,4-dioxane	31
4	1.2	5	5	1,4-dioxane	68
5	1.5	5	5	1,4-dioxane	81
6	2.0	5	5	1,4-dioxane	73
7	1.5	5	5	THF	78
8	1.5	5	5	DCE	32
9	1.5	5	5	MeCN	75

Table S2. Optimization of selenocyanation conditions^a

10	1.5	5	5	EtOAc	72	
	11.1			1) GADD (1.0() +	10.()

^a Reaction conditions: indoles (0.2 mmol), NH₄SCN (x mmol), CABB (y mol %), AcOH (z mol%), solvent (2 ml), 50 W 457 nm Blue LED, r.t., air, 20 h. ^b Isolated yield.

2.5 General Procedure for the thiocyanation

A suspension of indole (0.2 mmol, 1 equiv), NH₄SCN (0.4 mmol, 2 equiv.) and $Cs_2AgBiBr_6$ (10 mg, 5 mol%) in 1,4-dioxane (2 mL) was added to a 10 mL quartz glass tube, and the resulting reaction mixture was stirred under irradiation of a 457 nm Blue LED and an irradiation distance of about 5 cm under air atmosphere at room temperature. After total conversion of the indoles (detected by TLC), the isolated photocatalyst was centrifuged, and the resulting mixture was purified by flash silica gel chromatography (EtOAc/PE = 1/3) to afford the desired products.

2.6 General Procedure for the recycle experiments

0.2 mmol indole, 0.4 mmol NH₄SCN, 20 mg Cs₂AgBiBr₆ and 1,4-dioxane (2 mL) were added to a 10 ml glass tube and irradiated with a 457 nm Blue LED in air at room temperature for 20 h. Upon completion of the reaction, the organic layer was obtained by decantation operation, and the insoluble residue was washed by ethyl acetate (2×10 mL). The combined organic layer was purified by flash silica gel chromatography (EtOAc/PE = 1/3) to afford the thiocyanation products. The resulted residue was dried under vacuum and was charged again with fresh reagents, repeating the process.

2.7 HRMS spectrums of the intermediates

HRMS (ESI) m/z: calcd for C₁₅H₁₁NS [M + H]⁺: 238.0690, found: 238.0675.

HRMS (ESI) m/z: calcd for $C_{15}H_{13}NOS \ [M + H]^+$: 256.0796, found: 256.0776.

3. Data for the thiocyanation indoles.

3-thiocyanato-1H-indole

2a²: Flash column chromatography (petroleum/ethyl acetate 3:1) afforded the titled thiocyanation indole as a white solid; mp 72.4-74.1 °C; ¹H NMR (500 MHz, CDCl₃) δ 8.80 (s, 1H), 7.78 (dd, J = 6.0, 2.9 Hz, 1H), 7.44 (d, J = 2.8 Hz, 1H), 7.40 (dd, J = 6.1, 2.7 Hz, 1H), 7.29 (dd, J = 6.0, 3.0 Hz, 2H); ¹³C NMR (126 MHz, CDCl₃) δ 136.11, 131.30 127.68, 123.83, 121.87, 118.63, 112.43, 112.31, 91.61.

2-phenyl-3-thiocyanato-1H-indole

2b³: Flash column chromatography (petroleum/ethyl acetate 3:1) afforded the titled thiocyanation indole as a white solid; mp 168-170 °C; ¹H NMR (500 MHz, DMSO-*d*₆) δ 12.42 (s, 1H), 7.86 (d, *J* = 7.4 Hz, 2H), 7.73 (d, *J* = 7.2 Hz, 1H), 7.63 (t, *J* = 7.2 Hz, 2H), 7.56 (d, *J* = 7.1 Hz, 2H), 7.37 – 7.26 (m, 2H); ¹³C NMR (126 MHz, DMSO-*d*₆) δ 143.63, 136.29, 130.44, 129.80, 129.62, 129.40, 129.30, 123.88, 121.90, 118.51, 112.95, 112.86, 87.60.

