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Methods

In this Section, we outline the methodologies used for the ML-guided assignment of the

valence excitation spectra of DHICA melanin. The steps involved in this process are depicted

in the workflow diagram (Fig 2) in the main paper.

Data generation. Molecular dynamics simulations of DHICA, MKICA, and DKICA

tetramers (see Supplementary Fig S1-S3) were carried out with a general AMBER force field

(GAFF) as implemented in AMBER16.1 The equilibrations in a canonical (NVT) ensemble

were done with 0.5 fs of integration time step at 300K using the Langevin thermostat. The

trajectories were run for a total of 1 ns, with the first 100 ps discarded, and configurations

were sampled every 1 ps. Electronic excited state calculations for these configurations were

carried out at the TDDFT level of theory using the CAM-B3LYP functional and 6-31G(d)

basis set, utilizing the QChem software package.2 The excitation energies and oscillator

strengths for all singlet excitations were calculated within the wavelength range of 200-800

nm. Solvent effects have also been evaluated via continuum solvation models and we notice

only small changes in the spectra upon solvation3 (see supplementary Fig S7).

Data clustering. The K-means algorithm was utilized to cluster the structures based on

their three inter-monomer dihedral angles (θ), with a requirement of a standard deviation

of ∼ 5◦ within each cluster. Further sub-clustering was performed within each cluster based

on the values of 8/7/6 ring-OH dihedral angles (ϕ) in DHICA/MKICA/DKICA melanin.

These clusters are the atropisomers and their sub-clusters are the dynamic structures of

statistically dominant conformational macrostates which are responsible for the population

of each cluster. Finally, we take the mean of the structures and the spectra within each

sub-cluster to generate unique ML training data for each cluster.

Machine learning architecture. In this study, we have developed a ML model using

kernel-ridge regression (KRR)4,5 to autonomously assign the DHICA melanin spectra. KRR-

based ML approach has been shown to result in asymptotically vanishing errors for predicting

molecular ground6 and excited state7 energies across the chemical space using structural
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descriptors as the input. However, in this study, we have applied KRR for the inverse

problem of structure assignment using the valence-excitation spectrum as the input, and the

dihedral angles as the output. A novel aspect of our study is that our models are applicable

for assigning the individual structure in a mixture of melanin.

For training the ML models, we obtained our data by randomly sampling a mixture of

clusters (i.e., atropisomers) for each DHICA, MKICA and DKICA. In experiments, the ob-

jective is to identify the composition and structure of melanin that correspond to a particular

spectral fingerprint within a limited wavelength range. To support these investigations, the

full spectrum (200-800 nm) was divided into small 10 nm windows. Then the ML models

were trained for each of these windows, with the intensities of all clusters in the mixture

being combined into M bins. In other words, we train ML models for the entire UV-vis

spectrum. Irrespective of the number of clusters in a mixture, the input to the ML models

is a summed-intensity vector, p, of length M .

The prediction of an angle for an individual configuration in a query mixture is computed

by using the kernel-Ansatz

θpred. =
N∑
i=1

αik(pq,pi). (1)

The equation states that the predicted angle, θpred., for a query mixture (q) is the sum of all αi

multiplied by the kernel function, k(pq,pi), for each element (i) in the training set of size N .

The kernel function k(·) measures the similarity between the query and training spectra, pq

and pi. After evaluating the performance of different kernel functions, the Laplacian kernel

was selected that is defined as k(pq,pi) = exp(−|pq − pi|1/σ), where σ is a hyperparameter

that determines the width of the kernel and | · |1 denotes the L1 norm (see Supplementary

Fig S8). We trained separate ML models for each dihedral angle by setting σ for all models

constant according to the single-kernel formalism suitable for multi-property modeling.8 This

value of σ obtained was found to be similar to the value obtained from a 5-fold cross-validated

model (see Supplementary Fig S9). The regression coefficients in Eq.(1) are determined as
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the vector, α, for each angle by solving the linear equation

[K+ λI]α = x, (2)

where x is a vector containing the angle in question for all training instances, and K is a

square matrix that comprises all the pairwise kernel functions between the training instances.

