Supplementary Information for:

Copper-Catalyzed Intramolecular Dearomative Aza-Wacker Reaction of Indole

Bi Wang,^a Ren-Xiao Liang,^a Zhen-Lu Shen*^a and Yi-Xia Jia*^{a,b}

^aCollege of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou 310014, China.

^bSchool of Chemistry and Chemical Engineering, Tianjin University of Technology

*E-mail: zhenlushen@zjut.edu.cn; yxjia@zjut.edu.cn

Table of Contents

1. General Information	S1
2. Procedure for Preparation of Substrates	S1
3. Procedure for Copper-Catalyzed Intramolecular Dearomatizing Amination of Indoles 1 and 4	; Oxidative S2
4. Characterization of Substrates and Products	S3
5. Crystal Report for the Mixture of 2b and 6	S24
6. Copies of NMR Spectra	S26

1. General Information

All reagents were purchased from commercial suppliers with the highest purity grade, and used directly without further purification. ¹H and ¹³C NMR spectra were recorded on Bruker AVANCE III 400 MHz or 500 MHz using CDCl₃ as solvent with TMS as the internal standard. Melting points were measured on a Büchi Melting Point B-545 apparatus and uncorrected. HRMS were recorded on Thermo Scientific LTQ Orbitrap XL or Agilent 6210 TOF LC/MS mass spectrometer. Solvents were purified prior to use according to conventional procedures. Reactions were monitored by thin layer chromatography (TLC) using silica gel plates. Column chromatography was carried out using silica gel (200-300 mesh).

2. Procedure for Preparation of Substrates

Step 1: To a solution of 2-nitrobenzoic acid (1.0 equiv) in anhydrous DCM was added oxalyl chloride (3.0 equiv) and DMF (two drops) at room temperature. The resulting mixture was allowed to stir for 2 h. When the reaction was completed, the solution was concentrated under reduced pressure. The obtained crude product was used for the next step without further purification.

Step 2: Synthesis of *N***-acylindoles S3.** To a dried Schlenk tube was charged with indole S2 (1.0 equiv) and THF under N₂ atmosphere. Sodium hydride (60 wt%, 1.5 equiv) was then added in portions at 0 °C. After stirring at 0 °C for 40 min, the above crude of 2-nitrobenzoic chloride derivatives S1 (1.5 equiv) was added dropwise. The resulting mixture was allowed to stir at room temperature for 2 h. When the reaction was completed, the mixture was quenched with water and extracted with DCM. The combined organic layers were dried over Na₂SO₄ and concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel eluting with petroleum ether/ethyl acetate (10:1) to afford S3.

Step 3: Reduction of the nitro group. To a solution of **S3** (1.0 equiv) in DMF in the Schlenk tube was added stannous chloride dihydrate (SnCl₂·2H₂O, 9.0 equiv). The

resulting mixture was stirred at room temperature for 3 h. When the reaction was completed, the reaction system was quenched with water and extracted with ethyl acetate. The combined organic layers were dried over Na_2SO_4 and concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel eluting with petroleum ether/ethyl acetate (20:1) to afford **S4**.

Step 4: Acylation of amine. To a solution of **S4** (1.0 equiv) in DCM in the Schlenk tube was added pyridine (1.5 equiv) and TsCl (1.2 equiv). The resulting mixture was allowed to stir at room temperature overnight. When the reaction was completed, the reaction mixture was extracted with ethyl acetate. The combined organic layers were dried over Na_2SO_4 and concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel eluting with petroleum ether/ethyl acetate (20:1) to afford products **1** or **4**.

3. Procedure for Copper-Catalyzed Intramolecular Dearomatizing Oxidative Amination of Indoles 1 and 4

To a dried Schlenk tube were charged with **1** (0.2 mmol), Cu catalyst (0.04 mmol; For condition A: 14.5 mg Cu(OTf)₂ and 0.7 μ L H₂O; For condition B: 7.0 mg CuCl₂·2H₂O), and ligand **L6** (0.08 mmol, 12 μ L) under O₂ atmosphere. Toluene (2.0 mL) was then introduced via a syringe. The tube was sealed with a Teflon cap. The resulting mixture was allowed to stir at 100 °C until the reaction was completed (monitored by TLC). The reaction mixture was then concentrated under reduced pressure and the residue was purified by flash chromatography on silica gel, eluting with petroleum ether/ethyl acetate (10:1) to afford product **2**.

To a dried Schlenk tube were charged with 4 (0.2 mmol), $CuCl_2 2H_2O$ (0.04 mmol, 7.0 mg), and ligand L6 (0.08 mmol, 12 µL) under O₂ atmosphere. Toluene (2.0 mL) was then introduced via a syringe. The tube was sealed with a Teflon cap. The resulting mixture was allowed to stir at 100 °C until the reaction was completed (monitored by TLC). The reaction mixture was then concentrated under reduced pressure and the residue was purified by flash chromatography on silica gel, eluting with petroleum ether/ethyl acetate (5:1) to afford product 5.

4. Characterization of Substrates and Products

N-(2-(2,3-Dimethyl-1H-indole-1-carbonyl)phenyl)-4-methylbenzenesulfonamide (1a)

Purified by chromatography on silica gel, eluting with ethyl acetate/petroleum ether 1:10 (v/v); yellow solid, Mp = 130-131 °C; 34% yield (for the last step).

¹**H NMR** (500 MHz, CDCl₃) δ 9.36 (s, 1H), 7.92 (d, J = 8.38 Hz, 1H), 7.64 (d, J = 7.86 Hz, 2H), 7.56 (t, J = 7.89 Hz, 1H), 7.40 (d, J = 7.74 Hz, 1H), 7.27 (d, J = 7.64 Hz, 1H), 7.14 (t, J = 7.49 Hz, 1H), 7.06 (t, J = 7.59 Hz, 1H), 7.00 (d, J = 7.93 Hz, 2H), 6.84 (t, J = 7.76 Hz, 1H), 6.21 (d, J = 8.33 Hz, 1H), 2.21 (s, 3H), 2.20 (s, 3H), 2.15 (s, 3H).

¹³**C NMR** (125 MHz, CDCl₃) *δ* 169.3, 144.1, 138.3, 136.2, 136.0, 134.0, 133.1, 132.1, 130.8, 129.7, 127.2, 124.7, 124.2, 123.6, 122.9, 122.6, 118.0, 115.8, 113.8, 21.4, 12.7, 8.7.

HRMS m/z (ESI+): Calculated for C₂₄H₂₃N₂O₃S⁺ ([M+H]⁺): 419.1424, found 419.1430.

4-Methyl-N-(2-(2,3,4,6-tetramethyl-1H-indole-1-carbonyl)phenyl)benzenesulfonamide (1b)

Purified by chromatography on silica gel, eluting with ethyl acetate/petroleum ether 1:10 (v/v); brown red solid, Mp = 130-131 °C; 65% yield (for the last step).

¹**H** NMR (500 MHz, CDCl₃) δ 9.53 (s, 1H), 7.90 (d, J = 8.30 Hz, 1H), 7.70-7.66 (m, 2H), 7.53 (td, J = 8.04, 1.68 Hz, 1H), 7.23 (dd, J = 7.85, 1.71 Hz, 1H), 7.10-7.01 (m, 3H), 6.71 (s, 1H), 6.21 (s, 1H), 2.64 (s, 3H), 2.36 (s, 3H), 2.20 (s, 3H), 2.15 (s, 3H), 1.98 (s, 3H).

¹³**C NMR** (125 MHz, CDCl₃) *δ* 169.6, 143.9, 138.5, 136.9, 136.4, 134.0, 132.4, 132.3, 131.4, 129.9, 129.6, 127.2, 126.6, 126.2, 124.4, 124.0, 123.0, 116.4, 112.1, 21.4, 21.3, 20.1, 12.5, 11.9.

HRMS m/z (ESI+): Calculated for C₂₆H₂₇N₂O₃S⁺ ([M+H]⁺): 447.1737, found 447.1737.

4-methyl-N-(2-(2,3,5-trimethyl-1H-indole-1-carbonyl)phenyl)benzenesulfonamide (1c)

Purified by chromatography on silica gel, eluting with ethyl acetate/petroleum ether 1:10 (v/v); yellow solid, Mp = 120-121 °C; 45% yield (for the last step).

¹**H** NMR (500 MHz, CDCl₃) δ 9.31 (s, 1H), 7.91 (d, J = 8.29 Hz, 1H), 7.66-7.61 (m, 2H), 7.55 (td, J = 7.93, 1.64 Hz, 1H), 7.27 (dd, J = 7.79, 1.79 Hz, 1H), 7.18 (d, J = 1.6 Hz, 1H), 7.08 (s, 1H), 6.98 (d, J = 8.05 Hz, 2H), 6.64 (dd, J = 8.37, 1.77 Hz, 1H), 6.05 (d, J = 8.53 Hz, 1H), 2.40 (s, 3H), 2.19 (s, 6H), 2.14 (s, 3H).

¹³**C NMR** (125 MHz, CDCl₃) δ 169.1, 144.0, 138.2, 136.2, 134.2, 133.8, 133.2, 132.1, 132.0, 131.1, 129.7, 127.2, 125.0, 124.22, 124.16, 123.6, 118.0, 115.8, 113.6, 21.3, 21.2, 12.8, 8.7.

HRMS m/z (ESI+): Calculated for C₂₅H₂₄N₂O₃NaS⁺ ([M+Na]⁺): 455.1400, found 455.1404.

N-(2-(5-Fluoro-2,3-dimethyl-1H-indole-1-carbonyl)phenyl)-4-methylbenzenesulfonamide (1d)

Purified by chromatography on silica gel, eluting with ethyl acetate/petroleum ether 1:10 (v/v); white solid, Mp = 117-128 °C; 69% yield (for the last step).

¹**H NMR** (500 MHz, CDCl₃) δ 9.26 (s, 1H), 7.91 (d, J = 8.26 Hz, 1H), 7.63 (d, J = 2.25 Hz, 2H), 7.61-7.50 (m, 1H), 7.24 (dd, J = 7.82, 1.67 Hz, 1H), 7.12-6.97 (m, 4H), 6.55 (td, J = 9.00, 2.59 Hz, 1H), 6.15 (dd, J = 8.97, 4.35 Hz, 1H), 2.18 (d, J = 2.17 Hz, 9H).

