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Experimental section
Materials and methods

All reagents were purchased from Sigma-Aldrich, Strem Chemicals, BLDpharm and Fluorochem. All
chemical reagents were of analytical grade and were used as received without further purification.

Electrochemical-grade anhydrous acetonitrile was purchased from Acros Organics (99.9% Extra Dry).
Ar (99.9999%) employed for electrochemical analyses was purchased from Air Liquide and used
without further purification. All the syntheses were carried out under air atmosphere.

'H NMR (400 MHz), 3C{*H} (100 MHz) and 2D NMR spectra were recorded on a Bruker Avance IIl 400
MHz spectrometer in suitable solvent, and spectra were referenced to residual solvent (*H). The
infrared spectra were recorded on an Agilent Technologies Cary 630 FTIR spectrometer equipped with
a standard transmission module, a diamond ATR one, and a DialPath sample interface.

The mass spectra were recorded either on an Amazon speed ion trap spectrometer or a LTQ Orbitrap
XL type Thermo Scientific spectrometer, both equipped with an electrospray ionization source (ESI).
The samples were analyzed in both positive and negative ionization modes by direct perfusion in the
ESI-MS interface (ESI capillary voltage = 2kV, sampling cone voltage = 40 V). High-resolution spectra
were recorded

Electrochemical experiments were performed using a SP-300 Bio-Logic bipotentiostat in an air-tight
cell in the three electrode configuration. Cyclic voltammograms (CV) were recorded using a @ 3.0 mm
glassy carbon disk working electrode, a Pt wire as counter electrode and a Ag/AgNO; (0.01 M) as
reference electrode separated from the bulk solution by a Vycor frit. Experiments were performed
under argon using 1 mM solutions of the complexes (3 mL) in anhydrous acetonitrile containing 0.1 M
tetrabutylammonium perchlorate [n-BusN]ClO,. Cyclic voltammograms were collected at a scan rates
ranging from 10 to 1000 mV s at room temperature (298 K). The working electrode was polished
before each measurement on a MD-Nap polishing pad with a 1 um monocrystalline diamond paste,
rinsed with ethanol and dried under air. In all experiments, ferrocene was added at the end of
electrochemical experiments as an internal standard.

Infrared (IR) spectra were recorded with a Thermo Scientific Nicolet iS10 spectrometer in the 4000-
450 cm® range in attenuated total reflectance (ATR) mode.

EPR analyses were performed at 100 K under a fixed frequency of 9.4284 GHz with an EMX Bruker
spectrometer equipped with a standard ER4102ST Bruker cavity, an ESR900 continuous-flow Oxford
Instrument cryostat and an ER4131VT Bruker temperature controller. All spectra were recorded under
non-saturating conditions. EPR simulations and fittings were carried out with MATLAB 2016b
(MathWorks, Natick, MA, USA) using EasySpin' and Simultispin? toolboxes.

The viscosity of the electrolyte solution was determined at 298.15 K by an Ubbelohde viscometer (type
532) according to the following the equation (1):

n=Kp(t-9) (1)

where K and O are the Ubbelohde constant and Hagenbach correction, respectively, whose are equal
to 0.01 and 1.03 for the used Ubbelohde viscometer, and p is the density of the solution.

For observed irreversible behaviors, first, the symmetry factor of the electron transfer o, is determined
by plotting the intensity of the anodic peak I,, versus different square roots of scan rate according to
Bard et al.? (Equations (2) and (3)).
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With F, the Faraday constant (96485 C mol?), R the perfect gas constant (8.314 J K* mol?), T the
ambient temperature (298 K), C,* the bulk concentration of species A (C1+(X), or C2) in mol cm3, n the
number of exchanged electrons, D, the diffusion coefficient of species A in cm? st and v the scan rate
inVst

Equation (3) can be written as an affine law:

Epa = alnv+ Eoo (4)

With E,, the ordinate at the origin of the E,, vs In vcurve and a its slope.

1 1

a= —n =
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Using the slope a, we can directly get the number of exchanged electrons n in such a redox process.
Diffusion coefficients were calculated according to the Randles-Sevéik equation (5):

ipq = 269000-DY/%n*/2.A.[C]- M/ (5)

where iy, is the oxidation peak current for each complex, n is the number of electrons involved in the
transfer, A is the electrode area, D is the diffusion coefficient, [C] is the complex concentration and v
is the scan rate.

