Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2024

Supporting Information:

# DMF as amine source: iron-catalyzed cyclization of 2H-azirines to

## imidazoles

Mi-Na Zhao,<sup>a</sup>\* Zi-Mo Yang,<sup>b</sup> Lian-Qing Li<sup>a</sup>

<sup>*a*</sup> College of Chemistry and Chemical Engineering, Shaanxi XueQian Normal University, Xi'an 710100, P. R. China

<sup>b</sup> Shaanxi Key Laboratory of Phytochemistry, College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji, Shaanxi 721013, P. R. China

E-mail: <u>25040@snsy.edu.cn</u>

## CONTENTS

| 1. | General In                                                    | formation                   |                      |                   |                  |             | S2      |  |  |  |
|----|---------------------------------------------------------------|-----------------------------|----------------------|-------------------|------------------|-------------|---------|--|--|--|
| 2. | Typical                                                       | Procedure                   | for                  | Cyclization       | of               | 2H-Azirines | and     |  |  |  |
|    | N,N-Dimet                                                     | hylformamide-               |                      |                   |                  |             | S2      |  |  |  |
| 3. | Synthesis                                                     | of                          | 1-Me                 | ethyl-2,4,5-Triar | yl-1 <i>H-</i> I | midazoles   | from    |  |  |  |
|    | 1-Methyl-4,5-Diaryl-1 <i>H</i> -Imidazoles and Aryl IodidesS3 |                             |                      |                   |                  |             |         |  |  |  |
| 4. | Optimizati                                                    | on of the react             | ion cond             | litions           |                  |             | S3      |  |  |  |
| 5. | Spectrosco                                                    | pic Data for In             | nidazole             | S                 |                  |             | -S4–S12 |  |  |  |
| 6. | Appendix                                                      | (Copies of <sup>1</sup> H a | nd <sup>13</sup> C I | NMR Spectra)      |                  | 8           | S13-S62 |  |  |  |

#### **1.** General Information

Column chromatography was carried out on silica gel. <sup>1</sup>H NMR spectra were recorded at 400 MHz in CDCl<sub>3</sub> and <sup>13</sup>C NMR spectra were recorded at 100 MHz in CDCl<sub>3</sub>. The following abbreviations were used to explain multiplicities: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet. Melting points were determined with a digital melting point measuring instrument. All products were further characterized by HRMS; copies of their <sup>1</sup>H NMR and <sup>13</sup>C NMR spectra are provided. Unless otherwise stated, all reagents and solvents were purchased from commercial suppliers and used without further purification. The 2*H*-azirines were in all cases prepared from the corresponding ketoxime acetates according to following literature:

M.-N. Zhao, W. Zhang, X.-C. Wang, Y. Zhang, D.-S. Yang and Z.-H. Guan, *Org. Biomol. Chem.*, 2018, **16**, 4333-4337.

# 2. Typical Procedure for Cycloaddition of 2*H*-Azirines and *N*,*N*-Dimethylformamide

$$R^{1} \xrightarrow{N} R^{2} + H \xrightarrow{N} \overline{DTBP} (2.5 \text{ equiv}), 120 \text{ °C}} \xrightarrow{R^{2}} N \xrightarrow{N} R^{1} \xrightarrow{N} N$$

In a 25 mL round bottom flask, the 2*H*-azirines **1** (0.2 mmol), FeCl<sub>2</sub> (5 mol %, 1.27 mg) and DTBP (0.5 mmol, 73 mg) were stirred in *N*,*N*-dimethylformamide (2 mL) at 120 °C. After completion of the reaction (detected by TLC), the reaction mixture was cooled to room temperature, diluted with EtOAc (25 mL) and washed with H<sub>2</sub>O (20 mL). The organic layers were dried over anhydrous Na<sub>2</sub>SO<sub>4</sub> and evaporated in vacuo. The residue was purified by column chromatography on silica gel to afford the corresponding imidazoles **2** with petroleum ether/ethyl acetate (v/v = 2:1) as the eluent.

