Electronic Supporting Information

Chemodivergent mechanosynthesis of cyclopentenyl and pyrrolinyl spirobarbiturates from unsaturated barbiturates and enamino esters
Ming-Jun Li, \# Ming-Ming Lu, \# Peng Xu, Si-Qi Chen, Luan-Ting Wu, Ze Zhang* and Hui Xu*
School of Chemical and Environmental Engineering, Anhui Polytechnic University,
Wuhu 241000,P.R.China; E-mail: zhangze@ustc.edu.cn, hxu@ahpu.edu.cn
\#The authors contributed equally to this work

Table of contents

1. General information S2
2. Synthetic procedures for the synthesis of $\mathbf{3}, \mathbf{4}$ and $\mathbf{6 a a}$ S2
3. Characterization data for 3, $\mathbf{4}$ and 6aa S5
4. Single-crystal X-ray crystallography of 3ma and 4oa S30
5. References S34
6. Copies of NMR spectra for 3, 4 and $\mathbf{~ 6 a a}$ S35

1. General information

All reagents were obtained from commercial sources and used without further purification. NMR spectra were recorded on a 500 MHz NMR spectrometer (500 MHz for ${ }^{1} \mathrm{H}$ NMR and 125 MHz for ${ }^{13} \mathrm{C}$ NMR). ${ }^{1} \mathrm{H}$ NMR chemical shifts were determined relative to internal TMS at $\delta 0.0 \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR chemical shifts were determined relative to CDCl_{3} at $\delta 77.16 \mathrm{ppm}$. Data for ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR are reported as follows: chemical shift (δ, ppm) and multiplicity ($\mathrm{s}=\operatorname{singlet}, \mathrm{d}=\operatorname{doublet}, \mathrm{t}=$ triplet, q $=$ quartet, $\mathrm{m}=$ multiplet and $\mathrm{bs}=$ broad singlet). All melting points were determined on a XT-4 binocular microscope melting point apparatus. High-resolution mass spectra (HRMS) were measured with ESI-TOF in the positive mode. Unsaturated barbiturates $\mathbf{1}^{1}$ and enamino esters $\mathbf{2}^{2}$ were prepared according to the reported protocols.

2. Synthetic procedures for the synthesis of 3, 4 and 6aa

2.1 General procedure for the synthesis of cyclopentenyl spirobarbiturates 3

A mixture of unsaturated barbiturates $1(0.2 \mathrm{mmol})$, enamino esters $\mathbf{2}(0.24 \mathrm{mmol})$, NIS (0.24 mmol) and DMF ($30 \mu \mathrm{~L}$) together with four stainless balls (6 mm in diameter) was introduced into a stainless steel jar (5 mL). The reaction vessel along with another identical empty vessel was closed and fixed on the vibration arms of a Retsch MM400 mixer mill, and was vibrated vigorously at a rate of 1800 rounds per minute $(30 \mathrm{~Hz})$ at room temperature for 30 min . After completion of the reaction, the resulting mixture was extracted with ethyl acetate, and the combined solution was evaporated to remove the solvent in vacuo. Then, the residue was separated by flash column chromatography on silica gel with ethyl acetate/petroleum ether as the eluent to afford cyclopentenyl spirobarbiturates 3 .

2.2 General procedure for the synthesis of pyrrolinly spirobarbiturates 4

A mixture of unsaturated barbiturates $\mathbf{1}(0.2 \mathrm{mmol})$, enamino esters $2(0.24 \mathrm{mmol})$, DBDMH (0.2 mmol), $\mathrm{PPh}_{3}(0.2 \mathrm{mmol})$ and $\mathrm{CH}_{2} \mathrm{Br}_{2}(30 \mu \mathrm{~L})$ together with four stainless balls (6 mm in diameter) was introduced into a stainless steel jar (5 mL). The reaction vessel along with another identical empty vessel was closed and fixed on the vibration arms of a Retsch MM400 mixer mill, and was vibrated vigorously at a rate of 1800 rounds per minute $(30 \mathrm{~Hz})$ at room temperature for 30 min . After completion of the reaction, the resulting mixture was extracted with ethyl acetate, and the combined solution was evaporated to remove the solvent in vacuo. Then, the residue was separated by flash column chromatography on silica gel with ethyl acetate/petroleum ether as the eluent to afford pyrrolinly spirobarbiturates 4 .

2.3 Procedure for the gram-scale synthesis of 3aa

A mixture of unsaturated barbiturate $\mathbf{1 a}(0.976 \mathrm{~g}, 4.0 \mathrm{mmol})$, enamino ester 2a $(1.051 \mathrm{~g}, 4.8 \mathrm{mmol})$, NIS $(1.080 \mathrm{~g}, 4.8 \mathrm{mmol})$ and DMF $(0.6 \mathrm{~mL})$ together with a stainless ball (12 mm in diameter) was introduced into a stainless steel jar (25 mL). The reaction vessel along with another identical empty vessel was closed and fixed on the vibration arms of a Retsch MM400 mixer mill, and was vibrated vigorously at a rate of 1800 rounds per minute $(30 \mathrm{~Hz})$ at room temperature for 40 min . After completion of the reaction, the resulting mixture was extracted with ethyl acetate, and the combined solution was evaporated to remove the solvent in vacuo. Then, the residue was separated by flash column chromatography on silica gel with ethyl acetate/petroleum
ether ($1 / 4, \mathrm{v} / \mathrm{v}$) as the eluent to afford $\mathbf{3 a a}$ in 88% yield $(1.617 \mathrm{~g})$.

2.4 Procedure for the gram-scale synthesis of 4aa

A mixture of unsaturated barbiturate $\mathbf{1 a}(0.976 \mathrm{~g}, 4.0 \mathrm{mmol})$, enamino ester 2a $(1.051 \mathrm{~g}, 4.8 \mathrm{mmol}), \operatorname{DBDMH}(1.144 \mathrm{~g}, 4.0 \mathrm{mmol}), \mathrm{PPh}_{3}(1.048 \mathrm{~g}, 4.0 \mathrm{mmol})$, and $\mathrm{CH}_{2} \mathrm{Br}_{2}(0.6 \mathrm{~mL})$ together with a stainless ball (12 mm in diameter) was introduced into a stainless steel jar (25 mL). The reaction vessel along with another identical empty vessel was closed and fixed on the vibration arms of a Retsch MM400 mixer mill, and was vibrated vigorously at a rate of 1800 rounds per minute $(30 \mathrm{~Hz})$ at room temperature for 40 min . After completion of the reaction, the resulting mixture was extracted with ethyl acetate, and the combined solution was evaporated to remove the solvent in vacuo. Then, the residue was separated by flash column chromatography on silica gel with ethyl acetate/petroleum ether ($1 / 6, \mathrm{v} / \mathrm{v}$) as the eluent to afford 4aa in 67% yield $(1.451 \mathrm{~g})$.

2.5 Procedure for the synthesis of $\mathbf{6 a a}$

In a 25 mL of glass tube, a mixture of $\mathbf{4 a a}(108.1 \mathrm{mg}, 0.2 \mathrm{mmol})$, aniline ($37.2 \mathrm{mg}, 0.4$ $\mathrm{mmol}), \mathrm{K}_{2} \mathrm{CO}_{3}(27.6 \mathrm{mg}, 0.2 \mathrm{mmol})$, and DCE (2 mL) was stirred and heated in an oil bath at $80^{\circ} \mathrm{C}$ for 5 h . After cooling, the reaction mixture was filtered under reduced pressure, and then, the solution was concentrated in vacuo. The residue was separated by column chromatography on silica gel with ethyl acetate/petroleum ether (1:4) as the eluent to afford substitution product $\mathbf{6 a a}(95.2 \mathrm{mg}, 86 \%$ yield $)$.

3. Characterization data for 3, 4 and 6aa

Ethyl
3-(benzylamino)-7,9-dimethyl-6,8,10-trioxo-1-phenyl-7,9-
diazaspiro[4.5]dec-2-ene-2-carboxylate (3aa). White solid, 91\% yield (84.3 mg), mp $157-159{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.03$ (bs, 1H), 7.44-7.37 (m, 4H), 7.347.29 (m, 1H), 7.26-7.19 (m, 3H), 7.01 (bs, 2H), 4.56 (d, $J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.47$ (s, 1H), $3.93-3.86(\mathrm{~m}, 1 \mathrm{H}), 3.82-3.74(\mathrm{~m}, 1 \mathrm{H}), 3.49(\mathrm{~d}, J=16.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.39(\mathrm{~d}, J=16.8 \mathrm{~Hz}$, $1 \mathrm{H}), 3.37$ (s, 3H), 2.56 (s, 3H), 0.79 (t, $J=7.0 \mathrm{~Hz}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.2,168.7,167.1,163.0,151.2,139.6,138.3,129.0$ (2C), 128.1 (2C), 128.0 (2C), 127.9, 127.8, 127.1 (2C), 91.5, 63.1, 60.6, 58.7, 48.6, 35.4, 29.4, 28.4, 14.1; HRMS (ESI-TOF) calcd for $\mathrm{C}_{26} \mathrm{H}_{28} \mathrm{~N}_{3} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]^{+} 462.2029$, found 462.2036.

Ethyl 3-(benzylamino)-7,9-dimethyl-6,8,10-trioxo-1-(p-tolyl)-7,9-diazaspiro[4.5]dec-2-ene-2-carboxylate (3ba). White solid, 89% yield (84.8 mg), mp $139-141{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.00(\mathrm{bs}, 1 \mathrm{H}), 7.43-7.36$ (m, 4H), 7.33$7.28(\mathrm{~m}, 1 \mathrm{H}), 7.03(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.88(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.55(\mathrm{~d}, J=6.3 \mathrm{~Hz}$, $2 \mathrm{H}), 4.43$ (s, 1H), 3.93-3.77 (m, 2H), 3.48 (d, $J=16.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.36(\mathrm{~s}, 3 \mathrm{H}), 3.35(\mathrm{~d}, J$ $=16.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.58(\mathrm{~s}, 3 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H}), 0.82(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 171.3,168.8,167.1,162.9,151.2,138.4,137.5,136.4,129.0(2 \mathrm{C}), 128.7$ (2C), 127.8 (2C), 127.7, 127.1 (2C), 91.6, 62.8, 60.6, 58.7, 48.6, 35.2, 29.3, 28.4, 21.2, 14.1; HRMS (ESI-TOF) calcd for $\mathrm{C}_{2} 7 \mathrm{H}_{30} \mathrm{~N}_{3} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]^{+} 476.2185$, found 476.2182.

Ethyl 3-(benzylamino)-1-(4-methoxyphenyl)-7,9-dimethyl-6,8,10-trioxo-7,9-diazaspiro[4.5]dec-2-ene-2-carboxylate (3ca). White solid, 84% yield (82.2 mg), mp $141-143{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.00(\mathrm{bs}, 1 \mathrm{H}), 7.43-7.36(\mathrm{~m}, 4 \mathrm{H}), 7.34-$ $7.28(\mathrm{~m}, 1 \mathrm{H}), 6.92(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.77(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.55(\mathrm{~d}, J=6.3 \mathrm{~Hz}$, $2 \mathrm{H}), 4.42(\mathrm{~s}, 1 \mathrm{H}), 3.94-3.86(\mathrm{~m}, 1 \mathrm{H}), 3.85-3.78(\mathrm{~m}, 1 \mathrm{H}), 3.78-3.75(\mathrm{~m}, 3 \mathrm{H}), 3.49(\mathrm{~d}$, $J=16.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.35(\mathrm{~d}, J=16.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.37(\mathrm{~s}, 3 \mathrm{H}), 2.63(\mathrm{~s}, 3 \mathrm{H}), 0.84(\mathrm{t}, J=7.1$ $\mathrm{Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.3,168.8,167.1,162.8,159.3,151.3,138.4$, 131.6, 129.1 (2C), 129.0 (2C), 127.8, 127.1 (2C), 113.5 (2C), 91.8, 62.6, 60.6, 58.7, 55.4, 48.6, 35.2, 29.3, 28.6, 14.2; HRMS (ESI-TOF) calcd for $\mathrm{C}_{27} \mathrm{H}_{30} \mathrm{~N}_{3} \mathrm{O}_{6}[\mathrm{M}+\mathrm{H}]^{+}$ 492.2135, found 492.2139 .