Hydrodynamic radii were calculated by the Stokes-Einstein equation (6):
kgT

D=
677.'7'}87"1_1 (6)

in which kg is the Boltzmann constant, “T” is the absolute temperature, n. is the electrolyte-containing
solvent viscosity and ry, is the hydrodynamic radius. Note that we consider the molecular volumes of
the complexes as a hard spheres leading only to comparative ry values under these conditions.

Suitable single crystals were mounted on a Bruker AXS-Enraf Nonius-kappa APEX Il diffractometer
equipped with an Incoatec high brilliance microsource with multilayer monochromated mirrors. The
crystals were kept at a steady T = 200.00 K using an Oxford cryosystem during data collection. Data
were measured using MoK, radiation (A = 0.71073 A) and collected using phi and omega scans. Cell
determination and refinement were performed using Bruker AXS "Collect" program. Data integration
was made with EvalCCD.# Data reduction was undertaken with Xprep software. The structures were
solved with the ShelXT> structure solution program using Intrinsic Phasing solution method and by
using Olex2® as a graphical interface. The models were refined with ShelXL” using Least Squares
minimization. Hydrogen atoms were calculated geometrically for all structures.
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Synthetic scheme followed in this work
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Scheme S1. Synthetic scheme for the preparation of L ligand and C1+(ClO,),, C1-(BF,), and C1:(OTf), complexes.

Synthesis of Ligands

Synthesis of 1,8-naphthyridine-2,7-bis(bis-3,5-dimethylpyrazolemethane) (L). A sealed Schlenk was
charged with a suspension of anhydrous toluene (3 mL) containing 4 (100 mg, 0.54 mmol, 1 eq) and 5
(235 mg, 1.07 mmol, 2 eq) and was further stirred at 110°C for 24 h under argon. The resulting reddish
solution was evaporated. Then, flash chromatography column using ethyl acetate : hexane (2 : 1) was
performed. After removing the solvent mixture, the title compound was obtained as a hygroscopic
brown-orange powder. Yield: 184 mg, 65%. 'H NMR (CD5CN, 400 MHz, 25°C): § 2.14 (s, 12H, H), 2.19
(s, 12H, Hg), 5.96 (s, 4H, Hg), 7.39 (d, J = 8.48 Hz, 2H, H,), 7.75 (s, 2H, H,), 8.40 (d, J = 8.50 Hz, 2H, H;).
BC{'H} NMR (CDsCN, 100 MHz, 25°C): & 11.2 (Cg), 13.5 (Cy), 74.9 (C,), 107.3 (Cg), 122.3 (C,), 138.7 (Cy),
141.8 (Cs), 149.0 (C;), 154.8 (C44), 160.5 (C3). IR (ATR) cmt: 2955 v(C-H)ar, 2925 v(C-H), 1458 6(C=C),
6(C=N)ar, 1255 v(C-N)ar, 1077 §(C-H)ip, 1028 &6(C-H)ip, 806 6(C-H)oop. HR-ESI-MS (MeOH) calculated:
m/z = 535.30407 ([M + H]*); Found 535.30269 ([M + H]*). ESI-MS (MeOH) calculated: m/z = 535.30 ([M
+ H]*); Found 535.33 ([M + H]*).

