Substrate-controlled [4 + 1] and [3 + 2] annulations of ninhydrin-derived Morita-Baylis-Hillman carbonates to access polysubstituted furans and cyclopentenes

Kai-Kai Wang, a Yan-Li Li, b Ya-Fei Li, a Wei-Wei Yao, a Lan-Xin Li, a Xiao-Long He, *c and Rongxiang Chen *a

^a School of Pharmacy, Xinxiang University, Xinxiang 453000, P.R. of China

^b Medical College, Xinxiang University, Xinxiang 453000, P.R. of China

^c School of Food and Bioengineering, Xihua University, Chengdu 610039, China.

E-mail: chenhlmei@163.com (R. Chen) and xlhe1021@sina.com (X. He)

Supporting Information

Table of Contents

- 1. General methods
- 2. Optimization of reaction conditions
- 3. General procedure for [4 + 1] annulations of α-cyano-α,β-unsaturated ketones 1 with ninhydrinderived MBH carbonates 2
- 4. General procedure for [3 + 2] annulations of 2-arylidene-1,3-indandiones 4 with ninhydrin-derived MBH carbonates 2
- 5. Gram scale reaction and synthetic transformation
 - 5.1 Gram scale reaction
 - 5.2 Synthetic transformation from 3a to 6
- 6. Crystal Structure and Data
- 7. NMR spectra

1. General methods

NMR data were obtained for ¹H at 400 MHz, and for ¹³C at 100 MHz, and ¹⁹F at 376 MHz. Chemical shifts were reported in ppm from tetramethylsilane with the solvent resonance as the internal standard in CDCl₃ solution. ESI HRMS was recorded on a Waters SYNAPT G2. Column chromatography was performed on silica gel (200-300 mesh) eluting with ethyl acetate/petroleum ether. TLC was performed on glass-backed silica plates. UV light, I₂, and solution of potassium permanganate were used to visualize products. All chemicals were used without purification as commercially available unless otherwise noted. Petroleum ether and ethyl acetate were distilled. THF was freshly distilled from sodium/benzophenone. Unless otherwise noted, experiments involving moisture and/or air sensitive components were performed under a positive pressure of argon in oven-dried glassware equipped with a rubber septum inlet. Dried solvents and liquid reagents were transferred by oven-dried syringes. The α -cyano- α , β -unsaturated ketones 1¹, ninhydrin-derived MBH carbonates 2² and 2-arylidene-1,3-indandiones 4³ were prepared according to the literature procedures.

- (1) (a) K.-K. Wang, P. Wang, Q. Ouyang, W. Du and Y.-C. Chen, *Chem. Commun.*, 2016, 52, 11104. (b) P. K. Amancha, Y.-C. Lai, I.-C. Chen, H.-J. Liu and J.-L. Zhu, *Tetrahedron*, 2010, 66, 871; (c) W. Liu, J. Zhou, C. Zheng, X. Chen, H. Xiao, Y. Yang, Y. Guo and G. Zhao, *Tetrahedron*, 2011, 67, 1768. (d) K.-K. Wang, J. Jing, W.-W. Zhou, C. Wang, J.-W. Ye, R. Zhou, T.-T. Wang, Z.-Y. Wang, R. Chen, *J. Org. Chem.* 2023, 88, 5982.
- (2) (a) Z. Lu, Y. Jia, X. Chen, P. Li, J. Org. Chem. 2022, 87, 3184. (b) K.-K. Wang, Y.-L. Li, J. Jing, R. Chen, N.-N. Zhao, Z.-H. Li, M.-Y. Wang, S.-K. Ji, Org. Biomol. Chem. 2022, 20, 6923. (c) X. Tang, Y. Wu, J. Jiang, H. Fang, W.-J. Zhou, W. Huang, G. Zhan, Org. Lett. 2021, 23, 8937. (d) K.-K. Wang, W. Zhou, J. Jia, J. Ye, M. Yuan, J. Yang, Y. Qi, R. Chen, Molecules 2023, 28, 6761; (d) K.-K. Wang, J.-W. Ye, J. Jia, Y.-F. Li, W.-W. Yao, L.-X. Li, S.-M. Zhao, Y. Xu, R. Chen, Tetrahedron 2024, 150, 133772.
- (3) (a) F. Li, Z. Li, Y. Wang, Z. Zhou, *Synthesis* 2023, 55, 1427; (b) S. Mahajan, P. Chauhan, M. Blümel, R. Puttreddy, K. Rissanen, G. Raabe, D. Enders, *Synthesis* 2016, 48, 1131; (c) G. Zhan, M. L. Shi, Q. He, W. J. Lin, Q. Ouyang, W. Du, Y. C. Chen, *Angew. Chem., Int. Ed.* 2016, 55, 2147.

2. Optimization of reaction conditions

 Table 1 Optimization of reaction conditions ^a

Entry	Catalyst	Solvent	Time	Yield of $3a (\%)^b$
1	DABCO	CHCl ₃	24	62
2	Quinine	CHCl ₃	24	56

3	DMAP	CHCl ₃	12	81
4	PPh ₃	CHCl ₃	24	0
5	<i>n</i> -Bu ₃ P	CHCl ₃	24	0
6	DMAP	CH ₂ Cl ₂	12	90
7	DMAP	DCE	12	80
8	DMAP	EtOAc	24	71
9	DMAP	CH ₃ CN	24	66
10	DMAP	toluene	24	57
11	DMAP	THF	24	46
12	DMAP	dioxane	24	41
13	DMAP	Et_2O	24	35
14 ^c	DMAP	CH_2Cl_2	24	72
15^{d}	DMAP	CH_2Cl_2	12	87

^{*a*}Reaction conditions: **1a** (0.1 mmol), MBH carbonate **2a** (0.12 mmol), catalyst (20 mol%) and solvent (1.0 mL) at room temperature. ^{*b*}Isolated Yield. ^{*c*}10 mol% of catalyst. ^{*d*}at 40 °C.