Due to the absence of outliers in our dataset, we have set the regularization strength (λ) to

a constant value of 10−4 that is sufficient to make the kernel matrix positive definite.
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Fig S1. Initial structures of DHICA tetramers which are taken for MD simulations.
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Fig S2. Initial structures of MKICA tetramers which are taken for MD simulations.
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Fig S3. Initial structures of DKICA tetramers which are taken for MD simulations.
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c

Taken as ML
output vector

Fig S4. Standard deviation of all the structural degrees of freedoms along the MD trajectory
are shown for DHICA, MKICA and DKICA melanin tetramers. The standard deviation of
bond distances (a) and bond angles (b ) are very low. But for the dihedral angles (c), only a
few important parameters (i.e. inter-monomer and ring-OH dihedral angles) show significant
standard deviation (marked by the dashed box). These are chosen as ML output vectors.
All other degrees of freedom are considered as rigid.
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Fig S5. Data distribution and performance of ML models for predicting the
structures of different melanin configurations using an ensemble-averaged re-
sultant spectrum as the input. (a) Distribution of cumulative spectral intensities for
unique configurations of DHICA, MKICA, and DKICA melanin tetramers across different
wavelength ranges. (b) Distribution of the dihedral angles {θ, ϕ} for unique configurations
of melanin. Learning curves for predicting structures with 5, 10, and 15 most important
clusters for each DHICA, MKICA and DKICA using spectral intensities in the (c) 290-300
nm and (d) 560-570 nm wavelength range as the input. In (c) and (d), the mean absolute
error (MAE) of the angles in the ML-reconstructed structures is plotted for various training
set sizes. Predictions were made on a 10k holdout set. The inset displays error distribution
for various ML models.
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b

Fig S6. Error breakdown. Separate mean absolute error (MAE) for inter-monomer
dihedral angle (θ) and ring-OH dihedral angle (ϕ) in comparison to the ’mean’ of them
are given for the intensities in the (a) 290-300 nm and (b) 560-570 nm wavelength range.
It shows that the learning curves show much better convergence when predicting only the
inter-monomer dihedral angles (i.e., the atropisomers).
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Fig S7. Effect of solvent. Comparison of TDDFT stick spectra in solvent phase (PCM
with dielectric constant of water) and gas phase for ten random molecules in the dataset.
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Fig S8. Kernel function benchmarking. The learning curves for linear, gaussian and
laplacian kernel functions are shown in the 290-300 nm wavelength region.
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Fig S9. Hyperparameter benchmarking. Kernel width (σ) calculated with single kernel
ansatz (vertical dashed lines) are compared with 5-fold cross-validation model (solid lines).
Two different kernel functions for two training set sizes are used in the cross-validation.
Single kernel σ are calculated with random 500 input representations from the training data.

Section S1. Validation of the ML models on an arbitrary

artificial spectrum

To further validate our approach, we evaluated our ML models for an artificial model spec-

trum with a bimodal distribution (Fig S10). Our goal is to assign absorptions near the peak

maxima in the wavelength ranges 290-300 nm and 690-700 nm. We found that for the 690-700

nm range, the only possible species was DKICA tetramers, while for the 290-300 nm range,

all three forms were possible. The characteristic structures for the 5 most important clusters

in these regions were reconstructed. They are shown in Fig S10 (blue denotes structures

that absorb in the range 290-300 nm and green denotes those that absorb in the 690-700

nm range). The percentage contributions of each cluster to the resultant spectrum are also

displayed next to the corresponding structure. The predicted inter-monomer dihedral angle

values and standard deviation of the clusters are also shown in the figure. The full list of
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predicted dihedral angles is shown in the supplementary Table S2 and S3.

55±7.6,
78±2.7,
98±3.8

84±5.3,
89±7.8,
48±3.8

104±3.2,
92±4.3,
94±2.7

99±4.7,
79±4.9,
68±2.6

58±1.8,
87±7.6,
50±3.9

10%

5%
9%

7%

7%

88±4.1,
65±6.8,
87±3.5 82±5.7,

96±4.5,
91±5.0

43±5.1,
68±5.3,
103±6.8

67±3.0,
76±2.9,
60±3.8

60±4.0,
113±3.7,
106.±4.4

6%

6%

9%

7%

5%

71±1.8,
69±0.7,
83±3.9

63±3.0,
61±0.7,
71±3.4

97±1.9,
76±1.2,
103±4.0

66±5.1,
97±3.8,
90±3.5

111±6.2,
81±2.6,
73±3.0

8%
6%

5%

3%
7%

20%

0±5.4,
0±2.2,
0±4.7

0±5.4,
0±2.2,
0±4.7

0±5.4,
0±2.2,
0±4.7

0±5.4,
0±2.2,
0±4.7

0±5.4,
0±2.2,
0±4.7

DKICA

(290-300 nm)