2-methyl-3-thiocyanato-1H-indole

2c³: Flash column chromatography (petroleum/ethyl acetate 3:1) afforded the titled thiocyanation indole as a white solid; mp 97.0-98.8 °C; ¹H NMR (500 MHz, CDCl₃) δ 8.58 (s, 1H), 7.66 (d, *J* = 7.6 Hz, 1H), 7.28 (d, *J* = 6.9 Hz, 1H), 7.26 – 7.17 (m, 2H), 2.47 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 142.11, 135.14, 128.72, 123.00, 121.58, 118.09, 112.19, 111.28, 88.85, 12.09.

1-phenyl-3-thiocyanato-1*H*-indole

2d²: Flash column chromatography (petroleum/ethyl acetate 3:1) afforded the titled thiocyanation indole as a yellow oil; ¹H NMR (500 MHz, DMSO- d_6) δ 8.36 (s, 1H), 7.80 (dd, J = 5.0, 3.8 Hz, 1H), 7.67 – 7.58 (m, 5H), 7.54 – 7.47 (m, 1H), 7.42 – 7.36 (m, 2H); ¹³C NMR (126 MHz, DMSO- d_6) δ 138.12, 136.32, 135.80, 130.45, 128.66, 128.28, 125.01, 124.62, 122.76, 119.00, 112.35, 112.07, 92.98.

1-methyl-3-thiocyanato-1H-indole

2e²: Flash column chromatography (petroleum/ethyl acetate 3:1) afforded the titled thiocyanation indole as a white solid; mp 77-79 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.77 (d, *J* = 7.7 Hz, 1H), 7.34 (d, *J* = 3.2 Hz, 3H), 7.29 (dd, *J* = 11.7, 4.2 Hz, 1H), 3.74 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 137.20, 135.16, 128.51, 123.47, 121.64, 118.95, 112.01, 110.29, 89.78, 33.47.

1-benzyl-3-thiocyanato-1H-indole

2f²: Flash column chromatography (petroleum/ethyl acetate 3:1) afforded the titled thiocyanation indole as a white solid; mp 84.6-86.2 °C; ¹H NMR (500 MHz, DMSO- d_6) δ 8.22 (s, 1H), 7.70 (dd, J = 6.2, 2.7 Hz, 1H), 7.64 (dd, J = 6.3, 2.4 Hz, 1H), 7.38 – 7.21 (m, 7H), 5.50 (s, 2H); ¹³C NMR (126 MHz, DMSO- d_6) δ 137.56, 136.69, 136.47, 129.17, 128.45, 128.21, 127.80, 123.61, 121.93, 118.61, 112.70, 112.14, 89.74, 50.16.

4-methyl-3-thiocyanato-1H-indole

2g³: Flash column chromatography (petroleum/ethyl acetate 3:1) afforded the titled thiocyanation indole as a white solid; mp 125.9-126.5 °C; ¹H NMR (500 MHz, CDCl₃) δ 8.74 (s, 1H), 7.44 (d, *J* = 2.6 Hz, 1H), 7.22 (d, *J* = 8.5 Hz, 1H), 7.15 (t, *J* = 7.7 Hz, 1H), 6.98 (d, *J* = 7.0 Hz, 1H), 2.92 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 136.50, 132.25, 131.01, 125.58, 123.96, 123.51, 113.57, 110.14, 91.92, 19.25.

3-thiocyanato-1H-indole-4-carbaldehyde

2h: Flash column chromatography (petroleum/ethyl acetate 3:1) afforded the titled thiocyanation indole as a white solid; mp 169-171 °C; ¹H NMR (500 MHz, DMSO- d_6) δ 12.50 (s, 1H), 10.81 (s, 1H), 8.17 (d, J = 2.8 Hz, 1H), 7.89 (d, J = 8.1 Hz, 1H), 7.83 (d, J = 7.4 Hz, 1H), 7.45 (t, J = 7.7 Hz, 1H); ¹³C NMR (126 MHz, DMSO- d_6) δ 191.56, 138.52, 135.93, 129.01, 125.40, 125.04, 122.96, 119.92, 113.53, 91.11.