3. Synthesis of 1-Methyl-2,4,5-Triaryl-1*H*-Imidazoles from 1-Methyl-4,5-Diaryl-1*H*-Imidazoles and Aryl Iodides



In a 25 mL round bottom flask, the 1-methyl-4,5-diaryl-1*H*-imidazoles **2** (0.2 mmol), iodobenzene (0.3 mmol), PdCl<sub>2</sub> (5 mol%, 1.8 mg), 1,10-phenanthroline (10 mol%, 3.6 mg) and Cs<sub>2</sub>CO<sub>3</sub> (0.3 mmol) were stirred in *N*,*N*-dimethylacetamide (1 mL) at 150 °C in argon. After completion of the reaction (detected by TLC), the reaction mixture was cooled to room temperature, the resultant mixture poured into H<sub>2</sub>O (20 mL) and extracted with EtOAc (25 mL). After the solvent was evaporated under vacuum, the crude product was purified by column chromatography on silica gel to afford the corresponding 1-methyl-2,4,5-triaryl-1*H*-imidazoles **3** with petroleum ether/ethyl acetate (v/v = 10:1) as the eluent.

|       | N<br>// +             | H N oxidant,          | /st<br>T °C | N         |
|-------|-----------------------|-----------------------|-------------|-----------|
| ~     | 1a                    | ·                     |             | 2a        |
| Entry | Catalyst              | Oxidant               | $T(^{o}C)$  | Yield (%) |
| $1^b$ | [M]                   |                       | 120         | 0         |
| 2     | FeCl <sub>2</sub>     |                       | 120         | 33        |
| 3     | $Fe(acac)_2$          |                       | 120         | 27        |
| 4     | Fe(OTf) <sub>2</sub>  |                       | 120         | 22        |
| $5^c$ | FeCl <sub>2</sub>     | CHP                   | 120         | 41        |
| 6     | FeCl <sub>2</sub>     | $K_2S_2O_8$           | 120         | trace     |
| 7     | FeCl <sub>2</sub>     | PhI(OAc) <sub>2</sub> | 120         | 33        |
| 8     | FeCl <sub>2</sub>     | TBHP                  | 120         | 32        |
| 9     | FeCl <sub>2</sub>     | DTBP                  | 120         | 68        |
| 10    | FeCl <sub>2</sub>     | DTBP                  | 110         | 32        |
| 11    | FeCl <sub>2</sub>     | DTBP                  | 100         | 35        |
| 12    | FeCl <sub>2</sub>     | DTBP                  | 130         | 44        |
| 13    | FeCl <sub>2</sub>     | DTBP                  | 140         | 42        |
| 14    | FeCl <sub>3</sub>     | DTBP                  | 120         | 47        |
| 15    | Fe(acac) <sub>3</sub> | DTBP                  | 120         | 49        |
| 16    | Fe(OTf) <sub>3</sub>  | DTBP                  | 120         | 50        |
| 17    | $Fe_2(SO_4)_3$        | DTBP                  | 120         | 41        |

#### 4. Optimization of the reaction conditions<sup>a</sup>

<sup>*a*</sup> Reaction condition: **1a** (0.2 mmol), DMF (2 mL), catalyst (5 mol%), oxidant (0.5 mmol), 12 h. <sup>*b*</sup> Cu(OAc)<sub>2</sub>, CuI, CuCl<sub>2</sub>, [(C<sub>6</sub>H<sub>5</sub>)<sub>3</sub>P]<sub>3</sub>RhCl, C<sub>8</sub>H<sub>12</sub>Cl<sub>2</sub>Ru or C<sub>20</sub>H<sub>28</sub>Cl<sub>4</sub>Ru<sub>2</sub> were screened. <sup>*C*</sup> CHP = Cumyl Hydroperoxide.

### 5. Spectroscopic Data for Imidazoles



**2a:** Yield 68% (31.8 mg); Yellow solid; mp 141-144 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.56 (s, 1H), 7.49-7.43 (m, 5H), 7.34-7.31 (m, 2H), 7.22-7.11 (m, 3H), 3.46 (s, 3H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  138.2, 137.4, 134.6, 130.6, 130.6, 128.9, 128.9, 128.5, 128.0, 126.6, 126.2, 32.1. HRMS Calcd (ESI) m/z for C<sub>16</sub>H<sub>14</sub>N<sub>2</sub>: [M+Na]<sup>+</sup>257.1049. Found: 257.1054.