(690-700 nm)

Unphysical
structures
(Low confidence
region)}

DHICA
(290-300 nm)
MKICA

(290-300 nm)
DKICA

20%20%20%

20%

2
9
0
-3

0
0
 n

m

6
9
0
-7

0
0
 n

m

Fig S10. Analysis of the predicted melanin structures for an artificial bimodal
spectrum with peak intensities at 300 nm and 700 nm. Models were trained on
mixtures of 5 clusters for each DHICA, MKICA and DKICA using inter-monomer {θ} and
ring-OH {ϕ} dihedral angles as the targets. ML predictions were made for the spectral
intensities in 290-300 nm and 690-700 nm. Reconstructed structures with their percentage
contribution to the input spectrum are shown for each cluster. The individual ML-predicted
angles {θ} and their uncertainty determined by the K-means clustering of the training set
are also provided.

In the spectral range 690-700nm, the predicted structures display inter-monomer dihedral

angles close to 0 degrees, resulting in unphysical planar structures. This is attributed to the

low-intensity region of the tetramer spectra in the database (see supplementary Fig S5a).

The low intensity in this range is indicative of the absence of low energy (stable or most

probable) conformers that can absorb significantly in this wavelength region.

Overall, we have tested our model on a holdout validation set as well as on an artificial

spectrum. The prediction on the artificial spectrum has shown expected outcomes of stable

conformers in the high confidence region of the spectral window where the melanin absorbs
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significantly and null values for the structural parameters in the low confidence region where

melanin does not absorb significantly. We have further confirmed the validity of our predic-

tions in the 290-300 nm range by again calculating the TDDFT spectra of the ML predicted

structures and their intensities are within the correct wavelength range (supplementary Table

S4).
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Table S1. Training set bias check. Inter-monomer dihedral angle (θ) predictions on a
query spectrum for 5 different randomly chosen training sets of size 10k in the 290-300 nm
wavelength range. All 5 training sets predict the same cluster for all the configurations in
DHICA, MKICA and DKICA which indicates that there is no training set bias.

Training set 1 Training set 2 Training set 3 Training set 4 Training set 5
DHICA DHICA DHICA DHICA DHICA
θ1 = 54.82 θ1 = 54.60 θ1 = 54.41 θ1 = 54.57 θ1 = 54.49
θ2 = 78.13 θ2 = 77.92 θ2 = 77.80 θ2 = 77.91 θ2 = 77.79
θ3 = 98.51 θ3 = 98.29 θ3 = 98.16 θ3 = 98.26 θ3 = 98.15
(Cluster id = 59) (Cluster id = 59) (Cluster id = 59) (Cluster id = 59) (Cluster id = 59)

θ1 = 84.42 θ1 = 84.24 θ1 = 83.86 θ1 = 84.34 θ1 = 83.90
θ2 = 88.97 θ2 = 88.79 θ2 = 88.56 θ2 = 88.76 θ2 = 88.47
θ3 = 47.78 θ3 = 47.66 θ3 = 47.64 θ3 = 47.51 θ3 = 47.65
(Cluster id = 50) (Cluster id = 50) (Cluster id = 50) (Cluster id = 50) (Cluster id = 50)

θ1 = 103.93 θ1 = 103.66 θ1 = 103.55 θ1 = 103.60 θ1 = 103.54
θ2 = 91.81 θ2 = 91.62 θ2 = 91.49 θ2 = 91.62 θ2 = 91.46
θ3 = 93.98 θ3 = 93.80 θ3 = 93.65 θ3 = 93.78 θ3 = 93.67
(Cluster id = 39) (Cluster id = 39) (Cluster id = 39) (Cluster id = 39) (Cluster id = 39)

θ1 = 99.29 θ1 = 99.80 θ1 = 99.01 θ1 = 99.93 θ1 = 98.55
θ2 = 78.82 θ2 = 80.13 θ2 = 78.87 θ2 = 80.32 θ2 = 77.96
θ3 = 68.07 θ3 = 68.47 θ3 = 67.87 θ3 = 68.43 θ3 = 67.72
(Cluster id = 44) (Cluster id = 44) (Cluster id = 44) (Cluster id = 44) (Cluster id = 44)