Ethyl 3-(benzylamino)-1-(4-chlorophenyl)-7,9-dimethyl-6,8,10-trioxo-7,9-diazaspiro[4.5]dec-2-ene-2-carboxylate (3da). White solid, 92% yield (91.1 mg), mp $156-158{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.02(\mathrm{bs}, 1 \mathrm{H}), 7.42-7.36(\mathrm{~m}, 4 \mathrm{H}), 7.34-$ $7.29(\mathrm{~m}, 1 \mathrm{H}), 7.22(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.96(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.55(\mathrm{~d}, J=6.3 \mathrm{~Hz}$, 2H), 4.43 (s, 1H), 3.93-3.86 (m, 1H), 3.84-3.77 (m, 1H), 3.49 (d, $J=16.8 \mathrm{~Hz}, 1 \mathrm{H})$, $3.374(\mathrm{~d}, J=16.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.372(\mathrm{~s}, 3 \mathrm{H}), 2.64(\mathrm{~s}, 3 \mathrm{H}), 0.83(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.1,168.6,166.9,163.1,151.1,138.3,138.2,133.7,129.4$ (2C), 129.1 (2C), 128.3 (2C), 127.9, 127.1 (2C), 91.3, 62.3, 60.3, 58.8, 48.6, 35.5, 29.4, 28.6, 14.2; HRMS (ESI-TOF) calcd for $\mathrm{C}_{26} \mathrm{H}_{27} \mathrm{ClN}_{3} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]^{+} 496.1639$, found 496.1643 .

Ethyl
3-(benzylamino)-1-(4-bromophenyl)-7,9-dimethyl-6,8,10-trioxo-7,9-diazaspiro[4.5]dec-2-ene-2-carboxylate (3ea). White solid, 91% yield (97.9 mg), mp $151-153{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.02(\mathrm{bs}, 1 \mathrm{H}), 7.43-7.34(\mathrm{~m}, 6 \mathrm{H}), 7.33-$ $7.28(\mathrm{~m}, 1 \mathrm{H}), 6.90(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.55(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.41(\mathrm{~s}, 1 \mathrm{H}), 3.93-3.86$ (m, 1H), 3.85-3.77 (m, 1H), 3.49 (d, $J=16.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.370(\mathrm{~d}, J=16.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.368$ $(\mathrm{s}, 3 \mathrm{H}), 2.63(\mathrm{~s}, 3 \mathrm{H}), 0.84(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 171.0$, $168.5,166.8,163.2,151.0,138.8,138.2,131.2$ (2C), 129.7 (2C), 129.0 (2C), 127.8, 127.1 (2C), 121.8, 91.2, 62.3, 60.2, 58.8, 48.6, 35.5, 29.4, 28.5, 14.2; HRMS (ESI-TOF) calcd for $\mathrm{C}_{26} \mathrm{H}_{27} \mathrm{BrN}_{3} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]^{+} 540.1134$, found 540.1143.

Ethyl 3-(benzylamino)-7,9-dimethyl-6,8,10-trioxo-1-(4-(trifluoromethyl)phenyl)-7,9-diazaspiro[4.5]dec-2-ene-2-carboxylate (3fa). White solid, 83% yield (88.0 mg), mp 149-151 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.05(\mathrm{bs}, 1 \mathrm{H}), 7.51(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H})$, 7.44-7.36 (m, 4H), 7.34-7.29 (m, 1H), 7.15 (d, $J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.56$ (d, $J=6.3 \mathrm{~Hz}$, 2H), $4.51(\mathrm{~s}, 1 \mathrm{H}), 3.93-3.85(\mathrm{~m}, 1 \mathrm{H}), 3.82-3.75(\mathrm{~m}, 1 \mathrm{H}), 3.51(\mathrm{~d}, J=16.8 \mathrm{~Hz}, 1 \mathrm{H})$, $3.41(\mathrm{~d}, J=16.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.38(\mathrm{~s}, 3 \mathrm{H}), 2.55(\mathrm{~s}, 3 \mathrm{H}), 0.79(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 170.9,168.4,166.7,163.3,150.9,144.0,138.1,130.2(\mathrm{q}, J=32.5$ $\mathrm{Hz}), 129.0$ (2C), 128.5 (2C), 127.9, 127.1 (2C), 125.0 (q, $J=2.8 \mathrm{~Hz}, 2 \mathrm{C}), 124.1$ (q, $J=$ 272.1 Hz), 91.0, 62.4, 60.2, 58.8, 48.6, 35.7, 29.4, 28.4, 14.0; HRMS (ESI-TOF) calcd for $\mathrm{C}_{27} \mathrm{H}_{27} \mathrm{~F}_{3} \mathrm{~N}_{3} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]^{+}$530.1903, found 530.1914.

Ethyl 3-(benzylamino)-7,9-dimethyl-1-(4-nitrophenyl)-6,8,10-trioxo-7,9-diazaspiro[4.5]dec-2-ene-2-carboxylate (3ga). White solid, 76% yield (77.4 mg), mp $159-161{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.12(\mathrm{t}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 8.07(\mathrm{bs}, 1 \mathrm{H})$, 7.46-7.36 (m, 4H), 7.35-7.30 (m, 1H), $7.22(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.57(\mathrm{~d}, J=6.3 \mathrm{~Hz}$, $2 \mathrm{H}), 4.54(\mathrm{~s}, 1 \mathrm{H}), 3.92-3.77(\mathrm{~m}, 2 \mathrm{H}), 3.53$ (d, $J=16.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.41(\mathrm{~d}, J=16.9 \mathrm{~Hz}$, $1 \mathrm{H}), 3.39(\mathrm{~s}, 3 \mathrm{H}), 2.62(\mathrm{~s}, 3 \mathrm{H}), 0.81(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.7,168.2,166.5,163.5,150.8,147.5$ (2C), 138.0, 129.08 (2C), 129.07 (2C), 127.9, 127.1 (2C), 123.3 (2C), 90.9, 61.9, 60.1, 58.9, 48.7, 35.8, 29.5, 28.5, 14.1; HRMS (ESITOF) calcd for $\mathrm{C}_{26} \mathrm{H}_{27} \mathrm{~N}_{4} \mathrm{O}_{7}[\mathrm{M}+\mathrm{H}]^{+} 507.1880$, found 507.1871.

Ethyl
3-(benzylamino)-7,9-dimethyl-6,8,10-trioxo-1-(\boldsymbol{m}-tolyl)-7,9-diazaspiro[4.5]dec-2-ene-2-carboxylate (3ha). White solid, 91% yield (86.5 mg), mp $141-143{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.02$ (bs, 1H), 7.43-7.37 (m, 4H), 7.34$7.28(\mathrm{~m}, 1 \mathrm{H}), 7.11(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.02(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.79(\mathrm{bs}, 2 \mathrm{H}), 4.56(\mathrm{~d}$, $J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.43$ (s, 1H), 3.96-3.88 (m, 1H), 3.83-3.74 (m, 1H), 3.47 (d, $J=16.7$ $\mathrm{Hz}, 1 \mathrm{H}), 3.38(\mathrm{~d}, J=16.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.37(\mathrm{~s}, 3 \mathrm{H}), 2.57(\mathrm{~s}, 3 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H}), 0.82(\mathrm{t}, J=$ $7.0 \mathrm{~Hz}, 3 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 171.2, 168.7, 167.1, 163.0, 151.2, 139.4, 138.4, 137.7, 129.0 (2C), 128.6 (2C), 128.0, 127.8, 127.1 (2C), 125.1, 91.4, 63.1, 60.7, 58.6, 48.6, 35.3, 29.3, 28.4, 21.4, 14.2; HRMS (ESI-TOF) calcd for $\mathrm{C}_{27} \mathrm{H}_{30} \mathrm{~N}_{3} \mathrm{O}_{5}[\mathrm{M}+$ $\mathrm{H}]^{+} 476.2186$, found 476.2191 .

Ethyl 3-(benzylamino)-1-(3-chlorophenyl)-7,9-dimethyl-6,8,10-trioxo-7,9-diazaspiro[4.5]dec-2-ene-2-carboxylate (3ia). White solid, 88% yield (87.7 mg), mp $146-148{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.05$ (bs, 1H), 7.44-7.36 (m, 4H), 7.34$7.29(\mathrm{~m}, 1 \mathrm{H}), 7.23-7.15(\mathrm{~m}, 2 \mathrm{H}), 7.02(\mathrm{~s}, 1 \mathrm{H}), 6.90(\mathrm{bs}, 1 \mathrm{H}), 4.55(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H})$, $4.42(\mathrm{~s}, 1 \mathrm{H}), 3.97-3.89(\mathrm{~m}, 1 \mathrm{H}), 3.84-3.76(\mathrm{~m}, 1 \mathrm{H}), 3.48(\mathrm{~d}, J=16.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.37(\mathrm{~s}$, $3 \mathrm{H}), 3.36(\mathrm{~d}, J=16.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.66(\mathrm{~s}, 3 \mathrm{H}), 0.84(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.9,168.4,166.8,163.4,151.0,141.8,138.1,134.2,129.3,129.0$ (2C), 128.1 (2C), 127.8, 127.1 (2C), 126.2, $90.9,62.3,60.4,58.8,48.6,35.4,29.4,28.5$, 14.2; HRMS (ESI-TOF) calcd for $\mathrm{C}_{26} \mathrm{H}_{27} \mathrm{ClN}_{3} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]^{+} 496.1639$, found 496.1644 .

Ethyl 3-(benzylamino)-1-(3-bromophenyl)-7,9-dimethyl-6,8,10-trioxo-7,9-diazaspiro[4.5]dec-2-ene-2-carboxylate (3ja). White solid, 85% yield (91.8 mg), mp $136-138{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.05$ (bs, 1H), 7.43-7.35 (m, 5H), 7.347.29 (m, 1H), 7.17 (s, 1H), 7.12 (t, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.95$ (bs, 1H), 4.55 (d, $J=6.3 \mathrm{~Hz}$, 2H), $4.41(\mathrm{~s}, 1 \mathrm{H}), 3.98-3.90(\mathrm{~m}, 1 \mathrm{H}), 3.84-3.76(\mathrm{~m}, 1 \mathrm{H}), 3.47(\mathrm{~d}, J=16.8 \mathrm{~Hz}, 1 \mathrm{H})$, $3.37(\mathrm{~s}, 3 \mathrm{H}), 3.36(\mathrm{~d}, J=16.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.66(\mathrm{~s}, 3 \mathrm{H}), 0.84(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 170.9,168.4,166.8,163.4,151.0,142.1,138.1,131.0(2 \mathrm{C}), 129.6$, 129.0 (2C), 127.8, 127.1 (2C), 126.7, 122.3, 90.8, 62.3, 60.4, 58.8, 48.6, 35.4, 29.4, 28.6, 14.2; HRMS (ESI-TOF) calcd for $\mathrm{C}_{26} \mathrm{H}_{27} \mathrm{BrN}_{3} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]^{+} 540.1134$, found 540.1138.