4-nitro-3-thiocyanato-1H-indole

2j: Flash column chromatography (petroleum/ethyl acetate 3:1) afforded the titled thiocyanation indole as a yellow solid; mp 156-158 °C; ¹H NMR (500 MHz, DMSO- d_6) δ 12.82 (s, 1H), 8.29 (s, 1H), 7.97 (dd, J = 16.0, 8.0 Hz, 2H), 7.44 (t, J = 8.0 Hz, 1H); ¹³C NMR (126 MHz, DMSO- d_6) δ 141.36, 139.48, 137.56, 122.67, 120.08, 119.04, 118.71, 113.46, 91.07.

5-methyl-3-thiocyanato-1H-indole

2k³: Flash column chromatography (petroleum/ethyl acetate 3:1) afforded the titled thiocyanation indole as a white solid; mp 93.1-94.5 °C; ¹H NMR (500 MHz, CDCl₃) δ 8.70 (s, 1H), 7.56 (s, 1H), 7.39 (dt, *J* = 5.4, 2.8 Hz, 1H), 7.28 (dd, *J* = 8.3, 2.3 Hz, 1H), 7.11 (d, *J* = 8.3 Hz, 1H), 2.54 – 2.44 (m, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 134.38, 131.52, 131.19, 127.93, 125.52, 118.21, 112.46, 111.91, 91.03, 21.59.

3-thiocyanato-1*H*-indol-5-ol

21: Flash column chromatography (petroleum/ethyl acetate 3:1) afforded the titled thiocyanation indole as a white solid; 128-130°C; ¹H NMR (500 MHz, DMSO-*d*₆) δ 11.74 (s, 1H), 9.17 (s, 1H), 7.85 (d, *J* = 2.6 Hz, 1H), 7.32 (d, *J* = 8.7 Hz, 1H), 6.95 (s, 1H), 6.86 – 6.66 (m, 1H); ¹³C NMR (126 MHz, DMSO-*d*₆) δ 152.92, 133.55, 130.90, 128.97, 113.91, 113.71, 112.84, 101.85, 88.12.

5-methoxy-3-thiocyanato-1H-indole

2m³: Flash column chromatography (petroleum/ethyl acetate 3:1) afforded the titled thiocyanation indole as a white solid; mp 119.8-120.7 °C; ¹H NMR (500 MHz, CDCl₃) δ 8.79 (s, 1H), 7.42 (d, *J* = 2.7 Hz, 1H), 7.27 (d, *J* = 8.9 Hz, 1H), 7.17 (d, *J* = 1.9 Hz, 1H), 6.93 (dd, *J* = 8.8 Hz, 1H), 3.90 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 155.70, 131.62, 130.92, 128.53, 114.45, 113.17, 112.32, 99.78, 91.14, 55.90.

5-bromo-3-thiocyanato-1H-indole

2n³ Flash column chromatography (petroleum/ethyl acetate 3:1) afforded the titled thiocyanation indole as a white solid; mp 131-133 °C; ¹H NMR (500 MHz, CDCl₃) δ 8.87 (s, 1H), 7.90 (s, 1H), 7.50 (d, J = 2.4 Hz, 1H), 7.37 (d, J = 8.6 Hz, 1H), 7.33 – 7.21 (m, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 134.68, 132.12, 129.41, 127.07, 121.49, 115.47, 113.61, 111.53, 92.15.

5-chloro-3-thiocyanato-1H-indole

20³: Flash column chromatography (petroleum/ethyl acetate 3:1) afforded the titled thiocyanation indole as a white solid; mp 130.3-131.9 °C; ¹H NMR (500 MHz, CDCl₃)

δ 8.87 (s, 1H), 7.75 (d, *J* = 1.7 Hz, 1H), 7.52 (d, *J* = 2.7 Hz, 1H), 7.33 (d, *J* = 8.7 Hz, 1H), 7.29 – 7.19 (m, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 134.38, 132.31, 128.85, 127.99, 124.49, 118.38, 113.26, 111.62, 92.17.