θ1 = 58.34 θ1 = 58.29 θ1 = 58.20 θ1 = 58.22 θ1 = 58.19
θ2 = 87.13 θ2 = 86.88 θ2 = 86.72 θ2 = 86.87 θ2 = 86.66
θ3 = 50.24 θ3 = 50.00 θ3 = 50.00 θ3 = 50.05 θ3 = 49.88
(Cluster id = 25) (Cluster id = 25) (Cluster id = 25) (Cluster id = 25) (Cluster id = 25)
MKICA MKICA MKICA MKICA MKICA
θ1 = 88.41 θ1 = 88.20 θ1 = 88.08 θ1 = 88.10 θ1 = 87.98
θ2 = 64.73 θ2 = 64.61 θ2 = 64.47 θ2 = 64.53 θ2 = 64.47
θ3 = 86.86 θ3 = 86.74 θ3 = 86.51 θ3 = 86.61 θ3 = 86.51
(Cluster id = 53) (Cluster id = 53) (Cluster id = 53) (Cluster id = 53) (Cluster id = 53)

θ1 = 81.84 θ1 = 81.60 θ1 = 81.53 θ1 = 81.54 θ1 = 81.46
θ2 = 95.95 θ2 = 95.68 θ2 = 95.58 θ2 = 95.56 θ2 = 95.49
θ3 = 90.57 θ3 = 90.35 θ3 = 90.24 θ3 = 90.40 θ3 = 90.22
(Cluster id = 54) (Cluster id = 54) (Cluster id = 54) (Cluster id = 54) (Cluster id = 54)
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θ1 = 67.16 θ1 = 67.08 θ1 = 66.96 θ1 = 67.05 θ1 = 66.91
θ2 = 75.89 θ2 = 75.81 θ2 = 75.69 θ2 = 75.78 θ2 = 75.59
θ3 = 60.08 θ3 = 59.96θ3 = 59.90 θ3 = 59.88 θ3 = 59.85
(Cluster id = 24) (Cluster id = 24) (Cluster id = 24) (Cluster id = 24) (Cluster id = 24)

θ1 = 42.89 θ1 = 42.51 θ1 = 42.79 θ1 = 42.53 θ1 = 42.24
θ2 = 68.29 θ2 = 68.11 θ2 = 68.01 θ2 = 68.11 θ2 = 67.97
θ3 = 102.84 θ3 = 102.53 θ3 = 102.47 θ3 = 102.47 θ3 = 102.30
(Cluster id = 21) (Cluster id = 21) (Cluster id = 21) (Cluster id = 21) (Cluster id = 21)

θ1 = 60.29 θ1 = 60.21 θ1 = 60.08 θ1 = 60.13 θ1 = 60.10
θ2 = 113.46 θ2 = 113.16 θ2 = 113.02 θ2 = 113.07 θ2 = 112.87
θ3 = 105.70 θ3 = 105.43 θ3 = 105.21 θ3 = 105.49 θ3 = 105.26
(Cluster id = 33) (Cluster id = 33) (Cluster id = 33) (Cluster id = 33) (Cluster id = 33)
DKICA DKICA DKICA DKICA DKICA
θ1 = 70.96 θ1 = 70.79 θ1 = 70.70 θ1 = 70.77 θ1 = 70.66
θ2 = 68.69 θ2 = 68.53 θ2 = 68.45 θ2 = 68.54 θ2 = 68.42
θ3 = 83.30 θ3 = 83.09 θ3 = 83.00 θ3 = 83.06 θ3 = 82.95
(Cluster id = 20) (Cluster id = 20) (Cluster id = 20) (Cluster id = 20) (Cluster id = 20)

θ1 = 63.52 θ1 = 63.37 θ1 = 63.27 θ1 = 63.35 θ1 = 63.26
θ2 = 61.00 θ2 = 60.85 θ2 = 60.77 θ2 = 60.84 θ2 = 60.75
θ3 = 71.25 θ3 = 71.08 θ3 = 70.99 θ3 = 71.05 θ3 = 70.94
(Cluster id = 46) (Cluster id = 46) (Cluster id = 46) (Cluster id = 46) (Cluster id = 46)