Ethyl 3-(benzylamino)-7,9-dimethyl-1-(3-nitrophenyl)-6,8,10-trioxo-7,9-diazaspiro[4.5]dec-2-ene-2-carboxylate (3ka). White solid, 73% yield (73.7 mg), mp $156-158{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.15-8.08(\mathrm{~m}, 1 \mathrm{H}), 8.08(\mathrm{bs}, 1 \mathrm{H}), 7.91(\mathrm{~s}$, $1 \mathrm{H}), 7.48-7.35(\mathrm{~m}, 6 \mathrm{H}), 7.35-7.30(\mathrm{~m}, 1 \mathrm{H}), 4.58(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.55(\mathrm{~s}, 1 \mathrm{H})$, 3.94-3.77 (m, 2H), 3.52 (d, $J=16.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.39(\mathrm{~s}, 3 \mathrm{H}), 3.38(\mathrm{~d}, J=16.8 \mathrm{~Hz}, 1 \mathrm{H})$, $2.62(\mathrm{~s}, 3 \mathrm{H}), 0.82(\mathrm{t}, J=6.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 170.7,168.2$, $166.5,163.7,150.8,148.1,142.2,138.0,134.1,129.1$ (2C), 129.0, 127.9, 127.0 (2C), 123.0 (2C), $90.6,61.9,60.1,58.9,48.7,35.6,29.5,28.6,14.2$; HRMS (ESI-TOF) calcd for $\mathrm{C}_{26} \mathrm{H}_{27} \mathrm{~N}_{4} \mathrm{O}_{7}[\mathrm{M}+\mathrm{H}]^{+} 507.1880$, found 507.1883.

Ethyl 3-(benzylamino)-1-(2-methoxyphenyl)-7,9-dimethyl-6,8,10-trioxo-7,9-diazaspiro[4.5]dec-2-ene-2-carboxylate (31a). White solid, 82% yield (80.8 mg), mp 203-205 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.97$ (bs, 1H), 7.42-7.36 (m, 4H), 7.33$7.28(\mathrm{~m}, 1 \mathrm{H}), 7.16$ (td, $J=7.8,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.04(\mathrm{dd}, J=7.6,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.85(\mathrm{t}, J$ $=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.78(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.14(\mathrm{~s}, 1 \mathrm{H}), 4.54(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.96-$ $3.89(\mathrm{~m}, 1 \mathrm{H}), 3.81-3.74(\mathrm{~m}, 1 \mathrm{H}), 3.74-3.71(\mathrm{~m}, 3 \mathrm{H}), 3.54(\mathrm{~d}, J=16.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.36(\mathrm{~s}$, $3 \mathrm{H}), 3.33(\mathrm{~d}, J=16.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.60(\mathrm{~s}, 3 \mathrm{H}), 0.80(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.7,169.1,167.0,162.7,156.6,151.5,138.5,129.5,129.0$ (2C), 128.6, 127.9, 127.7, 127.1 (2C), 120.5, 109.4, 91.5, 59.3, 58.6, 55.8, 53.8, 48.6, 36.2, 29.2, 28.3, 14.1; HRMS (ESI-TOF) calcd for $\mathrm{C}_{2} 7 \mathrm{H}_{30} \mathrm{~N}_{3} \mathrm{O}_{6}[\mathrm{M}+\mathrm{H}]^{+} 492.2135$, found 492.2133.

Ethyl
3-(benzylamino)-1-(2-chlorophenyl)-7,9-dimethyl-6,8,10-trioxo-7,9-diazaspiro[4.5]dec-2-ene-2-carboxylate (3ma). White solid, 87% yield (86.0 mg), mp $173-175{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.98$ (bs, 1H), 7.43-7.37 (m, 4H), 7.34$7.28(\mathrm{~m}, 2 \mathrm{H}), 7.19-7.11(\mathrm{~m}, 3 \mathrm{H}), 5.18(\mathrm{~s}, 1 \mathrm{H}), 4.55(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.90-3.83(\mathrm{~m}$, $1 \mathrm{H}), 3.82-3.75(\mathrm{~m}, 1 \mathrm{H}), 3.55(\mathrm{~d}, J=16.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.36(\mathrm{~d}, J=16.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.34(\mathrm{~s}$, $3 \mathrm{H}), 2.66(\mathrm{~s}, 3 \mathrm{H}), 0.80(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.0,168.8$, $166.8,163.0,151.1,138.3,137.3,133.7,130.4,129.02$ (2C), 128.96, 128.8, 127.8, 127.1 (2C), 126.7, 92.0, 59.4, 58.7, 57.0, 48.6, 36.2, 29.4, 28.5, 14.0; HRMS (ESI-TOF) calcd for $\mathrm{C}_{26} \mathrm{H}_{27} \mathrm{ClN}_{3} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]^{+} 496.1639$, found 496.1648.

Ethyl
3-(benzylamino)-1-(2-bromophenyl)-7,9-dimethyl-6,8,10-trioxo-7,9-diazaspiro[4.5]dec-2-ene-2-carboxylate (3na). White solid, 86% yield (92.9 mg), mp $167-169{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.97(\mathrm{bs}, 1 \mathrm{H}), 7.48(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H})$, 7.43-7.36 (m, 4H), 7.34-7.29 (m, 1H), $7.20(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.11(\mathrm{dd}, J=7.8,1.5$ $\mathrm{Hz}, 1 \mathrm{H}), 7.06(\mathrm{td}, J=7.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.17(\mathrm{~s}, 1 \mathrm{H}), 4.55(\mathrm{dd}, J=6.3,2.1 \mathrm{~Hz}, 2 \mathrm{H})$, $3.89-3.76(\mathrm{~m}, 2 \mathrm{H}), 3.57(\mathrm{~d}, J=16.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.35(\mathrm{~s}, 3 \mathrm{H}), 3.34(\mathrm{~d}, J=16.8 \mathrm{~Hz}, 1 \mathrm{H})$, $2.66(\mathrm{~s}, 3 \mathrm{H}), 0.81(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.9,168.8$, 166.7, 162.9, 151.1, 139.0, 138.3, 132.3, 130.6, 129.1, 129.0 (2C), 127.8, 127.2, 127.1 (2C), 124.6, 92.6, 59.8, 59.4, 58.7, 48.6, 36.2, 29.4, 28.5, 14.0; HRMS (ESI-TOF) calcd for $\mathrm{C}_{26} \mathrm{H}_{27} \mathrm{BrN}_{3} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]^{+} 540.1134$, found 540.1131.

Ethyl 3-(benzylamino)-1-(3,4-dimethylphenyl)-7,9-dimethyl-6,8,10-trioxo-7,9-diazaspiro[4.5]dec-2-ene-2-carboxylate (3oa). White solid, 90% yield (88.1 mg), mp $131-133{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.99$ (bs, 1H), 7.43-7.37 (m, 4H), 7.34$7.28(\mathrm{~m}, 1 \mathrm{H}), 6.98(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.78-6.66(\mathrm{~m}, 2 \mathrm{H}), 4.55(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H})$, $4.41(\mathrm{~s}, 1 \mathrm{H}), 3.95-3.87(\mathrm{~m}, 1 \mathrm{H}), 3.86-3.79(\mathrm{~m}, 1 \mathrm{H}), 3.47(\mathrm{~d}, J=16.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.37(\mathrm{~s}$, $3 \mathrm{H}), 3.34(\mathrm{~d}, J=16.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.58(\mathrm{~s}, 3 \mathrm{H}), 2.20(\mathrm{~s}, 3 \mathrm{H}), 2.19(\mathrm{~s}, 3 \mathrm{H}), 0.85(\mathrm{t}, J=6.9$ $\mathrm{Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.3,168.8,167.2,162.9,151.3,138.4,136.7$, 136.2, 136.1, 129.3, 129.0 (3C), 127.7, 127.1 (2C), 125.4, 91.6, 62.8, 60.8, 58.7, 48.6, 35.2, 29.3, 28.5, 19.8, 19.5, 14.2; HRMS (ESI-TOF) calcd for $\mathrm{C}_{28} \mathrm{H}_{32} \mathrm{~N}_{3} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]^{+}$ 490.2342, found 490.2345.

Ethyl 3-(benzylamino)-1-(3,4-dichlorophenyl)-7,9-dimethyl-6,8,10-trioxo-7,9-diazaspiro[4.5]dec-2-ene-2-carboxylate (3pa). White solid, 88% yield (93.7 mg), mp $167-169{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.05$ (bs, 1H), 7.44-7.35 (m, 4H), 7.35$7.29(\mathrm{~m}, 2 \mathrm{H}), 7.12(\mathrm{~s}, 1 \mathrm{H}), 6.87(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.55(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.39(\mathrm{~s}$, $1 \mathrm{H}), 3.96-3.89(\mathrm{~m}, 1 \mathrm{H}), 3.87-3.79(\mathrm{~m}, 1 \mathrm{H}), 3.48(\mathrm{~d}, J=16.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.37(\mathrm{~s}, 3 \mathrm{H})$, $3.34(\mathrm{~d}, J=16.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.71(\mathrm{~s}, 3 \mathrm{H}), 0.88(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 170.8,168.3,166.7,163.4,150.9,140.2,138.0,132.4,131.8,130.0,129.9$, 129.0 (2C), 127.9, 127.4, 127.1 (2C), 90.7, 61.6, 60.2, 58.9, 48.6, 35.4, 29.4, 28.6, 14.2; HRMS (ESI-TOF) calcd for $\mathrm{C}_{26} \mathrm{H}_{26} \mathrm{Cl}_{2} \mathrm{~N}_{3} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]^{+} 530.1250$, found 530.1258 .

Ethyl 3-(benzylamino)-7,9-dimethyl-1-(naphthalen-2-yl)-6,8,10-trioxo-7,9-diazaspiro[4.5]dec-2-ene-2-carboxylate (3qa). White solid, 83% yield (85.2 mg), mp $170-172{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.09(\mathrm{bs}, 1 \mathrm{H}), 7.80-7.74(\mathrm{~m}, 2 \mathrm{H}), 7.72(\mathrm{~d}$, $J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.51-7.38(\mathrm{~m}, 7 \mathrm{H}), 7.35-7.29(\mathrm{~m}, 1 \mathrm{H}), 7.14(\mathrm{bs}, 1 \mathrm{H}), 4.64(\mathrm{~s}, 1 \mathrm{H})$, $4.59(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.86-3.74(\mathrm{~m}, 2 \mathrm{H}), 3.56(\mathrm{~d}, J=16.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.41(\mathrm{~d}, J=16.8$ $\mathrm{Hz}, 1 \mathrm{H}), 3.40(\mathrm{~s}, 3 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H}), 0.71(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.2,168.6,167.1,163.2,151.1,138.3,137.1,133.1,133.0,129.0(2 \mathrm{C}), 127.9,127.8$, 127.68, 127.65, 127.1 (2C), 127.0, 126.2, 126.0 (2C), $91.5,63.0,60.6,58.7,48.6,35.4$, 29.4, 28.4, 14.1; HRMS (ESI-TOF) calcd for $\mathrm{C}_{30} \mathrm{H}_{30} \mathrm{~N}_{3} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]^{+} 512.2186$, found 512.2181 .