¹³**C** NMR (125 MHz, CDCl₃) δ 169.0, 160.2 (d, J = 238.8 Hz), 144.1, 138.3, 136.3, 134.9, 134.1, 132.2, 132.0, 131.9 (d, J = 6.2 Hz), 129.7, 127.2, 124.6, 124.3, 123.7, 115.7 (d, J = 3.5 Hz), 114.7 (d, J = 9.2 Hz), 110.4 (d, J = 25.0 Hz), 103.8 (d, J = 25.8 Hz), 21.3, 12.9, 8.7.

HRMS m/z (ESI+): Calculated for C₂₄H₂₂N₂O₃SF⁺ ([M+H]⁺): 437.1330, found 437.1335.

N-(2-(5-Chloro-2,3-dimethyl-1H-indole-1-carbonyl)phenyl)-4-methylbenzene-sulfonamide (1e)

Purified by chromatography on silica gel, eluting with ethyl acetate/petroleum ether 1:10 (v/v); yellow solid, Mp = 123-124 °C; 57% yield (for the last step).

¹**H** NMR (500 MHz, CDCl₃) δ 9.26 (s, 1H), 7.92 (d, J = 8.36 Hz, 1H), 7.63 (d, J = 7.83 Hz, 2H), 7.58 (t, J = 7.88 Hz, 1H), 7.35 (d, J = 1.92 Hz, 1H), 7.23 (d, J = 7.75 Hz, 1H), 7.08 (t, J = 7.58 Hz, 1H), 7.00 (d, J = 7.94 Hz, 2H), 6.75 (dd, J = 8.71, 2.15 Hz, 1H), 6.00 (d, J = 8.80 Hz, 1H), 2.22 (s, 3H), 2.18 (s, 3H), 2.17 (s, 3H).

¹³**C NMR** (125 MHz, CDCl₃) δ 169.1, 144.2, 138.3, 136.2, 134.8, 134.3, 132.1, 131.9, 129.7, 128.3, 127.2, 124.5, 124.4, 123.8, 122.9, 117.7, 115.2, 114.6, 21.3, 12.7, 8.6. **HRMS** *m*/*z* (ESI+): Calculated for C₂₄H₂₁N₂O₃SClNa⁺ ([M+Na]⁺): 475.0854, found 475.0861.

N-(2-(5-Bromo-2,3-dimethyl-1H-indole-1-carbonyl)phenyl)-4-methylbenzenesulfonamide (1f)

Purified by chromatography on silica gel, eluting with ethyl acetate/petroleum ether 1:10 (v/v); yellow solid, Mp = 168-169 °C; 80% yield (for the last step).

¹**H** NMR (500 MHz, CDCl₃) δ 9.26 (s, 1H), 7.93 (d, J = 8.23 Hz, 1H), 7.64-7.60 (m, 2H), 7.58 (td, J = 8.07, 1.72 Hz, 1H), 7.51 (d, J = 2.09 Hz, 1H), 7.22 (dd, J = 7.78, 1.68 Hz, 1H), 7.08 (t, J = 7.63 Hz, 1H), 6.99 (d, J = 8.07 Hz, 2H), 6.88 (dd, J = 8.71, 1.89 Hz, 1H), 5.92 (d, J = 8.72 Hz, 1H), 2.23 (s, 3H), 2.18 (s, 3H), 2.17 (s, 3H).

¹³**C NMR** (125 MHz, CDCl₃) *δ* 169.0, 144.2, 138.3, 136.2, 134.7, 134.6, 134.3, 132.6, 131.9, 129.7, 127.2, 125.6, 124.5, 124.4, 123.9, 120.8, 115.9, 115.1, 115.0, 21.4, 12.7, 8.6.

HRMS m/z (ESI+): Calculated for C₂₄H₂₁N₂O₃SBrNa⁺ ([M+Na]⁺): 519.0348, found 519.0356.

N-(2-(2-Ethyl-3-methyl-1H-indole-1-carbonyl)phenyl)-4-methylbenzenesulfonamide (1g)

Purified by chromatography on silica gel, eluting with ethyl acetate/petroleum ether 1:10 (v/v); yellow solid, Mp = 131-132 °C; 53% yield (for the last step).

¹**H** NMR (500 MHz, CDCl₃) δ 9.50 (s, 1H), 7.94 (d, J = 8.58 Hz, 1H), 7.70-7.62 (m, 2H), 7.58 (td, J = 8.00, 1.67 Hz, 1H), 7.39 (d, J = 7.51 Hz, 1H), 7.33-7.24 (m, 1H), 7.11 (t, J = 7.54 Hz, 1H), 7.05 (t, J = 7.68 Hz, 1H), 6.98 (d, J = 8.04 Hz, 2H), 6.75-6.64 (m, 1H), 5.75 (d, J = 8.40 Hz, 1H), 2.93 (ddt, J = 162.08, 14.60, 7.45 Hz, 2H), 2.25 (s, 3H), 2.12 (s, 3H), 1.16 (t, J = 7.40 Hz, 3H).

¹³**C NMR** (125 MHz, CDCl₃) δ 169.5, 144.1, 139.8, 138.7, 136.2, 136.0, 134.2, 132.2, 130.8, 129.7, 127.3, 124.24, 124.18, 123.4, 122.6, 122.2, 118.1, 115.2, 113.6, 21.4, 19.1, 14.3, 8.5.

HRMS m/z (ESI+): Calculated for C₂₅H₂₅N₂O₃S⁺ ([M+H]⁺): 433.1580, found 433.1579.

N-(2-(2,3-Dimethyl-1H-indole-1-carbonyl)-4-methoxyphenyl)-4-methylbenzene-sulfonamide (1h)

Purified by chromatography on silica gel, eluting with ethyl acetate/petroleum ether 1:10 (v/v); white solid, Mp = 111-112 °C; 42% yield (for the last step).

¹**H** NMR (500 MHz, CDCl₃) δ 8.84 (s, 1H), 7.83 (d, J = 9.09 Hz, 1H), 7.60-7.54 (m, 2H), 7.37 (d, J = 7.86 Hz, 1H), 7.19 -7.07 (m, 2H), 6.89 (d, J = 8.04 Hz, 2H), 6.84 (s, 1H), 6.74 (d, J = 2.90 Hz, 1H), 6.18 (d, J = 8.61 Hz, 1H), 3.61 (s, 3H), 2.21 (s, 3H), 2.19 (s, 3H), 2.06 (s, 3H).

¹³**C NMR** (125 MHz, CDCl₃) δ 168.6, 156.5, 143.8, 136.1, 135.7, 133.1, 130.8, 130.6, 129.5, 127.23, 127.17, 122.9, 122.7, 119.8, 117.9, 116.1, 116.0, 114.1, 55.7, 21.3, 12.8, 8.7.

HRMS m/z (ESI+): Calculated for C₂₅H₂₄N₂O₄SNa⁺ ([M+Na]⁺): 471.1349, found 471.1355.

N-(2-(2,3-Dimethyl-1H-indole-1-carbonyl)-4-methylphenyl)-4-methylbenzenesulfonamide (1i)

Purified by chromatography on silica gel, eluting with ethyl acetate/petroleum ether 1:10 (v/v); yellow solid, Mp = 110-111 °C; 32% yield (for the last step).

¹**H** NMR (500 MHz, CDCl₃) δ 9.16 (s, 1H), 7.81 (d, J = 8.42 Hz, 1H), 7.61 (d, J = 7.99 Hz, 2H), 7.38 (dd, J = 12.40, 7.96 Hz, 2H), 7.15 (t, J = 7.55 Hz, 1H), 7.07 (s,

1H), 6.96 (d, *J* = 7.79 Hz, 2H), 6.84 (d, *J* = 7.82 Hz, 1H), 6.21 (d, *J* = 8.30 Hz, 1H), 2.22 (s, 3H), 2.19 (s, 3H), 2.18 (s, 3H), 2.12 (s, 3H).

¹³**C NMR** (125 MHz, CDCl₃) δ 169.3, 143.9, 136.2, 136.0, 135.6, 134.7, 134.4, 133.1, 132.1, 130.8, 129.6, 127.2, 125.1, 124.2, 122.9, 122.5, 117.9, 115.8, 113.8, 21.4, 20.5, 12.7, 8.7.

HRMS m/z (ESI+): Calculated for C₂₅H₂₄N₂O₃SNa⁺ ([M+Na]⁺): 455.1400, found 455.1408.

N-(2-(2,3-Dimethyl-1H-indole-1-carbonyl)-3-methylphenyl)-4-methylbenzenesulfonamide (1j)

Purified by chromatography on silica gel, eluting with ethyl acetate/petroleum ether 1:10 (v/v); yellow solid, Mp = 105-106 °C; 46% yield (for the last step).

¹**H** NMR (500 MHz, CDCl₃) δ 7.78 (s, 1H), 7.67 (d, J = 8.26 Hz, 1H), 7.56 (d, J = 8.09 Hz, 2H), 7.42-7.33 (m, 2H), 7.17 (t, J = 7.48 Hz, 1H), 6.97 (d, J = 7.70 Hz, 1H), 6.84 (d, J = 8.17 Hz, 3H), 2.18 (s, 3H), 2.12 (s, 6H), 1.85 (s, 3H).

¹³C NMR (125 MHz, CDCl₃) δ 166.0, 157.8, 143.8, 136.7, 136.4, 135.5, 133.0, 132.6, 131.2, 129.4, 127.0, 123.3, 123.0, 117.9, 116.3, 115.8, 113.8, 108.1, 55.9, 21.4, 12.9, 8.7.

HRMS m/z (ESI+): Calculated for C₂₅H₂₅N₂O₃S⁺ ([M+H]⁺): 433.1586, found 433.1581.

N-(2-(2,3-Dimethyl-1H-indole-1-carbonyl)-4,5-difluorophenyl)-4-methylbenzene-sulfonamide (1k)

Purified by chromatography on silica gel, eluting with ethyl acetate/petroleum ether 1:10 (v/v); yellow solid, Mp = 125-126 °C; 54% yield (for the last step).

¹**H** NMR (500 MHz, CDCl₃) δ 9.36 (s, 1H), 7.81 (dd, J = 11.52, 6.93 Hz, 1H), 7.64 (d, J = 8.06 Hz, 2H), 7.41 (d, J = 7.76 Hz, 1H), 7.17 (t, J = 7.51 Hz, 1H), 7.10 (dd, J = 9.98, 8.23 Hz, 1H), 7.04 (d, J = 7.95 Hz, 2H), 6.88 (t, J = 7.78 Hz, 1H), 6.15 (d, J = 8.26 Hz, 1H), 2.21 (s, 6H), 2.17 (s, 3H).