θ1 = 96.72 θ1 = 96.46 θ1 = 96.36 θ1 = 96.40 θ1 = 96.34
θ2 = 75.72 θ2 = 75.53 θ2 = 75.43 θ2 = 75.50 θ2 = 75.38
θ3 = 102.84 θ3 = 102.62 θ3 = 102.45 θ3 = 102.63 θ3 = 102.45
(Cluster id = 27) (Cluster id = 27) (Cluster id = 27) (Cluster id = 27) (Cluster id = 27)

θ1 = 65.92 θ1 = 65.66 θ1 = 65.80 θ1 = 65.64 θ1 = 65.87
θ2 = 97.51 θ2 = 97.31 θ2 = 97.16 θ2 = 97.22 θ2 = 97.10
θ3 = 90.18 θ3 = 89.99 θ3 = 89.78 θ3 = 89.93 θ3 = 89.69
(Cluster id = 23) (Cluster id = 23) (Cluster id = 23) (Cluster id = 23) (Cluster id = 23)

θ1 = 111.07 θ1 = 111.31 θ1 = 110.87 θ1 = 111.17 θ1 = 110.86
θ2 = 81.12 θ2 = 78.19 θ2 = 80.05 θ2 = 79.01 θ2 = 79.81
θ3 = 72.59 θ3 = 74.80 θ3 = 73.05 θ3 = 74.08 θ3 = 73.18
(Cluster id = 2) (Cluster id = 2) (Cluster id = 2) (Cluster id = 2) (Cluster id = 2)
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Table S2. All predicted inter-monomer {θ} and ring-OH {ϕ} dihedral angles for the artificial
spectrum in the 290-300 nm wavelength range.

Predicted dihedral angles (in deg.) of DHICA
Configuration 1 Configuration 2 Configuration 3 Configuration 4 Configuration 5
θ1 = 54.82 θ1 = 84.42 θ1 = 103.93 θ1 = 99.29 θ1 = 58.34
θ2 = 78.13 θ2 = 88.97 θ2 = 91.81 θ2 = 78.82 θ2 = 87.13
θ3 = 98.51 θ3 = 47.78 θ3 = 93.98 θ3 = 68.07 θ3 = 50.24

ϕ1 = -4.82 ϕ1 = 25.38 ϕ1 = -7.72 ϕ1 = -313.63 ϕ1 = 8.00
ϕ2 = 160.28 ϕ2 = 176.95 ϕ2 = 164.21 ϕ2 = 495.45 ϕ2 = 168.38
ϕ3 = 71.89 ϕ3 = 183.97 ϕ3 = 93.17 ϕ3 = 72.95 ϕ3 = 28.16
ϕ4 = 148.06 ϕ4 = 13.70 ϕ4 = 86.94 ϕ4 = 87.61 ϕ4 = 139.05
ϕ5 = 70.45 ϕ5 = -85.11 ϕ5 = 121.93 ϕ5 = -173.72 ϕ5 = 72.42
ϕ6 = 152.26 ϕ6 = 216.35 ϕ6 = 57.90 ϕ6 = 278.49 ϕ6 = 106.17
ϕ7 = 159.84 ϕ7 = 102.77 ϕ7 = 139.41 ϕ7 = 150.34 ϕ7 = 76.45
ϕ8 = 6.65 ϕ8 = 60.23 ϕ8 = 20.92 ϕ8 = -12.53 ϕ8 = 77.98

Predicted dihedral angles (in deg.) of MKICA
Configuration 1 Configuration 2 Configuration 3 Configuration 4 Configuration 5
θ1 = 88.41 θ1 = 81.84 θ1 = 67.16 θ1 = 42.89 θ1 = 60.29
θ2 = 64.73 θ2 = 95.95 θ2 = 75.89 θ2 = 68.29 θ2 = 113.46
θ3 = 86.86 θ3 = 90.57 θ3 = 60.08 θ3 = 102.84 θ3 = 105.70