Synthesis of Complexes

Synthesis of C1-(ClO,),. A solution of copper(ll) perchlorate hexahydrate (36 mg, 0.1 mmol, 2.1 eq) in
THF (2 mL) was added to a solution of L (25 mg, 0.05 mmol, 1 eq) in THF (2 mL). The reaction mixture
changed from orange to green. Then, triethylamine (35 pL, 0.25 mmol, 5.4 eq) was added and the
solution became dark green. After stirring for 1 h, the reaction was filtered and layered with diisopropyl
ether (3 mL) until a green oil appears on the vessel walls. Then, after removing the blurry solvent and
washing the green oil with diisopropyl ether (2 x 2 mL), acetone (2 mL) was added yielding a blue
solution. The latter was layered with diisopropyl ether and yielded pale blue crystals. Yield: 30 mg, 72
%. HR-ESI-MS (CH;CN) calculated: m/z = 347.08019 ([M — 2 ClO4]?*); Found 347.07978 ([M — 2 ClO4]?%).
ESI-MS (CH5CN) calculated: m/z = 347.08 ([M — 2 ClO,]?*); Found 347.13 ([M - 2 CIO]%). IR (ATR) cm
1:3402 v(0-H), 2943 v(C-H)ar, 2925 v(C-H), 1604 5(C=C)ar, 6(C=N)ar, 1251 v(C-N)ar, 1076 6(C-H)ip, 808
6(C-H)oop.
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Synthesis of C1-(BF,),. A solution of copper(ll) tetrafluoroborate hexahydrate (68 mg, 0.2 mmol, 2.1
eq) in THF (4.6 mL) was added to a solution of L (50 mg, 0.09 mmol, 1 eq) and water (17 uL, 0.9 mmol,
10 eq) in THF (4.6 mL). The reaction mixture changed from orange to green. Then, triethylamine (35
uL, 0.25 mmol, 5.4 eq) was added and the solution became dark green. The reaction mixture was
stirred for 2 h. Then, after removing the solvent under vacuum, dichloromethane (2 mL) was added to
the reaction crude which was further filtered through celite. After that, acetonitrile (2 mL) was added
to the celite cake solubilizing the title compound. Finally, acetone (1 mL) was added to the celite cake
filtrate and layered with diisopropyl ether to afford turquoise crystals (C1-(BF,),). Yield: 50 mg, 62 %.
HR-ESI-MS (CH5CN) calculated: m/z = 347.08019 ([M — 2 BF,]?*); Found 347.07987 ([M — 2 BF,]%*). IR
(ATR) cm™: 3534 v(0O-H), 2991 v(C-H)ar, 2940 v(C-H), 1608 §(C=C)ar, 6(C=N)ar, 1310 v(C-N)ar, 1034 5(C-
H)ip, 799 &(C-H)oop.

Synthesis of C1-(OTf),. A solution of copper(ll) triflate (71 mg, 0.2 mmol, 2.1 eq) in THF (4.6 mL) was
added to a solution of L (50 mg, 0.09 mmol, 1 eq) and water (17 uL, 0.9 mmol, 10 eq) in THF (4.6 mL).
The reaction mixture changed from orange to green. Then, triethylamine (35 uL, 0.25 mmol, 5.4 eq)
was added and the solution became dark green. The reaction mixture was stirred for 2 h forming a
cloudy solution. The latter was filtered through a PFTE filter and layered with diisopropyl ether to yield
green crystals. Yield: 20 mg, 22 %. HR-ESI-MS (CH3CN) calculated: m/z = 347.08019 ([M — 2 OTf]**);
Found 347.07984 ([M — 2 OTf]?*). ESI-MS (CH5CN) calculated: m/z = 1141.02 ([M + OTf]’), 843.11 ([M -
OTf]*), 347.08 ([M — 2 OTf]?*); Found 1140.91 ([M + OTf]"), 843.07 ([M - OTf]*), 347.09 ([M — 2 OTf]?*).
IR (ATR) cm: 3429 v(0O-H), 2978 v(C-H)ar, 2921 v(C-H), 1434 §(C=C), 6(C=N)ar, 1249 v(C-N)ar, 1026
6(C-H)ip.

Synthesis of C2.

The PFTE filter cake from the synthesis of C1-(OTf), was rinsed with dichloromethane (5 mL) giving a
green solution. Slow evaporation of the latter gave C2 as green crystals. Yield: 19 mg, 18 %. IR (ATR)
cmt: 3328 v(0-H), 2946 v(C-H)ar, 1480 §(C=C), §(C=N)ar, 1230 v(C-N)ar, 1028 &(C-H)ip, 1028 &(C-H)ip,
798 6(C-H)oop.
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Scheme S2. Proposed mechanism for the formation of A, B, C, D and C2 and displacement ellipsoid plots of C2 and D at the
50% probability level. Solvent molecules and hydrogen atoms (except for the 3,5-dimethylpyrazolium cation in D and 3,5-
dimethylpyrazolo and aqua ligands in C2) are omitted for clarity.