¹³**C NMR** (125 MHz, CDCl₃) δ 167.4, 154.4 (d, J = 12.8 Hz), 152.4 (d, J = 14.6 Hz), 147.8 (d, J = 12.4 Hz), 145.7 (d, J = 12.4 Hz), 144.6, 136.1 (d, J = 11.3 Hz), 135.7 (d, J = 11 Hz), 132.8, 130.9, 129.9, 127.2, 123.2, 121.0 (t, J = 4.2, 3.4 Hz), 120.7 (d, J = 1.9 Hz), 120.5, 118.3, 116.5, 113.4 (t, J = 10.8 Hz), 12.6, 8.7.

HRMS m/z (ESI+): Calculated for C₂₄H₂₁N₂O₃SF₂⁺ ([M+H]⁺): 455.1235, found 455.1245.

N-(2-(2,3-Dimethyl-1H-indole-1-carbonyl)-6-fluorophenyl)-4-methylbenzenesulfonamide (11)

Purified by chromatography on silica gel, eluting with ethyl acetate/petroleum ether 1:10 (v/v); yellow solid, Mp = 182-183 °C; 58% yield (for the last step).

¹**H** NMR (500 MHz, CDCl₃) δ 7.79 (s, 1H), 7.62 (d, J = 8.04 Hz, 2H), 7.40 (d, J = 7.78 Hz, 1H), 7.34 (t, J = 9.03 Hz, 1H), 7.26 (dd, J = 11.70, 6.96 Hz, 1H), 7.20 (d, J = 7.49 Hz, 2H), 6.95 (dd, J = 39.40, 7.81 Hz, 3H), 6.61 (d, J = 8.50 Hz, 1H), 2.32 (s, 3H), 2.21 (s, 3H), 2.10 (s, 3H).

¹³**C NMR** (125 MHz, CDCl₃) δ 166.9, 159.8 (d, J = 252.5 Hz), 143.8, 136.4, 135.8, 133.3 (d, J = 15.0 Hz), 131.2, 129.2, 127.8 (d, J = 8.1 Hz), 127.3, 126.3 (d, J = 3.8 Hz), 124.4 (d, J = 13.4 Hz), 123.1, 120.6, 120.4, 118.1, 116.3, 114.6, 21.3, 13.4, 8.7. **HRMS** m/z (ESI+): Calculated for C₂₄H₂₂N₂O₃SF⁺ ([M+H]⁺): 437.1330, found 437.1333.

N-(2-(2,3-Dimethyl-1H-indole-1-carbonyl)-3-fluorophenyl)-4-methylbenzenesulfonamide (1m)

Purified by chromatography on silica gel, eluting with ethyl acetate/petroleum ether 1:10 (v/v); yellow solid, Mp = 110-111 °C; 47% yield (for the last step).

¹**H NMR** (500 MHz, CDCl₃) δ 8.44 (s, 1H), 7.68 (d, J = 8.30 Hz, 1H), 7.61 (d, J = 8.08 Hz, 2H), 7.50 (td, J = 8.30, 5.98 Hz, 1H), 7.38 (d, J = 7.69 Hz, 1H), 7.19 (t, J = 7.52 Hz, 1H), 6.91 (t, J = 8.40 Hz, 3H), 6.84 (t, J = 8.73 Hz, 1H), 6.57 (d, J = 8.38 Hz, 1H), 2.18 (s, 3H), 2.12 (d, J = 2.55 Hz, 6H).

¹³**C** NMR (125 MHz, CDCl₃) δ 163.6, 160.8 (d, J = 252.5 Hz), 144.2, 137.7 (d, J = 2.8 Hz), 136.2, 135.4, 133.7 (d, J = 9.8 Hz), 132.3, 131.3, 129.6, 127.1, 123.7, 123.4, 119.7 (t, J = 3.4, 2.8 Hz), 118.1, 116.8 (d, J = 4.1 Hz), 113.3, 112.5 (d, J = 21.6 Hz), 21.4, 12.7, 8.7.

HRMS m/z (ESI+): Calculated for C₂₄H₂₂N₂O₃SF⁺ ([M+H]⁺): 437.1330, found 437.1338.

N-(2-(2,3-Dimethyl-1H-indole-1-carbonyl)phenyl)benzenesulfonamide (1n)

Purified by chromatography on silica gel, eluting with ethyl acetate/petroleum ether 1:10 (v/v); yellow solid, Mp = 63-64 °C; 38% yield (for the last step).

¹**H** NMR (500 MHz, CDCl₃) δ 9.44 (s, 1H), 7.93 (d, J = 8.27 Hz, 1H), 7.80 (d, J = 7.68 Hz, 2H), 7.56 (t, J = 7.78 Hz, 1H), 7.41 (d, J = 7.78 Hz, 1H), 7.34 (t, J = 7.43 Hz, 1H), 7.31-7.23 (m, 3H), 7.15 (t, J = 7.51 Hz, 1H), 7.07 (t, J = 7.57 Hz, 1H), 6.89 (t, J = 7.78 Hz, 1H), 6.39 (d, J = 8.40 Hz, 1H), 2.21 (s, 3H), 2.13 (s, 3H).

¹³**C NMR** (125 MHz, CDCl₃) δ 169.4, 139.3, 138.3, 136.1, 134.1, 133.1, 132.9, 132.2, 130.8, 129.1, 127.2, 124.4, 124.2, 123.2, 123.0, 122.7, 118.1, 115.9, 113.8, 12.7, 8.7.

HRMS m/z (ESI+): Calculated for $C_{23}H_{21}N_2O_3S^+$ ([M+H]⁺): 405.1267, found 405.1266.

N-(2-(2,3-dimethyl-1H-indole-1-carbonyl)phenyl)-4-methoxybenzenesulfonamide (10)

Purified by chromatography on silica gel, eluting with ethyl acetate/petroleum ether 1:10 (v/v); yellow solid, Mp = 134-135 °C; 23% yield (for the last step).

¹**H** NMR (500 MHz, CDCl₃) δ 9.32 (s, 1H), 7.92 (d, J = 8.4 Hz, 1H), 7.78-7.63 (m, 2H), 7.56 (td, J = 8.2, 1.7 Hz, 1H), 7.40 (d, J = 7.8 Hz, 1H), 7.34-7.25 (m, 1H), 7.14 (t, J = 7.4 Hz, 1H), 7.07 (t, J = 7.6 Hz, 1H), 6.83 (t, J = 7.8 Hz, 1H), 6.77-6.48 (m, 2H), 6.17 (d, J = 8.3 Hz, 1H), 3.59 (s, 3H), 2.22 (d, J = 5.9 Hz, 6H).

¹³**C NMR** (125 MHz, CDCl₃) *δ* 169.3, 163.1, 138.4, 136.0, 134.0, 133.1, 132.1, 130.8, 130.6, 129.3, 124.8, 124.2, 123.7, 122.9, 122.6, 118.0, 115.9, 114.2, 113.8, 55.3, 12.7, 8.7.

HRMS m/z (ESI+): Calculated for C₂₄H₂₃N₂O₄S⁺ ([M+H]⁺): 435.1373, found 435.1366.

4-Chloro-N-(2-(2,3-dimethyl-1H-indole-1-carbonyl)phenyl)benzenesulfonamide (1p)

Purified by chromatography on silica gel, eluting with ethyl acetate/petroleum ether 1:10 (v/v); yellow solid, Mp = 146-147 °C; 19% yield (for the last step).

¹**H** NMR (500 MHz, CDCl₃) δ 9.36 (s, 1H), 7.91 (d, J = 8.30 Hz, 1H), 7.73-7.66 (m, 2H), 7.58 (td, J = 7.94, 1.64 Hz, 1H), 7.42 (d, J = 7.77 Hz, 1H), 7.32 (dd, J = 7.82, 1.67 Hz, 1H), 7.18 (dd, J = 8.18, 6.35 Hz, 3H), 7.11 (t, J = 7.70 Hz, 1H), 6.90 (t, J = 7.73 Hz, 1H), 6.26 (d, J = 8.27 Hz, 1H), 2.22 (s, 3H), 2.19 (s, 3H).

¹³**C NMR** (125 MHz, CDCl₃) δ 169.3, 139.8, 137.73, 137.67, 135.9, 134.1, 132.9, 132.1, 130.9, 129.4, 128.6, 125.1, 124.7, 123.6, 123.2, 122.9, 118.3, 116.3, 113.6, 12.7, 8.7.

HRMS m/z (ESI+): Calculated for C₂₃H₂₀ClN₂O₃S⁺ ([M+H]⁺): 439.0878, found 439.0872.

N-(2-(2,3-Dimethyl-1H-indole-1-carbonyl)phenyl)naphthalene-2-sulfonamide (1q)

Purified by chromatography on silica gel, eluting with ethyl acetate/petroleum ether 1:10 (v/v); white solid, Mp = 158-159 °C; 23% yield (for the last step).

¹**H NMR** (500 MHz, CDCl₃) δ 9.47 (s, 1H), 8.35 (d, J = 2.3 Hz, 1H), 7.96 (d, J = 8.2 Hz, 1H), 7.78 (d, J = 8.0 Hz, 1H), 7.71 (d, J = 2.0 Hz, 1H), 7.63 (d, J = 8.1 Hz, 1H), 7.59-7.40 (m, 4H), 7.37-7.24 (m, 1H), 7.21 (dd, J = 7.8, 1.7 Hz, 1H), 7.01 (dt, J = 25.1, 7.5 Hz, 2H), 6.44 (t, J = 7.7 Hz, 1H), 6.12 (d, J = 8.3 Hz, 1H), 2.12 (s, 3H), 2.02 (s, 3H).

¹³**C NMR** (125 MHz, CDCl₃) δ 169.3, 138.0, 136.0, 135.9, 134.9, 134.0, 132.7, 132.0, 131.9, 130.7, 129.7, 129.1, 128.8, 127.8, 127.5, 125.1, 124.4, 123.7, 122.8, 122.6, 122.0, 117.9, 116.0, 113.6, 12.6, 8.6.

HRMS m/z (ESI+): Calculated for C₂₇H₂₃N₂O₃S⁺ ([M+H]⁺): 455.1424, found 455.1419.

N-(2-(2,3-dimethyl-1H-indole-1-carbonyl)phenyl)methanesulfonamide (1r)

Purified by chromatography on silica gel, eluting with ethyl acetate/petroleum ether 1:10 (v/v); yellow solid, Mp = 50-51 °C; 50% yield (for the last step).