At the outset, the α -cyano-chalcone **1a** and ninhydrin-derived MBH carbonate **2a** were chosen as the model substrates to optimize the reaction conditions. The results were summarized in Table 1. Gratifyingly, the model reaction could proceed smoothly in the presence of DABCO catalyst at room temperature, to furnish an unprecedented product 3a with dense substitutions after 24 h in 62% yield via α-regioselective [4 + 1] annulation and rearrangement reaction (in Table 1, entry 1). Furthermore, the structure of **3a** was unambiguously established by the single-crystal X-ray diffraction analysis (in Table 2, CCDC 2311771).¹⁴ Encouraged by this preliminary result, we screened the reaction in detail under a variety of conditions to further improve the yield of the α -regioselective [4 + 1] annulation reaction. The screening of catalysts revealed DMAP as the preferred one to produce polysubstituted furan 3a in 81% yield (in Table 1, entries 2–5). Moreover, no desired product was detected when switching the tertiary amines to phosphine catalysts (in Table 1, entries 4-5). Subsequently, we further explored the effect of solvents for this reaction. The reaults indicated that CH₂Cl₂ was the most suitable solvent to give product 3a in 90% yield (in Table 1, entry 6). Compared with other solvents, such as CHCl₃, DCE, EtOAc, CH₃CN, toluene, THF, dioxane and Et₂O, none of them revealed better effectiveness than CH₂Cl₂ in this reaction (in Table 1, entries 3 and 7-13). Nevertheless, when the catalyst loading was decreased to 10 mol %, the reaction provided to a lower yield (72% yield) even if further prolonging reaction time (in Table 1, entry 14). In addition, the reaction supplied the target product in slightly lower chemical yield (87% yield) when further increasing in the reaction temperature (in Table 1, entry 15). Thus, the optimal reaction conditions were determined as follows: using CH_2Cl_2 as the solvent and 0.2 equivalents DMAP as the catalyst at ambient temperature for 12 h (in Table 1, entry 6).

3. General procedure for [4 + 1] annulations of α -cyano- α , β -unsaturated ketones 1 with ninhydrin-derived MBH carbonates 2

The α -cyano- α , β -unsaturated ketones **1** (0.1 mmol, 1.0 equiv), ninhydrin-derived MBH carbonates **2** (0.12 mmol, 1.2 equiv) and CH₂Cl₂ (1.0 mL) were added to a dry flask at room temperature, and then DMAP (20 mol%) was added to the above solution. This solution was stirred at room temperature for 12 h until the complete consumption of the starting materials monitored by TLC. After the removal of the solvent, the residue was purified by flash chromatography on silica gel (petroleum ether/ethyl acetate = 4:1 to 2:1) to afford products **3**.

3a, Purification by flash chromatography (PE/EA = 3:1) gave a yellow solid (41.5 mg, 90% yield); ¹H NMR (400 MHz, CDCl₃) δ 8.03 (d, J = 6.8 Hz, 1H), 7.97 (d, J = 6.8 Hz, 1H), 7.85 – 7.83 (m, 4H), 7.52 – 7.49 (m, 4H), 7.45 – 7.40 (m, 4H), 4.80 (d, J = 4.4 Hz, 1H), 3.83 (d, J = 4.4 Hz, 1H), 3.70 (s, 3H) ppm. ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 196.6, 196.5, 169.2, 159.3, 144.4, 142.1, 141.8, 135.9, 135.8, 130.2, 129.2, 129.0,

128.9, 128.8, 127.7, 127.3, 125.4, 123.5, 123.4, 114.5, 93.7, 54.1, 53.2, 41.1 ppm. HRMS (ESI) *m/z*: [M + H]⁺ calcd for C₂₉H₂₀NO₅ 462.1336, found 462.1331.

3b, Purification by flash chromatography (PE/EA = 3:1) gave a faint yellow solid (42.3 mg, 89% yield); ¹H NMR (400 MHz, CDCl₃) δ 8.03 (d, *J* = 7.2 Hz, 1H), 7.97 – 7.80 (m, 1H), 7.84 – 7.80 (m, 4H), 7.42 – 7.39 (m, 5H), 7.31 (d, *J* = 8.0 Hz, 2H), 4.80 (d, *J* = 4.0 Hz, 1H), 3.82 (d, *J* = 4.4 Hz, 1H), 3.70 (s, 3H), 2.41 (s, 3H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 196.6, 196.5, 169.3, 159.1, 144.2, 142.1, 141.8,

138.8, 135.9, 135.8, 130.2, 129.9, 128.9, 128.6, 127.7, 127.3, 125.9, 125.4, 123.5, 123.3, 114.6, 93.7, 54.1, 53.2, 41.1, 21.3 ppm. HRMS (ESI) *m/z*: [M + H]⁺ calcd for C₃₀H₂₂NO₅ 476.1492, found 476.1486.

3c, Purification by flash chromatography (PE/EA = 2:1) gave a yellow solid (41.7 mg, 85% yield); ¹H NMR (400 MHz, CDCl₃) δ 8.03 (d, *J* = 6.8 Hz, 1H), 7.97 (d, *J* = 6.4 Hz, 1H), 7.83 (d, *J* = 5.2 Hz, 4H), 7.46 – 7.39 (m, 5H), 7.03 (d, *J* = 8.0 Hz, 2H), 4.78 (d, *J* = 4.0 Hz, 1H), 3.86 (s, 3H), 3.83 (d, *J* = 4.0 Hz, 1H),

3.71 (s, 3H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 196.7, 196.6, 169.3, 160.0, 159.1, 144.0, 142.1, 141.9, 135.9, 135.8, 130.2, 130.0, 129.0, 127.8, 127.1, 125.4, 123.5, 123.4, 121.1, 114.7, 93.8, 55.4, 54.1, 53.2, 41.1 ppm. HRMS (ESI) *m/z*: [M + H]⁺ calcd for C₃₀H₂₂NO₆ 492.1442, found 492.1439.

3d, Purification by flash chromatography (PE/EA = 3:1) gave a faint yellow solid (41.2 mg, 86% yield); ¹H NMR (400 MHz, CDCl₃) δ 8.04 (d, *J* = 6.0 Hz, 1H), 7.97 (d, *J* = 8.0 Hz, 1H), 7.87 – 7.81 (m, 4H), 7.51 (dd, *J* = 8.4, 5.6 Hz, 2H), 7.40 (d, *J* = 5.6 Hz, 3H), 7.20 (t, *J* = 8.4 Hz, 2H), 4.73 (d, *J* = 4.4 Hz, 1H), 3.86 (d, *J* = 4.4 Hz, 1H), 3.70 (s, 3H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 196.6, 196.5, 169.1, 163.31

(d, J = 247.6 Hz), 159.3, 144.4, 142.0, 141.8, 136.0, 135.9, 130.8, 130.7, 130.4, 129.0, 127.6, 126.4, 125.4, 125.0 (d, J = 3.2 Hz), 123.6, 123.4, 116.3 (d, J = 21.7 Hz), 114.4, 93.7, 54.0, 53.3, 41.0 ppm. ¹⁹F NMR (376 MHz, CDCl₃) $\delta - 112.1$ ppm. HRMS (ESI) m/z: [M + H]⁺ calcd for C₂₉H₁₉FNO₅480.1242, found 480.1236.