**2b:** Yield 53% (26.3 mg); Yellow solid; mp 113-114 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.56 (s, 1H), 7.51-7.48 (m, 2H), 7.26-7.18 (m, 6H), 7.15-7.11 (m, 1H), 3.46 (s, 3H), 2.42 (s, 3H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 138.5, 138.0, 137.3, 134.7, 130.5, 129.7, 128.8, 128.1, 127.5, 126.5, 126.2, 32.1, 21.3. HRMS Calcd (ESI) m/z for C<sub>17</sub>H<sub>16</sub>N<sub>2</sub>: [M+H] <sup>+</sup> 249.1386. Found: 249.1389.



**2c:** Yield 50% (26.2 mg); Yellow solid; mp 110-111 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.56 (s, 1H), 7.52 (d, *J* = 8.0 Hz, 2H), 7.22-7.18 (m, 3H), 7.15-7.04 (m, 3H), 3.46 (s, 3H), 2.33 (s, 3H), 2.28 (s, 3H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 137.8, 137.2, 137.1, 134.8, 131.6, 130.7, 130.2, 128.9, 128.1, 128.0, 128.0, 126.4, 126.1, 32.1, 19.8, 19.7. HRMS Calcd (ESI) m/z for C<sub>18</sub>H<sub>18</sub>N<sub>2</sub>: [M+Na]<sup>+</sup>285.1362. Found: 285.1365.



**2f:** Yield 50% (25.2 mg); Yellow solid; mp 142-143 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.64 (s, 1H), 7.45-7.43 (m, 2H), 7.33-7.29 (m, 2H), 7.24-7.20 (m, 2H), 7.17-7.13 (m, 3H), 3.48 (s, 3H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  164.2, 161.7, 138.3, 137.6, 134.1, 132.6 (d,  $J_{CF} = 8.0$  Hz), 128.2, 126.7, 126.6, 126.4 (d,  $J_{CF} = 3.0$  Hz), 116.3 (d,  $J_{CF} = 21.0$  Hz), 32.2 (s). HRMS Calcd (ESI) m/z for C<sub>16</sub>H<sub>13</sub>FN<sub>2</sub>: [M+H]<sup>+</sup>253.1136. Found: 253.1136.



**2g:** Yield 52% (27.9 mg); Yellow solid; mp 154-156 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.59 (s, 1H), 7.46-7.42 (m, 4H), 7.28-7.16 (m, 5H), 3.48 (s, 3H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 138.6, 137.7, 134.7, 134.2, 131.9, 129.3, 129.0, 128.2, 127.6, 126.7, 126.6, 32.2. HRMS Calcd (ESI) m/z for C<sub>16</sub>H<sub>13</sub>ClN<sub>2</sub>: [M+H] <sup>+</sup> 269.0840. Found: 269.0849.



**2h:** Yield 47% (29.3 mg); Yellow solid; mp 152-154 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.59-7.57 (m, 3H), 7.47-7.45 (m, 2H), 7.25-7.14 (m, 5H), 3.48 (s, 3H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 138.7, 137.8, 134.3, 132.3, 132.2, 129.5, 128.2, 127.5, 126.7, 126.6, 122.9, 32.2. HRMS Calcd (ESI) m/z for C<sub>16</sub>H<sub>13</sub>BrN<sub>2</sub>: [M+H] <sup>+</sup> 313.0335. Found: 313.0340.



**2i:** Yield 44% (25.0 mg); Brown solid; mp 145-147 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.92-7.90 (m, 2H), 7.84-7.82 (m, 2H), 7.62 (s, 1H), 7.57-7.50 (m, 4H), 7.40 (d, *J* = 8.0 Hz, 1H), 7.18-7.11 (m, 3H), 3.52 (s, 3H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 138.5, 137.6, 134.6, 133.4, 133.1, 129.9, 128.7, 128.1, 128.1, 128.1, 127.8, 126.7, 126.7, 126.5, 126.4, 32.3. HRMS Calcd (ESI) m/z for C<sub>20</sub>H<sub>16</sub>N<sub>2</sub>: [M+H] <sup>+</sup>285.1386. Found: 285.1391.



**2j:** Yield 51% (25.3 mg); Yellow solid; mp 106-107 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.56 (s, 1H), 7.45-7.43 (m, 3H), 7.38-7.32 (m, 4H), 7.01 (d, *J* = 8.0 Hz, 2H), 3.48 (s, 3H), 2.28 (s, 3H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 138.3, 137.3, 135.9, 131.8, 130.7, 130.7, 129.7, 128.9, 128.8, 128.5, 126.5, 32.2, 21.1. HRMS Calcd (ESI) m/z for C<sub>17</sub>H<sub>16</sub>N<sub>2</sub>: [M+Na]<sup>+</sup>271.1206. Found: 271.1205.



