1 Construction of MnO₂-Mn₃O₄ heterostructures to

² facilitate high-performance aqueous magnesium ion

3

energy storage

- 4 Xueli Chen^{a,b}, Lu Han^{a,*}, Guangzhen Zhao^a, Litao Zhao^a, Guoliang Gao^a, Lianghao
- 5 Yu^a, Yanjiang Li^a, Xiuyang Shan^a, Junfeng Li^c, Xinjuan Liu^d, Guang Zhu^{a, b,*}
- 6
- 7 ^a Key Laboratory of Spin Electron and Nanomaterials of Anhui Higher Education
- 8 Institutes, Suzhou University, Suzhou 234000, PR China
- 9 ^b School of Materials Science and Engineering, Anhui Polytechnic University, Wuhu
- 10 241000, PR China
- 11 °College of Logistics Engineering, Shanghai Maritime University, Shanghai 201306,
- 12 PR China
- 13 ^d School of Materials and Chemistry, University of Shanghai for Science and
- 14 Technology, Shanghai 200093, P.R. China
- 15 * Corresponding author: Lu Han (<u>982563331@qq.com</u>);
- 16 Guang Zhu (guangzhu@ahszu.edu.cn)
- 17

1 Materials Characterization

Field emission scanning electron microscopy (SEM, Hitachi, S-4800) with energy 2 dispersive spectrometer (EDS, Bruker Quantax-400) and transmission electron 3 microscope (TEM, JEM-2100F, JEOL) were used to examine the morphology, 4 structure, and element distribution of the materials. Measurements of the sample's 5 microstructure was made using an X-ray diffractometer (XRD, Rigaku Smart Lab, TM 6 9kW, Cu-K, = 1.5418A, 30 kV, 25 mA, scanning range 5-90°). Measurements of the 7 sample's specific surface area and pore distribution were made using a physical 8 adsorption instrument (Micrometric, ASAP2020). In order to suit the XPS test results, 9 XPS Peak 4.1 software was used to assess the material element composition and 10 valence states using X-ray photoelectron spectroscopy (XPS, Esca lab 250Xi). 11

12 Electrochemical Measurements.

13 The electrochemical characteristics of the samples were measured using an apparatus with three electrodes. The working electrodes were prepared by coating a 14 homogenous slurry of active material (AC, MnO2, MnO2-Mn3O4, Mn3O4 power), 15 carbon black (Super-P) and polyvinylidene fluoride (adhesive agent) in N-methyl 16 pyrrolidone solvent with a weight ratio of 80: 10: 10 onto graphite substrates, and then 17 dried at 60 °C for 24 h in a constant temperature oven. A saturated calomel electrode 18 served as the reference electrode, and a Pt sheet served as the counter electrode. 19 Typically, each working electrode has an exposed area of 1×1 cm² and an active 20 material mass loading of 1 mg. As the electrolyte solution, we utilized 1.0 M MgSO₄ 21 solution. An electrochemical workstation was used to measure cyclic voltammetry 22 (CV), galvanostatic charge-discharge curves (GCD), and electrochemical impedance 23 spectroscopy (EIS) (Autolab PGSTA302N). The voltage range for CV is -0.5 to 1.2 V 24 (versus Hg/HgO), and the scan rates range from 2 to 10 mV s⁻¹. The voltage range for 25 GCD is -0.5 to 1.2 V (versus Hg/HgO), and the current density ranges from 0.2 to 5 A 26 g^{-1} . The frequency range used for the electrochemical impedance spectroscopy was 1 27 28 MHz to 0.1 Hz. A two-electrode system (MHS) was assembled using the AC electrode as the anode and the MnO₂-Mn₃O₄ electrode as the cathode in a 1 M MgSO₄ aqueous 29 electrolyte. Similarly, the electrochemical performance of MHS was tested using an 30