Ethyl 3-(benzylamino)-7,9-dimethyl-6,8,10-trioxo-1-(thiophen-2-yl)-7,9-diazaspiro[4.5]dec-2-ene-2-carboxylate (3ra). White solid, 51% yield (47.3 mg), mp $\mathrm{e}-148{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.03(\mathrm{bs}, 1 \mathrm{H}), 7.42-7.36(\mathrm{~m}, 4 \mathrm{H}), 7.33-7.28$ (m, 1H), $7.16(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.92-6.88(\mathrm{~m}, 1 \mathrm{H}), 6.73(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.73(\mathrm{~s}$, $1 \mathrm{H}), 4.55(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.01-3.94(\mathrm{~m}, 1 \mathrm{H}), 3.89-3.81(\mathrm{~m}, 1 \mathrm{H}), 3.54(\mathrm{~d}, J=16.8$ $\mathrm{Hz}, 1 \mathrm{H}$), 3.37 ($\mathrm{s}, 3 \mathrm{H}$), 3.29 (d, $J=16.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.83(\mathrm{~s}, 3 \mathrm{H}), 0.90(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.8,168.3,166.9,162.9,151.2,144.2,138.2,129.0$ (2C), 127.7, 127.0 (2C), 126.7, 125.5, 125.0, 92.1, 60.7, 58.8, 56.9, 48.5, 34.8, 29.4, 28.8, 14.2; HRMS (ESI-TOF) calcd for $\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{~N}_{3} \mathrm{O}_{5} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$468.1593, found 468.1594.

Ethyl
3-(benzylamino)-1-isopropyl-7,9-dimethyl-6,8,10-trioxo-7,9-diazaspiro[4.5]dec-2-ene-2-carboxylate (3sa). White solid, 46\% yield (39.5 mg), mp $80-82{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.12(\mathrm{bs}, 1 \mathrm{H}), 7.39-7.32(\mathrm{~m}, 4 \mathrm{H}), 7.30-7.24$ $(\mathrm{m}, 1 \mathrm{H}), 4.52(\mathrm{dd}, J=15.6,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.47(\mathrm{dd}, J=15.6,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.18-4.11(\mathrm{~m}$, $1 \mathrm{H}), 4.04-3.97(\mathrm{~m}, 1 \mathrm{H}), 3.47(\mathrm{~d}, J=16.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.30(\mathrm{~s}, 3 \mathrm{H}), 3.29(\mathrm{~s}, 3 \mathrm{H}), 3.23(\mathrm{t}, J$ $=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.90(\mathrm{~d}, J=16.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.74-1.66(\mathrm{~m}, 1 \mathrm{H}), 1.21(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$, $0.94(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.82(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 171.2$, $169.4,167.9,163.8,151.6,138.5,128.8$ (2C), 127.6, 126.9 (2C), 89.8, 60.73, 60.69, $58.8,48.5,34.9,32.9,29.4,29.2,22.7,18.3,14.5 ; H R M S$ (ESI-TOF) calcd for $\mathrm{C}_{23} \mathrm{H}_{30} \mathrm{~N}_{3} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]^{+} 428.2185$, found 428.2188 .

Ethyl
7,9-dimethyl-6,8,10-trioxo-3-(phenethylamino)-1-phenyl-7,9-diazaspiro[4.5]dec-2-ene-2-carboxylate (3ab). White solid, 89% yield (84.4 mg), mp $97-99{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.71(\mathrm{bs}, 1 \mathrm{H}), 7.35(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.29-$ $7.18(\mathrm{~m}, 6 \mathrm{H}), 7.00-6.93(\mathrm{~m}, 2 \mathrm{H}), 4.42(\mathrm{~s}, 1 \mathrm{H}), 3.92-3.85(\mathrm{~m}, 1 \mathrm{H}), 3.81-3.73(\mathrm{~m}, 1 \mathrm{H})$, $3.61-3.55(\mathrm{~m}, 2 \mathrm{H}), 3.40(\mathrm{~d}, J=16.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.37(\mathrm{~s}, 3 \mathrm{H}), 3.31(\mathrm{~d}, J=16.7 \mathrm{~Hz}, 1 \mathrm{H})$, $3.02-2.92(\mathrm{~m}, 2 \mathrm{H}), 2.57(\mathrm{~s}, 3 \mathrm{H}), 0.78(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz, $\left.\mathrm{CDCl}_{3}\right)$ $\delta 171.2,168.7,166.9,162.8,151.2,139.6,138.4,128.9$ (2C), 128.8 (2C), 128.1 (2C), 128.0 (2C), $127.9,126.8,91.0,63.0,60.5,58.6,46.4,37.6,35.1,29.3,28.4,14.1$; HRMS (ESI-TOF) calcd for $\mathrm{C}_{27} \mathrm{H}_{30} \mathrm{~N}_{3} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]^{+} 476.2186$, found 476.2192.

Ethyl 3-((4-methoxybenzyl)amino)-7,9-dimethyl-6,8,10-trioxo-1-phenyl-7,9-
diazaspiro[4.5]dec-2-ene-2-carboxylate (3ac). White solid, 90% yield (88.2 mg), mp $128-130{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.95$ (bs, 1H), $7.31(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}$), $7.25-7.19$ (m, 3H), 7.01 (bs, 2H), 6.92 (d, $J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.48$ (d, $J=6.2 \mathrm{~Hz}, 2 \mathrm{H})$, $4.46(\mathrm{~s}, 1 \mathrm{H}), 3.92-3.85(\mathrm{~m}, 1 \mathrm{H}), 3.80(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 3.80-3.73(\mathrm{~m}, 1 \mathrm{H}), 3.49(\mathrm{~d}$, $J=16.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.40(\mathrm{~d}, J=16.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.37(\mathrm{~s}, 3 \mathrm{H}), 2.56(\mathrm{~s}, 3 \mathrm{H}), 0.78(\mathrm{t}, J=7.0$ $\mathrm{Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.2,168.7,167.0,163.0,159.2,151.1,139.6$, $130.3,128.4$ (2C), 128.1 (2C), 127.94 (2C), 127.87, 114.3 (2C), 91.2, 63.0, 60.6, 58.6, 55.4, 48.0, 35.4, 29.3, 28.4, 14.0; HRMS (ESI-TOF) calcd for $\mathrm{C}_{27} \mathrm{H}_{30} \mathrm{~N}_{3} \mathrm{O}_{6}[\mathrm{M}+\mathrm{H}]^{+}$ 492.2135 , found 492.2129 .

Ethyl 3-((4-chlorobenzyl)amino)-7,9-dimethyl-6,8,10-trioxo-1-phenyl-7,9-diazaspiro[4.5]dec-2-ene-2-carboxylate (3ad). White solid, 87% yield (86.5 mg), mp $130-132{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.02(\mathrm{bs}, 1 \mathrm{H}), 7.38(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H})$, 7.33 (d, $J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.26-7.20(\mathrm{~m}, 3 \mathrm{H}), 7.08-6.93$ (m, 2H), 4.52 (d, $J=6.4 \mathrm{~Hz}$, 2H), $4.46(\mathrm{~s}, 1 \mathrm{H}), 3.94-3.86(\mathrm{~m}, 1 \mathrm{H}), 3.82-3.74(\mathrm{~m}, 1 \mathrm{H}), 3.46(\mathrm{~d}, J=16.7 \mathrm{~Hz}, 1 \mathrm{H})$, $3.37(\mathrm{~s}, 3 \mathrm{H}), 3.36(\mathrm{~d}, J=16.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.56(\mathrm{~s}, 3 \mathrm{H}), 0.79(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 171.2,168.7,167.1,162.9,151.1,139.4,137.0,133.6,129.2$ (2C), 128.4 (2C), 128.2 (2C), 128.0 (3C), $91.9,63.1,60.6,58.8,47.9,35.4,29.4,28.5,14.1$; HRMS (ESI-TOF) calcd for $\mathrm{C}_{26} \mathrm{H}_{27} \mathrm{ClN}_{3} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]^{+} 496.1639$, found 496.1647 .

Ethyl
3-((2-chlorobenzyl)amino)-7,9-dimethyl-6,8,10-trioxo-1-phenyl-7,9-diazaspiro[4.5]dec-2-ene-2-carboxylate (3ae). White solid, 81% yield (80.4 mg), mp $146-148{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.08(\mathrm{bs}, 1 \mathrm{H}), 7.51(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H})$, $7.40(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.28(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.26-7.19$
(m, 3H), 7.01 (bs, 2H), 4.63 (d, $J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.47$ ($\mathrm{s}, 1 \mathrm{H}), 3.95-3.87(\mathrm{~m}, 1 \mathrm{H}), 3.83-$ $3.76(\mathrm{~m}, 1 \mathrm{H}), 3.49(\mathrm{~d}, J=16.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.38(\mathrm{~d}, J=16.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.37(\mathrm{~s}, 3 \mathrm{H}), 2.55(\mathrm{~s}$, $3 \mathrm{H}), 0.80(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.2,168.6,167.1,162.9$, 151.1, 139.4, 136.0, 132.9, 129.7, 129.0, 128.6, 128.1 (2C), 127.9 (3C), 127.5, 91.9, 63.1, 60.5, 58.7, 46.3, 35.2, 29.3, 28.4, 14.1; HRMS (ESI-TOF) calcd for $\mathrm{C}_{26} \mathrm{H}_{27} \mathrm{ClN}_{3} \mathrm{O}_{5}$ $[\mathrm{M}+\mathrm{H}]^{+} 496.1639$, found 496.1643 .

Methyl
3-(benzylamino)-7,9-dimethyl-6,8,10-trioxo-1-phenyl-7,9-diazaspiro[4.5]dec-2-ene-2-carboxylate (3af). White solid, 92% yield (82.3 mg), mp $190-192{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.07$ (bs, 1H), 7.44-7.36 (m, 4H), 7.34$7.28(\mathrm{~m}, 1 \mathrm{H}), 7.27-7.20(\mathrm{~m}, 3 \mathrm{H}), 7.01(\mathrm{bs}, 2 \mathrm{H}), 4.56(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.47(\mathrm{~s}, 1 \mathrm{H})$, 3.50 (d, $J=16.8 \mathrm{~Hz}, 1 \mathrm{H}$), 3.38 (s, 3H), 3.37 (s, 3H), 3.34 (d, $J=16.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.57$ (s, 3 H) ${ }^{13}{ }^{3} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.2,168.6,167.5,163.4,151.1,139.3,138.3$, 129.0 (2C), 128.2 (2C), 128.0, 127.9 (2C), 127.8, 127.1 (2C), 91.1, 62.8, 60.6, 50.3, 48.6, 35.3, 29.3, 28.5; HRMS (ESI-TOF) calcd for $\mathrm{C}_{2} \mathrm{H}_{26} \mathrm{~N}_{3} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]^{+} 448.1873$, found 448.1879.

Isobutyl
3-(benzylamino)-7,9-dimethyl-6,8,10-trioxo-1-phenyl-7,9-diazaspiro[4.5]dec-2-ene-2-carboxylate (3ag). White solid, 86% yield (84.1 mg), mp $160-162{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.09(\mathrm{bs}, 1 \mathrm{H}), 7.45-7.35(\mathrm{~m}, 4 \mathrm{H}), 7.33-$ 7.28 (m, 1H), 7.27-7.17 (m, 3H), 7.02 (bs, 2H), 4.55 (d, $J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.47$ (s, 1H), $3.72(\mathrm{dd}, J=10.5,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.49(\mathrm{~d}, J=17.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.50-3.44(\mathrm{~m}, 1 \mathrm{H}), 3.39(\mathrm{~d}$, $J=17.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.37(\mathrm{~s}, 3 \mathrm{H}), 2.55(\mathrm{~s}, 3 \mathrm{H}), 1.48-1.38(\mathrm{~m}, 1 \mathrm{H}), 0.43(\mathrm{~d}, J=6.7 \mathrm{~Hz}$, 6 H); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.3,168.7,167.2,163.2,151.1,139.5,138.3$, 129.0 (2C), 128.2 (2C), 128.0 (3C), 127.7, 127.1 (2C), 91.3, 69.0, 63.1, 60.5, 48.5, 35.4, 29.3, 28.4, 27.6, 18.68, 18.66; HRMS (ESI-TOF) calcd for $\mathrm{C}_{28} \mathrm{H}_{32} \mathrm{~N}_{3} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]^{+}$
490.2342, found 490.2338 .

tert-Butyl
3-(benzylamino)-7,9-dimethyl-6,8,10-trioxo-1-phenyl-7,9-
diazaspiro[4.5]dec-2-ene-2-carboxylate (3ah). White solid, 85% yield (83.0 mg), mp $143-145{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.97$ (bs, 1H), 7.43-7.36 (m, 4H), 7.33$7.28(\mathrm{~m}, 1 \mathrm{H}), 7.26-7.19(\mathrm{~m}, 3 \mathrm{H}), 7.01(\mathrm{bs}, 2 \mathrm{H}), 4.53(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.42(\mathrm{~s}, 1 \mathrm{H})$, 3.45 (d, $J=17.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.41(\mathrm{~d}, J=17.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.37(\mathrm{~s}, 3 \mathrm{H}), 2.53(\mathrm{~s}, 3 \mathrm{H}), 1.03(\mathrm{~s}$, 9H); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.3,168.9,166.9,162.3,151.1,140.0,138.5$, 128.9 (2C), 128.0 (4C), 127.8, 127.7, 127.2 (2C), 92.7, 78.8, 63.6, 60.4, 48.5, 35.5, 29.3, 28.3, 28.1 (3C); HRMS (ESI-TOF) calcd for $\mathrm{C}_{28} \mathrm{H}_{32} \mathrm{~N}_{3} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]^{+} 490.2342$, found 490.2347 .