**2k:** Yield 35% (17.4 mg); Yellow solid; mp 49-50 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.65 (s, 1H), 7.34-7.28 (m, 3H), 7.20-7.11 (m, 5H), 7.09-7.05 (m, 1H), 3.64 (s, 3H), 2.09 (s, 3H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 138.5, 138.0, 137.3, 134.7, 130.5, 129.7, 128.9, 128.9, 128.8, 128.1, 127.5, 126.5, 126.2, 32.1, 21.3. HRMS Calcd (ESI) m/z for C<sub>17</sub>H<sub>16</sub>N<sub>2</sub>: [M+Na]<sup>+</sup>271.1206. Found: 271.1206.



**21:** Yield 45% (23.6 mg); Yellow oil; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.63 (s, 1H), 7.33-7.27 (m, 3H), 7.17-7.15 (m, 2H), 7.10 (s, 1H), 6.99-6.94 (m, 2H), 3.63 (s, 3H), 2.23 (s, 3H), 1.94 (s, 3H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 139.3, 137.5, 134.5, 134.0, 133.5, 131.5, 130.2, 129.9, 129.6, 128.5, 128.0, 127.6, 125.4, 32.7, 20.8, 19.6. HRMS Calcd (ESI) m/z for C<sub>18</sub>H<sub>18</sub>N<sub>2</sub>: [M+Na]<sup>+</sup>285.1362. Found: 285.1359.



**2n:** Yield 78% (39.3 mg); Yellow solid; mp 90-91 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.59 (s, 1H), 7.48-7.45 (m, 3H), 7.34-7.31 (m, 2H), 7.25-7.19 (m, 2H), 7.16-7.10 (m, 1H), 6.84-6.79 (m, 1H), 3.47 (s, 3H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  164.0, 161.6, 137.4, 136.9 (d, *J*<sub>CF</sub> = 2.0 Hz), 136.8 (d, *J*<sub>CF</sub> = 9.0 Hz), 130.5, 130.1, 129.5 (d, *J*<sub>CF</sub> = 9.0 Hz), 129.1, 128.9, 122.0 (d, *J*<sub>CF</sub> = 2.0 Hz), 113.3, 113.1 (d, *J*<sub>CF</sub> = 3.0 Hz), 112.9, 32.12. HRMS Calcd (ESI) m/z for C<sub>16</sub>H<sub>13</sub>FN<sub>2</sub>: [M+Na]<sup>+</sup>275.0955. Found: 275.0966.



**20:** Yield 56% (30.0 mg); Yellow solid; mp 64-65 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.60 (s, 1H), 7.46 (dd, *J* = 8.0, 4.0 Hz, 3H), 7.41 (d, *J* = 8.0 Hz, 2H), 7.32-7.30 (m, 2H), 7.17 (d, *J* = 8.0 Hz, 2H), 3.48 (s, 3H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 137.5, 137.1, 133.0, 132.1, 130.6, 130.2, 129.1, 128.9, 128.3, 127.9, 32.2. HRMS Calcd (ESI) m/z for C<sub>16</sub>H<sub>13</sub>ClN<sub>2</sub>: [M+H] <sup>+</sup> 269.0840. Found: 269.0846.



**2p:** Yield 63% (39.3 mg); Yellow solid; mp 100-102 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.72 (t, *J* = 4.0 Hz, 1H), 7.56 (s, 1H), 7.48-7.45 (m, 3H), 7.33-7.29 (m, 3H), 7.24 (m, 1H), 7.02 (t, *J* = 8.0 Hz, 1H), 3.48 (s, 3H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 137.5, 136.8, 136.8, 130.6, 130.1, 129.6, 129.5, 129.2, 129.1, 128.9, 124.9, 122.4, 32.2. HRMS Calcd (ESI) m/z for C<sub>16</sub>H<sub>13</sub>BrN<sub>2</sub>: [M+Na] <sup>+</sup>335.0154. Found: 335.0151.