1 electrochemical workstation (Autolab PGSTA302N). The cycling stability measurement of aqueous magnesium-ion hybrid supercapacitors (MHS) was carried 2 out on a LAND battery-testing instrument with a current density at 10 A g⁻¹ for 5000 3 The two-electrode test employed the principle of excess negative mass for cycles. 4 electrode matching. A single negative electrode was coated with approximately 9 mg 5 of active material, while a single positive electrode was coated with approximately 3 6 mg of active material. This ensured maximum capacity of the positive material. The 7 active substance mass was used to compute all working current densities. 8

9

10 **Related calculations.** For the three-electrode and two-electrode systems, the specific 11 capacitance (C_{F1} , F g⁻¹; C_{F2} , F g⁻¹) was calculated from the GCD curves according to 12 the following equation[1, 2]:

$$C_{F1} = \frac{I \times \Delta t}{m \times \Delta V}$$

$$C_{F2} = \frac{I \times \Delta t}{m \times \Delta V}$$

15 where I, ΔV , m and t refer to the current (A), potential window (V), mass of active

16 material (g) and discharge time (s), respectively.

For the two-electrode system, the energy density (E, Wh Kg⁻¹) and power density (P, W Kg⁻¹) were calculated according to the following equations[3, 4]:

 $E = \frac{C_F \times \Delta V^2}{2 \times 3.6}$ $P = \frac{3600 \times E}{\Delta t}$

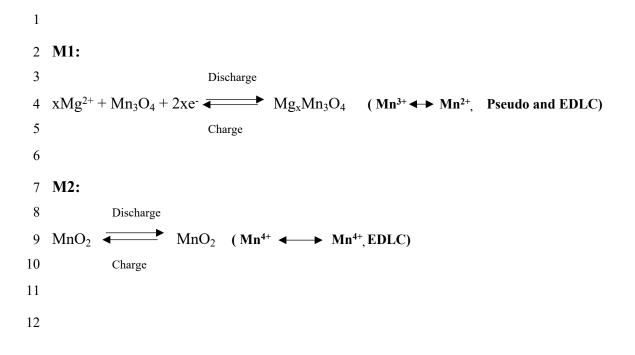
21 where C_F , ΔV , and Δt refer to the specific capacitance (F g⁻¹), potential window (V),

22 and discharge time (s), respectively.

The ratio of diffusion and capacitance contributions in the capacity contribution is calculated as follows based on the ratio of diffusion-controlled and capacitance-

25 controlled currents[5]:

26
$$i = k_1 v + k_2 v^{1/2}$$


27 k_1 and k_2 are fitting constants, vary with the scan rate of v (mV s⁻¹), k_1 v being the faster

28 capacitance control current and $k_2 v^{1/2}$ being the slow diffusion control current.

1 The preparation of samples.

4 mmol KMnO₄ and 6 mmol MnSO₄·H₂O were dissolved in 40 mL of DI, 2 respectively. Then, the above two were mixed and stirred magnetically at room 3 temperature for 30 min, and the mixed solution was transferred to a 100 ml 4 polytetrafluoroethylene autoclave and kept at 140 °C for 6 h. The sample obtained by 5 washing and drying is the precursor, and was denoted as MnO_2 . The MnO_2 was 6 transferred to a tube furnace and heated at 800 $^{\circ}\mathrm{C}$ for 2 h under N_2 atmosphere at a rate 7 8 of 2 °C min⁻¹. After natural cooling to room temperature, the sample was taken out and the MnO₂-Mn₃O₄ was obtained. Samples obtained under the same conditions at 1000 9 °C were Mn₃O₄. 10