3e, Purification by flash chromatography (PE/EA = 3:1) gave a faint yellow solid (43.6 mg, 88% yield); ¹H NMR (400 MHz, CDCl₃) δ 8.04 (d, *J* = 6.8 Hz, 1H), 7.97 (d, *J* = 6.8 Hz, 1H), 7.87 – 7.81 (m, 4H), 7.50 – 7.45 (m, 4H), 7.40 (d, *J* = 5.2 Hz, 3H), 4.73 (d, *J* = 4.0 Hz, 1H), 3.86 (d, *J* = 4.0 Hz, 1H), 3.70 (s, 3H) ppm. ¹³C NMR

(100 MHz, CDCl₃) δ 196.52, 196.46, 169.0, 159.4, 144.5, 142.0, 141.8, 136.0, 135.9, 135.1, 130.4, 130.1, 129.5, 129.0, 127.5, 127.4, 126.3, 125.4, 123.6, 123.4, 114.3, 93.5, 54.0, 53.3, 41.0 ppm. HRMS (ESI) *m/z*: [M + H]⁺ calcd for C₂₉H₁₉ClNO₅ 496.0946, found 496.0942.

3f, Purification by flash chromatography (PE/EA = 4:1) gave a yellow solid (46.9 mg, 87% yield); ¹H NMR (400 MHz, CDCl₃) δ 8.04 (d, *J* = 7.2 Hz, 1H), 7.98 (d, *J* = 6.8 Hz, 1H), 7.88 – 7.81 (m, 4H), 7.68 (s, 1H), 7.58 (d, *J* = 8.0 Hz, 1H), 7.47 (d, *J* = 7.6 Hz, 1H), 7.41 – 7.37 (m, 4H), 4.73 (d, *J* = 4.4 Hz, 1H), 3.87 (d, *J* = 4.4 Hz,

1H), 3.72 (s, 3H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 196.5, 196.4, 168.9, 159.4, 144.7, 142.0, 141.8, 136.0, 135.9, 132.0, 131.7, 131.0, 130.7, 130.4, 129.0, 127.5, 127.4, 125.9, 125.4, 123.6, 123.4, 123.1, 114.1, 93.4, 54.0, 53.3, 41.0 ppm. HRMS (ESI) m/z: [M + H]⁺ calcd for C₂₉H₁₉BrNO₅ 540.0441 (⁷⁹Br) and 542.0421 (⁸¹Br), found 540.0437, 542.0416.

3g, Purification by flash chromatography (PE/EA = 3:1) gave a yellow solid (45.8 mg, 85% yield); ¹H NMR (400 MHz, CDCl₃) δ 8.04 (d, *J* = 6.8 Hz, 1H), 7.97 (d, *J* = 6.8 Hz, 1H), 7.86 - 7.81 (m, 4H), 7.64 (d, *J* = 7.6 Hz, 2H), 7.40 (d, *J* = 6.4 Hz, 5H), 4.73 (d, *J* = 4.0 Hz, 1H), 3.86 (d, *J* = 4.0 Hz, 1H), 3.70 (s, 3H) ppm. ¹³C

NMR (100 MHz, CDCl₃) δ 196.51, 196.45, 169.0, 159.5, 144.5, 142.0, 141.8, 136.0, 135.9, 132.5, 130.4, 129.0, 127.9, 127.5, 126.3, 125.4, 123.6, 123.4, 123.3, 114.3, 93.4, 54.0, 53.3, 41.0 ppm. HRMS (ESI) *m/z*: [M + H]⁺ calcd for C₂₉H₁₉BrNO₅ 540.0441 (⁷⁹Br) and 542.0421 (⁸¹Br), found 540.0436, 542.0417.

3h, Purification by flash chromatography (PE/EA = 3:1) gave a white solid (43.9 mg, 83% yield); ¹H NMR (400 MHz, CDCl₃) δ 8.05 (d, *J* = 6.8 Hz, 1H), 7.98 (d, *J* = 6.4 Hz, 1H), 7.89 – 7.82 (m, 4H), 7.79 (d, *J* = 8.0 Hz, 2H), 7.67 (d, *J* = 8.0 Hz, 2H), 7.42 (d, *J* = 4.4 Hz, 3H), 4.73 (d, *J* = 4.4 Hz, 1H), 3.88 (d, *J* = 4.4 Hz, 3H), 4.73 (d, *J* = 4.4 Hz, 1H), 3.88 (d, *J* = 4.4 Hz, 3H), 4.73 (d, *J* = 4.4 Hz, 1H), 3.88 (d, *J* = 4.4 Hz, 3H), 4.73 (d, *J* = 4.4 Hz, 1H), 3.88 (d, *J* = 4.4 Hz, 3H), 4.73 (d, *J* = 4.4 Hz, 1H), 3.88 (d, *J* = 4.4 Hz, 3H), 4.73 (d, *J* = 4.4 Hz, 1H), 3.88 (d, *J* = 4.4 Hz, 3H), 4.73 (d, *J* = 4.4 Hz, 1H), 3.88 (d, *J* = 4.4 Hz, 1H), 3.88 (d, *J* = 4.4 Hz, 1Hz), 3.88 (d, *J* = 4.4 Hz), 4.73 (d, J = 4.

1H), 3.70 (s, 3H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 196.5, 196.4, 168.8, 159.7, 144.9, 142.0, 141.8, 136.03, 135.97, 132.7, 131.0 (q, *J* = 32.6 Hz), 130.5, 129.2, 129.1, 127.4, 126.2 (q, *J* = 3.7 Hz), 126.1, 125.5,

123.9 (q, J = 271.9 Hz)123.6, 123.5, 114.1, 93.3, 54.0, 53.3, 41.0 ppm. ¹⁹F NMR (376 MHz, CDCl₃) δ -62.8 ppm. HRMS (ESI) *m/z*: [M + H]⁺ calcd for C₃₀H₁₉F₃NO₅ 530.1210, found 530.1207.

3i, Purification by flash chromatography (PE/EA = 3:1) gave a white solid (43.0 mg, 85% yield); ¹H NMR (400 MHz, CDCl₃) δ 8.38 (d, *J* = 7.6 Hz, 2H), 8.05 (d, *J* = 6.4 Hz, 1H), 7.98 (d, *J* = 6.4 Hz, 1H), 7.88 – 7.82 (m, 4H), 7.75 (d, *J* = 8.0 Hz, 2H), 7.42 (s, 3H), 4.72 (d, *J* = 3.2 Hz, 1H), 3.93 (d, *J* = 3.2 Hz, 1H), 3.72 (s,

3H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 196.4, 196.2, 168.6, 159.9, 148.0, 145.3, 141.9, 141.8, 136.09, 136.07, 135.7, 130.7, 129.8, 129.1, 127.1, 125.5, 125.4, 124.4, 123.6, 123.5, 113.9, 93.1, 54.0, 53.4, 41.0 ppm. HRMS (ESI) *m/z*: [M + H]⁺ calcd for C₂₉H₁₉N₂O₇ 507.1187, found 507.1180.