methyl 3-thiocyanato-1H-indole-5-carboxylate

2p⁶: Flash column chromatography (petroleum/ethyl acetate 3:1) afforded the titled thiocyanation indole as a white solid; mp 155.4-157.6 °C; ¹**H** NMR (500 MHz, DMSOd₆) δ 12.38 (s, 1H), 8.33 (s, 1H), 8.17 (d, J = 2.7 Hz, 1H), 7.90 (dd, J = 8.6, 1.4 Hz, 1H), 7.65 (d, J = 8.6 Hz, 1H), 3.91 (s, 3H); ¹³C NMR (126 MHz, DMSO-d₆) δ 167.15, 139.45, 135.65, 127.53, 124.19, 123.03, 120.34, 113.52, 112.63, 91.95, 52.51.

5-nitro-3-thiocyanato-1H-indole

2q: Flash column chromatography (petroleum/ethyl acetate 3:1) afforded the titled thiocyanation indole as a yellow solid; mp 207-209 °C ¹H NMR (500 MHz, DMSO- d_6) δ 12.72 (s, 1H), 8.56 (d, J = 1.8 Hz, 1H), 8.31 (d, J = 2.6 Hz, 1H), 8.16 (dd, J = 9.0, 2.1 Hz, 1H), 7.74 (d, J = 9.0 Hz, 1H); ¹³C NMR (126 MHz, DMSO- d_6) δ 142.62, 140.02, 137.60, 127.38, 118.66, 114.90, 114.22, 112.48, 93.65.

6-methyl-3-thiocyanato-1H-indole

2 \mathbf{r}^3 : Flash column chromatography (petroleum/ethyl acetate 3:1) afforded the titled thiocyanation indole as a white solid; mp 104.6-106.2 °C; ¹**H** NMR (500 MHz, DMSOd₆) δ 11.88 (s, 1H), 7.90 (d, J = 2.5 Hz, 1H), 7.55 (d, J = 8.0 Hz, 1H), 7.32 (s, 1H), 7.08 (d, J = 8.0 Hz, 1H), 2.43 (s, 3H); ¹³C NMR (126 MHz, DMSO-d₆) δ 137.21, 132.98, 132.76, 125.79, 123.29, 117.88, 112.94, 112.80, 89.46, 21.74.

6-methoxy-3-thiocyanato-1*H*-indole

2s³: Flash column chromatography (petroleum/ethyl acetate 3:1) afforded the titled thiocyanation indole as a white solid; mp 114.5-115.6 °C; ¹H NMR (500 MHz, CDCl₃) δ 11.81 (s, 1H), 7.85 (s, 1H), 7.54 (s, 1H), 6.96 (d, *J* = 56.0 Hz, 2H), 3.81 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 157.13, 137.67, 132.32, 121.93, 118.90, 112.83, 111.92, 95.93, 89.67, 55.76.

6-bromo-3-thiocyanato-1*H*-indole

2t³: Flash column chromatography (petroleum/ethyl acetate 3:1) afforded the titled thiocyanation indole as a white solid; mp 132.8-134.0 °C; ¹H NMR (500 MHz, DMSO- d_6) δ 12.15 (s, 1H), 8.04 (d, J = 2.8 Hz, 1H), 7.75 (d, J = 1.1 Hz, 1H), 7.63 (d, J = 8.5 Hz, 1H), 7.40 (dd, J = 8.5, 1.5 Hz, 1H); ¹³C NMR (126 MHz, DMSO- d_6) δ 137.62, 134.66, 126.96, 124.52, 120.05, 116.09, 115.87, 112.59, 90.69.

3-thiocyanato-6-(trifluoromethyl)-1H-indole

2u⁴: Flash column chromatography (petroleum/ethyl acetate 3:1) afforded the titled thiocyanation indole as a yellow solid; mp 84.1-86.4 °C; ¹H NMR (500 MHz, DMSOd₆) δ 12.45 (s, 1H), 8.27 (d, J = 2.6 Hz, 1H), 7.89 (d, J = 8.9 Hz, 2H), 7.57 (d, J = 8.3 Hz, 1H); ¹³C NMR (126 MHz, DMSO-d₆) δ 136.82 (s), 135.69 (s), 130.50 (s), 126.52 (s), 124.43 – 123.71 (m), 119.32 (s), 117.87 (d, J = 3.4 Hz), 112.55 (s), 110.78 (d, J = 4.4 Hz), 91.13 (s). ¹⁹F NMR (DMSO-d₆, 376 MHz, 298 K) δ = -59.23 (s).