As shown in Scheme S2, in this species, the copper center is coordinated by two triflato, two aqua and
two 3,5-dimethylpyrazolo ligands all in trans, respectively. From here, it can be inferred that
presumably the triflate anions enhance the elimination of the adjacent 3,5-dimethylpyrazole unit
forming a dimethylpyrazolium intermediate, which after being deprotonated can release another 3,5-
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dimethylpyrazole unit as illustrated by the proposed mechanism in Scheme S2. Furthermore, the L
ligand resulted to evolve into 3,5-dimethylpyrazolium 1,8-naphthyridine-2,7-dicarboxylate (D), as
evidenced from its crystals X-ray diffraction analysis (Scheme S2 and Table S2), presumptively through
a disproportionation reaction orchestrated by the basic pH of the reaction medium (Scheme S1).
Nevertheless, although we did not obtain crystals for the 1,8-naphthyridine-2,7-dimethanol (C), its
presence has been observed from the ESI-MS spectrum of the crude solution (Fig. S15).
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Appendix A

CCDC 2312255 (for €1:(Cl0O,),), 2312256 (for C1+(BF,),), 2312257 (for C1-(OTf),), 2312258 (for C2) and
2312259 (for D), contain the supplementary crystallographic data for this paper. These data can be
obtained free of charge from The Cambridge Crystallographic Data Centre via www.
ccdc.cam.ac.uk/data_request/cif.

Tables:

Table S1. Selected Crystallographic Data for Complexes C1:(ClO,),, C1-(BF,), and C1-(OTf),.

formula

formula weight
crystal color
crystal size (mm3)
crystal system
space group

a (A)

b (A)

c(A)

a (deg)

B (deg)

7(deg)

V(A3)

Z

Dearc. (g/cm3)
reflections
 (mme)
parameters/restra
Ri/wRz (I>20(1))
Ri/wR2 (all data)

Largest peak and
deepest hole
(e/A3)

C1-(Cl0,),
CyH,sCLCu,N,,O,,
1010.82
colourless

0.28 X 0.24 x 0.08
Triclinic

P-1

11.652(2)

13.232(3)
16.020(3)
106.82(3)
96.99(3)

110.12(3)

2151.7(9)
2

1.560

9831

1185

686/311
0.02094/0.0742
0.0368/0.0804

0.492/-0.557

C1-(BF,),?
C37.12H54.51B2Clo.37cu2F8N10.3806.26
1059.97
colourless

0.37 X 0.31 X 0.06
Triclinic

P-1

11.5059(10)
15.193(2)
15.470(2)
76.645(9)
73-531(9)
68.400(7)
2386.7(5)

2

1.475

10904

0.997

747/397
0.0429/0.1106

0.0606/0.1284
1.208/-0.748

C1-(OTf),
C,oHs.Cu,FeN,,0,,S,
138.11

green

0.28 X 0.22 X 0.12
Orthorhombic
Pnma

13.529(3)
20.929(4)
16.907(3)

90

90

90

4787.2(17)

4

1579

5577
1.065

383/516
0.0409/0.0956
0.0626/0.1114
0.534/-0.490

2 Note that the statistical occupational hydroxido : chlorido disorder ratios 0.91 : 0.08 (02:Cl2) and 0.72
:0.28 (01:Cl1) associated to intercopper bridges in C1-(BF,), are observed, resulting in the coexistence
of two species on the same crystallographic positions.
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Table S2. Selected Crystallographic Data for C2 and D.

C2 D
formula C,H,,CuF¢N,OsS, C,;H,N,O,
formula weight 598.98 368.35
crystal color green colourless
crystal size (mm3) 0.30X0.26X0.25 0.8 X 0.13 X 0.12
crystal system Monoclinic Monoclinic
space group P2,/c P2,/c
a (A) 10.686(2) 11.301(2)
b (A) 14.011(3) 23.093(s)
c (A) 8.0619(16) 6.9978(14)
a (deg) 90 90
B (deg) 10.87(3) 105.89(3)
7 (deg) 90 90
V(A3 127.8(4) 1756.4(7)
Z 2 4
Deale. (g/cm3) 1737 1393
reflections 2574 3082
p (mm™) 1.249 0.112
parameters/restraints = 211/165 312/203
R1/wR2 (I>20(1)) 0.0279/0.0782 0.0972/0.2889
R1/wR2 (all data) 0.0325/0.0841 0.1134/0.3039
Largest peak and 0.407/-0.301 0.409/-0.272

deepest hole (e/A3)

Table $3. Selected Bond Lengths (A) and Angles (deg) for Complexes C1+(ClO,),, C1+(BF,),, C1-(OTf),.