3j, Purification by flash chromatography (PE/EA = 2:1) gave a yellow solid (35.2 mg, 78% yield); ¹H NMR (400 MHz, CDCl₃) δ 8.05 (d, *J* = 6.4 Hz, 1H), 7.99 – 7.97 (m, 1H), 7.89 – 7.83 (m, 2H), 7.79 – 7.77 (m, 2H), 7.55 (s, 1H), 7.40 – 7.39 (m, 3H), 7.00 (d, *J* = 3.2 Hz, 1H), 6.54 (d, *J* = 0.8 Hz, 1H), 5.37 (d, *J* = 4.0 Hz, 1H), 3.83 (d, *J* = 4.0 Hz, 1H), 3.73 (s, 3H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 196.9, 196.6, 169.3, 159.7,

144.1, 144.0, 142.9, 142.2, 141.8, 135.8, 135.7, 130.4, 129.0, 127.4, 125.5, 123.5, 123.4, 117.0, 114.5, 111.7, 109.0, 90.5, 54.2, 53.2, 42.3 ppm. HRMS (ESI) m/z: [M + H]⁺ calcd for C₂₇H₁₈NO₆ 452.1129, found 452.1126.

3k, Purification by flash chromatography (PE/EA = 3:1) gave a faint yellow solid (37.8 mg, 81% yield); ¹H NMR (400 MHz, CDCl₃) δ 8.04 – 8.02 (m, 1H), 7.98 – 7.96 (m, 1H), 7.87 – 7.83 (m, 4H), 7.61 (d, *J* = 1.6 Hz, 1H), 7.49 – 7.47 (m, 1H), 7.43 – 7.36 (m, 4H), 4.85 (d, *J* = 4.0 Hz, 1H), 3.86 (d, *J* = 4.4 Hz, 1H), 3.70 (s, 3H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 196.62, 196.58, 169.1, 159.2, 144.3, 142.0, 141.8, 135.9,

135.8, 130.3, 129.0, 128.9, 127.6, 127.3, 127.0, 125.4, 124.5, 123.5, 123.4, 122.4, 114.6, 93.3, 54.0, 53.2, 41.3 ppm. HRMS (ESI) m/z: [M + H]⁺ calcd for C₂₇H₁₈NO₅S 468.0900, found 468.0897.

31, Purification by flash chromatography (PE/EA = 3:1) gave a yellow solid (40.9 mg, 80% yield); ¹H NMR (400 MHz, CDCl₃) δ 8.03 – 7.93 (m, 5H), 7.90 – 7.82 (m, 5H), 7.63 (d, *J* = 8.4 Hz, 1H), 7.55 (d, *J* = 3.2 Hz, 2H), 7.44 – 7.41 (m, 3H), 4.87 (d, *J* = 4.0 Hz, 1H), 3.87 (d, *J* = 4.4 Hz, 1H), 3.70 (s, 3H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 196.6, 169.2, 159.4, 144.7, 142.1, 141.9, 135.9, 135.8,

133.4, 133.2, 130.3, 129.1, 129.0, 128.4, 128.3, 127.8, 127.7, 127.4, 126.9, 126.7, 126.4, 126.1, 125.5, 123.6, 123.4, 114.6, 93.8, 54.1, 53.3, 41.2 ppm. HRMS (ESI) *m/z*: [M + H]⁺ calcd for C₃₃H₂₂NO₅ 512.1492, found 512.1490.

3n, Purification by flash chromatography (PE/EA = 3:1) gave a yellow solid (41.8 mg, 88% yield); ¹H NMR (400 MHz, CDCl₃) δ 8.03 (d, *J* = 6.8 Hz, 1H), 7.97 (d, *J* = 6.4 Hz, 1H), 7.86 – 7.81 (m, 2H), 7.71 (d, *J* = 7.6 Hz, 2H), 7.51 – 7.44 (m, 5H), 7.20 (d, *J* = 7.6 Hz, 2H), 4.79 (d, *J* = 4.0 Hz, 1H), 3.84 (d, *J* = 4.0 Hz, 1H), 3.69 (s, 3H), 2.37 (s, 3H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 196.7, 196.6, 169.3, 159.6, 143.9, 142.0, 141.9, 140.7, 135.9, 135.8, 129.7, 129.2, 129.1, 128.81, 128.78, 127.2, 125.4, 125.0, 123.5,

123.4, 114.7, 92.9, 54.1, 53.2, 41.1, 21.5 ppm. HRMS (ESI) m/z: [M + H]⁺ calcd for C₃₀H₂₂NO₅ 476.1492, found 476.1488.

30, Purification by flash chromatography (PE/EA = 3:1) gave a yellow solid (42.6 mg, 86% yield); ¹H NMR (400 MHz, CDCl₃) δ 8.03 (d, *J* = 5.6 Hz, 1H), 7.97 (d, *J* = 5.2 Hz, 1H), 7.85 (d, *J* = 4.4 Hz, 2H), 7.78 (d, *J* = 8.4 Hz, 2H), 7.51 (d, *J* = 2.8 Hz, 4H), 7.45 (s, 1H), 7.38 (d, *J* = 8.4 Hz, 2H), 4.80 (d, *J* = 3.6 Hz, 1H), 3.82 (d, *J* = 2.8 Hz, 1H), 3.70 (s, 3H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 196.6, 196.5, 169.1, 158.1, 144.7, 142.0, 141.8, 136.2, 136.0, 135.9, 129.32, 129.26, 129.0, 128.7, 127.5, 126.6, 126.2, 123.6,

123.4, 114.3, 94.0, 54.1, 53.3, 41.1 ppm. HRMS (ESI) m/z: $[M + H]^+$ calcd for C₂₉H₁₉ClNO₅ 496.0946, found 496.0941.

3p, Purification by flash chromatography (PE/EA = 3:1) gave a yellow solid (42.4 mg, 83% yield); ¹H NMR (400 MHz, CDCl₃) δ 8.17 – 8.15 (m, 1H), 7.95 (d, *J* = 7.6 Hz, 2H), 7.90 – 7.85 (m, 2H), 7.81 – 7.73 (m, 3H), 7.59 (d, *J* = 7.2 Hz, 2H), 7.54 – 7.49 (m, 5H), 7.44 (t, *J* = 7.2 Hz, 1H), 4.84 (d, *J* = 4.8 Hz, 1H), 3.85 (d, *J* = 5.2 Hz, 1H), 3.71 (s, 3H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 196.6, 196.4, 169.2, 160.9, 145.3, 142.0,

141.8, 135.8, 135.7, 133.8, 131.4, 130.5, 129.2, 129.1, 128.9, 128.6, 127.4, 126.8, 126.5, 125.4, 125.1, 124.8, 123.5, 123.4, 114.0, 97.7, 54.0, 53.2, 41.5 ppm. HRMS (ESI) *m*/*z*: [M + H]⁺ calcd for C₃₃H₂₂NO₅ 512.1492, found 512.1489.