Ethyl 1-benzyl-2-(bromomethyl)-7,9-dimethyl-6,8,10-trioxo-4-phenyl-1,7,9-triazaspiro[4.5]dec-2-ene-3-carboxylate (4aa). White solid, 78% yield (84.5 mg), mp $133-135^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.46(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.34-7.22(\mathrm{~m}, 6 \mathrm{H})$, $7.15(\mathrm{bs}, 1 \mathrm{H}), 6.91(\mathrm{bs}, 1 \mathrm{H}), 4.66(\mathrm{~d}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.61(\mathrm{~s}, 1 \mathrm{H}), 4.58(\mathrm{~d}, J=14.5 \mathrm{~Hz}$, $1 \mathrm{H}), 4.53$ (d, $J=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.48(\mathrm{~d}, J=14.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.02-3.94(\mathrm{~m}, 1 \mathrm{H}), 3.89-3.81$ $(\mathrm{m}, 1 \mathrm{H}), 3.23(\mathrm{~s}, 3 \mathrm{H}), 2.56(\mathrm{~s}, 3 \mathrm{H}), 0.86(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 168.5,165.2,164.4,159.5,150.0,136.7,134.8,129.7$ (2C), 128.6 (3C), 128.53 (2C), 128.50 (2C), 128.4, 100.7, 79.7, 61.1, 59.4, 50.7, 29.3, 28.4, 19.9, 14.0; HRMS (ESITOF) calcd for $\mathrm{C}_{26} \mathrm{H}_{27} \mathrm{BrN}_{3} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]^{+} 540.1134$, found 540.1130 .
 triazaspiro[4.5]dec-2-ene-3-carboxylate (4ba). White solid, 69% yield (76.9 mg), mp $66-68{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.47(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.34-7.25(\mathrm{~m}, 3 \mathrm{H})$, $7.06(\mathrm{bs}, 3 \mathrm{H}), 6.80(\mathrm{bs}, 1 \mathrm{H}), 4.67(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.58-4.45(\mathrm{~m}, 4 \mathrm{H}), 4.01-3.94(\mathrm{~m}$, $1 \mathrm{H}), 3.92-3.84(\mathrm{~m}, 1 \mathrm{H}), 3.23(\mathrm{~s}, 3 \mathrm{H}), 2.59(\mathrm{~s}, 3 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H}), 0.90(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 168.5,165.3,164.4,159.2,150.1,138.1,135.0,133.6$, 129.6 (2C), 129.0 (2C), 128.6 (2C), 128.5, 128.3 (2C), 101.0, 79.8, 60.8, 59.4, 50.7, 29.3, 28.4, 21.2, 20.0, 14.0; HRMS (ESI-TOF) calcd for $\mathrm{C}_{27} \mathrm{H}_{29} \mathrm{BrN}_{3} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]^{+}$ 554.1291, found 554.1285.

Ethyl
1-benzyl-2-(bromomethyl)-4-(4-methoxyphenyl)-7,9-dimethyl-6,8,10-trioxo-1,7,9-triazaspiro[4.5]dec-2-ene-3-carboxylate (4ca). White solid, 62% yield (70.6 mg), mp 66-68 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.46$ (d, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}$), $7.33-$ $7.25(\mathrm{~m}, 3 \mathrm{H}), 7.06(\mathrm{bs}, 1 \mathrm{H}), 6.80(\mathrm{bs}, 3 \mathrm{H}), 4.67(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.58-4.46(\mathrm{~m}, 2 \mathrm{H})$, 4.02-3.94 (m, 1H), 3.91-3.84(m, 1H), $3.77(\mathrm{~s}, 3 \mathrm{H}), 3.22(\mathrm{~s}, 3 \mathrm{H}), 2.63(\mathrm{~s}, 3 \mathrm{H}), 0.92(\mathrm{t}$, $J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 168.5,165.4,164.4,159.6,159.2$, $150.1,134.9,129.7$ (4C), 128.7, 128.6 (2C), 128.5, 113.7 (2C), 101.1, 79.7, 60.5, 59.4, 55.4, 50.7, 29.3, 28.5, 20.0, 14.1; HRMS (ESI-TOF) calcd for $\mathrm{C}_{27} \mathrm{H}_{29} \mathrm{BrN}_{3} \mathrm{O}_{6}[\mathrm{M}+\mathrm{H}]^{+}$ 570.1240 , found 570.1233.

Ethyl 1-benzyl-2-(bromomethyl)-4-(4-chlorophenyl)-7,9-dimethyl-6,8,10-trioxo-1,7,9-triazaspiro[4.5]dec-2-ene-3-carboxylate (4da). White solid, 73\% yield (84.5
mg), mp 132-134 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.43$ (d, $J=6.8 \mathrm{~Hz}, 2 \mathrm{H}$), $7.33-$ $7.20(\mathrm{~m}, 5 \mathrm{H}), 7.12(\mathrm{bs}, 1 \mathrm{H}), 6.86(\mathrm{bs}, 1 \mathrm{H}), 4.69(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.57-4.48(\mathrm{~m}, 4 \mathrm{H})$, 4.02-3.94 (m, 1H), 3.92-3.84 (m, 1H), $3.21(\mathrm{~s}, 3 \mathrm{H}), 2.64(\mathrm{~s}, 3 \mathrm{H}), 0.92(\mathrm{t}, J=7.1 \mathrm{~Hz}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 168.3,165.1,164.2,159.7,149.9,135.4,134.4$, 134.3, 129.8 (4C), 128.6 (5C), 100.4, 79.1, 60.1, 59.6, 50.6, 29.3, 28.5, 19.7, 14.1; HRMS (ESI-TOF) calcd for $\mathrm{C}_{26} \mathrm{H}_{26} \mathrm{BrClN}_{3} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]^{+}$574.0744, found 574.0751.

Ethyl 1-benzyl-2-(bromomethyl)-4-(4-bromophenyl)-7,9-dimethyl-6,8,10-trioxo-1,7,9-triazaspiro[4.5]dec-2-ene-3-carboxylate (4ea). White solid, 76\% yield (94.3 mg), mp 73-75 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.47-7.34$ (m, 4H), 7.33-7.25 (m, $3 \mathrm{H}), 7.03(\mathrm{bs}, 1 \mathrm{H}), 6.81(\mathrm{bs}, 1 \mathrm{H}), 4.69(\mathrm{~d}, J=10.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.57-4.48(\mathrm{~m}, 4 \mathrm{H}), 4.02-$ $3.94(\mathrm{~m}, 1 \mathrm{H}), 3.92-3.85(\mathrm{~m}, 1 \mathrm{H}), 3.21(\mathrm{~s}, 3 \mathrm{H}), 2.64(\mathrm{~s}, 3 \mathrm{H}), 0.92(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 168.3,165.0,164.1,159.7,149.9,135.9,134.4,131.5$ (2C), 130.2 (2C), 129.8 (2C), 128.7, 128.6 (2C), 122.5, 100.3, 79.0, 60.2, 59.6, 50.6, 29.3, 28.5, 19.7, 14.1; HRMS (ESI-TOF) calcd for $\mathrm{C}_{26} \mathrm{H}_{26} \mathrm{Br}_{2} \mathrm{~N}_{3} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]^{+} 620.0219$, found 620.0215 .

Ethyl
1-benzyl-2-(bromomethyl)-7,9-dimethyl-6,8,10-trioxo-4-(4-(trifluoromethyl)phenyl)-1,7,9-triazaspiro[4.5]dec-2-ene-3-carboxylate (4fa). White solid, 61% yield (74.1 mg), $\mathrm{mp} 66-68{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.54$ (bs, 2H), 7.42 (d, $J=6.5 \mathrm{~Hz}, 2 \mathrm{H}$), 7.34-7.24 (m, 4H), 7.07 (bs, 1H), 4.70 (s, 1H), 4.63 $(\mathrm{s}, 1 \mathrm{H}), 4.60-4.48(\mathrm{~m}, 3 \mathrm{H}), 4.02-3.94(\mathrm{~m}, 1 \mathrm{H}), 3.92-3.84(\mathrm{~m}, 1 \mathrm{H}), 3.22(\mathrm{~s}, 3 \mathrm{H}), 2.57$
$(\mathrm{s}, 3 \mathrm{H}), 0.89(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 168.2,164.9,164.1$, $160.0,149.8,141.0,134.2,130.6(\mathrm{q}, J=26.0 \mathrm{~Hz}), 130.0$ (2C), 129.1 (2C), 128.8, 128.7 (2C), 125.3 (2C), 123.9 ($q, J=218.0 \mathrm{~Hz}$), 100.1, 78.9, 60.3, 59.6, 50.6, 29.4, 28.4, 19.7, 14.0; HRMS (ESI-TOF) calcd for $\mathrm{C}_{27} \mathrm{H}_{26} \mathrm{BrF}_{3} \mathrm{~N}_{3} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]^{+} 608.1008$, found 608.1018 .

Ethyl 1-benzyl-2-(bromomethyl)-7,9-dimethyl-4-(4-nitrophenyl)-6,8,10-trioxo-1,7,9-triazaspiro[4.5]dec-2-ene-3-carboxylate (4ga). White solid, 58\% yield (67.6 mg), mp 86-88 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.14$ (bs, 2H), 7.50-7.28 (m, 6H), $7.14(\mathrm{bs}, 1 \mathrm{H}), 4.73(\mathrm{~d}, J=10.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.65(\mathrm{~s}, 1 \mathrm{H}), 4.60-4.50(\mathrm{~m}, 3 \mathrm{H}), 4.01-3.94(\mathrm{~m}$, $1 \mathrm{H}), 3.93-3.85(\mathrm{~m}, 1 \mathrm{H}), 3.22(\mathrm{~s}, 3 \mathrm{H}), 2.62(\mathrm{~s}, 3 \mathrm{H}), 0.92(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 167.9,164.7,163.9,160.2,149.6,147.7,144.4,133.9,130.1$ (2C), 129.6 (2C), 128.9, 128.7 (2C), 123.5 (2C), 99.9, 78.4, 59.8, 59.7, 50.5, 29.4, 28.5, 19.5, 14.1; HRMS (ESI-TOF) calcd for $\mathrm{C}_{26} \mathrm{H}_{26} \mathrm{BrN}_{4} \mathrm{O}_{7}[\mathrm{M}+\mathrm{H}]^{+} 585.0985$, found 585.0991 .