3-thiocyanato-1*H*-indole-6-carboxylic acid

2v: Flash column chromatography (petroleum/ethyl acetate 3:1) afforded the titled

thiocyanation indole as a white solid; mp 262-264 °C; ¹H NMR (500 MHz, DMSO- d_6) δ 12.87 (s, 1H), 12.37 (s, 1H), 8.20 (d, J = 26.2 Hz, 2H), 7.82 (d, J = 49.4 Hz, 2H); ¹³C NMR (126 MHz, DMSO- d_6) δ 168.25, 136.71, 136.19, 131.21, 125.76, 122.38, 118.06, 115.19, 112.64, 90.79.

methyl 3-thiocyanato-1H-indole-6-carboxylate

2w⁶: Flash column chromatography (petroleum/ethyl acetate 3:1) afforded the titled thiocyanation indole as a brown solid; mp 135.3-137.2 °C; ¹H NMR (500 MHz, DMSO- d_6) δ 12.40 (s, 1H), 8.25 (s, 1H), 8.18 (s, 1H), 7.87 (d, J = 8.1 Hz, 1H), 7.78 (d, J = 8.2 Hz, 1H), 3.90 (s, 3H); ¹³C NMR (126 MHz, DMSO- d_6) δ 167.15, 137.04, 136.13, 131.47, 124.54, 122.08, 118.29, 115.10, 112.61, 90.98, 52.56.

3-thiocyanato-1H-indole-6-carbonitrile

2x³: Flash column chromatography (petroleum/ethyl acetate 3:1) afforded the titled thiocyanation indole as a white solid; mp 111-113 °C; ¹H NMR (500 MHz, DMSO- d_6) δ 12.59 (s, 1H), 8.29 (d, J = 3.6 Hz, 1H), 8.07 (d, J = 5.5 Hz, 1H), 7.89 – 7.80 (m, 1H), 7.60 (dd, J = 7.3, 6.1 Hz, 1H); ¹³C NMR (126 MHz, DMSO- d_6) δ 137.61, 135.67, 131.07, 124.30, 120.32, 119.50, 118.37, 112.50, 105.11, 91.80.

6-nitro-3-thiocyanato-1H-indole

2y⁵: Flash column chromatography (petroleum/ethyl acetate 3:1) afforded the titled thiocyanation indole as a yellow solid; mp 179-180 °C; ¹H NMR (500 MHz, DMSO- d_6) δ 12.67 (s, 1H), 8.49 – 8.36 (m, 2H), 8.12 (dd, J = 8.8, 1.8 Hz, 1H), 7.87 (d, J = 8.8 Hz, 1H); ¹³C NMR (126 MHz, DMSO- d_6) δ 143.76, 139.45, 135.32, 132.63, 118.86, 116.60, 112.43, 110.00, 92.22.

1,2-dimethyl-3-thiocyanato-1H-indole

2 \mathbf{z}^{6} : Flash column chromatography (petroleum/ethyl acetate 3:1) afforded the titled thiocyanation indole as a yellow solid; mp 74.7-76.4 °C; ¹**H** NMR (500 MHz, DMSO- d_{6}) δ 7.58 (dd, J = 13.8, 7.7 Hz, 2H), 7.32 – 7.18 (m, 2H), 3.74 (s, 3H), 2.56 (s, 3H); ¹³C NMR (126 MHz, DMSO- d_{6}) δ 144.80, 137.06, 128.00, 122.72, 121.61, 117.68, 112.58, 111.00, 86.82, 30.94, 11.14.