3q, Purification by flash chromatography (PE/EA = 3:1) gave a yellow solid (43.4 mg, 85% yield); ¹H NMR (400 MHz, CDCl₃) δ 8.29 (s, 1H), 8.08 (d, *J* = 6.8 Hz, 1H), 7.97 (d, *J* = 6.8 Hz, 1H), 7.93 – 7.79 (m, 6H), 7.57 – 7.51 (m, 6H), 7.46 (t, *J* = 6.8 Hz, 1H), 4.83 (d, *J* = 3.6 Hz, 1H), 3.89 (d, *J* = 3.6 Hz, 1H), 3.72 (s, 3H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 196.7, 196.6, 169.3, 159.3, 144.5, 142.1, 141.9, 136.0, 135.9, 133.8, 132.9, 129.2, 129.0, 128.92, 128.87, 128.8, 127.8, 127.6, 127.5, 127.0, 125.4, 125.0,

123.6, 123.4, 122.1, 114.7, 93.9, 54.1, 53.3, 41.2 ppm. HRMS (ESI) m/z: [M + H]⁺ calcd for C₃₃H₂₂NO₅ 512.1492, found 512.1487.

3r, Purification by flash chromatography (PE/EA = 3:1) gave a yellow solid (32.7 mg, 82% yield); ¹H NMR (400 MHz, CDCl₃) δ 7.98 – 7.95 (m, 2H), 7.86 – 7.84 (m, 2H), 7.48 – 7.39 (m, 5H), 4.68 (d, *J* = 4.8 Hz, 1H), 3.75 (d, *J* = 4.8 Hz, 1H), 3.66 (s, 3H), 2.38 (s, 3H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 196.7, 196.6, 169.3, 161.4, 143.8, 142.0, 141.8, 135.8, 129.3, 129.1, 128.60, 128.58, 125.3, 123.4, 123.3, 113.6, 96.6,

53.9, 53.1, 41.2, 13.3 ppm. HRMS (ESI) *m/z*: [M + H]⁺ calcd for C₂₄H₁₈NO₅ 400.1179, found 400.1173.

3s, Purification by flash chromatography (PE/EA = 4:1) gave a brown solid (40.9 mg, 84% yield); ¹H NMR (400 MHz, CDCl₃) δ 8.05 (d, *J* = 7.2 Hz, 1H), 7.97 (d, *J* = 6.8 Hz, 1H), 7.89 – 7.81 (m, 2H), 7.49 – 7.41 (m, 7H), 7.39 – 7.30 (m, 3H), 7.00 (d, *J* = 16.4 Hz, 1H), 6.89 (d, *J* = 16.0 Hz, 1H), 4.76 (d, *J* = 4.8 Hz, 1H), 3.87 (d, *J* = 4.8 Hz, 1H), 3.72 (s, 3H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 196.62, 196.55, 169.2, 159.4, 144.5,

142.0, 141.9, 135.94, 135.91, 135.3, 133.9, 129.3, 129.2, 129.0, 128.9, 128.8, 128.6, 127.2, 126.7, 123.6, 123.3, 113.5, 112.5, 95.9, 54.0, 53.2, 41.3 ppm. HRMS (ESI) m/z: $[M + H]^+$ calcd for $C_{31}H_{22}NO_5$ 488.1492, found 488.1489.

3t, Purification by flash chromatography (PE/EA = 3:1) gave a faint yellow solid (43.8 mg, 87% yield); ¹H NMR (400 MHz, CDCl₃) δ 8.04 – 8.02 (m, 1H), 7.99 – 7.97 (m, 1H), 7.88 (d, *J* = 7.6 Hz, 2H), 7.85 – 7.83 (m, 2H), 7.55 – 7.49 (m, 4H), 7.46 – 7.39 (m, 4H), 4.72 (d, *J* = 3.6 Hz, 1H), 3.75 (d, *J* = 4.0 Hz, 1H), 1.34 (s, 9H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 196.8, 196.7, 167.3, 159.1, 145.3, 142.2, 141.9, 135.8, 135.7,

130.1, 129.2, 129.0, 128.8, 128.7, 127.9, 127.0, 125.4, 123.5, 123.4, 114.7, 93.4, 83.6, 54.3, 42.1, 27.7 ppm. HRMS (ESI) *m/z*: [M + H]⁺ calcd for C₃₂H₂₆NO₅ 504.1805, found 504.1801.

4. General procedure for [3 + 2] annulations of 2-arylidene-1,3-indandiones 4 with ninhydrinderived MBH carbonates 2

The 2-arylidene-1,3-indandiones **4** (0.1 mmol, 1.0 equiv), ninhydrin-derived MBH carbonates **2** (0.12 mmol, 1.2 equiv) and CH_2Cl_2 (1.0 mL) were added to a dry flask at room temperature, and then DMAP (20 mol%) was added to the above solution. This solution was stirred at room temperature for 12 h until the complete consumption of the starting materials monitored by TLC. After the removal of the solvent, the residue was purified by flash chromatography on silica gel (petroleum ether/ethyl acetate = 5:1 to 3:1) to afford products **5**.

5a, Purification by flash chromatography (PE/EA = 5:1) gave a faint yellow solid (33.3 mg, 72% yield); ¹H NMR (400 MHz, CDCl₃) δ 8.05 (d, J = 7.6 Hz, 1H), 7.98 (d, J = 7.6 Hz, 1H), 7.85 (t, J = 7.2 Hz, 1H), 7.79 (t, J = 7.2 Hz, 1H), 7.67 (t, J = 7.2 Hz, 1H), 7.63 (t, J = 7.6 Hz, 1H), 7.56 - 7.50 (m, 2H), 7.16 - 7.10 (m, 3H), 6.98 (d, J = 6.8 Hz, 2H), 6.90 (s, 1H), 4.88 (s, 1H), 3.57 (s, 3H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 196.1, 195.9,