ϕ1 = 155.50 ϕ1 = 169.33 ϕ1 = 134.17 ϕ1 = 201.59 ϕ1 = 160.55
ϕ2 = 121.67 ϕ2 = 65.23 ϕ2 = -166.22 ϕ2 = 500.60 ϕ2 = 6.09
ϕ3 = 84.68 ϕ3 = 97.48 ϕ3 = 177.83 ϕ3 = -321.00 ϕ3 = 164.56
ϕ4 = 99.12 ϕ4 = 81.89 ϕ4 = 170.79 ϕ4 = 170.64 ϕ4 = 113.69
ϕ5 = 75.48 ϕ5 = 90.49 ϕ5 = 265.65 ϕ5 = 521.45 ϕ5 = 153.18
ϕ6 = 160.81 ϕ6 = 162.98 ϕ6 = -151.34 ϕ6 = 179.04 ϕ6 = 143.46
ϕ7 = -4.80 ϕ7 = 3.02 ϕ7 = 321.42 ϕ7 = -42.59 ϕ7 = 45.24

Predicted dihedral angles (in deg.) of DKICA
Configuration 1 Configuration 2 Configuration 3 Configuration 4 Configuration 5
θ1 = 70.96 θ1 = 63.52 θ1 = 96.72 θ1 = 65.92 θ1 = 111.07
θ2 = 68.69 θ2 = 61.00 θ2 = 75.72 θ2 = 97.51 θ2 = 81.12
θ3 = 83.30 θ3 = 71.25 θ3 = 102.84 θ3 = 90.18 θ3 = 72.59

ϕ1 = 164.09 ϕ1 = 165.58 ϕ1 = 127.68 ϕ1 = 9.51 ϕ1 = -5.71
ϕ2 = 2.86 ϕ2 = 153.71 ϕ2 = 155.68 ϕ2 = 198.27 ϕ2 = 132.62
ϕ3 = -26.20 ϕ3 = -4.59 ϕ3 = 33.28 ϕ3 = 259.94 ϕ3 = -22.82
ϕ4 = 165.45 ϕ4 = 165.62 ϕ4 = 160.24 ϕ4 = 197.30 ϕ4 = 142.56
ϕ5 = 222.96 ϕ5 = 147.02 ϕ5 = 149.21 ϕ5 = 225.04 ϕ5 = -12.37
ϕ6 = -29.54 ϕ6 = 9.75 ϕ6 = 4.15 ϕ6 = -40.28 ϕ6 = 194.45
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Table S3. All predicted inter-monomer {θ} and ring-OH {ϕ} dihedral angles for the artificial
spectrum in the 690-700 nm wavelength range.

Predicted dihedral angles (in deg.) of DKICA
Configuration 1 Configuration 2 Configuration 3 Configuration 4 Configuration 5
θ1 = 0.027 θ1 = 0.033 θ1 = 0.041 θ1 = 0.039 θ1 = 0.039
θ2 = 0.028 θ2 = 0.029 θ2 = 0.042 θ2 = 0.041 θ2 = 0.026
θ3 = 0.023 θ3 = 0.031 θ3 = 0.040 θ3 = 0.029 θ3 = 0.040

ϕ1 = 0.022 ϕ1 = 0.002 ϕ1 = 0.028 ϕ1 = -0.002 ϕ1 = 0.002
ϕ2 = 0.060 ϕ2 = 0.063 ϕ2 = 0.066 ϕ2 = 0.064 ϕ2 = 0.063
ϕ3 = 0.033 ϕ3 = 0.028 ϕ3 = 0.039 ϕ3 = 0.002 ϕ3 = 0.018
ϕ4 = 0.065 ϕ4 = 0.065 ϕ4 = 0.064 ϕ4 = 0.055 ϕ4 = 0.068
ϕ5 = 0.044 ϕ5 = 0.031 ϕ5 = 0.024 ϕ5 = 0.039 ϕ5 = 0.036
ϕ6 = 0.031 ϕ6 = 0.027 ϕ6 = 0.034 ϕ6 = 0.062 ϕ6 = 0.033

Table S4. TDDFT calculations of the ML predicted structures in the 290-300 nm wave-
length range of the artificial spectrum.

DHICA MKICA DKICA
Wavelength
(nm)

Intensity
(a.u.)

Wavelength
(nm)

Intensity
(a.u.)

Wavelength
(nm)

Intensity
(a.u.)

296 0.100 290 0.116 291 0.674
285 0.081 285 0.599
295 0.832 290 0.081 301.27 0.591

301.16 0.088
295 0.163

295 0.236 302 0.489 288 0.567
288 0.057 291 0.070

288 0.170
296 0.620 304 0.487 286.61 0.388
288 0.027 293 0.137 286.28 0.053

287 0.188
303 0.649 304 0.553 291 0.664
293 0.111 292 0.190

286 0.119
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Table S5. All predicted inter-monomer {θ} and ring-OH {ϕ} dihedral angles for the exper-
imental spectrum in the 280-290 nm wavelength range.