¹**H** NMR (400 MHz, CDCl₃) δ 8.98 (s, 1H), 7.88 (dd, *J*=8.4, 1.2 Hz, 1H), 7.64 (ddd, *J*=8.6, 7.4, 1.6 Hz, 1H), 7.51-7.43 (m, 2H), 7.22 (td, *J*=7.5, 1.0 Hz, 1H), 7.17 (td, *J*=7.6, 1.1 Hz, 1H), 7.08 (ddd, *J*=8.4, 7.1, 1.3 Hz, 1H), 6.96 (dt, *J*=8.3, 0.9 Hz, 1H), 3.11 (s, 3H), 2.36 (s, 3H), 2.26 (s, 3H).

¹³**C NMR** (100 MHz, CDCl₃) *δ* 169.5, 138.7, 136.3, 134.4, 132.9, 132.4, 131.1, 123.8, 123.5, 123.4, 123.0, 120.8, 118.4, 116.3, 113.8, 40.4, 13.0, 8.7.

HRMS m/z (ESI+): Calculated for C₁₈H₁₉N₂O₃S⁺ ([M+H]⁺): 343.1111, found 343.1105.

4-Methyl-*N*-(2-(3-methyl-1H-indole-1-carbonyl)phenyl)benzenesulfonamide (1v)

Purified by chromatography on silica gel, eluting with ethyl acetate/petroleum ether 1:10 (v/v); white solid, Mp = 142-143 °C; 75% yield (for the last step).

¹**H** NMR (500 MHz, CDCl₃) δ 8.57 (s, 1H), 8.32-8.11 (m, 1H), 7.82 (dd, J = 8.27, 1.20 Hz, 1H), 7.57 (td, J = 7.99, 1.67 Hz, 1H), 7.54-7.51 (m, 1H), 7.51-7.46 (m, 2H), 7.38 (ddd, J = 6.80, 4.95, 1.73 Hz, 2H), 7.35 (dd, J = 7.81, 1.67 Hz, 1H), 7.25 (td, J = 7.53, 1.27 Hz, 1H), 6.80 (d, J = 8.08 Hz, 2H), 6.45 (d, J = 1.57 Hz, 1H), 2.21 (d, J = 1.37 Hz, 3H), 2.05 (s, 3H).

¹³**C NMR** (125 MHz, CDCl₃) δ 166.8, 143.8, 137.1, 135.9, 135.8, 132.6, 131.7, 130.0, 129.2, 127.0, 126.3, 126.2, 125.3, 124.8, 124.2, 124.0, 118.9, 118.2, 116.6, 21.3, 9.6. **HRMS** m/z (ESI+): Calculated for C₂₃H₂₁N₂O₃S⁺ ([M+H]⁺): 405.1267, found 405.1269.

5a-Methyl-6-methylene-5-tosyl-5a,6-dihydroindolo[2,1-b]quinazolin-12(5H)-one (2a)

Purified by chromatography on silica gel, eluting with ethyl acetate/petroleum ether 1:10 (v/v); white solid, Mp = 125-126 °C; 78% yield.

¹**H** NMR (500 MHz, CDCl₃) δ 8.04 (d, J = 7.70 Hz, 1H), 7.85-7.64 (m, 3H), 7.52 (dd, J = 11.51, 7.26 Hz, 2H), 7.15 (dt, J = 28.38, 7.41 Hz, 2H), 6.96 (d, J = 8.01 Hz, 2H), 6.75 (d, J = 7.97 Hz, 2H), 6.11 (s, 1H), 5.74 (s, 1H), 2.17 (s, 3H), 1.59 (d, J = 4.87 Hz, 3H).

¹³**C NMR** (125 MHz, CDCl₃) δ 158.3, 144.3, 141.9, 140.8, 139.5, 133.8, 132.8, 130.3, 129.4, 128.8, 128.1, 128.0, 127.7, 126.9, 124.5, 120.2, 116.0, 110.8, 82.4, 32.1, 21.3. **HRMS** m/z (ESI+): Calculated for C₂₄H₂₁N₂O₃S⁺ ([M+H]⁺): 417.1267, found 417.1275.

5a,7,9-Trimethyl-6-methylene-5-tosyl-5a,6-dihydroindolo[2,1-b]quinazolin-12(5 H)-one (2b)

Purified by chromatography on silica gel, eluting with ethyl acetate/petroleum ether 1:10 (v/v); white solid, Mp = 175-176 °C; 77% yield.

¹**H** NMR (500 MHz, CDCl₃) δ 8.04 (dd, J = 7.86, 1.69 Hz, 1H), 7.78 (d, J = 8.14 Hz, 1H), 7.68-7.63 (m, 1H), 7.56 (s, 1H), 7.51 (t, J = 7.56 Hz, 1H), 7.01-6.94 (m, 2H), 6.79-6.72 (m, 3H), 6.03 (d, J = 1.46 Hz, 1H), 5.76 (d, J = 1.56 Hz, 1H), 2.53 (s, 3H), 2.30 (s, 3H), 2.16 (s, 3H), 1.58 (s, 3H).

¹³**C NMR** (125 MHz, CDCl₃) δ 158.3, 144.2, 142.5, 141.8, 139.6, 139.3, 134.20, 134.18, 132.6, 130.3, 128.6, 128.0, 127.9, 127.7, 127.0, 122.6, 114.1, 113.7, 82.7, 32.5, 21.5, 21.3, 21.3.

HRMS m/z (ESI+): Calculated for C₂₆H₂₅N₂O₃S⁺ ([M+H]⁺): 445.1580, found 445.1585.

5a,8-Dimethyl-6-methylene-5-tosyl-5a,6-dihydroindolo[2,1-b]quinazolin-12(5H)one (2c)

Purified by chromatography on silica gel, eluting with ethyl acetate/petroleum ether 1:10 (v/v); white solid, Mp = 140-141 $^{\circ}$ C; 70% yield.

¹**H NMR** (500 MHz, CDCl₃) δ 8.02 (dd, J = 7.8, 1.7 Hz, 1H), 7.79 (d, J = 8.1 Hz, 1H), 7.67 (td, J = 7.8, 1.7 Hz, 1H), 7.62 (d, J = 8.2 Hz, 1H), 7.51 (t, J = 7.6 Hz, 1H), 7.32 (d, J = 1.6 Hz, 1H), 7.00 (dd, J = 8.3, 1.6 Hz, 1H), 6.95 (d, J = 8.1 Hz, 2H), 6.76 (d, J = 8.1 Hz, 2H), 6.06 (d, J = 1.4 Hz, 1H), 5.69 (d, J = 1.4 Hz, 1H), 2.41 (s, 3H), 2.18 (s, 3H), 1.58 (s, 3H).

¹³**C NMR** (125 MHz, CDCl₃) δ 158.0, 144.2, 142.0, 139.4, 138.7, 134.4, 133.8, 132.6, 130.3, 130.2, 128.8, 128.08, 128.05, 127.7, 127.6, 127.0, 120.5, 115.8, 110.4, 82.6, 32.0, 21.4, 21.2.

HRMS m/z (ESI+): Calculated for C₂₅H₂₃N₂O₃S⁺ ([M+H]⁺): 431.1429, found 431.1432.

8-Fluoro-5a-methyl-6-methylene-5-tosyl-5a,6-dihydroindolo[2,1-b]quinazolin-12 (5H)-one (2d)

Purified by chromatography on silica gel, eluting with ethyl acetate/petroleum ether 1:10 (v/v); white solid, Mp = 175-176 °C; 99% yield.

¹**H** NMR (500 MHz, CDCl₃) δ 8.03 (dd, J = 7.73, 1.66 Hz, 1H), 7.80 (d, J = 8.01 Hz, 1H), 7.75-7.65 (m, 2H), 7.53 (t, J = 7.51 Hz, 1H), 7.18 (dd, J = 8.09, 2.62 Hz, 1H), 6.98 (d, J = 8.07 Hz, 2H), 6.89 (td, J = 8.93, 2.65 Hz, 1H), 6.82 (d, J = 7.94 Hz, 2H), 6.09 (d, J = 1.78 Hz, 1H), 5.79 (d, J = 1.76 Hz, 1H), 2.20 (s, 3H), 1.60 (s, 3H).

¹³**C NMR** (125 MHz, CDCl₃) δ 161.1 (d, J = 242.5 Hz), 158.0, 144.5, 141.3 (d, J = 3.4 Hz), 139.4, 137.0, 133.4 (d, J = 138.9 Hz), 130.3, 129.2, 129.9 (d, J = 6.3 Hz), 128.8, 128.2, 128.1, 127.6, 126.6, 117.1 (d, J = 8.1 Hz), 116.1 (d, J = 23.2 Hz), 112.3, 106.9 (d, J = 24.9 Hz), 82.7, 32.0, 21.3.

HRMS m/z (ESI+): Calculated for C₂₄H₂₀N₂O₃SF⁺ ([M+H]⁺): 435.1173, found 435.1179.

8-Chloro-5a-methyl-6-methylene-5-tosyl-5a,6-dihydroindolo[2,1-b]quinazolin-12 (5H)-one (2e)

Purified by chromatography on silica gel, eluting with ethyl acetate/petroleum ether 1:10 (v/v); white solid, Mp = 171-172 °C; 89% yield.

¹**H NMR** (500 MHz, CDCl₃) δ 8.03 (dd, J = 7.74, 1.73 Hz, 1H), 7.79 (d, J = 7.98 Hz, 1H), 7.75-7.65 (m, 2H), 7.53 (t, J = 7.50 Hz, 1H), 7.45 (d, J = 2.23 Hz, 1H), 7.14 (dd, J = 8.71, 2.19 Hz, 1H), 6.99 (d, J = 8.08 Hz, 2H), 6.82 (d, J = 8.04 Hz, 2H), 6.10 (d, J = 1.77 Hz, 1H), 5.78 (d, J = 1.78 Hz, 1H), 2.21 (s, 3H), 1.60 (s, 3H).

¹³**C NMR** (125 MHz, CDCl₃) *δ* 158.3, 144.5, 140.9, 139.4, 139.3, 134.0, 133.0, 130.3, 129.9, 129.2, 128.9, 128.2, 128.1, 127.8, 126.5, 120.3, 117.0, 112.4, 82.6, 32.0, 21.3.

HRMS m/z (ESI+): Calculated for C₂₄H₂₀N₂O₃SCl⁺ ([M+H]⁺): 451.0878, found 451.0885.

8-Bromo-5a-methyl-6-methylene-5-tosyl-5a,6-dihydroindolo[2,1-b]quinazolin-12 (5H)-one (2f)

Purified by chromatography on silica gel, eluting with ethyl acetate/petroleum ether 1:10 (v/v); white solid, Mp = 178-179 °C; 92% yield.