 $_{5a}$ (3, 111), 1357 (3, 517) (5, 517) (7, 51

5b, Purification by flash chromatography (PE/EA = 5:1) gave a faint yellow solid (32.4 mg, 68% yield); ¹H NMR (400 MHz, CDCl₃) δ 8.04 (d, *J* = 7.6 Hz, 1H), 7.97 (d, *J* = 7.6 Hz, 1H), 7.84 (t, *J* = 7.2 Hz, 1H), 7.78 (t, *J* = 7.2 Hz, 1H), 7.69 – 7.60 (m, 2H), 7.55 – 7.50 (m, 2H), 6.93 – 6.84 (m, 5H), 4.87 (s, 1H), 3.56 (s, 3H), 2.20 (s, 3H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 196.2, 196.0, 195.1, 194.8, 170.3, 142.5,

141.4, 141.1, 140.5, 139.3, 138.1, 136.7, 136.4, 136.1, 135.3, 130.4, 130.0, 129.2, 126.2, 124.4, 123.9, 123.2, 122.9, 73.1, 68.7, 53.1, 52.4, 21.1 ppm. HRMS (ESI) m/z: $[M + H]^+$ calcd for $C_{30}H_{21}O_6$ 477.1333, found 477.1331.

5c, Purification by flash chromatography (PE/EA = 5:1) gave a faint yellow solid (36.3 mg, 70% yield); ¹H NMR (400 MHz, CDCl₃) δ 8.05 (d, *J* = 7.6 Hz, 1H), 7.97 (d, *J* = 7.6 Hz, 1H), 7.85 (t, *J* = 7.2 Hz, 1H), 7.79 (t, *J* = 7.2 Hz, 1H), 7.68 (t, *J* = 7.2 Hz, 1H), 7.62 (t, *J* = 7.6 Hz, 1H), 7.55 – 7.52 (m, 2H), 7.13 (d, *J* = 7.6 Hz, 2H), 6.92 – 6.88 (m, 3H), 4.86 (s, 1H), 3.56 (s, 3H), 1.19 (s, 9H) ppm. ¹³C NMR (100

MHz, CDCl₃) δ 196.3, 196.0, 195.1, 194.7, 170.3, 151.3, 142.5, 141.4, 141.1, 140.5, 139.1, 136.7, 136.4, 136.0, 135.3, 130.2, 129.9, 125.9, 125.5, 124.4, 123.9, 123.2, 122.9, 72.9, 68.8, 53.1, 52.4, 34.5, 31.1 ppm. HRMS (ESI) *m/z*: [M + H]⁺ calcd for C₃₃H₂₇O₆ 519.1802, found 519.1799.

5d, Purification by flash chromatography (PE/EA = 5:1) gave a faint yellow solid (36.0 mg, 75% yield); ¹H NMR (400 MHz, CDCl₃) δ 8.05 (d, *J* = 7.6 Hz, 1H), 7.98 (d, *J* = 8.0 Hz, 1H), 7.85 (t, *J* = 7.6 Hz, 1H), 7.80 (t, *J* = 7.6 Hz, 1H), 7.70 – 7.62 (m, 2H), 7.56 – 7.51 (m, 2H), 6.99 – 6.96 (m, 2H), 6.84 – 6.80 (m, 3H), 4.86 (s, 1H), 3.57 (s, 3H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 196.1, 195.8, 195.1, 194.6, 170.1,

162.6 (d, J = 246.6 Hz), 142.4, 141.4, 141.2, 140.5, 138.3, 136.8, 136.5, 136.2, 135.4, 131.2, 129.5 (d, J = 3.4 Hz), 128.3 (d, J = 8.1 Hz), 124.4, 123.9, 123.2, 123.0, 115.6 (d, J = 21.6 Hz), 73.1, 68.7, 53.1, 52.4 ppm. ¹⁹F NMR (376 MHz, CDCl₃) δ –113.1 ppm. HRMS (ESI) m/z: [M + H]⁺ calcd for C₂₉H₁₈FO₆ 481.1082, found 481.1080.

5e

5e, Purification by flash chromatography (PE/EA = 5:1) gave a faint yellow solid (36.2 mg, 73% yield); ¹H NMR (400 MHz, CDCl₃) δ 8.05 (d, *J* = 7.6 Hz, 1H), 7.98 (d, *J* = 7.6 Hz, 1H), 7.86 (t, *J* = 7.6 Hz, 1H), 7.80 (t, *J* = 7.6 Hz, 1H), 7.68 (t, *J* = 7.2

Hz, 1H), 7.64 (t, J = 7.6 Hz, 1H), 7.56 – 7.50 (m, 2H), 7.10 (d, J = 8.0 Hz, 2H), 6.93 – 6.89 (m, 3H), 4.86 (s, 1H), 3.57 (s, 3H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 195.9, 195.7, 195.0, 194.5, 170.0, 142.3, 141.4, 141.1, 140.5, 138.2, 136.9, 136.5, 136.2, 135.4, 134.2, 131.8, 128.8, 127.7, 124.4, 123.9, 123.2, 123.0, 73.0, 68.7, 53.1, 52.4 ppm. HRMS (ESI) m/z: [M + H]⁺ calcd for C₂₉H₁₈ClO₆ 497.0786, found 497.0783.

5f, Purification by flash chromatography (PE/EA = 3:1) gave a faint yellow solid (37.6 mg, 71% yield); ¹H NMR (400 MHz, CDCl₃) δ 8.07 (d, *J* = 7.6 Hz, 1H), 7.99 (d, *J* = 7.6 Hz, 1H), 7.87 (t, *J* = 7.2 Hz, 1H), 7.81 (t, *J* = 7.6 Hz, 1H), 7.70 (t, *J* = 7.2 Hz, 1H), 7.65 (t, *J* = 7.2 Hz, 1H), 7.57 – 7.52 (m, 2H), 7.15 (s, 1H), 6.93 (s, 1H), 6.88 (s, 2H), 4.86 (s, 1H), 3.58 (s, 3H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 195.50,

195.46, 194.8, 194.1, 169.7, 142.3, 141.3, 141.0, 140.4, 137.02, 136.95, 136.6, 136.4, 136.3, 135.5, 135.1, 134.1, 128.3, 125.0, 124.5, 123.9, 123.3, 123.0, 72.9, 68.7, 53.1, 52.5 ppm. HRMS (ESI) *m*/*z*: [M + H]⁺ calcd for C₂₉H₁₇Cl₂O₆ 531.0397, found 531.0396.