Predicted dihedral angles (in deg.) of DHICA
Configuration 1 Configuration 2 Configuration 3 Configuration 4 Configuration 5
θ1 = 84.49 θ1 = 56.67 θ1 = 102.37 θ1 = 110.14 θ1 = 84.17
θ2 = 91.44 θ2 = 69.75 θ2 = 91.00 θ2 = 89.41 θ2 = 60.40
θ3 = 109.04 θ3 = 64.55 θ3 = 74.40 θ3 = 111.56 θ3 = 69.77

ϕ1 = -2.40 ϕ1 = -6.47 ϕ1 = 88.55 ϕ1 = 6.72 ϕ1 = -5.35
ϕ2 = 184.38 ϕ2 = 170.31 ϕ2 = 91.04 ϕ2 = 167.35 ϕ2 = 180.38
ϕ3 = 123.60 ϕ3 = 125.28 ϕ3 = 26.81 ϕ3 = 158.86 ϕ3 = 26.74
ϕ4 = 50.46 ϕ4 = 86.77 ϕ4 = 192.58 ϕ4 = 35.76 ϕ4 = 45.07
ϕ5 = 7.46 ϕ5 = 83.32 ϕ5 = 87.25 ϕ5 = 144.33 ϕ5 = -0.37
ϕ6 = 153.55 ϕ6 = 91.66 ϕ6 = -39.57 ϕ6 = 33.92 ϕ6 = 219.89
ϕ7 = 159.93 ϕ7 = 167.42 ϕ7 = 265.89 ϕ7 = 157.19 ϕ7 = -33.53
ϕ8 = -8.41 ϕ8 = 6.46 ϕ8 = -70.13 ϕ8 = 4.25 ϕ8 = 141.50

Predicted dihedral angles (in deg.) of MKICA
Configuration 1 Configuration 2 Configuration 3 Configuration 4 Configuration 5
θ1 = 73.71 θ1 = 100.15 θ1 = 85.95 θ1 = 95.32 θ1 = 77.62
θ2 = 87.03 θ2 = 85.36 θ2 = 113.50 θ2 = 62.56 θ2 = 99.24
θ3 = 89.01 θ3 = 92.38 θ3 = 77.84 θ3 = 107.96 θ3 = 87.00

ϕ1 = 135.83 ϕ1 = 172.82 ϕ1 = 100.76 ϕ1 = -45.46 ϕ1 = 62.24
ϕ2 = 111.78 ϕ2 = 182.22 ϕ2 = 2.41 ϕ2 = 90.21 ϕ2 = 35.96
ϕ3 = 203.20 ϕ3 = 91.24 ϕ3 = 173.97 ϕ3 = 192.35 ϕ3 = 137.99
ϕ4 = 108.26 ϕ4 = 30.34 ϕ4 = -82.39 ϕ4 = 323.72 ϕ4 = -2.98
ϕ5 = 112.53 ϕ5 = 182.55 ϕ5 = 100.54 ϕ5 = -183.77 ϕ5 = 94.46
ϕ6 = 155.67 ϕ6 = 169.66 ϕ6 = 128.65 ϕ6 = 63.95 ϕ6 = 175.25
ϕ7 = 24.04 ϕ7 = 2.88 ϕ7 = 131.21 ϕ7 = 89.74 ϕ7 = 7.69

Predicted dihedral angles (in deg.) of DKICA
Configuration 1 Configuration 2 Configuration 3 Configuration 4 Configuration 5
θ1 = 65.95 θ1 = 69.50 θ1 = 84.13 θ1 = 82.41 θ1 = 105.88
θ2 = 80.19 θ2 = 90.62 θ2 = 94.37 θ2 = 69.18 θ2 = 83.83
θ3 = 100.09 θ3 = 70.66 θ3 = 100.92 θ3 = 96.90 θ3 = 66.08