¹**H NMR** (500 MHz, CDCl₃) δ 8.03 (dd, J = 7.6, 1.7 Hz, 1H), 7.78 (d, J = 8.1 Hz, 1H), 7.68 (td, J = 7.7, 1.7 Hz, 1H), 7.64 (d, J = 8.6 Hz, 1H), 7.59 (d, J = 2.1 Hz, 1H), 7.52 (t, J = 7.5 Hz, 1H), 7.27 (dd, J = 8.3, 2.2 Hz, 1H), 6.99 (d, J = 8.3 Hz, 2H), 6.81 (d, J = 7.9 Hz, 2H), 6.09 (d, J = 1.8 Hz, 1H), 5.77 (d, J = 1.8 Hz, 1H), 2.20 (s, 3H), 1.58 (s, 3H).

¹³**C NMR** (125 MHz, CDCl₃) δ 158.3, 144.6, 140.7, 139.7, 139.4, 134.0, 133.0, 132.0, 130.3, 129.6, 128.9, 128.21, 128.17, 127.8, 126.4, 123.3, 117.3, 117.2, 112.5, 82.5, 32.0, 21.4.

HRMS m/z (ESI+): Calculated for C₂₄H₂₀N₂O₃SBr⁺ ([M+H]⁺): 495.0373, found 495.0381.

5a-Ethyl-6-methylene-5-tosyl-5a,6-dihydroindolo[2,1-b]quinazolin-12(5H)-one (2g)

Purified by chromatography on silica gel, eluting with ethyl acetate/petroleum ether 1:10 (v/v); white solid, Mp = 134-135 °C; 88% yield.

¹**H** NMR (500 MHz, CDCl₃) δ 8.04 (d, J = 7.61 Hz, 1H), 7.75 (dd, J = 18.54, 8.01 Hz, 2H), 7.66 (t, J = 7.64 Hz, 1H), 7.55-7.41 (m, 2H), 7.11 (dt, J = 28.34, 7.70 Hz, 2H), 6.98 (d, J = 8.12 Hz, 2H), 6.74 (d, J = 7.80 Hz, 2H), 6.18 (s, 1H), 5.75 (s, 1H), 2.15 (s, 3H), 1.99 (dt, J = 14.52, 7.21 Hz, 1H), 1.85 (dd, J = 14.19, 7.32 Hz, 1H), 0.64 (t, J = 7.26 Hz, 3H).

¹³**C NMR** (125 MHz, CDCl₃) δ 158.3, 144.2, 141.8, 139.5, 139.3, 134.1, 132.7, 130.4, 129.2, 128.7, 128.5, 128.1, 128.0, 127.7, 126.7, 124.4, 119.7, 115.7, 111.3, 85.4, 36.2, 21.3, 6.9.

HRMS m/z (ESI+): Calculated for C₂₅H₂₃N₂O₃S⁺ ([M+H]⁺): 431.1424, found 431.1415.

2-Methoxy-5a-methyl-6-methylene-5-tosyl-5a,6-dihydroindolo[2,1-b]quinazolin-12(5H)-one (2h)

Purified by chromatography on silica gel, eluting with ethyl acetate/petroleum ether 1:10 (v/v); white solid, Mp = 177-178 °C; 83% yield.

¹**H NMR** (400 MHz, CDCl₃) δ 7.74-7.66 (m, 2H), 7.50 (dd, J = 7.43, 1.99 Hz, 2H), 7.22-7.16 (m, 2H), 7.15-7.08 (m, 1H), 6.94 (d, J = 8.37 Hz, 2H), 6.75 (t, J = 7.07 Hz, 2H), 6.09 (d, J = 1.38 Hz, 1H), 5.71 (d, J = 1.46 Hz, 1H), 3.92 (s, 3H), 2.16 (s, 3H), 1.58 (s, 3H).

¹³**C NMR** (125 MHz, CDCl₃) *δ* 159.3, 158.2, 144.2, 141.8, 140.7, 133.7, 132.3, 131.5, 129.4, 128.7, 128.0, 127.8, 127.6, 124.6, 120.2, 119.8, 116.0, 110.8, 110.7, 82.6, 55.8, 32.0, 21.3.

HRMS m/z (ESI+): Calculated for C₂₅H₂₃N₂O₄S⁺ ([M+H]⁺): 447.1373, found 447.1378.

2,5a-Dimethyl-6-methylene-5-tosyl-5a,6-dihydroindolo[2,1-b]quinazolin-12(5H)one (2i)

Purified by chromatography on silica gel, eluting with ethyl acetate/petroleum ether 1:10 (v/v); white solid, Mp = 155-156 °C; 77% yield.

¹**H** NMR (400 MHz, CDCl₃) δ 7.83 (d, J = 2.19 Hz, 1H), 7.73-7.69 (m, 1H), 7.66 (d, J = 8.14 Hz, 1H), 7.52-7.44 (m, 2H), 7.15 (td, J = 7.65, 1.43 Hz, 1H), 7.09 (td, J = 7.46, 1.24 Hz, 1H), 6.99-6.92 (m, 2H), 6.73 (d, J = 7.93 Hz, 2H), 6.09 (d, J = 1.45 Hz, 1H), 5.71 (d, J = 1.42 Hz, 1H), 2.48 (s, 3H), 2.15 (s, 3H), 1.58 (s, 3H).

¹³**C NMR** (125 MHz, CDCl₃) δ 158.5, 144.2, 141.9, 140.8, 138.4, 136.9, 133.9, 133.6, 130.1, 129.3, 128.7, 128.0, 127.6, 126.5, 124.4, 120.1, 116.0, 110.8, 82.4, 32.0, 21.3, 21.1.

HRMS m/z (ESI+): Calculated for C₂₅H₂₃N₂O₃S⁺ ([M+H]⁺): 431.1424, found 431.1425.

1,5a-Dimethyl-6-methylene-5-tosyl-5a,6-dihydroindolo[2,1-b]quinazolin-12(5H)one (2j)

Purified by chromatography on silica gel, eluting with ethyl acetate/petroleum ether 1:10 (v/v); white solid, Mp = 138-139 °C; 37% yield.

¹**H** NMR (500 MHz, CDCl₃) δ 7.76 (d, J = 8.11 Hz, 1H), 7.64 (d, J = 7.84 Hz, 1H), 7.54-7.47 (m, 2H), 7.30 (d, J = 7.60 Hz, 1H), 7.12 (dt, J = 28.40, 7.46 Hz, 2H), 7.02 (d, J = 8.20 Hz, 2H), 6.77 (d, J = 7.98 Hz, 2H), 6.07 (d, J = 1.40 Hz, 1H), 5.68 (d, J = 1.41 Hz, 1H), 2.74 (s, 3H), 2.17 (s, 3H), 1.57 (s, 3H).

¹³**C NMR** (125 MHz, CDCl₃) *δ* 159.0, 144.1, 142.2, 141.2, 141.0, 140.2, 134.1, 131.6, 131.5, 129.3, 128.6, 128.2, 127.5, 125.2, 124.3, 120.1, 116.2, 110.4, 81.8, 31.7, 21.5, 21.3.

HRMS m/z (ESI+): Calculated for C₂₅H₂₃N₂O₃S⁺ ([M+H]⁺): 431.1424, found 431.1432.

2,3-Difluoro-5a-methyl-6-methylene-5-tosyl-5a,6-dihydroindolo[2,1-b]quinazolin -12(5H)-one (2k)

Purified by chromatography on silica gel, eluting with ethyl acetate/petroleum ether 1:10 (v/v); white solid, Mp = 177-178 °C; 60% yield.

¹**H** NMR (400 MHz, CDCl₃) δ 7.83 (dd, J = 9.80, 8.34 Hz, 1H), 7.69-7.65 (m, 1H), 7.65-7.62 (m, 1H), 7.53-7.44 (m, 1H), 7.20-7.09 (m, 2H), 7.00-6.93 (m, 2H), 6.76 (d, J = 8.14 Hz, 2H), 6.11 (d, J = 1.53 Hz, 1H), 5.71 (d, J = 1.57 Hz, 1H), 2.16 (s, 3H), 1.60 (s, 3H).

¹³**C NMR** (125 MHz, CDCl₃) δ 156.5, 153.5 (d, J = 13.4 Hz), 151.4 (dd, J = 35.1, 13.4 Hz), 149.2 (d, J = 13.5 Hz), 144.8, 141.3, 140.4, 136.5 (dd, J = 9.6, 3.2 Hz), 133.4, 129.5, 128.9, 128.0, 127.5, 124.9, 124.0, 120.3, 119.8 (d, J = 20.0 Hz), 116.1 (d, J = 18.4 Hz), 111.4, 82.8, 32.0, 21.4.

HRMS m/z (ESI+): Calculated for C₂₄H₁₉N₂O₃SF₂⁺ ([M+H]⁺): 453.1079, found 453.1084.

4-Fluoro-5a-methyl-6-methylene-5-tosyl-5a,6-dihydroindolo[2,1-b]quinazolin-12 (5H)-one (2l)

Purified by chromatography on silica gel, eluting with ethyl acetate/petroleum ether 1:10 (v/v); white solid, Mp = 145-146 °C; 67% yield.

¹**H NMR** (400 MHz, CDCl₃) δ 7.95-7.87 (m, 1H), 7.87-7.76 (m, 1H), 7.56-7.41 (m, 3H), 7.29 (s, 1H), 7.26 (s, 1H), 7.17 (td, J = 7.71, 1.40 Hz, 1H), 7.10 (td, J = 7.49, 1.17 Hz, 1H), 6.85 (d, J = 8.11 Hz, 2H), 5.97 (d, J = 1.51 Hz, 1H), 5.55 (d, J = 1.55 Hz, 1H), 2.18 (s, 3H), 1.58 (s, 3H).

¹³**C NMR** (125 MHz, CDCl₃) δ 160.0 (d, J = 255.0 Hz), 157.7, 144.5, 141.3, 140.7, 135.1, 129.5, 129.1 (d, J = 7.9 Hz), 128.9, 128.7, 128.5, 128.1 (d, J = 13.0 Hz), 127.4, 124.7, 123.6 (d, J = 3.5 Hz), 120.9 (d, J = 20.9 Hz), 120.2, 116.3, 110.6, 82.6, 31.7, 21.3.

HRMS m/z (ESI+): Calculated for C₂₄H₂₀N₂O₃SF⁺ ([M+H]⁺): 435.1173, found 435.1179.