5g, Purification by flash chromatography (PE/EA = 3:1) gave a faint yellow solid (37.3 mg, 69% yield); ¹H NMR (400 MHz, CDCl₃) δ 8.06 (d, *J* = 7.6 Hz, 1H), 7.98 (d, *J* = 7.6 Hz, 1H), 7.86 (t, *J* = 7.2 Hz, 1H), 7.80 (t, *J* = 7.6 Hz, 1H), 7.69 (t, *J* = 7.6 Hz, 1H), 7.64 (t, *J* = 7.2 Hz, 1H), 7.56 – 7.51 (m, 2H), 7.32 (s, 1H), 7.28 (d, *J* = 8.0 Hz, 1H), 6.95 (t, *J* = 8.0 Hz, 1H), 6.91 (s, 1H), 6.73 (d, *J* = 7.6 Hz, 1H), 4.88 (s, 1H),

3.58 (s, 3H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 195.8, 195.7, 195.0, 194.4, 169.9, 142.3, 141.4, 141.1, 140.5, 138.0, 136.9, 136.5, 136.3, 135.4, 135.3, 132.6, 131.3, 130.0, 129.8, 124.7, 124.5, 123.9, 123.3, 123.0, 122.8, 72.9, 68.7, 53.1, 52.5 ppm. HRMS (ESI) *m/z*: [M + H]⁺ calcd for C₂₉H₁₈BrO₆ 541.0281 (⁷⁹Br) and 543.0261 (⁸¹Br), found 541.0279, 543.0257.

5h, Purification by flash chromatography (PE/EA = 5:1) gave a yellow solid (38.3 mg, 71% yield); ¹H NMR (400 MHz, CDCl₃) δ 8.05 (d, *J* = 7.6 Hz, 1H), 7.98 (d, *J* = 7.6 Hz, 1H), 7.86 (t, *J* = 7.2 Hz, 1H), 7.80 (t, *J* = 7.6 Hz, 1H), 7.70 – 7.62 (m, 2H), 7.56 – 7.50 (m, 2H), 7.25 (d, *J* = 8.4 Hz, 2H), 6.90 – 6.85 (m, 3H), 4.85 (s, 1H), 3.57 (s, 3H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 195.9, 195.7, 195.0, 194.5,

170.0, 142.3, 141.3, 141.1, 140.5, 138.3, 136.9, 136.5, 136.2, 135.4, 132.2, 131.9, 131.7, 128.0, 124.4, 123.9, 123.2, 123.0, 122.4, 73.0, 68.7, 53.1, 52.5 ppm. HRMS (ESI) *m/z*: [M + H]⁺ calcd for C₂₉H₁₈BrO₆ 541.0281 (⁷⁹Br) and 543.0261 (⁸¹Br), found 541.0277, 543.0254.

5i, Purification by flash chromatography (PE/EA = 5:1) gave a faint yellow solid (37.1 mg, 70% yield); ¹H NMR (400 MHz, CDCl₃) δ 8.07 (d, *J* = 7.6 Hz, 1H), 7.98 (d, *J* = 7.6 Hz, 1H), 7.87 (t, *J* = 7.2 Hz, 1H), 7.81 (t, *J* = 7.2 Hz, 1H), 7.70 (t, *J* = 7.6 Hz, 1H), 7.64 (t, *J* = 7.6 Hz, 1H), 7.56 – 7.51 (m, 2H), 7.40 (d, *J* = 7.6 Hz, 2H), 7.10 (d, *J* = 8.0 Hz, 2H), 7.00 (s, 1H), 4.89 (s, 1H), 3.58 (s, 3H) ppm. ¹³C

NMR (100 MHz, CDCl₃) δ 195.7, 195.6, 194.9, 194.3, 169.8, 142.3, 141.3, 141.1, 140.5, 138.0, 136.8, 136.5, 136.3, 135.5, 133.5, 130.3 (q, *J* = 3.7 Hz), 126.7, 125.6 (q, *J* = 3.7 Hz), 124.5, 123.9, 123.7 (q, *J* =

235.5 Hz), 123.3, 123.0, 73.0, 68.8, 53.2, 52.5 ppm. ¹⁹F NMR (376 MHz, CDCl₃) δ -62.8 ppm. HRMS (ESI) *m/z*: [M + H]⁺ calcd for C₃₀H₁₈F₃O₆ 531.1050, found 531.1045.

5j, Purification by flash chromatography (PE/EA = 3:1) gave a yellow solid (37.5 mg, 74% yield); ¹H NMR (400 MHz, CDCl₃) δ 8.09 (d, *J* = 7.2 Hz, 1H), 8.02 – 7.97 (m, 3H), 7.90 (t, *J* = 7.2 Hz, 1H), 7.82 (t, *J* = 7.2 Hz, 1H), 7.72 (t, *J* = 7.2 Hz, 1H), 7.66 (t, *J* = 7.2 Hz, 1H), 7.56 – 7.51 (m, 2H), 7.15 (d, *J* = 8.4 Hz, 2H), 7.10 (s, 1H), 4.89 (s, 1H), 3.59 (s, 3H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 195.5,

195.3, 194.7, 194.0, 169.5, 147.3, 142.2, 141.2, 141.0, 140.4, 139.7, 137.4, 137.1, 136.6, 136.5, 135.6, 135.3, 127.1, 124.6, 124.0, 123.9, 123.3, 123.0, 72.9, 68.8, 53.2, 52.6 ppm. HRMS (ESI) *m*/*z*: [M + H]⁺ calcd for C₂₉H₁₈NO₈ 508.1027, found 508.1021.

5k, Purification by flash chromatography (PE/EA = 3:1) gave a yellow solid (31.4 mg, 67% yield); ¹H NMR (400 MHz, CDCl₃) δ 8.01 (dd, J = 14.0, 7.2 Hz, 2H), 7.87 – 7.79 (m, 2H), 7.71 (t, J = 6.8 Hz, 1H), 7.64 – 7.59 (m, 3H), 7.15 (s, 1H), 7.05 (s, 1H), 6.87 (s, 1H), 6.52 (s, 1H), 4.86 (s, 1H), 3.56 (s, 3H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 196.3, 195.9, 195.2, 194.7, 170.1, 142.5, 141.4, 141.3, 140.5, 136.8, 136.4, 136.2,

135.3, 134.24, 134.15, 129.8, 126.4, 126.1, 124.3, 123.9, 123.3, 123.0, 121.7, 72.7, 68.3, 53.1, 52.4 ppm. HRMS (ESI) m/z: [M + H]⁺ calcd for C₂₇H₁₇O₆S 469.0740, found 469.0733.