5,6-dichloro-3-thiocyanato-1H-indole

2aa: Flash column chromatography (petroleum/ethyl acetate 3:1) afforded the titled thiocyanation indole as a brown solid; mp 194.8-196.9 °C;¹H NMR (500 MHz, DMSO-*d*₆) δ 12.28 (s, 1H), 8.14 (s, 1H), 7.88 (s, 1H), 7.81 (s, 1H); ¹³C NMR (126 MHz, DMSO-*d*₆) δ 136.37, 135.63, 127.90, 125.96, 124.50, 119.41, 115.03, 112.52, 90.56.

7-methyl-3-thiocyanato-1H-indole

2ab³: Flash column chromatography (petroleum/ethyl acetate 3:1) afforded the titled thiocyanation indole as a white solid; mp 157.2-159.0 °C; ¹H NMR (500 MHz, CDCl₃) δ 8.70 (s, 1H), 7.63 (d, *J* = 8.0 Hz, 1H), 7.48 (d, *J* = 1.6 Hz, 1H), 7.22 (dd, *J* = 15.1, 7.6 Hz, 1H), 7.10 (d, *J* = 7.1 Hz, 1H), 2.47 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 135.65, 130.77, 127.34, 124.38, 122.08, 121.50, 116.37, 112.37, 92.41, 16.41.

7-fluoro-3-thiocyanato-1H-indole

2ac: Flash column chromatography (petroleum/ethyl acetate 3:1) afforded the titled thiocyanation indole as a white solid; mp 119-121 °C; ¹H NMR (500 MHz, CDCl₃) δ

8.99 (s, 1H), 7.54 (dd, J = 12.4, 5.3 Hz, 2H), 7.33 – 7.12 (m, 1H), 7.02 (dd, J = 10.9, 8.0 Hz, 1H); ¹³**C NMR** (126 MHz, CDCl₃) δ 150.53 (s), 148.57 (s), 131.80, 124.61 (d, J = 14.3 Hz), 122.38 (d, J = 6.2 Hz), 114.54 (d, J = 3.8 Hz), 111.69 (s), 108.80 (d, J = 15.9 Hz), 93.34 (d, J = 3.4 Hz); ¹⁹**F NMR** (CDCl₃, 376 MHz, 298 K) $\delta = -132.06$ (dd, J = 11.4, 4.6 Hz).

3-selenocyanato-1H-indole

3a⁴: Flash column chromatography (petroleum/ethyl acetate 3:1) afforded the titled thiocyanation indole as a brown solid; mp 108-110 °C; ¹H NMR (500 MHz, CDCl₃) δ 8.83 (s, 1H), 7.74 – 7.65 (m, 1H), 7.34 (dd, *J* = 7.2, 3.9 Hz, 2H), 7.29 – 7.22 (m, 2H); ¹³C NMR (126 MHz, CDCl₃) δ 136.07, 132.13, 128.70, 123.69, 121.79, 119.43, 112.13, 102.63, 88.93.

2-methyl-3-selenocyanato-1H-indole

3b⁸: Flash column chromatography (petroleum/ethyl acetate 3:1) afforded the titled thiocyanation indole as a brown oil; ¹H NMR (500 MHz, CDCl₃) δ 11.83 (s, 1H), 7.43 (d, *J* = 37.5 Hz, 2H), 7.16 (s, 2H), 2.53 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 142.69, 136.04, 130.07, 122.31, 120.91, 118.58, 111.95, 104.70, 88.33, 13.20.

2-phenyl-3-selenocyanato-1H-indole

3c⁴: Flash column chromatography (petroleum/ethyl acetate 3:1) afforded the titled thiocyanation indole as a yellow solid; mp 152.8-154.1 °C; ¹H NMR (500 MHz, DMSO- d_6) δ 12.26 (s, 1H), 7.87 (d, J = 7.3 Hz, 2H), 7.65 (d, J = 7.4 Hz, 1H), 7.60 (t, J = 7.6 Hz, 2H), 7.56 – 7.49 (m, 2H), 7.31 – 7.24 (m, 2H); ¹³C NMR (126 MHz, DMSO- d_6) δ 143.23, 136.57, 131.44, 130.93, 129.63, 129.43, 129.14, 123.52, 121.50, 119.70, 112.61, 105.29, 88.68.