**2q:** Yield 35% (21.7 mg); Yellow solid; mp 124-126 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.59 (s, 1H), 7.56 (d, J = 8.0 Hz, 4H), 7.47-7.44 (m, 5H), 7.40-7.36 (m, 4H), 7.29 (d, J = 8.0 Hz, 1H), 3.49 (s, 3H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  140.9, 138.9, 137.5, 133.7, 131.0, 130.7, 130.6, 128.7, 128.6, 128.2, 127.6, 127.0, 126.9, 126.9, 126.8, 126.8, 32.2. HRMS Calcd (ESI) m/z for C<sub>22</sub>H<sub>18</sub>N<sub>2</sub>: [M+Na] + 333.1362. Found: 333.1362.



**2r:** Yield 34% (19.2 mg); Yellow solid; mp 96-97 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.59 (s, 1H), 7.43-7.41 (m, 2H), 7.33 (d, *J* = 8.0 Hz, 2H), 7.27 (s, 1H), 7.25 (s, 1H), 7.03 (d, *J* = 8.0 Hz, 2H), 3.48 (s, 3H), 2.29 (s, 3H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 138.7, 137.7, 136.3, 134.7, 132.0, 131.3, 129.3, 129.1, 129.0, 127.2, 126.7, 32.2, 21.1. HRMS Calcd (ESI) m/z for C<sub>17</sub>H<sub>15</sub>ClN<sub>2</sub>: [M+Na]<sup>+</sup> 305.0816. Found: 305.0811.



**2s:** Yield 35% (23.1 mg); Yellow solid; mp 45-46 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.68 (d, J = 2.0 Hz, 1H), 7.58 (s, 1H), 7.24-7.19 (m, 3H), 7.15 (dd, J = 8.0, 4.0 Hz, 1H), 7.03 (s, 1H), 3.36 (s, 3H), 2.36 (s, 3H), 1.99 (s, 3H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  137.3, 136.3, 135.6, 135.3, 135.1, 132.3, 131.4, 130.7, 130.5, 130.1, 129.6, 129.3, 129.1, 127.3, 124.4. HRMS Calcd (ESI) m/z for C<sub>18</sub>H<sub>16</sub>Cl<sub>2</sub>N<sub>2</sub>: [M+Na]<sup>+</sup> 353.0588.



**2t:** Yield 57% (34.4 mg); Yellow solid; mp 150-151 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.61 (s, 1H), 7.44 (d, *J* = 8.0 Hz, 2H), 7.38 (d, *J* = 8.0 Hz, 2H), 7.24 (s, 2H), 7.19 (d, *J* = 8.0 Hz, 2H), 3.49 (s, 3H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  137.9, 135.0, 132.7, 132.3, 131.9, 131.2, 129.5, 128.6, 128.5, 128.4, 127.9, 32.2. HRMS Calcd (ESI) m/z for C<sub>16</sub>H<sub>12</sub>Cl<sub>2</sub>N<sub>2</sub>: [M+H]<sup>+</sup> 303.0450. Found: 303.0457.



**2u:** Yield 60% (41.5 mg); Yellow solid; mp 144-145 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.60 (d, *J* = 8.0 Hz, 2H), 7.57 (s, 1H), 7.38 (d, *J* = 8.0 Hz, 2H), 7.20-7.18 (m, 4H), 3.48 (s, 3H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 137.9, 132.8, 132.4, 132.4, 132.4, 132.1, 129.2, 128.4, 127.9, 123.2, 32.2. HRMS Calcd (ESI) m/z for C<sub>16</sub>H<sub>12</sub>BrClN<sub>2</sub>: [M+H]<sup>+</sup> 346.9945. Found: 346.9954.



**3a:** Yield 82% (51.1 mg); White solid; mp 137-138 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.77 (d, J = 8.0 Hz, 2H), 7.60 (d, J = 8.0 Hz, 2H), 7.52-7.41 (m, 8H), 7.25-7.21 (m, 2H), 7.18-7.14 (m, 1H), 3.50 (s, 3H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  147.75, 137.64, 134.60, 131.13, 130.82, 130.35, 128.93, 128.52, 127.95, 126.84, 126.18, 33.01. HRMS Calcd (ESI) m/z for C<sub>22</sub>H<sub>18</sub>N<sub>2</sub>: [M+Na] + 333.1362. Found: 333.1356.