Ethyl 1-benzyl-2-(bromomethyl)-7,9-dimethyl-6,8,10-trioxo-4-(m-tolyl)-1,7,9-triazaspiro[4.5]dec-2-ene-3-carboxylate (4ha). White solid, 77% yield (85.7 mg), mp $61-64{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.46(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.33-7.25(\mathrm{~m}, 3 \mathrm{H})$, 7.15 (bs, 1H), 7.05 (d, $J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.94(\mathrm{bs}, 1 \mathrm{H}), 6.70(\mathrm{bs}, 1 \mathrm{H}), 4.65(\mathrm{~d}, J=9.8 \mathrm{~Hz}$, $1 \mathrm{H}), 4.58(\mathrm{~d}, J=14.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.57(\mathrm{~s}, 1 \mathrm{H}), 4.52(\mathrm{~d}, J=9.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.47(\mathrm{~d}, J=14.6$ Hz, 1H), 4.04-3.96 (m, 1H), 3.91-3.83 (m, 1H), 3.22 ($\mathrm{s}, 3 \mathrm{H}$), 2.57 (s, 3H), 2.29 ($\mathrm{s}, 3 \mathrm{H}$), $0.89(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 168.6,165.2,164.4,159.4$, 150.1, 138.0, 136.5, 134.9, 129.7 (2C), 129.1 (2C), 128.6 (2C), 128.5, 128.1, 125.6,
100.8, 79.9, 61.1, 59.4, 50.7, 29.2, 28.4, 21.4, 19.9, 14.0; HRMS (ESI-TOF) calcd for $\mathrm{C}_{27} \mathrm{H}_{29} \mathrm{BrN}_{3} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]^{+}$554.1291, found 554.1293.

Ethyl 1-benzyl-2-(bromomethyl)-4-(3-chlorophenyl)-7,9-dimethyl-6,8,10-trioxo-1,7,9-triazaspiro[4.5]dec-2-ene-3-carboxylate (4ia). White solid, 79\% yield (90.8 mg), mp 64-66 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.43$ (d, $J=6.8 \mathrm{~Hz}, 2 \mathrm{H}$), 7.34-7.04 $(\mathrm{m}, 6 \mathrm{H}), 6.98-6.70(\mathrm{~m}, 1 \mathrm{H}), 4.72(\mathrm{bs}, 1 \mathrm{H}), 4.60-4.44(\mathrm{~m}, 4 \mathrm{H}), 4.06-3.96(\mathrm{~m}, 1 \mathrm{H}), 3.92-$ $3.84(\mathrm{~m}, 1 \mathrm{H}), 3.21(\mathrm{~s}, 3 \mathrm{H}), 2.65(\mathrm{~s}, 3 \mathrm{H}), 0.92(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 168.2,164.9,164.1,159.9,149.8,138.8,134.4$ (2C), 129.8 (2C), 129.4, 128.6 (5C), 126.7, 100.1, 79.2, 60.2, 59.6, 50.6, 29.3, 28.5, 19.7, 14.1; HRMS (ESI-TOF) calcd for $\mathrm{C}_{26} \mathrm{H}_{26} \mathrm{BrClN}_{3} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]^{+} 574.0744$, found 574.0739.

Ethyl 1-benzyl-2-(bromomethyl)-4-(3-bromophenyl)-7,9-dimethyl-6,8,10-trioxo-1,7,9-triazaspiro[4.5]dec-2-ene-3-carboxylate (4ja). White solid, 76\% yield (93.6 mg), mp 65-67 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.43(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.40(\mathrm{~d}, J$ $=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.34-7.24(\mathrm{~m}, 4 \mathrm{H}), 7.20-6.78(\mathrm{~m}, 2 \mathrm{H}), 4.72(\mathrm{bs}, 1 \mathrm{H}), 4.62-4.42(\mathrm{~m}, 4 \mathrm{H})$, 4.06-3.96(m, 1H), 3.91-3.83(m, 1H), $3.21(\mathrm{~s}, 3 \mathrm{H}), 2.65(\mathrm{~s}, 3 \mathrm{H}), 0.92(\mathrm{t}, J=7.1 \mathrm{~Hz}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 168.1, 164.9, 164.1, 159.9, 149.8, 139.1, 134.4, 131.4 (2C), 129.8 (3C), 128.6 (3C), 127.1, 123.0, 100.0, 79.1, 60.2, 59.5, 50.5, 29.3, 28.5, 19.6, 14.0; HRMS (ESI-TOF) calcd for $\mathrm{C}_{26} \mathrm{H}_{26} \mathrm{Br}_{2} \mathrm{~N}_{3} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]^{+} 620.0219$, found 620.0223 .

Ethyl 1-benzyl-2-(bromomethyl)-7,9-dimethyl-4-(3-nitrophenyl)-6,8,10-trioxo-1,7,9-triazaspiro[4.5]dec-2-ene-3-carboxylate (4ka). White solid, 61% yield (71.1 mg), mp 140-142 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.14(\mathrm{dd}, J=9.2,2.2 \mathrm{~Hz}, 1 \mathrm{H}$), 7.93 (bs, 1H), 7.48 (bs, 1H), 7.42 (d, $J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.35-7.25(\mathrm{~m}, 4 \mathrm{H}), 5.00-4.25(\mathrm{~m}$, $5 \mathrm{H}), 4.03-3.95(\mathrm{~m}, 1 \mathrm{H}), 3.93-3.85(\mathrm{~m}, 1 \mathrm{H}), 3.23(\mathrm{~s}, 3 \mathrm{H}), 2.62(\mathrm{~s}, 3 \mathrm{H}), 0.93(\mathrm{t}, J=6.2$ $\mathrm{Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.8,164.8,163.8,160.3,149.6,148.2,139.2$, 134.5 (2C), 134.0, 129.9 (2C), 129.3, 128.8, 128.7 (2C), 123.4 (2C), 99.9, 78.5, 59.7, 50.4, 29.4, 28.5, 19.5, 14.1; HRMS (ESI-TOF) calcd for $\mathrm{C}_{26} \mathrm{H}_{26} \mathrm{BrN}_{4} \mathrm{O}_{7}[\mathrm{M}+\mathrm{H}]^{+}$ 585.0985, found 585.0988.

Ethyl 1-benzyl-2-(bromomethyl)-4-(2-methoxyphenyl)-7,9-dimethyl-6,8,10-trioxo-1,7,9-triazaspiro[4.5]dec-2-ene-3-carboxylate (41a). White solid, 67% yield (76.6 mg), mp 64-66 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.39(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.31-$ $7.23(\mathrm{~m}, 3 \mathrm{H}), 7.19(\mathrm{td}, J=7.8,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.09(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.90(\mathrm{t}, J=7.5$ $\mathrm{Hz}, 1 \mathrm{H}), 6.75(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.16(\mathrm{~s}, 1 \mathrm{H}), 4.78(\mathrm{~d}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.56(\mathrm{~d}, J=$ $14.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.53(\mathrm{~d}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.48(\mathrm{~d}, J=14.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.05-3.98(\mathrm{~m}, 1 \mathrm{H})$, $3.90-3.83(\mathrm{~m}, 1 \mathrm{H}), 3.65(\mathrm{~s}, 3 \mathrm{H}), 3.16(\mathrm{~s}, 3 \mathrm{H}), 2.57(\mathrm{~s}, 3 \mathrm{H}), 0.90(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 168.7,165.5,164.5,159.1,156.4,150.4,134.4,130.4,130.0$ (2C), 129.1, 128.49, 128.48 (2C), 125.3, 120.8, 109.4, 100.1, 77.9, 59.3, 55.7, 52.6, 50.4, 29.0, 28.1, 20.0, 14.0; HRMS (ESI-TOF) calcd for $\mathrm{C}_{27} \mathrm{H}_{29} \mathrm{BrN}_{3} \mathrm{O}_{6}[\mathrm{M}+\mathrm{H}]^{+}$ 570.1240 , found 570.1247 .

Ethyl 1-benzyl-2-(bromomethyl)-4-(2-chlorophenyl)-7,9-dimethyl-6,8,10-trioxo-1,7,9-triazaspiro[4.5]dec-2-ene-3-carboxylate (4ma). White solid, 75\% yield (86.3 mg), mp $63-65{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.40(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}$), $7.32-7.26$ (m, 4H), 7.24-7.21 (m, 2H), 7.20-7.16 (m, 1H), $5.23(\mathrm{~s}, 1 \mathrm{H}), 4.74(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H})$, $4.58(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.56(\mathrm{~d}, J=14.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.51(\mathrm{~d}, J=14.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.99-3.91$ (m, 1H), 3.88-3.81 (m, 1H), $3.16(\mathrm{~s}, 3 \mathrm{H}), 2.64(\mathrm{~s}, 3 \mathrm{H}), 0.86(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 168.0,165.2,164.1,159.6,149.9,134.8,134.1,133.5,131.4$, 130.1 (2C), 129.4, 128.8, 128.7, 128.6 (2C), 127.0, 100.6, 77.8, 59.4, 55.5, 50.4, 29.1, 28.3, 19.7, 13.9; HRMS (ESI-TOF) calcd for $\mathrm{C}_{26} \mathrm{H}_{26} \mathrm{BrClN}_{3} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]^{+}$574.0744, found 574.0748.

Ethyl 1-benzyl-2-(bromomethyl)-4-(2-bromophenyl)-7,9-dimethyl-6,8,10-trioxo-1,7,9-triazaspiro[4.5]dec-2-ene-3-carboxylate (4na). White solid, 80% yield (98.6 mg), mp 118-120 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.47(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}$), $7.41(\mathrm{~d}$, $J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.32-7.26(\mathrm{~m}, 4 \mathrm{H}), 7.23(\mathrm{dd}, J=7.7,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.10(\mathrm{td}, J=7.6,1.5$ $\mathrm{Hz}, 1 \mathrm{H}), 5.22(\mathrm{~s}, 1 \mathrm{H}), 4.75(\mathrm{~d}, J=9.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.59-4.50(\mathrm{~m}, 3 \mathrm{H}), 3.97-3.90(\mathrm{~m}, 1 \mathrm{H})$, $3.88-3.81(\mathrm{~m}, 1 \mathrm{H}), 3.17(\mathrm{~s}, 3 \mathrm{H}), 2.65(\mathrm{~s}, 3 \mathrm{H}), 0.86(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR (125 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 167.9,165.2,164.1,159.5,150.0,136.6,134.2,132.2,131.7,130.1$ (2C), 129.7, 128.7, 128.6 (2C), 127.6, 124.3, 101.2, 77.8, 59.5, 58.2, 50.4, 29.1, 28.4, 19.7, 13.9; HRMS (ESI-TOF) calcd for $\mathrm{C}_{26} \mathrm{H}_{26} \mathrm{Br}_{2} \mathrm{~N}_{3} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]^{+}$620.0219, found 620.0225 .

Ethyl 1-benzyl-2-(bromomethyl)-4-(3,4-dimethylphenyl)-7,9-dimethyl-6,8,10-trioxo-1,7,9-triazaspiro[4.5]dec-2-ene-3-carboxylate (40a). White solid, 72\% yield (81.7 mg), mp $152-154{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.47(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}$), $7.33-7.24(\mathrm{~m}, 3 \mathrm{H}), 7.01(\mathrm{bs}, 1 \mathrm{H}), 6.86(\mathrm{bs}, 1 \mathrm{H}), 6.65(\mathrm{bs}, 1 \mathrm{H}), 4.67(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H})$, 4.58-4.42 (m, 4H), 4.01-3.95 (m, 1H), 3.94-3.86 (m, 1H), $3.23(\mathrm{~s}, 3 \mathrm{H}), 2.58(\mathrm{~s}, 3 \mathrm{H})$, $2.20(\mathrm{~s}, 6 \mathrm{H}), 0.93(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 168.6,165.3$, $164.5,159.1,150.1,136.7,135.1,133.8,129.5$ (5C), 128.6 (2C), 128.4, 125.8, 101.0, 80.0, 60.8, 59.5, 50.7, 29.2, 28.4, 20.0, 19.8, 19.6, 14.1; HRMS (ESI-TOF) calcd for $\mathrm{C}_{28} \mathrm{H}_{31} \mathrm{BrN}_{3} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]^{+}$568.1447, found 568.1452.