C1:(C10,), C1:(BE,), C1-(OTY),
Cu1-Nyapnt 2.327(2) 2.370(2) 2.338(2)
Cuz-Npapn2 2.279(2) 2.551(2) 2.338(2)
Cur-Cuz 2.785(1) 2.9051(5) 2.7877(8)
Cu1-Os5 (copper - acetone) - 2.793(3) -
Cu2-03 (copper - aqua) - 2.324(3) -
Ligand bend? 4.01° - 4.47° 3.37° - 4.07° 8.13°

2ligand bend = angle between naphthyridine and Np,pn1CulCu2N,,,42 planes.

Table S4. Peak potentials, symmetry factors, exchanged electrons, hydrodynamic radii and diffusion
coefficients in anhydrous acetonitrile containing 0.1 M [n-Bu,N]ClO, at 298 K.

Entry Complex Epa (V vs Fc*/9) o, n M,, (g mol?) ru (A) D (cm?s)
1 C1:(ClO,), 1.36 0.5 0.95 894.67 21.89 2.8-10°
2 C1-(BF,;), 1.57 0.5 1.24 869.39 13.11 4.6 -10°
3 C1-(OTf), 1.63 0.5 1.18 993.9 21.55 2.8 -10°
4 Cc2 1.64 0.5 0.87 589.97 2.44 2.5-10°

Table S5. Parameters obtained from EPR simulations.
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Entry Complex g gL Ay/mT A /mT

1 C1 - (Cl0,), oxidized 2250  2.115(g,),2.057 (g,) 16.41 0.756 (A,), 0.666 (A,)
2 C1 - (BF,), oxidized 2263 2.125(g,), 2.067 (g,)  16.00 1.090 (A,), 0.663 (A,)
3 C1 - (OTf), oxidized 2254 2.119(g,), 2.069 (g,)  16.38 0.755 (A,), 0.662 (A,)
4 c2 2.309  2.064 (g,=g,) 16.18 -

Figures:
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Figure S1. 1D and 2D NMR spectra (400 MHz, 298K, CD5CN) of L: (a) *H NMR, (b) 3C{*H} NMR, (c)
HSQC NMR, (d) HMBC NMR.
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Figure $10. HR-ESI-MS spectrum of C1-(BF,),. Experimental (top) and simulated (bottom) for the [M —

2 BF,]** cation.

120

100

80

60

40 -

Transmitance (%)

20

0

T T T T T T T
4000 3500 3000 2500

T T T T T T
2000 1500 1000

Wavenumber (cm'1 )

Figure S11. IR-ATR spectrum of C1-(BF,),.
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Figure S12. ESI-MS spectrum of C1-(ClO,4),. Experimental (top) and simulated (bottom) for the [M — 2

ClO,4]?* cation.

S25



347 08019

Relative Abundance
n
=

247 58156

34307933

348 58076

349.07846

349 57926

35008128

kT

47 58130

34507883

248 58040

34807791

34957943

T
3470

b
3475

e e
3450 3
mv.

3485 3500

NL

38564

CapHzs O2N1g Cuz
CapHae 02N Cuz
plgss, s/p:8) Chra2.1
R 0.0025 Da @FVWHM

ML

110E7
01P149AE#24-40 RT
069-112 AV 175B 5
005016 T FIMS +p
ESIFul ms
[200.00-1100.00]

Figure S13. HR-ESI-MS spectrum of C1-(ClO,),. Experimental (top) and simulated (bottom) for the [M

— 2 ClO,)** cation.