1-Fluoro-5a-methyl-6-methylene-5-tosyl-5a,6-dihydroindolo[2,1-b]quinazolin-12 (5H)-one (2m)

Purified by chromatography on silica gel, eluting with ethyl acetate/petroleum ether 1:10 (v/v); white solid, Mp = 185-186 °C; 76% yield.

¹**H** NMR (400 MHz, CDCl₃) δ 7.76-7.71 (m, 1H), 7.64-7.57 (m, 2H), 7.48 (dd, J = 7.32, 1.54 Hz, 1H), 7.25-7.18 (m, 1H), 7.18-7.08 (m, 2H), 7.01 (d, J = 8.40 Hz, 2H), 6.77 (d, J = 8.04 Hz, 2H), 6.09 (d, J = 1.52 Hz, 1H), 5.69 (d, J = 1.53 Hz, 1H), 2.16 (s, 3H), 1.60 (s, 3H).

¹³**C** NMR (125 MHz, CDCl₃) δ 162.5 (d, J = 261.3 Hz), 155.2, 144.6, 141.7, 140.9 (d, J = 26.8 Hz), 133.7, 133.1 (d, J = 9.9 Hz), 129.5, 129.0, 128.0, 127.5, 126.5 (d, J = 3.6 Hz), 124.7, 120.1, 116.6 (d, J = 21.5 Hz), 116.4, 115.7 (d, J = 7.5 Hz), 111.0, 82.4, 31.7, 21.3.

HRMS m/z (ESI+): Calculated for C₂₄H₂₀N₂O₃SF⁺ ([M+H]⁺): 435.1173, found 435.1181.

5a-Methyl-6-methylene-5-(phenylsulfonyl)-5a,6-dihydroindolo[2,1-b]quinazolin-12(5H)-one (2n)

Purified by chromatography on silica gel, eluting with ethyl acetate/petroleum ether 1:10 (v/v); white solid, Mp = 183-184 °C; 80% yield.

¹**H NMR** (500 MHz, CDCl₃) δ 8.02 (dd, J = 7.6, 1.7 Hz, 1H), 7.82 (d, J = 8.1 Hz, 1H), 7.74 (d, J = 8.0 Hz, 1H), 7.69 (td, J = 7.7, 1.7 Hz, 1H), 7.54 (q, J = 8.0, 7.4 Hz, 2H), 7.26 (dd, J = 13.7, 6.5 Hz, 1H), 7.16 (dt, J = 28.4, 7.5 Hz, 2H), 7.04 (d, J = 7.6 Hz, 2H), 6.99 (t, J = 7.6 Hz, 2H), 6.12 (d, J = 1.5 Hz, 1H), 5.72 (d, J = 1.4 Hz, 1H), 1.60 (s, 3H).

¹³C NMR (125 MHz, CDCl₃) δ 158.1, 142.0, 140.7, 139.3, 136.5, 133.3, 132.8, 130.2, 129.9, 128.3, 128.2, 127.9, 127.8, 127.5, 127.1, 124.7, 120.3, 116.2, 110.7, 82.5, 32.1. HRMS m/z (ESI+): Calculated for C₂₃H₁₉N₂O₃S⁺ ([M+H]⁺): 403.1111, found 403.1107.

5-((4-Methoxyphenyl)sulfonyl)-5a-methyl-6-methylene-5a,6-dihydroindolo[2,1-b] quinazolin-12(5H)-one (2o)

Purified by chromatography on silica gel, eluting with ethyl acetate/petroleum ether 1:10 (v/v); white solid, Mp = 141-142 °C; 60% yield.

¹**H** NMR (500 MHz, CDCl₃) δ 8.05 (dd, J = 7.8, 1.6 Hz, 1H), 7.80 (dd, J = 7.9, 4.2 Hz, 2H), 7.68 (td, J = 7.8, 1.6 Hz, 1H), 7.52 (dt, J = 7.5, 3.6 Hz, 2H), 7.15 (dt, J = 26.1, 7.3 Hz, 2H), 7.01 (d, J = 9.0 Hz, 2H), 6.42 (d, J = 8.7 Hz, 2H), 6.11 (d, J = 1.5 Hz, 1H), 5.74 (d, J = 1.5 Hz, 1H), 3.68 (s, 3H), 1.60 (d, J = 4.7 Hz, 5H).

¹³**C NMR** (125 MHz, CDCl₃) *δ* 163.3, 158.3, 141.9, 140.8, 139.6, 132.8, 130.4, 130.2, 129.5, 128.3, 128.1, 127.7, 127.6, 126.9, 124.5, 120.2, 116.2, 113.4, 110.8, 82.4, 55.4, 32.1.

HRMS m/z (ESI+): Calculated for C₂₄H₂₁N₂O₄S⁺ ([M+H]⁺): 433.1217, found 433.1211.

5-((4-Chlorophenyl)sulfonyl)-5a-methyl-6-methylene-5a,6-dihydroindolo[2,1-b]quinazolin-12(5H)-one (2p)

Purified by chromatography on silica gel, eluting with ethyl acetate/petroleum ether 1:10 (v/v); white solid, Mp = 144-145 °C; 46% yield.

¹**H NMR** (500 MHz, CDCl₃) δ 8.06 (dd, J = 7.8, 1.7 Hz, 1H), 7.78 (t, J = 7.4 Hz, 2H), 7.69 (td, J = 7.8, 1.7 Hz, 1H), 7.53 (dd, J = 16.4, 7.8 Hz, 2H), 7.24 (t, J = 7.7 Hz, 1H), 7.15 (t, J = 7.6 Hz, 1H), 7.00 (d, J = 8.8 Hz, 2H), 6.95-6.89 (m, 2H), 6.12 (d, J = 1.6 Hz, 1H), 5.73 (d, J = 1.6 Hz, 1H), 1.61 (s, 3H).

¹³**C NMR** (125 MHz, CDCl₃) *δ* 158.2, 141.6, 140.7, 140.1, 139.1, 135.1, 132.9, 130.3, 130.0, 129.3, 128.4, 127.9, 127.3, 126.8, 124.8, 120.2, 116.0, 111.1, 82.5, 32.0.

HRMS m/z (ESI+): Calculated for C₂₃H₁₈ClN₂O₃S⁺ ([M+H]⁺): 437.0721, found 437.0713.

5a-Methyl-6-methylene-5-(naphthalen-2-ylsulfonyl)-5a,6-dihydroindolo[2,1-b]quinazolin-12(5H)-one (2q)

Purified by chromatography on silica gel, eluting with ethyl acetate/petroleum ether 1:10 (v/v); white solid, Mp = 158-159 °C; 15% yield.

¹**H** NMR (500 MHz, CDCl₃) δ 8.05 (d, J = 7.8 Hz, 1H), 7.86 (d, J = 8.0 Hz, 1H), 7.80 (s, 1H), 7.77-7.62 (m, 2H), 7.59-7.50 (m, 3H), 7.45 (t, J = 7.1 Hz, 2H), 7.39 (dd, J = 20.0, 7.7 Hz, 2H), 6.92 (d, J = 8.7 Hz, 1H), 6.82 (t, J = 7.6 Hz, 1H), 6.70 (t, J = 7.8 Hz, 1H), 6.15 (s, 1H), 5.77 (s, 1H), 1.60 (s, 3H).

¹³**C NMR** (125 MHz, CDCl₃) δ 158.2, 142.0, 140.5, 139.5, 134.7, 133.5, 132.8, 131.4, 131.0, 130.3, 129.32, 129.28, 129.0, 128.6, 128.2, 127.8, 127.5, 127.1, 127.0, 126.8, 124.6, 122.2, 119.8, 115.6, 110.8, 82.4, 32.0.

HRMS m/z (ESI+): Calculated for C₂₇H₂₁N₂O₃S⁺ ([M+H]⁺): 453.1267, found 453.1262.

5a-methyl-6-methylene-5-(methylsulfonyl)-5a,6-dihydroindolo[2,1-b]quinazolin-12(5H)-one (2r)

Purified by chromatography on silica gel, eluting with ethyl acetate/petroleum ether 1:10 (v/v); white solid, Mp = 212-213 °C; 41% yield.

¹**H NMR** (400 MHz, CDCl₃) δ 8.33 (d, *J*=8.4 Hz, 1H), 8.16 (dd, *J*=7.6, 1.5 Hz, 1H), 7.67-7.60 (m, 3H), 7.56-7.51 (m, 1H), 7.42 (td, *J*=7.9, 1.3 Hz, 1H), 7.26-7.20 (m, 1H), 6.11 (d, *J*=1.4 Hz, 1H), 5.66 (d, *J*=1.7 Hz, 1H), 2.65 (s, 3H), 1.69 (s, 3H).

¹³C NMR (125 MHz, CDCl₃) δ 158.9, 142.2, 140.6, 138.9, 133.2, 130.9, 129.7, 128.4, 128.2, 127.1, 126.7, 125.2, 121.0, 116.5, 110.4, 82.7, 39.7, 31.8.

HRMS m/z (ESI+): Calculated for C₁₈H₁₇N₂O₃S⁺ ([M+H]⁺): 341.0954, found 341.0942.

(Z)-6-(Chloromethylene)-5a-methyl-5-tosyl-5a,6-dihydroindolo[2,1-b]quinazolin-12(5H)-one (3)

Purified by chromatography on silica gel, eluting with ethyl acetate/petroleum ether 1:10 (v/v); white solid, Mp = 223-224 °C; 63% yield.

¹**H** NMR (500 MHz, CDCl₃) δ 7.82 (dd, J = 38.9, 7.8 Hz, 2H), 7.68 (d, J = 8.0 Hz, 1H), 7.61 (t, J = 7.7 Hz, 1H), 7.47-7.37 (m, 2H), 7.23-7.13 (m, 1H), 7.07 (t, J = 7.4 Hz, 1H), 6.90 (s, 1H), 6.68 (s, 4H), 2.15 (s, 3H), 1.72 (s, 3H).

¹³C NMR (125 MHz, CDCl₃) δ 157.7, 144.5, 140.3, 138.8, 137.4, 133.1, 132.9, 130.2, 129.9, 128.9, 128.4, 127.9, 127.7, 127.6, 126.4, 124.8, 119.7, 116.2, 115.4, 82.7, 26.4, 21.5.

HRMS m/z (ESI+): Calculated for C₂₄H₂₀ClN₂O₃S⁺ ([M+H]⁺): 451.0878, found 451.0884.

4-Methyl-N-(2-(2-methyl-1H-indole-1-carbonyl)phenyl)benzenesulfonamide (4a)

Purified by chromatography on silica gel, eluting with ethyl acetate/petroleum ether 1:10 (v/v); yellow solid, Mp = 135-136 °C; 46% yield (for the last step).