Ethyl 1-benzyl-2-(bromomethyl)-4-(3,4-dichlorophenyl)-7,9-dimethyl-6,8,10-trioxo-1,7,9-triazaspiro[4.5]dec-2-ene-3-carboxylate (4pa). White solid, 73\% yield (89.1 mg), mp $130-132^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.41$ (d, $J=6.4 \mathrm{~Hz}, 2 \mathrm{H}$), 7.39-7.27 (m, 4H), 7.24-6.66 (m, 2H), 4.75 (bs, 1H), 4.56-4.44 (m, 4H), 4.05-3.97 (m, $1 \mathrm{H}), 3.95-3.88(\mathrm{~m}, 1 \mathrm{H}), 3.21(\mathrm{~s}, 3 \mathrm{H}), 2.70(\mathrm{~s}, 3 \mathrm{H}), 0.97(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 168.0,164.9,164.0,160.0,149.8,137.1,134.2,132.5,130.6$ (3C), 129.9 (2C), 128.8, 128.7 (2C), 127.9, 100.0, 78.7, 59.7, 59.5, 50.5, 29.4, 28.6, 19.6, 14.2; HRMS (ESI-TOF) calcd for $\mathrm{C}_{26} \mathrm{H}_{25} \mathrm{BrCl}_{2} \mathrm{~N}_{3} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]^{+}$608.0355, found 608.0351.

Ethyl 1-benzyl-2-(bromomethyl)-7,9-dimethyl-4-(naphthalen-2-yl)-6,8,10-trioxo-1,7,9-triazaspiro[4.5]dec-2-ene-3-carboxylate (4qa). White solid, 68\% yield (79.9 mg), mp $85-87{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.86-7.68(\mathrm{~m}, 3 \mathrm{H}), 7.64-7.36(\mathrm{~s}$, $5 \mathrm{H}), 7.34-7.26(\mathrm{~m}, 3 \mathrm{H}), 7.23-6.86(\mathrm{~m}, 1 \mathrm{H}), 4.82-4.71(\mathrm{~m}, 2 \mathrm{H}), 4.65-4.46(\mathrm{~m}, 3 \mathrm{H})$, $3.96-3.81(\mathrm{~m}, 2 \mathrm{H}), 3.26(\mathrm{~s}, 3 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H}), 0.81(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR (125 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 168.4,165.2,164.4,159.6,150.0,134.8,133.1,133.0,129.8$ (2C), 128.63 (2C), $128.56,128.1$ (2C), 127.7 (2C), 126.5, 126.4, 126.3, 125.9, 100.8, 79.7, 61.1, 59.5, 50.7, 29.3, 28.4, 19.9, 14.0; HRMS (ESI-TOF) calcd for $\mathrm{C}_{30} \mathrm{H}_{29} \mathrm{BrN}_{3} \mathrm{O}_{5}$ [M $+\mathrm{H}]^{+} 590.1291$, found 590.1282.

Ethyl 2-(bromomethyl)-7,9-dimethyl-6,8,10-trioxo-1-phenethyl-4-phenyl-1,7,9-triazaspiro[4.5]dec-2-ene-3-carboxylate (4ab). White solid, 71% yield (78.9 mg), mp $60-62{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.31-7.24(\mathrm{~m}, 5 \mathrm{H}), 7.23-7.18(\mathrm{~s}, 3 \mathrm{H}), 7.11$ (bs, 1H), 6.94 (bs, 1H), 4.57 (d, $J=10.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.50(\mathrm{~s}, 1 \mathrm{H}), 4.48(\mathrm{~d}, J=10.3 \mathrm{~Hz}$, $1 \mathrm{H}), 4.00-3.92(\mathrm{~m}, 1 \mathrm{H}), 3.88-3.81(\mathrm{~m}, 1 \mathrm{H}), 3.64-3.51(\mathrm{~m}, 2 \mathrm{H}), 3.37(\mathrm{~s}, 3 \mathrm{H}), 3.05-2.93$ $(\mathrm{m}, 2 \mathrm{H}), 2.58(\mathrm{~s}, 3 \mathrm{H}), 0.86(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 168.4$, $165.2,164.3,159.9,150.2,138.5,136.9,129.0$ (2C), 128.7 (2C), 128.5, 128.4 (4C), 126.9, 99.4, 80.8, 61.3, 59.3, 48.0, 36.0, 29.6, 28.6, 19.3, 14.0; HRMS (ESI-TOF) calcd for $\mathrm{C}_{27} \mathrm{H}_{29} \mathrm{BrN}_{3} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]^{+}$554.1291, found 554.1298.

Ethyl
2-(bromomethyl)-1-(4-methoxybenzyl)-7,9-dimethyl-6,8,10-trioxo-4-phenyl-1,7,9-triazaspiro[4.5]dec-2-ene-3-carboxylate (4ac). White solid, 75\% yield (85.8 mg), mp $63-65{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.32(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.28-$ 7.04 (m, 4H), 6.87 (bs, 1H), 6.81 (d, $J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.70(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.63-$ 4.57 (m, 2H), 4.55 (d, $J=14.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.43$ (d, $J=14.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.01-3.93(\mathrm{~m}, 1 \mathrm{H})$, 3.89-3.81(m, 1H), $3.77(\mathrm{~s}, 3 \mathrm{H}), 3.21(\mathrm{~s}, 3 \mathrm{H}), 2.55(\mathrm{~s}, 3 \mathrm{H}), 0.86(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 168.7,165.2,164.4,159.8,159.5,150.0,136.8,131.5$ (2C), 128.6 (4C), 128.4, 126.1, 113.8 (2C), 100.4, 79.2, 61.0, 59.4, 55.4, 49.9, 29.2, 28.3, 20.0, 14.0; HRMS (ESI-TOF) calcd for $\mathrm{C}_{27} \mathrm{H}_{29} \mathrm{BrN}_{3} \mathrm{O}_{6}[\mathrm{M}+\mathrm{H}]^{+}$570.1240, found 570.1243.

Ethyl 2-(bromomethyl)-1-(4-chlorobenzyl)-7,9-dimethyl-6,8,10-trioxo-4-phenyl-1,7,9-triazaspiro[4.5]dec-2-ene-3-carboxylate (4ad). White solid, 70\% yield (80.9 mg), mp 172-174 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.49(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.31(\mathrm{~d}$, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.30-7.24(\mathrm{~m}, 3 \mathrm{H}), 7.12(\mathrm{bs}, 1 \mathrm{H}), 6.96(\mathrm{bs}, 1 \mathrm{H}), 4.62-4.54(\mathrm{~m}, 2 \mathrm{H})$, 4.52-4.41 (m, 3H), 4.01-3.93 (m, 1H), 3.89-3.81 (m, 1H), $3.30(\mathrm{~s}, 3 \mathrm{H}), 2.59(\mathrm{~s}, 3 \mathrm{H})$, $0.87(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 168.3,165.3,164.2,159.2$, 150.0, 136.6, 134.3, 134.1, 130.4 (2C), 128.9 (2C), 128.5, 128.4 (4C), 101.3, 80.5, 60.9, $59.5,50.3,29.4,28.5,19.8,14.0$; HRMS (ESI-TOF) calcd for $\mathrm{C}_{26} \mathrm{H}_{26} \mathrm{BrClN}_{3} \mathrm{O}_{5}[\mathrm{M}+$ $\mathrm{H}]^{+} 574.0744$, found 574.0752.

Ethyl 2-(bromomethyl)-1-(2-chlorobenzyl)-7,9-dimethyl-6,8,10-trioxo-4-phenyl-1,7,9-triazaspiro[4.5]dec-2-ene-3-carboxylate (4ae). White solid, 64\% yield (73.8 mg), mp 158-159 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.61-7.56(\mathrm{~m}, 1 \mathrm{H}), 7.36-7.33(\mathrm{~m}$, $1 \mathrm{H}), 7.30-6.85(\mathrm{~m}, 7 \mathrm{H}), 4.74(\mathrm{~d}, J=10.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.66(\mathrm{~d}, J=16.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.64-4.57$ $(\mathrm{m}, 3 \mathrm{H}), 4.03-3.95(\mathrm{~m}, 1 \mathrm{H}), 3.90-3.83(\mathrm{~m}, 1 \mathrm{H}), 3.22(\mathrm{~s}, 3 \mathrm{H}), 2.57(\mathrm{~s}, 3 \mathrm{H}), 0.88(\mathrm{t}, J=$ $7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.9,165.0,164.2,159.3,150.1,136.6$, $134.3,133.2,130.5,129.8,129.6,128.47$ (2C), 128.45 (4C), 126.9, 100.7, 61.3, 59.5, 48.1, 29.3, 28.4, 19.4, 14.0; HRMS (ESI-TOF) calcd for $\mathrm{C}_{26} \mathrm{H}_{26} \mathrm{BrClN}_{3} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]^{+}$ 574.0744, found 574.0748.

Methyl 1-benzyl-2-(bromomethyl)-7,9-dimethyl-6,8,10-trioxo-4-phenyl-1,7,9-triazaspiro[4.5]dec-2-ene-3-carboxylate (4af). White solid, 75\% yield (78.8 mg), mp $77-79{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.45(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.35-7.22(\mathrm{~m}, 6 \mathrm{H})$, 7.14 (bs, 1H), 6.91 (bs, 1H), 4.68 (d, $J=9.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.60$ (s, 1H), 4.56 (d, $J=14.6 \mathrm{~Hz}$, $1 \mathrm{H}), 4.52(\mathrm{~d}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.50(\mathrm{~d}, J=14.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.45(\mathrm{~s}, 3 \mathrm{H}), 3.22(\mathrm{~s}, 3 \mathrm{H}), 2.56$ (s, 3H); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 168.4,165.2,164.9,159.8,150.0,136.6,134.7$, 129.7 (2C), 128.63 (2C), 128.57, 128.52, 128.47 (4C), 100.3, 79.7, 60.9, 50.9, 50.7, 29.3, 28.4, 19.9; HRMS (ESI-TOF) calcd for $\mathrm{C}_{25} \mathrm{H}_{25} \mathrm{BrN}_{3} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]^{+} 526.0978$, found 526.0975.
 triazaspiro[4.5]dec-2-ene-3-carboxylate (4ag). White solid, 76% yield (86.3 mg), mp $105-107{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.45(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.35-7.12(\mathrm{~m}, 7 \mathrm{H})$, $6.90(\mathrm{bs}, 1 \mathrm{H}), 4.68(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.63-4.53(\mathrm{~m}, 3 \mathrm{H}), 4.48(\mathrm{~d}, J=14.5 \mathrm{~Hz}, 1 \mathrm{H})$, 3.77 (dd, $J=10.7,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.56(\mathrm{dd}, J=10.7,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.22(\mathrm{~s}, 3 \mathrm{H}), 2.55(\mathrm{~s}$, $3 \mathrm{H}), 1.56-1.46(\mathrm{~m}, 1 \mathrm{H}), 0.50(\mathrm{dd}, J=6.8,1.2 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 168.6,165.2,164.5,159.8,150.0,136.8,134.7,129.8$ (2C), 128.6 (2C), 128.53 (5C), 128.48, 100.4, 79.6, 69.8, 61.1, 50.7, 29.3, 28.3, 27.6, 19.9, 18.8 (2C); HRMS (ESITOF) calcd for $\mathrm{C}_{28} \mathrm{H}_{31} \mathrm{BrN}_{3} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]^{+} 568.1447$, found 568.1444.

tert-Butyl 1-benzyl-2-(bromomethyl)-7,9-dimethyl-6,8,10-trioxo-4-phenyl-1,7,9-triazaspiro[4.5]dec-2-ene-3-carboxylate (4ah). White solid, 72% yield (81.5 mg), mp $104-106{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.46(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.34-7.14(\mathrm{~m}$, $7 \mathrm{H}), 6.88(\mathrm{bs}, 1 \mathrm{H}), 4.64-4.52(\mathrm{~m}, 4 \mathrm{H}), 4.46(\mathrm{~d}, J=14.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.23(\mathrm{~s}, 3 \mathrm{H}), 2.55(\mathrm{~s}$, 3 H), 1.11 ($\mathrm{s}, 9 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 168.8,165.3,163.7,158.6,150.1$, 137.1, 135.0, 129.7 (2C), 128.6 (5C), 128.5, 128.3 (2C), 102.2, 79.9, 79.6, 61.6, 50.8, 29.3, 28.3, 28.0 (3C), 20.1; HRMS (ESI-TOF) calcd for $\mathrm{C}_{28} \mathrm{H}_{31} \mathrm{BrN}_{3} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]^{+}$ 568.1447, found 568.1453.