120

100

80

60 -

40

Transmitance (%)

20

0

4000

T T T T T T T T T T T T T
3500 3000 2500 2000 1500 1000

Wavenumber (cm'1 )

Figure S14. IR-ATR spectrum of C1-(ClO,),.
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Figure S15. ESI-MS spectrum of the crude solution after the synthesis of C1-(OTf),. Positive (top) and
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Figure $16. Cyclic voltammograms for 1 mM solutions of C1-(ClO,), (orange), C1:(BF,), (red), C1-(OTf),

(blue) and C2 (purple) complexes under Ar-saturated anhydrous acetonitrile containing 0.1 M [n-
Bu,N]ClO,. Scan rate = 50 mV s
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Figure S17. Cyclic voltammograms recorded at different scan rates over a glassy carbon working
electrode, of 1 mM solution of a) C1:(ClO,),, b) C1:(BF,),, c) C1:(OTf), and d) C2 in Ar-saturated
anhydrous acetonitrile containing 100 mM [n-Bu,N]CIO,.
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Figure S18. Plots of the E,, associated to the oxidation event vs In v') of a) C1:(ClO,),, b) C1:(BF,),, c)
C1:(0Tf), and d) C2.

S30



3.0 5.0
45
251 40
[Te] L) 4
S 204 > 35
- = 3.0
b x
— 1.5 — 25
< ; < 20
© 1.0 ]
--Q' -.Q' 154
0.5 1.0
0.5-
0.0 ‘ . : : . 0.0 ‘ ‘ ‘ ‘ ‘
00 02 04 06 08 10 12 00 02 04 06 08 1.0 1.2
VLQ [V1.’2 s-1.’2] VI.Q [V1J’2 S-1J’2]
C d
3.0 25
2.5
20 4
wn
o 20- “C’:
-
¢ - 15,
—_ 1.5 b
< E‘ .
— = 10
g. 1.0 © [
— -.q' "
0.5 5
n
0.0 T T T T T 0
00 02 04 06 08 1.0 1.2 ‘ ‘

0.0 0.2 04 0.6 0.8 1.0 1.2

VLQ [V1.’2 8-1.’2] vl.Q [V1J’2 S-1J’2]

Figure $19. Randles-Sev¢ik plots of the anodic currents associated to the oxidation potential (Ioa) of @)
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Figure S20. Cyclic voltammograms for 1 mM solutions of C1:(ClO,), (orange), C1:(BF,), (red) and
C1:(OTf), (blue) complexes in Ar-saturated anhydrous acetonitrile containing 0.1 M [n-Bu,N]BF,. Scan
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Figure S21. Comparison of E,, for C1-(ClO,), (orange), C1-(BF,), (red) and C1-(OTf), (blue) complexes
under 100 mM [nBu,N]CIO, and [nBu,N]BF,.
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Figure S22. Evolution of the charged passed corresponding to 0.5 mol e (ca. 0.16 C) for a) C1:(ClO,),,
b) C1:(BF,), and c) C1-(OTf), run at 1.49 V vs Fc*/°, 1.73 V vs Fc*® and 1.81 V vs Fc*/, respectively, over

a Cioam Working electrode, in the presence of 3 mL of 1 mM complex solutions in Ar-saturated
anhydrous acetonitrile containing 100 mM of [n-BusN]ClO,.

S33



C1 - (ClO,), oxidized

|——C1 - (ClO,), oxidized simulation

5

5,

>

]

<

3

=

T T T T T
200 250 300 350 400
Field [mT]

i—C1 - (OTf), oxidized
— C1 - (OTY), oxidized simulation

5

s,

2

P

<

2

£

200 250 300 350 400
Field [mT]

——C1 - (BF,), oxidized
—— C1 - (BF,), oxidized simulation
5
&,
>
@
c
3
=
T T T T T
200 250 300 350 400
Field [mT]
c2
—— C2 simulation

5

S, f

2

"]

I~

3

£

200 250 300 350 400
Field [mT]

Figure S23. EPR spectra and their simulations for the oxidized complexes a) C1:(ClO,),, b) C1-(BF,),, c)

C1-(OTf), and d) C2.
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Figure S24. Full range plot of the diffusion coefficients for the different complexes in anhydrous
acetonitrile containing 0.1 M [n-Bu,N]CIO, at 298 K, against their respective molecular weights.
Hydrodynamic radii have been included for comparison purposes.
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