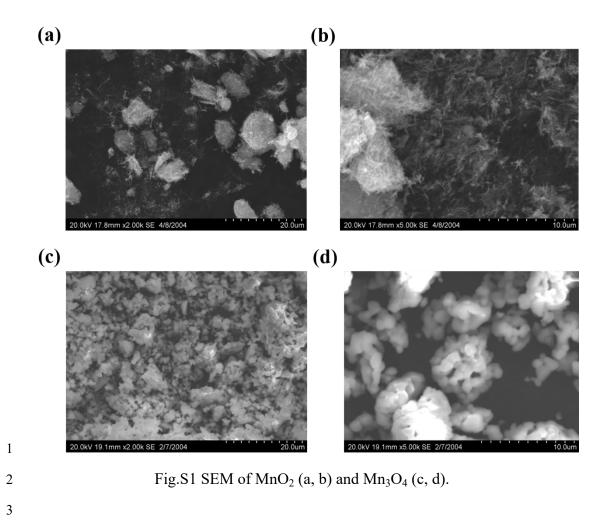
11

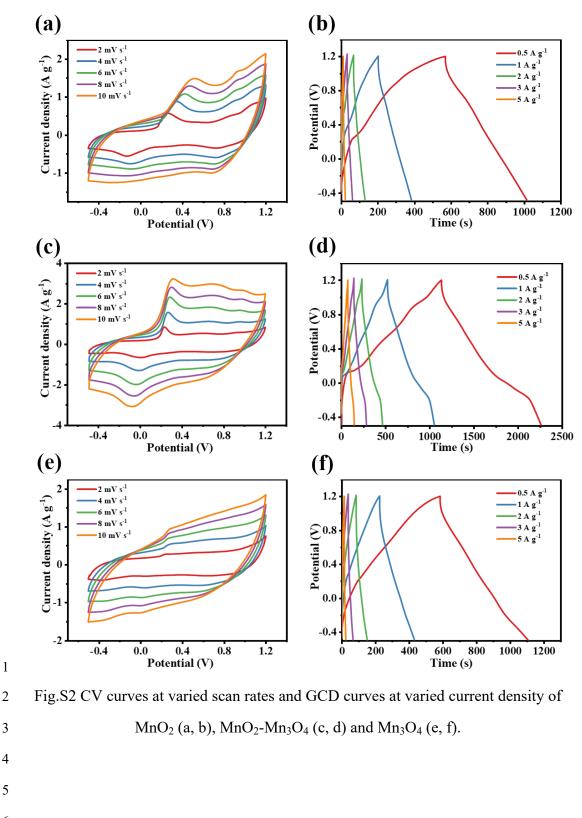
1 Table S1 Mn and O species content (at%) of MnO_2 , MnO_2 - Mn_3O_4 and Mn_3O_4 based on

2 XPS results.

	Sample	Mn^{2+}	Mn ³⁺	Mn^{4+}	O _{Mn-O-Mn}	O _{Mn-OH}	O _{H-O-H}
-	MnO ₂	-	-	100%	44.0%	35.2%	20.8%
	MnO ₂ - Mn ₃ O ₄	26.7%	36.5%	36.8%	55.8%	36.0%	8.2%
	Mn ₃ O ₄	44.86%	55.14%	-	64.1%	19.6%	16.3%
-							
	Table S2 Spec	cific capacit	ance at varie	d current d	ensities of M	InO ₂ , MnO ₂	2-Mn3O4 a
	$Mn_3O_4.$						
	Sample	0.5 A g ⁻¹	1.0 A g-	1 2.0	A g ⁻¹ 3.	0 A g ⁻¹	5.0 A g ⁻¹

Sample	0.5 A g ⁻¹	1.0 A g ⁻¹	2.0 A g ⁻¹	3.0 A g ⁻¹	5.0 A g ⁻¹
MnO ₂	132.1	108.8	76.4	55.6	32.4
MnO ₂ - Mn ₃ O ₄	333.5	313.5	277.6	254.1	211.8
Mn ₃ O ₄	155.0	123.5	78.8	52.9	29.4