**3j:** Yield 63% (40.8 mg); Yellow solid; mp 122-123 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.75 (d, *J* = 8.0 Hz, 2H), 7.51-7.41 (m, 10H), 7.03 (d, *J* = 8.0 Hz, 2H), 3.50 (s, 3H), 2.29 (s, 3H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 147.73, 137.81, 135.84, 131.74, 131.36, 130.89, 130.00, 129.73, 129.17, 128.34, 126.86, 33.09, 21.13. HRMS Calcd (ESI) m/z for C<sub>23</sub>H<sub>20</sub>N<sub>2</sub>: [M+H] <sup>+</sup> 325.1699. Found: 325.1702.



**3c:** Yield 60% (51.1 mg); Yellow solid; mp 87-89 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.75 (d, *J* = 8.0 Hz, 2H), 7.60 (d, *J* = 8.0 Hz, 2H), 7.51-7.47 (m, 2H), 7.45-7.42 (m, 1H), 7.24-7.19 (m, 4H), 7.15-7.14 (m, 2H), 3.49 (s, 3H), 2.35 (s, 3H), 2.31 (s, 3H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 147.56, 137.44, 137.01, 134.72, 131.78, 130.98, 130.65, 130.23, 129.05, 128.49, 127.97, 126.83, 126.12, 33.04, 19.72. HRMS Calcd (ESI) m/z for C<sub>24</sub>H<sub>22</sub>N<sub>2</sub>: [M+Na] <sup>+</sup>361.1675. Found: 361.1676.



**3n:** Yield 61% (40.0 mg); Yellow solid; mp 120-121 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.76-7.73 (m, 2H), 7.52-7.40 (m, 8H), 7.31-7.28 (m, 2H), 7.17-7.12 (m, 1H), 6.85-6.80 (m, 1H), 3.50 (s, 3H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  164.0, 161.6, 147.9, 137.0 (d, *J* = 8.0 Hz), 136.5 (d, *J* = 3.0 Hz), 130.9, 130.8, 130.8, 129.4, 129.3, 129.1, 129.0, 128.9 (d, *J* = 2.0 Hz), 128.6, 122.3 (d, *J* = 3.0 Hz), 113.6 (d, *J* = 22.0 Hz), 113.1 (d, *J* = 21.0 Hz), 33.1. HRMS Calcd (ESI) m/z for C<sub>22</sub>H<sub>17</sub>FN<sub>2</sub>: [M+Na] + 351.1268. Found: 351.1264.



**3g:** Yield 70% (48.2 mg); White solid; mp 166-168 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.74 (d, *J* = 8.0 Hz, 2H), 7.55-7.44 (m, 7H), 7.36 (d, *J* = 8.0 Hz, 2H), 7.23 (d, *J* = 8.0 Hz, 2H), 7.19-7.15 (m, 1H), 3.51 (s, 3H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  148.25, 138.16, 134.67, 134.28, 132.15, 130.69, 129.90, 129.62, 129.35, 128.97, 128.58, 128.15, 127.06, 126.55, 33.15. HRMS Calcd (ESI) m/z for C<sub>22</sub>H<sub>17</sub>ClN<sub>2</sub>: [M+Na] + 367.0973. Found: 361.0972.



**3h:** Yield 62% (48.1 mg); Yellow solid; mp 165-166 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.70 (d, J = 8.0 Hz, 2H), 7.57 (d, J = 8.0 Hz, 2H), 7.51-7.40 (m, 6H), 7.24-7.13 (m,

4H), 3.46 (s, 3H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 148.30, 138.14, 134.20, 132.35, 130.86, 129.98, 128.99, 128.57, 128.16, 127.10, 126.59, 122.88, 33.17. HRMS Calcd (ESI) m/z for C<sub>22</sub>H<sub>17</sub>BrN<sub>2</sub>: [M+H] <sup>+</sup>389.0648. Found: 389.0651.



**3v:** Yield 65% (42.1 mg); Yellow solid; mp 155-156 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.64 (d, J = 8.0 Hz, 2H), 7.56 (d, J = 8.0 Hz, 2H), 7.51-7.38 (m, 5H), 7.30 (d, J = 8.0 Hz, 2H), 7.18 (m, 3H), 3.49 (s, 3H), 2.43 (s, 3H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  147.97, 138.64, 137.56, 134.67, 131.28, 130.84, 130.24, 129.20, 128.93, 128.45, 128.01, 126.93, 126.20, 33.08, 21.33. HRMS Calcd (ESI) m/z for C<sub>23</sub>H<sub>20</sub>N<sub>2</sub>: [M+Na] <sup>+</sup> 347.1516. Found: 347.1516.





































































