51, Purification by flash chromatography (PE/EA = 5:1) gave a faint yellow solid (34.8 mg, 69% yield); ¹H NMR (400 MHz, CDCl₃) δ 8.06 (d, J = 7.6 Hz, 1H), 8.01 (d, J = 7.6 Hz, 1H), 7.86 – 7.78 (m, 2H), 7.69 – 7.62 (m, 2H), 7.58 – 7.52 (m, 2H), 7.12 – 7.11 (m, 3H), 6.99 (d, J = 7.2 Hz, 2H), 6.88 (s, 1H), 4.78 (s, 1H), 1.09 (s, 9H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 196.3, 196.2, 195.0, 194.9, 168.2, 142.7, 141.4, 141.2, 140.7, 139.1, 136.7, 136.3, 136.0, 135.2, 133.4, 131.7, 128.5, 128.1, 126.4, 124.4, 123.7, 123.2, 122.9, 82.5, 73.2, 68.4, 53.9, 27.4 ppm. HRMS (ESI) m/z: [M + H]⁺ calcd for C₃₂H₂₅O₆ 505.1646, found 505.1642.

5. Gram scale reaction and synthetic transformation

5.1 Gram scale reaction

The α -cyano- α , β -unsaturated ketone **1a** (0.466 g, 2 mmol) and ninhydrin-derived MBH carbonate **2a** (0.830 g, 2.4 mmol) and CH₂Cl₂ (15 mL) were added to a 50 mL dry flask at room temperature, then DMAP

(48.8 mg) was added to the above solution in one portion. The resulting solution of the reaction mixture was stirred at room temperature for 12 h. The solvent was evaporated to give the crude product, which was directly purified by flash chromatography (PE /EA = 3:1) to provide the desired product **3a** as a white solid (0.821 g, 89% yield). The analytical data of the gram scale reaction of **3a** are consistent with those of the 0.1 mmol scale experiment.

5.2 Synthetic transformation from 3a to 6

To a solution of compound **3a** (0.2 mmol, 92.2 mg) in CH₂Cl₂ (3 mL) was added the DDQ (0.22 mmol, 49.9 mg), then the mixture was then stirred at the room temperature for 12 h until the reaction was completed as monitored by TLC analysis. Evaporation of the solvent followed by a flash column chromatography on silica gel (PE /EA = 3:1) to give the product **6** (84.5 mg, 92% yield) as a yellow solid. ¹H NMR (400 MHz, CDCl₃) δ 8.26 – 8.24 (m, 2H), 8.00 (d, *J* = 7.2 Hz, 1H), 7.94 (d, *J* = 6.8 Hz, 1H), 7.85 – 7.81 (m, 2H), 7.57 (d, *J* = 4.0 Hz, 3H), 7.48 (d, *J* = 3.6 Hz, 5H), 3.44 (s, 3H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 187.8, 185.9, 164.6, 162.8, 142.4, 142.3, 140.6, 139.5, 135.9, 135.6, 132.8, 132.0, 129.9, 129.6, 129.4, 128.7, 128.3, 127.9, 127.1, 126.8, 123.6, 123.4, 113.4, 97.0, 52.9 ppm. HRMS (ESI) *m/z*: [M + H]⁺ calcd for C₂₉H₁₈NO₅ 460.1179, found 460.1174.

6. Crystal Structure and Data

Preparation of Single Crystal. Single crystal **3a** and **5a** was obtained by the layer-to-layer diffusion method. Products **3a** and **5a** were added to dichloromethane (1.0 mL), and stratified with *n*-hexane after 3 days to obtain crystals suitable for single-crystal X-ray diffraction.

Temperature/K	296	
Crystal system	triclinic	
Space group	P-1	
a/Å	9.9434(12)	
b/Å	11.2111(13)	
c/Å	11.3362(13)	
α/°	100.833(2)	
β/°	92.317(2)	
$\gamma/^{\circ}$	115.863(2)	
Volume/Å ³	1106.1(2)	
Z	2	
$\rho_{calc}g/cm^3$	1.385	
µ/mm ⁻¹	0.095	
F(000)	480	
Crystal size/mm ³	0.23 imes 0.2 imes 0.18	
Radiation	MoKa ($\lambda = 0.71073$)	
2Θ range for data collection/°	5.484 to 55.272	
Index ranges	$-12 \le h \le 12, -14 \le k \le 14, -14 \le l \le 14$	
Reflections collected	6746	
Independent reflections	$4834 [R_{int} = 0.0193, R_{sigma} = 0.0369]$	
Data/restraints/parameters	4834/0/317	
Goodness-of-fit on F ²	1.037	
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0483, wR_2 = 0.1142$	
R indices (all data)	$R_1 = 0.0753, wR_2 = 0.1305$	
Largest diff. peak and hole/ 1-sigma level	0.231 / - 0.312 / 0.059	

CCDC 2311772 ellipsoid contour probability 50%

Identification code	5a	
Empirical formula	$C_{29}H_{18}O_6$	
Formula weight	462.43	
Temperature/K	296.15	
Crystal system	monoclinic	
Space group	P1 2 ₁ /c1	
a/Å	8.5559(17)	
b/Å	26.500(5)	
c/Å	9.988(2)	
α/°	90	
β/°	99.097(4)	
$\gamma/^{\circ}$	90	
Volume/Å ³	2236.1(8)	
Z	4	
$\rho_{calc}g/cm^3$	1.374	
μ/mm^{-1}	0.097	
F(000)	960.0	
Crystal size/mm ³	0.26 imes 0.22 imes 0.2	
Radiation	MoKa ($\lambda = 0.71073$)	
2Θ range for data collection/°	3.074 to 55.094	
Index ranges	$-10 \le h \le 10, -29 \le k \le 34, -12 \le l \le 12$	
Reflections collected	13417	
Independent reflections	5055 [$R_{int} = 0.0441, R_{sigma} = 0.0608$]	

Data/restraints/parameters	5055/0/317
Goodness-of-fit on F ²	1.007
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0516, wR_2 = 0.1036$
R indices (all data)	$R_1 = 0.1089, wR_2 = 0.1245$
Largest diff. peak and hole/ 1-sigma level	0.161 / - 0.16 / 0.036

-1.617

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -22 f1 (ppm)

-

110 100 f1 (ppm)

-1.582

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -22 f1 (ppm)

-

-1.637

-1.598

-1.583

110 10 f1 (ppm)

-1.524

 $\begin{pmatrix} 3.752 \\ 3.742 \end{pmatrix}$

---0.000

-1.342

-3.568

-1.188

110 100 fl (ppm)

-

110 10 f1 (ppm)

-3.581

-1.604

---0.000

--0.000

---62.846

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -22 f1 (ppm)

-1.618

-3.590

-1.599

-3.559

-1.088

8.256 [8.248] [8.248] [8.011] [7.993] [7.936] [7.953] [7.953] [7.953] [7.936] [7.829] [7.829] [7.829] [7.829] [7.829] [7.829] [7.829] [7.829] [7.829] [7.829] [7.820] [7.829] [7.820] [7.720]

-3.443

S50