16


1 Table S3 Performance comparison of MnO_2 - Mn_3O_4 with other Mn-based materials in


Anode	Cathode		Energy density	Power density		Ref.
Anode	Cathode	Electrolyte	(W h kg ⁻¹)	(W kg ⁻¹)	Cycling	
AC	K-MnO ₂	1.0 M MgSO ₄	85.2	360	96.7%, 20000 cycles	[5]
AC	Co-MnO ₂	1.0 M MgSO ₄	79.6	360	94.8%, 15000 cycles	[6]
AC	Mg-OMS-2/Graphene	0.5 M Mg (NO ₃) ₂	46.9	-	75.7%, 300 cycles	[7]
AC	β -MnO ₂	1.0 M MgSO ₄	60.8	180	74.1%, 3500 cycles	[8]
AC	δ -MnO ₂	4.0 M Mg (ClO ₄) ₂	103.9	3680	96.5%, 1000 cycles	[9]
PCS	CMO/G-N	1.0 M Mg (ClO ₄) ₂	61.0	123	87%, 10000 cycles	[10]
AC	δ -MnO ₂	4 M Mg (ClO ₄) ₂ -PAAm	59.6	3450	96.7%, 1000 cycles	[11]
α-Fe ₂ O ₃	β-MnO ₂	1.0 M MgSO ₄	82.1	6153	96.2%, 5000 cycles	[12]
AC	$\mathrm{Mn}_3\mathrm{O}_4$	2.0 M MgSO ₄	20.2	125	80%, 6000 cycles	[13]
AC	K- MnO ₂ /HMC	1.0 M MgSO ₄	111.1	505	97.3%, 5000 cycles	[14]
AC	MaQ. Ma Q	1.0 M MgSO ₄	185.6	1299.9	08 59/ 5000 msl	This
AU	MnO ₂ -Mn ₃ O ₄			1299.9	98.5%, 5000 cycles	Work

2 aqueous magnesium ion energy storage.

3

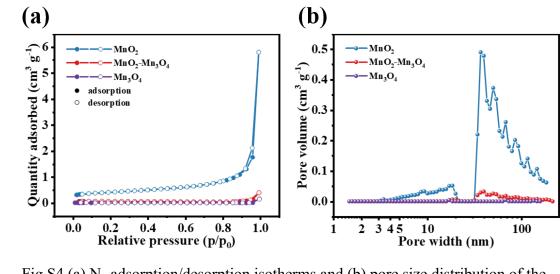
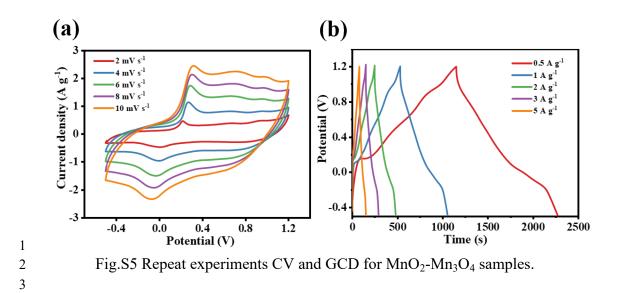



Fig.S4 (a) N₂ adsorption/desorption isotherms and (b) pore size distribution of the
 MnO₂, MnO₂-Mn₃O₄ and Mn₃O₄.