¹**H** NMR (500 MHz, CDCl₃) δ 9.32 (s, 1H), 7.93 (d, J = 8.70 Hz, 1H), 7.70-7.62 (m, 2H), 7.61-7.56 (m, 1H), 7.42 (d, J = 7.70 Hz, 1H), 7.28 (s, 1H), 7.09 (dt, J = 17.87, 7.55 Hz, 2H), 7.01 (d, J = 7.97 Hz, 2H), 6.82 (t, J = 7.85 Hz, 1H), 6.40 (s, 1H), 6.19 (d, J = 8.23 Hz, 1H), 2.29 (s, 3H), 2.15 (s, 3H).

¹³**C NMR** (125 MHz, CDCl₃) δ 169.6, 144.1, 138.4, 137.9, 136.7, 136.2, 134.3, 132.1, 129.7, 129.4, 127.2, 124.4, 124.3, 123.7, 122.8, 122.6, 119.8, 114.0, 109.2, 21.4, 15.3. **HRMS** m/z (ESI+): Calculated for C₂₃H₂₁N₂O₃S⁺ ([M+H]⁺): 405.1267, found 405.1276.

4-Methyl-N-(2-(2-phenyl-1H-indole-1-carbonyl)phenyl)benzenesulfonamide (4b)

Purified by chromatography on silica gel, eluting with ethyl acetate/petroleum ether 1:10 (v/v); yellow solid, Mp = 135-136 °C; 40% yield (for the last step).

¹**H** NMR (500 MHz, CDCl₃) δ 9.69 (s, 1H), 7.75 (t, J = 8.71 Hz, 3H), 7.61 (d, J = 7.67 Hz, 1H), 7.46-7.37 (m, 2H), 7.27 (dd, J = 6.90, 3.14 Hz, 2H), 7.22 (q, J = 4.32, 3.82 Hz, 3H), 7.14 (d, J = 8.04 Hz, 2H), 7.06 (t, J = 7.75 Hz, 1H), 6.91 (t, J = 7.58 Hz, 1H), 6.85-6.79 (m, 2H), 2.28 (s, 3H).

¹³**C NMR** (125 MHz, CDCl₃) *δ* 170.4, 144.1, 141.4, 139.5, 137.9, 136.7, 134.6, 132.7, 132.5, 129.8, 129.4, 128.4, 127.9, 127.8, 127.3, 124.1, 123.4, 123.3, 122.4, 121.0, 120.9, 113.7, 110.3, 21.5.

HRMS m/z (ESI+): Calculated for C₂₈H₂₃N₂O₃S⁺ ([M+H]⁺): 467.1424, found 467.1424.

N-(2-(2-Methyl-1H-indole-1-carbonyl)phenyl)acetamide (4c)

Purified by chromatography on silica gel, eluting with ethyl acetate/petroleum ether 1:10 (v/v); yellow solid, Mp = 141-142 °C; 81% yield (for the last step).

¹**H** NMR (500 MHz, CDCl₃) δ 9.77 (s, 1H), 8.58 (d, J = 8.3 Hz, 1H), 7.62 (ddd, J = 8.7, 7.3, 1.7 Hz, 1H), 7.49 (d, J = 7.7 Hz, 1H), 7.42 (dd, J = 7.8, 1.7 Hz, 1H), 7.18 (ddd, J = 8.1, 6.2, 1.9 Hz, 1H), 7.13-6.99 (m, 3H), 6.47 (d, J = 1.3 Hz, 1H), 2.41 (d, J = 1.2 Hz, 3H), 2.22 (s, 3H).

¹³**C NMR** (125 MHz, CDCl₃) *δ* 170.5, 169.0, 139.4, 137.7, 137.2, 134.4, 131.8, 129.6, 123.2, 123.1, 123.0, 122.31, 122.27, 120.0, 114.2, 109.3, 25.1, 15.6.

HRMS m/z (ESI+): Calculated for C₁₈H₁₇N₂O₂⁺ ([M+H]⁺): 293.1285, found 293.1291.

5a-Methyl-5-tosyl-5,5a-dihydroindolo[2,1-b]quinazoline-6,12-dione (5a)

Purified by chromatography on silica gel, eluting with ethyl acetate/petroleum ether 1:10 (v/v); white solid, Mp = 155-156 °C; 37% yield.

¹**H** NMR (400 MHz, CDCl₃) δ 8.24 (d, J = 8.26 Hz, 1H), 8.06-7.97 (m, 2H), 7.75 (ddd, J = 8.44, 7.25, 1.41 Hz, 1H), 7.69-7.66 (m, 2H), 7.55-7.48 (m, 1H), 7.38 (td, J = 7.55, 0.91 Hz, 1H), 7.03-6.87 (m, 4H), 2.32 (s, 3H), 1.54 (s, 3H).

¹³**C NMR** (125 MHz, CDCl₃) δ 191.2, 157.8, 148.7, 144.9, 139.0, 137.5, 133.9, 133.6, 129.3, 128.6, 128.5, 128.3, 127.7, 127.4, 125.4, 125.2, 122.7, 117.1, 78.7, 25.7, 21.6. **HRMS** m/z (ESI+): Calculated for C₂₃H₁₉N₂O₄S⁺ ([M+H]⁺): 419.1060, found 419.1070.

5a-Phenyl-5-tosyl-5,5a-dihydroindolo[2,1-b]quinazoline-6,12-dione (5b)

Purified by chromatography on silica gel, eluting with ethyl acetate/petroleum ether 1:10 (v/v); yellow solid, Mp = 182-183 °C; 54% yield.

¹**H** NMR (400 MHz, CDCl₃) δ 8.50-8.38 (m, 1H), 7.93 (dt, J = 7.6, 1.2 Hz, 1H), 7.89-7.78 (m, 2H), 7.58-7.46 (m, 2H), 7.44-7.35 (m, 2H), 7.31 (td, J = 7.5, 1.4 Hz, 1H), 7.20-7.12 (m, 5H), 7.06 (d, J = 8.2 Hz, 2H), 2.39 (s, 3H).

¹³**C NMR** (100 MHz, CDCl₃) δ 188.4, 158.7, 149.8, 145.0, 139.5, 137.5, 135.6, 134.4, 133.5, 129.4, 129.1, 129.0, 128.3, 128.2, 127.9, 127.82, 127.77, 126.0, 125.9, 125.5, 122.1, 116.5, 82.9, 21.6.

HRMS m/z (ESI+): Calculated for C₂₈H₂₁N₂O₄S⁺ ([M+H]⁺): 481.1217, found 481.1205.

5-Acetyl-5a-methyl-5,5a-dihydroindolo[2,1-b]quinazoline-6,12-dione (5c)

Purified by chromatography on silica gel, eluting with ethyl acetate/petroleum ether 1:10 (v/v); yellow solid, Mp = 214-215 °C; 33% yield.

¹**H** NMR (500 MHz, CDCl₃) δ 8.46 (d, *J* = 8.2 Hz, 1H), 8.22 (d, *J* = 7.7 Hz, 1H), 7.99 (d, *J* = 7.7 Hz, 1H), 7.72 (q, *J* = 6.8 Hz, 2H), 7.55 (d, *J* = 8.3 Hz, 2H), 7.35 (t, *J* = 7.7 Hz, 1H), 2.05 (s, 3H), 1.45 (s, 3H).

¹³**C NMR** (125 MHz, CDCl₃) δ 192.1, 172.2, 158.5, 148.0, 139.9, 136.6, 133.6, 129.2, 128.3, 127.2, 126.5, 125.2, 125.0, 123.9, 117.0, 76.0, 29.7, 22.4.

HRMS m/z (ESI+): Calculated for $C_{18}H_{15}N_2O_3^+$ ([M+H]⁺): 307.1077, found 307.1073.

6-Methyl-5-tosylindolo[2,1-b]quinazolin-12(5H)-one (7)

Purified by chromatography on silica gel, eluting with ethyl acetate/petroleum ether 1:10 (v/v); yellow solid, Mp = 206-207 °C; 59% yield.

¹**H** NMR (500 MHz, CDCl₃) δ 8.35 (d, J = 7.8 Hz, 2H), 7.95-7.81 (m, 3H), 7.59 (t, J = 7.4 Hz, 1H), 7.53 (t, J = 7.8 Hz, 1H), 7.45 (t, J = 7.6 Hz, 1H), 7.18 (d, J = 8.1 Hz, 2H), 6.98 (d, J = 8.0 Hz, 2H), 2.33 (s, 3H), 2.21 (s, 3H).

¹³**C NMR** (125 MHz, CDCl₃) δ 159.1, 154.3, 146.7, 145.7, 140.1, 134.7, 131.2, 131.0, 130.1, 129.0, 128.2, 128.0, 126.9, 126.7, 126.4, 126.3, 121.5, 116.7, 72.3, 21.7, 17.4. **HRMS** m/z (ESI+): Calculated for C₂₃H₁₉N₂O₃S⁺ ([M+H]⁺): 403.1111, found 403.1106

5a-Methyl-6-methylene-8-(phenylethynyl)-5-tosyl-5a,6-dihydroindolo[2,1-b]quinazolin-12(5H)-one (8)

Purified by chromatography on silica gel, eluting with ethyl acetate/petroleum ether 1:10 (v/v); white solid, Mp = 180-181 °C; 76% yield.

¹**H** NMR (400 MHz, CDCl₃) δ 8.03 (dd, J = 7.71, 1.67 Hz, 1H), 7.79 (dd, J = 8.01, 1.14 Hz, 1H), 7.74-7.63 (m, 3H), 7.59-7.55 (m, 2H), 7.51 (td, J = 7.53, 1.19 Hz, 1H), 7.42-7.31 (m, 4H), 6.98 (d, J = 8.37 Hz, 2H), 6.81 (d, J = 8.11 Hz, 2H), 6.14 (d, J = 1.61 Hz, 1H), 5.76 (d, J = 1.60 Hz, 1H), 2.20 (s, 3H), 1.59 (s, 3H).

¹³**C NMR** (125 MHz, CDCl₃) δ 158.3, 144.5, 141.1, 140.4, 139.5, 133.9, 133.0, 132.9, 131.6, 131.5, 130.4, 129.0, 128.9, 128.7, 128.5, 128.4, 128.2, 128.1, 127.9, 127.81, 127.76, 126.6, 123.3, 123.1, 119.4, 115.9, 111.9, 89.4, 89.0, 82.7, 32.1, 21.4.