1-methyl-3-selenocyanato-1*H*-indole

3d⁷: Flash column chromatography (petroleum/ethyl acetate 3:1) afforded the titled thiocyanation indole as a brown solid; mp 106-107 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.86 (s, 1H), 7.60 (d, *J* = 7.8 Hz, 1H), 7.56 (d, *J* = 8.1 Hz, 1H), 7.31 (t, *J* = 7.6 Hz, 1H), 7.26 (t, *J* = 7.4 Hz, 1H), 3.84 (s, 3H); ¹³C NMR (126 MH z, CDCl₃) δ 137.29, 137.22, 129.51, 123.03, 121.35, 119.42, 111.25, 104.90, 88.28, 33.41.

1,2-dimethyl-3-selenocyanato-1H-indole

3e⁷: Flash column chromatography (petroleum/ethyl acetate 3:1) afforded the titled thiocyanation indole as a yellow solid; mp 123-124 °C; ¹H NMR (500 MHz, DMSO- d_6) δ 7.52 (t, J = 8.6 Hz, 2H), 7.21 (dt, J = 15.0, 6.9 Hz, 2H), 3.76 (s, 3H), 2.57 (s, 3H); ¹³C NMR (126 MHz, DMSO- d_6) δ 143.92, 137.23, 129.25, 122.36, 121.20, 118.79, 110.69, 104.72, 88.23, 30.93, 12.24.

6-bromo-3-selenocyanato-1H-indole

3f⁷: Flash column chromatography (petroleum/ethyl acetate 3:1) afforded the titled thiocyanation indole as a brown solid; mp 132.2-133.9 °C; ¹H NMR (500 MHz, DMSO- d_6) δ 11.99 (s, 1H), 7.90 (d, J = 2.5 Hz, 1H), 7.71 (s, 1H), 7.54 (d, J = 8.4 Hz, 1H), 7.36 (dd, J = 8.4, 1.0 Hz, 1H); ¹³C NMR (126 MHz, DMSO- d_6) δ 137.48, 134.67, 128.25, 124.10, 121.05, 115.71, 115.43, 104.95, 90.35.

5,6-dichloro-3-selenocyanato-1H-indole

3g: Flash column chromatography (petroleum/ethyl acetate 3:1) afforded the titled

thiocyanation indole as a brown solid; mp 199.5-201.5 °C; ¹H NMR (500 MHz, DMSO- d_6) δ 12.13 (s, 1H), 8.00 (d, J = 2.6 Hz, 1H), 7.79 (s, 1H), 7.76 (s, 1H); ¹³C NMR (126 MHz, DMSO- d_6) δ 136.33, 135.49, 129.22, 125.48, 123.96, 120.27, 114.62, 105.04, 90.15.

3-selenocyanato-1H-indole-4-carbaldehyde

3h: Flash column chromatography (petroleum/ethyl acetate 3:1) afforded the titled thiocyanation indole as a yellow solid; mp 142-144 °C; ¹H NMR (500 MHz, DMSO-*d*₆) δ 12.28 (s, 1H), 10.25 (s, 1H), 7.88 (d, *J* = 8.1 Hz, 1H), 7.83 – 7.73 (m, 2H), 7.41 (s, 1H); ¹³C NMR (126 MHz, DMSO-*d*₆) δ 194.61, 138.63, 131.65, 128.24, 128.06, 123.96, 122.47, 120.50, 106.44, 90.17.

3-selenocyanato-1*H*-indole-6-carboxylic acid

3i: Flash column chromatography (petroleum/ethyl acetate 3:1) afforded the titled thiocyanation indole as a yellow solid; mp 269-271 °C; ¹H NMR (500 MHz, DMSO-*d*₆) δ 12.29 (s, 1H), 8.14 (s, 1H), 8.04 (s, 1H), 7.83 (d, J = 8.1 Hz, 1H), 7.62 (d, J = 8.2 Hz, 1H); ¹³C NMR (126 MHz, DMSO-*d*₆) δ 168.95, 136.53, 136.13, 132.15, 126.66, 122.17, 118.78, 114.81, 104.99, 90.22.