1 Reference

- 2 [1] L. Xu, D. Zhu, W. Zhou, F. Jiang, Y. Wu, Y. Cai, H. Kang, J. Xu, One-step
- 3 hydrothermal synthesis of N-doped graphene/poly5-hydroxyindole composite
- 4 materials for supercapacitor with ultra-long cycle stability and ultra-high energy storage
- 5 performance. Journal of Energy Storage, 43 (2021) 103303.
- 6 [2] J. Zhang, L. Zhu, H. Jia, K. Wei, L. Wen, Microreactor facilitated preparation and
- 7 Ni-doping of MnO_2 nanoparticles for supercapacitors. Journal of Alloys and 8 Compounds, 889 (2021) 161772.
- 9 [3] X. Fan, L. Chen, X. Ji, T. Deng, S. Hou, J. Chen, J. Zheng, F. Wang, J. Jiang, K.
- 10 Xu, C. Wang, Highly Fluorinated Interphases Enable High-Voltage Li-Metal Batteries.
- 11 Chem, 4 (2018) 174-185.
- 12 [4] N. Zarshad, A.U. Rahman, J. Wu, A. Ali, F. Raziq, L. Han, P. Wang, G. Li, H. Ni,
- 13 Enhanced energy density and wide potential window for K incorporated $MnO_2@$ carbon
- 14 cloth supercapacitor. Chemical Engineering Journal, 415 (2021) 128967.
- 15 [5] L. Xu, G. Pan, J. Wang, J. Li, Z. Gong, T. Lu, L. Pan, K^+ intercalated MnO₂ with 16 ultra-long cycling life for high-performance aqueous magnesium-ion hybrid
- 17 supercapacitors. Sustainable Energy & Fuels, 6 (2022) 5290-5299.
- 18 [6] L. Xu, G. Pan, C. Yu, J. Li, Z. Gong, T. Lu, L. Pan, Co-doped MnO₂ with abundant
- 19 oxygen vacancies as a cathode for superior aqueous magnesium ion storage. Inorganic
- 20 Chemistry Frontiers, 10 (2023) 1748-1757.
- 21 [7] H. Zhang, K. Ye, K. Zhu, R. Cang, X. Wang, G. Wang, D. Cao, Assembly of
- 22 Aqueous Rechargeable Magnesium Ions Battery Capacitor: The Nanowire Mg-OMS-
- 23 2/Graphene as Cathode and Activated Carbon as Anode. ACS Sustainable Chemistry
- 24 & Engineering, 5 (2017) 6727-6735.
- 25 [8] S. Li, J.-G. Zhang, Y.-Y. Yan, L.-L. Yu, J.-T. Zhao, Manganese valence state
- 26 regulated beta-manganese dioxide porous nanoflowers as high-performance cathodes
- 27 at large current densities for aqueous magnesium ions battery capacitor. Journal of
- 28 Energy Storage, 59 (2023) 106456.
- 29 [9] G. Yang, G. Qu, C. Fang, J. Deng, X. Xu, Y. Xie, T. Sun, Y. Zhu, J. Zheng, H.
- 30 Zhou, An aqueous magnesium-ion hybrid supercapacitor operated at -50 °C. Green
- 31 Energy & Environment, (2022) https://doi.org/10.1016/j.gee.2022.09.004.
- 32 [10] S. Alagar, S. Kumari, D. Upreti, Aashi, V. Bagchi, High-Performance Mg-Ion
- 33 Supercapacitor Designed with a N-Doped Graphene Wrapped $CoMn_2O_4$ and Porous 34 Carbon Spheres. Energy & Fuels, 36 (2022) 14442-14452.
- 35 [11] G. Qu, G. Yang, C. Fang, H. Zhou, in: 2022 IEEE International Flexible
- 36 Electronics Technology Conference (IFETC), 2022, pp. 1-2.
- 37 [12] N.S. Shaikh, S.S. Mali, J.V. Patil, A.I. Mujawar, J.S. Shaikh, S.C. Pathan, S.
- 38 Praserthdam, C.K. Hong, P. Kanjanaboos, Mg2+ ion-powered hybrid supercapacitor
- 39 with β -MnO₂ as a cathode and α -Fe₂O₃ as an anode. Journal of Energy Storage, 50 40 (2022) 104525.
- 41 [13] X. Cao, L. Wang, J. Chen, J. Zheng, Low-Cost Aqueous Magnesium-Ion Battery
- 42 Capacitor with Commercial Mn_3O_4 and Activated Carbon. ChemElectroChem, 5 43 (2018) 2789-2794.
- 44 [14] X. Chen, L. Han, Y. Li, G. Zhao, G. Gao, L. Yu, X. Shan, X. Xie, X. Liu, G. Zhu,

- 1 K-birnessite-MnO₂/hollow mulberry-like carbon complexes with stabilized and
- 2 superior rate performance for aqueous magnesium ion storage. Dalton Trans, 53 (2024)
- 3 1640-1647.
- 4