HRMS m/z (ESI+): Calculated for C₃₂H₂₅N₂O₃S⁺ ([M+H]⁺): 517.1580, found 517.1588.

5a-Methyl-6-methylene-8-phenyl-5-tosyl-5a,6-dihydroindolo[2,1-b]quinazolin-12 (5H)-one (9)

Purified by chromatography on silica gel, eluting with ethyl acetate/petroleum ether 1:10 (v/v); white solid, Mp = 90-91 °C; 64% yield.

¹**H** NMR (400 MHz, CDCl₃) δ 8.05 (dd, J = 7.76, 1.66 Hz, 1H), 7.79 (d, J = 8.11 Hz, 2H), 7.72-7.58 (m, 4H), 7.50 (dt, J = 10.64, 7.50 Hz, 3H), 7.44-7.34 (m, 2H), 7.01 (d, J = 8.12 Hz, 2H), 6.75 (d, J = 8.04 Hz, 2H), 6.26-6.04 (m, 1H), 5.88-5.50 (m, 1H), 2.15 (s, 3H), 1.62 (s, 3H).

¹³**C NMR** (125 MHz, CDCl₃) δ 158.3, 144.3, 141.8, 140.6, 140.1, 139.5, 138.0, 134.0, 132.8, 130.4, 129.0, 128.9, 128.8, 128.4, 128.21, 128.16, 128.12, 127.8, 127.5, 126.9, 126.7, 126.5, 118.6, 116.2, 111.3, 82.7, 32.1, 21.4.

HRMS m/z (ESI+): Calculated for $C_{30}H_{25}N_2O_3S^+$ ([M+H]⁺): 493.1580, found 493.1589.

5. Crystal Report for the Mixture of 2b and 6

Datablock: mo_211221_wb_2f_0m

Bond precision:	C-C = 0.0028 A	T	Wavelength=	0.71073
Cell:	a=10.908(4) alpha=90	b=15.648(6 beta=112.3) 21 (10)	c=14.141(5) gamma=90
Temperature:	170 K			5
	Calculated		Reported	
Volume	2232.9(14)		2232.8(14)	
Space group	P 21/n		P 1 21/n 1	
Hall group	-P 2yn		-P 2yn	
Moiety formula	C26 H23.63 C10.3	7 N2 O3 S	C26 H23.63	C10.37 N2 O3 S
Sum formula	C26 H23.63 C10.3	7 N2 O3 S	C26 H23.62	C10.38 N2 O3 S
Mr	457.34		457.53	
Dx,q cm-3	1.360		1.361	
Z	4		4	
Mu (mm-1)	0.221		0.222	
F000	959.8		960.0	
F000'	960.91			
h,k,lmax	14,20,18		13,20,18	
Nref	4945		4935	
Tmin, Tmax	0.904,0.927		0.684,0.74	6
Tmin'	0.901			
Correction metho AbsCorr = MULTI-	d= # Reported T L SCAN	imits: Tmi	n=0.684 Tma	ax=0.746
Data completenes	s= 0.998	Theta (ma	ax)= 27.137	
R(reflections)=	0.0423(4186)			wR2(reflections)=
0 - 1 040	Neesse	202		0.1145(4935)
5 - 1.040	Npar= .	202		

The following ALERTS were generated. Each ALERT has the format test-name_ALERT_alert-type_alert-level. Click on the hyperlinks for more details of the test.

LAT041_ALERT_1	_C Calc. and Reported SumFormula Strings Differ Ple	ease Check
PLAT077_ALERT_4	_C Unitcell Contains Non-integer Number of Atoms Ple	ease Check
PLAT906_ALERT_3	_C Large K Value in the Analysis of Variance 2.	.970 Check
PLAT911_ALERT_3	C Missing FCF Refl Between Thmin & STh/L= 0.600	2 Report
Alert leve	al G	
FORMU01_ALERT_1	_G There is a discrepancy between the atom counts in the	
_ch	memical_formula_sum and _chemical_formula_moiety. This is	
usu	ally due to the moiety formula being in the wrong format.	
Ato	m count from _chemical_formula_sum: C26 H23.62 C10.38 N2	O3 S1
Ato	m count from _chemical_formula_moiety:C26 H23.63 Cl0.37 N2	O3 S1
CELLZ01_ALERT_1	_G Difference between formula and atom_site contents detect	ted.
CELLZ01_ALERT_1	_G ALERT: check formula stoichiometry or atom site occupant	cies.
From	the CIF: _cell_formula_units_Z 4	
From	the CIF: _chemical_formula_sum C26 H23.62 Cl0.38 N2 O3 S	
TEST	: Compare cell contents of formula and atom_site data	
atom	a Z*formula cif sites diff	
С	104.00 104.00 0.00	
Н	94.48 94.51 -0.03	
C1	1.52 1.49 0.03	
N	8.00 8.00 0.00	
0	12.00 12.00 0.00	
S	4.00 4.00 0.00	
PLAT068_ALERT_1	G Reported F000 Differs from Calcd (or Missing) Ple	ease Check
PLATI68_ALERT_4	_G The CIF-Embedded .res File Contains EXYZ Records	1 Report
PLAII/I_ALERI_4	G The CIF-Embedded .res file Contains EADF Records	1 Report
PLAISUI_ALERI_S	_G Main Residue Disorder	4% Note
DIAT703 AIRDT A	G Model has Chirality at C7 (Contro SPCP)	CIT Check
PLAT912 ALERT 4	G Missing # of ECE Reflections Above STh/L= 0 600	8 Note
PLAT978 ALERT 2	G Number C-C Bonds with Positive Residual Density.	8 Info
		0 11110
0 ALERT leve	A = Most likely a serious problem - resolve or explain	
0 ALERT leve	al B = A potentially serious problem, consider carefully	
4 ALERT leve	al C = Check. Ensure it is not caused by an omission or over	rsight
11 ALERT leve	1 G = General information/check it is not something unexpected	cted
5 ALERT type	1 CIF construction/syntax error, inconsistent or missing (data
1 ALERT type	2 Indicator that the structure model may be wrong or defic	cient
3 ALERT type	3 Indicator that the structure quality may be low	
6 ALERT type	4 Improvement, methodology, query or suggestion	
0 ALERT type	5 Informative message, check	

6. Copies of NMR spectra

¹³C NMR spectrum of mixture (**2b** and **6**)

¹H NMR spectrum of compound **1a**

¹³C NMR spectrum of compound **1b**

 ^{13}C NMR spectrum of compound 1c

¹³C NMR spectrum of compound **1d**

¹³C NMR spectrum of compound **1e**

 ^{13}C NMR spectrum of compound 1f

 ^{13}C NMR spectrum of compound 1g

¹³C NMR spectrum of compound **1h**

¹³C NMR spectrum of compound **1i**

)0

 ^{13}C NMR spectrum of compound 1k

¹³C NMR spectrum of compound **11**

 $^{13}\mathrm{C}$ NMR spectrum of compound $1\mathrm{m}$

¹³C NMR spectrum of compound **1n**

-9.32 -9.32 -7.56 -7.56 -7.56 -7.56 -7.56 -7.56 -7.56 -7.56 -7.56 -7.57 -7.57 -7.57 -7.56 -6.66-

 ^{13}C NMR spectrum of compound 1o

¹³C NMR spectrum of compound **1**q

¹³C NMR spectrum of compound **1r**

8 57 8 57 8 57 1 7 58 8 19

¹³C NMR spectrum of compound **2b**

¹³C NMR spectrum of compound **2c**

 ^{13}C NMR spectrum of compound 2f

¹³C NMR spectrum of compound **2g**

 $\begin{array}{c} 7,928\\ 7,7,928\\ 7,7,928\\ 7,7,928\\ 7,7,928\\ 7,7,928\\ 7,7,928\\ 7,7,928\\ 7,7,928\\ 7,7,928\\ 7,7,928\\ 7,7,928\\ 7,7,928\\ 7,7,148\\ 7,7,148\\ 7,7,148\\ 7,7,148\\ 7,7,148\\ 7,7,148\\ 7,7,148\\ 7,7,148\\ 7,7,148\\ 7,7,148\\ 7,7,148\\ 7,7,128$

¹³C NMR spectrum of compound **2**j

 ^{13}C NMR spectrum of compound 2k

¹³C NMR spectrum of compound **2**l

e | 1.01 3.10- $1.00 \pm$ 2.74 -2.06 2.10 0 0.0 8.5 8.0 5.0 4.5 f1 (ppm) 0.0 9.5 9.0 7.5 6.5 5.5 4.0 3.5 3.0 2.5 2.0 1.0 0.5 7.0 1.5 ¹H NMR spectrum of compound 2m $\begin{array}{c} 162.47\\ -162.38\\ -144.57\\ -144.57\\ -144.57\\ -141.69\\ -141.69\\ -141.69\\ -141.69\\ -133.73\\ -133.73\\ -133.73\\ -133.73\\ -133.73\\ -133.73\\ -128.97\\ -128.9$ -82.38 -31.75-21.33 120 110 100 90 f1 (ppm) 130 80 70 60 190 180 170 160 150 140 50 40 30 20 10 ó

¹³C NMR spectrum of compound **2m**

¹³C NMR spectrum of compound **2n**

 $\begin{array}{c} 8.05\\ 8.05\\ 8.05\\ 8.04\\ 8.04\\ 8.05\\ 7.78\\ 7.78\\ 7.78\\ 7.78\\ 7.75$

¹³C NMR spectrum of compound **20**

¹³C NMR spectrum of compound **2p**

 ^{13}C NMR spectrum of compound $\mathbf{2q}$

8.342 8.374 8.374 8.3756 8.3756 8.3756 8.3756 8.3756 7.5664 7.5650 7.76510 7.76510 7.76510 7.76510 7.7614 7.7522 7.7523 7.75215 7.75216 7.75216 7.75216 7.75216 7.75216 7.75216 7.75216 7.75216 7.75216 7.75216 7.75216 7.75216 7.752216 7.7

¹³C NMR spectrum of compound **2r**

 13 C NMR spectrum of compound **3**

¹³C NMR spectrum of compound 4a

 $\begin{array}{c} -9.69\\ -9.69\\ -9.77\\ -7.73\\ -7.75\\ -7.75\\ -7.75\\ -7.75\\ -7.75\\ -7.75\\ -7.75\\ -7.72\\ -7$

¹³C NMR spectrum of compound **4**c

¹³C NMR spectrum of compound **5a**

¹³C NMR spectrum of compound **5b**

 ^{13}C NMR spectrum of compound 5c

-2.05 -1.63 -1.45

¹³C NMR spectrum of compound **7**