ϕ1 = -4.83 ϕ1 = 0.47 ϕ1 = 5.69 ϕ1 = -5.05 ϕ1 = -41.32
ϕ2 = 201.58 ϕ2 = 176.57 ϕ2 = 177.28 ϕ2 = 157.23 ϕ2 = 186.02
ϕ3 = 255.72 ϕ3 = 65.91 ϕ3 = 269.98 ϕ3 = -3.51 ϕ3 = 193.82
ϕ4 = 153.85 ϕ4 = 166.14 ϕ4 = 173.79 ϕ4 = 171.53 ϕ4 = 163.81
ϕ5 = 289.77 ϕ5 = 123.24 ϕ5 = 145.94 ϕ5 = 165.04 ϕ5 = -83.45
ϕ6 = -96.50 ϕ6 = 100.83 ϕ6 = 0.98 ϕ6 = 3.01 ϕ6 = 259.15
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Table S6. All predicted inter-monomer {θ} and ring-OH {ϕ} dihedral angles for the exper-
imental spectrum in the 560-570 nm wavelength range.

Predicted dihedral angles (in deg.) of MKICA
Configuration 1 Configuration 2 Configuration 3 Configuration 4 Configuration 5
θ1 = 103.45 θ1 = 49.17 θ1 = 106.07 θ1 = 106.00 θ1 = 53.96
θ2 = 92.05 θ2 = 107.63 θ2 = 48.50 θ2 = 73.02 θ2 = 106.34
θ3 = 56.97 θ3 = 50.99 θ3 = 90.01 θ3 = 93.77 θ3 = 100.31

ϕ1 = 142.78 ϕ1 = 133.99 ϕ1 = 158.81 ϕ1 = 159.10 ϕ1 = 106.39
ϕ2 = 89.25 ϕ2 = 30.90 ϕ2 = 75.95 ϕ2 = 133.91 ϕ2 = -3.09
ϕ3 = 102.63 ϕ3 = 116.26 ϕ3 = 145.01 ϕ3 = 94.75 ϕ3 = 152.62
ϕ4 = 116.35 ϕ4 = 81.97 ϕ4 = 42.07 ϕ4 = 131.68 ϕ4 = -4.22
ϕ5 = 98.99 ϕ5 = 115.89 ϕ5 = 130.41 ϕ5 = 136.12 ϕ5 = 150.84
ϕ6 = 161.02 ϕ6 = 119.63 ϕ6 = 102.10 ϕ6 = 153.61 ϕ6 = 118.58
ϕ7 = -2.30 ϕ7 = 29.87 ϕ7 = 59.28 ϕ7 = 9.64 ϕ7 = 92.12

Predicted dihedral angles (in deg.) of DKICA
Configuration 1 Configuration 2 Configuration 3 Configuration 4 Configuration 5
θ1 = 65.45 θ1 = 61.11 θ1 = 81.83 θ1 = 82.27 θ1 = 65.55
θ2 = 79.03 θ2 = 58.86 θ2 = 90.90 θ2 = 109.16 θ2 = 123.50
θ3 = 86.23 θ3 = 69.04 θ3 = 69.34 θ3 = 96.98 θ3 = 73.23

ϕ1 = 15.49 ϕ1 = 133.13 ϕ1 = 2.12 ϕ1 = 3.08 ϕ1 = 8.18
ϕ2 = 158.89 ϕ2 = 148.44 ϕ2 = 161.31 ϕ2 = 159.12 ϕ2 = 131.77
ϕ3 = 70.57 ϕ3 = -0.71 ϕ3 = -0.55 ϕ3 = 14.26 ϕ3 = 2.70
ϕ4 = 147.13 ϕ4 = 161.21 ϕ4 = 166.67 ϕ4 = 157.94 ϕ4 = 179.86
ϕ5 = -3.63 ϕ5 = 145.89 ϕ5 = 92.01 ϕ5 = 148.88 ϕ5 = -3.43
ϕ6 = 186.07 ϕ6 = 8.51 ϕ6 = 161.73 ϕ6 = 5.46 ϕ6 = 168.04

Table S7. MAE (in degree) with variable spectral wavelength range for 10k training set.
Below results show that the 10 nm wavelength range offers the best error. MAEs are calcu-
lated on a 10k hold-out set.

Wavelength range (nm) MAE in inter-monomer
dihedral angle (θ)

MAE in ring-OH dihedral
angle (ϕ)

299-301 1.57 21.23
298-302 0.30 5.61
295-305 0.09 1.85
290-310 0.11 1.95
275-325 0.23 3.76
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