methyl 3-selenocyanato-1H-indole-4-carboxylate

3j⁴: Flash column chromatography (petroleum/ethyl acetate 3:1) afforded the titled thiocyanation indole as a yellow oil; ¹**H NMR** (500 MHz, DMSO-*d*₆) δ 12.18 (s, 1H), 7.81 (d, J = 8.1 Hz, 1H), 7.74 (d, J = 7.4 Hz, 1H), 7.71 (d, J = 2.1 Hz, 1H), 7.30 (t, J = 7.8 Hz, 1H), 3.93 (s, 3H); ¹³C NMR (126 MHz, DMSO-*d*₆) δ 168.66, 138.58, 129.89, 125.07, 123.57, 122.05, 120.18, 118.74, 106.81, 90.08, 52.97.

methyl 3-selenocyanato-1H-indole-6-carboxylate

3k⁴: Flash column chromatography (petroleum/ethyl acetate 3:1) afforded the titled thiocyanation indole as a yellow solid; mp 165.3-167.2 °C; ¹**H NMR** (500 MHz, DMSO-*d*₆) δ 12.25 (s, 1H), 8.15 (s, 1H), 8.11 (d, *J* = 2.5 Hz, 1H), 7.83 (d, *J* = 8.4 Hz, 1H), 7.69 (d, *J* = 8.3 Hz, 1H), 3.88 (s, 3H); ¹³**C NMR** (126 MHz, DMSO-*d*₆) δ 167.29, 137.13, 135.99, 132.75, 124.09, 121.70, 119.26, 114.76, 105.02, 90.68, 52.51.

3-selenocyanato-6-(trifluoromethyl)-1H-indole

31⁴: Flash column chromatography (petroleum/ethyl acetate 3:1) afforded the titled thiocyanation indole as a yellow solid; mp 101-103 °C; ¹H NMR (500 MHz, DMSO- d_6) δ 12.28 (s, 1H), 8.12 (d, J = 2.6 Hz, 1H), 7.87 (s, 1H), 7.80 (d, J = 8.3 Hz, 1H), 7.52 (d, J = 8.3 Hz, 1H); ¹³C NMR (126 MHz, DMSO- d_6) δ 136.81 (s), 135.56 (s), 131.76 (s), 126.65 (s), 124.58 – 123.29 (m), 120.25 (s), 117.44 (d, J = 3.4 Hz), 110.37 (d, J = 4.4 Hz), 104.94 (s), 90.73 (s); ¹⁹F NMR (DMSO- d_6 , 376 MHz, 298 K) δ = -59.10 (s).

4. ¹H NMR, ¹³CNMR and ¹⁹F NMR for the products.

5. References

- 1 Y. Wang, H. Huang, Z. Zhang, C. Wang, Y. Yang, Q. Li and D. Xu, *Appl. Catal. B-Environ.*, 2021, **282**, 119570.
- 2 W. Fan, Q. Yang, F. Xu and P. Li, J. Org. Chem., 2014, 79, 10588-10592.
- 3 D. Zhu, H. Wen, Q. Wu, J. Li, D. Young, Y. Wang and H. Li, *Tetrahedron*, 2023, 135, 133322.
- 4 Y. Wang, Y. Zhang, C. Zhou, Y. Jiang, Y. Xu, X. Zeng and G. Liu, Org. Biomol. Chem., 2022, 20, 5463-5469.
- 5 A. Meier, S. V. Badalov, T. Biktagirov, W. G. Schmidt and R. Wilhelm, *Chem. Eur. J.*, 2023, **29**, e202203541.
- 6 X. Zhang, C. Wang, H. Jiang and L. Sun, *RSC Adv.*, 2018, **8**, 22042-22045.
- Q. Xie, Y. Yang, W. Zhang, Z. Gao, X. Li, J. Tang, C. Pan and G. Yu, *Chem. Sci.*, 2021, 12, 5631-5637.
- 8 I. D. Lemir, G. Oksdath-Mansilla, W. D. Castro-Godoy, L. C. Schmidt and J. E. Argüello, *Photochem. Photobiol. Sci.*, 2022, 21, 849-861.