Ethyl 1-benzyl-7,9-dimethyl-6,8,10-trioxo-4-phenyl-2-((phenylamino)methyl)-1,7,9-triazaspiro[4.5]dec-2-ene-3-carboxylate (6aa). White solid, mp $107-109{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.38(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.31-7.22(\mathrm{~m}, 6 \mathrm{H}), 7.19(\mathrm{t}, J=7.6$ $\mathrm{Hz}, 2 \mathrm{H}), 7.11-6.94(\mathrm{~m}, 2 \mathrm{H}), 6.76(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.64(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.62(\mathrm{~s}$, $1 \mathrm{H}), 4.53(\mathrm{~d}, J=14.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.44(\mathrm{~d}, J=14.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.41(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H})$, $4.34(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.16(\mathrm{bs}, 1 \mathrm{H}), 3.98-3.90(\mathrm{~m}, 1 \mathrm{H}), 3.86-3.79(\mathrm{~m}, 1 \mathrm{H}), 3.23$
$(\mathrm{s}, 3 \mathrm{H}), 2.58(\mathrm{~s}, 3 \mathrm{H}), 0.82(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 168.7$, $165.4,164.9,162.4,150.1,147.9,136.8,135.4,129.6$ (2C), 129.3 (2C), 128.6 (2C), 128.5 (2C), 128.4 (2C), 128.3 (2C), 118.4, 113.9 (2C), 100.7, 80.5, 61.3, 59.3, 51.0, 39.5, 29.3, 28.4, 14.0; HRMS (ESI-TOF) calcd for $\mathrm{C}_{28} \mathrm{H}_{31} \mathrm{BrN}_{3} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]^{+}$553.2451, found 553.2454.

4. Single-crystal X-ray crystallography of 3ma and 40a

Single crystal of 3ma were obtained by slow evaporation from a mixture of acetone $/ n$-hexane at $5{ }^{\circ} \mathrm{C}$. Single-crystal X-ray diffraction data were collected on a diffractometer (Bruker D8 Venture) equipped with a CCD area detector using graphitemonochromated $\mathrm{MoK} \alpha$ radiation ($\lambda=0.71073 \AA$) in the scan range $5.086<2 \theta<$ 49.996°. Crystallographic data have been deposited in the Cambridge Crystallographic Data Centre as deposition number CCDC 2305863.

Figure S1. ORTEP Diagrams of 3ma with 30\% thermal ellipsoids

Table S1. Crystal data and structure refinement for 3ma

Identification code	CCDC 2305863
Empirical formula	$\mathrm{C}_{26} \mathrm{H}_{26} \mathrm{ClN}_{3} \mathrm{O}_{5}$
Formula weight	495.95
Temperature/K	296.15
Crystal system	triclinic
Space group	P-1
a/A	8.2719(11)
b / \AA	10.9748(14)
c / \AA	14.3779(18)
$\alpha /^{\circ}$	91.073(2)
$\beta /{ }^{\circ}$	98.225(2)
$\gamma /{ }^{\circ}$	110.945(2)
Volume/ \AA^{3}	1203.0(3)
Z	2
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$	1.369
μ / mm^{-1}	0.202
$\mathrm{F}(000)$	520.0
Crystal size/mm ${ }^{3}$	$0.26 \times 0.24 \times 0.21$
Radiation	$\operatorname{MoK} \alpha(\lambda=0.71073)$
2θ range for data collection ${ }^{\circ}$	5.086 to 49.996
Index ranges	$-7 \leq \mathrm{h} \leq 9,-13 \leq \mathrm{k} \leq 12,-17 \leq 1 \leq 14$
Reflections collected	6128
Independent reflections	$4196\left[\mathrm{R}_{\text {int }}=0.0147, \mathrm{R}_{\text {sigma }}=0.0323\right]$
Data/restraints/parameters	4196/1/319
Goodness-of-fit on F^{2}	1.057
Final R indexes [I>=2 σ (I)]	$\mathrm{R}_{1}=0.0474, \mathrm{wR}_{2}=0.1220$
Final R indexes [all data]	$\mathrm{R}_{1}=0.0686, \mathrm{wR}_{2}=0.1297$
Largest diff. peak/hole [e \AA^{-3}]	0.53/-0.41

Single crystal of $4 \mathbf{0 a}$ were obtained by slow evaporation from a mixture of acetone $/ n$-hexane at $5{ }^{\circ} \mathrm{C}$. Single-crystal X-ray diffraction data were collected on a diffractometer (Bruker D8 Venture) equipped with a CCD area detector using graphitemonochromated MoK α radiation ($\lambda=0.71073 \AA$) in the scan range $4.48<2 \theta<50.00^{\circ}$. Crystallographic data have been deposited in the Cambridge Crystallographic Data Centre as deposition number CCDC 2305868.

Figure S2. ORTEP Diagrams of 4oa with 30\% thermal ellipsoids

Table S2. Crystal data and structure refinement for 40a

Identification code	CCDC 2305868
Empirical formula	$\mathrm{C}_{28.01} \mathrm{H}_{30.01} \mathrm{BrN}_{3} \mathrm{O}_{5}$
Formula weight	568.65
Temperature/K	298.0
Crystal system	triclinic
Space group (number)	$\mathrm{P}-1(2)$
a / \AA	$11.0881(8)$
b / \AA	$11.9277(9)$
c / \AA	$12.1514(9)$
$\alpha /{ }^{\circ}$	$115.124(2)$
$\beta /{ }^{\circ}$	$105.133(3)$
$\gamma /{ }^{\circ}$	$100.196(3)$
Volume $/ \AA^{3}$	$1326.22(17)$
Z	2
$\rho_{\text {calcg }} / \mathrm{cm}^{3}$	1.424
μ / mm^{-1}	1.593
$\mathrm{~F}(000)$	588
Crystal size $/ \mathrm{mm}^{3}$	$0.26 \times 0.25 \times 0.22$
Crystal colour	colourless
Crystal shape	block
Radiation	$\mathrm{Mo} K_{\alpha}(\lambda=0.71073 \AA)$
2θ range for data collection $/{ }^{\circ}$	4.48 to $50.00(0.84 \AA)$
Index ranges	$-13 \leq \mathrm{h} \leq 13,-14 \leq \mathrm{k} \leq 14,-14 \leq 1 \leq 14$
Reflections collected	37795
Independent reflections	$4666\left[\mathrm{R}_{\text {int }}=0.1052, \mathrm{R}_{\text {sigma }}=0.0570\right]$
Data/Restraints $/$ Parameters	$4666 / 0 / 347$
Goodness-of-fit on F^{2}	1.051
Final R indexes $[\mathrm{I}=2 \sigma(\mathrm{I})]$	$\mathrm{R}_{1}=0.0415, \mathrm{wR}_{2}=0.1067$
Final R indexes $[$ all data $]$	$\mathrm{R}_{1}=0.0609, \mathrm{wR} 2=0.1144$
Largest peak/hole $\left[\mathrm{e} \AA^{-3}\right]$	$0.29 /-0.45$

5. References

[1] R. Gu, K. Flidrova and J.-M. Lehn, J. Am. Chem. Soc., 2018, 140, 5560-5568.
[2] J.-Y. Liu, G.-E. Cao, W. Xu, J. Cao and W.-L. Wang, Appl. Organometal. Chem., 2010, 24, 685-691.

6. Copies of NMR spectra for 3, 4 and 6aa

Figure S3. ${ }^{\mathbf{1}} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 3aa

		N্N欠 웅 గ్ల Nom Mた\% 			$\begin{aligned} & \overline{/} \\ & \stackrel{0}{0} \\ & \underset{y}{\infty} \end{aligned}$	

Figure S4. ${ }^{13} \mathrm{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$) of compound 3aa

Figure S5. ${ }^{\mathbf{1}} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 3ba

	$\begin{aligned} & \stackrel{\sim}{0} \\ & \stackrel{\rightharpoonup}{n} \\ & \stackrel{n}{\sim} \end{aligned}$	 $\underset{\sim}{\infty} \underset{\sim}{\sim} \underset{\sim}{\sim} \underset{\sim}{\infty} \underset{\sim}{\infty} \underset{\sim}{\sim} \underset{\sim}{N}$			N్N్ర N ©	$\begin{aligned} & \text { N } \\ & \text { N } \\ & \text { o } \\ & \text { ס } \end{aligned}$		$\stackrel{\text { in }}{\text { N}}$

Figure S6. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 3ba

Figure S7. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 3ca

	$\begin{aligned} & \stackrel{\circ}{0} \\ & \stackrel{y}{5} \\ & \stackrel{\pi}{5} \end{aligned}$	$\underset{\sim}{\sim} \underset{\sim}{\sim} \underset{\sim}{\sim} \underset{\sim}{\sim} \underset{\sim}{\sim}$	$\begin{aligned} & \underset{\sim}{\circ} \\ & \stackrel{\rightharpoonup}{c} \\ & \stackrel{\rightharpoonup}{\top} \end{aligned}$	$\begin{aligned} & \text { オ } \\ & \stackrel{\text { N}}{\stackrel{N}{\sigma}} \end{aligned}$			

Figure S8. ${ }^{13} \mathrm{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$) of compound 3ca

Figure S9．${ }^{\mathbf{1}} \mathrm{H}$ NMR（ $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）of compound 3da

Oison	N		8	응		$\stackrel{\bar{\sigma}}{\square}$	BN NiN
	5		$\stackrel{\mathrm{c}}{\stackrel{-}{5}}$	－	Nom	$\stackrel{\circ}{\infty}$	
「「「「	$\stackrel{+}{+}$	－－－	9		¢1	\pm	N

Figure S10．${ }^{13} \mathrm{C}$ NMR（ $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）of compound 3da

Figure $\mathrm{S}_{11} .{ }^{\mathbf{1}} \mathrm{H}$ NMR ($\mathbf{5 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$) of compound 3ea

Figure $\mathrm{S} 12 .{ }^{13} \mathrm{C}$ NMR ($\mathbf{1 2 5} \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 3ea

Figure S13. ${ }^{1} \mathrm{H}$ NMR ($\mathbf{5 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$) of compound $\mathbf{3 f a}$

Figure S14. ${ }^{13} \mathrm{C}$ NMR ($\mathbf{1 2 5} \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 3fa

Figure S15. ${ }^{1} \mathrm{H}$ NMR ($\mathbf{5 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$) of compound $\mathbf{3 g a}$

Figure S16. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 3ga

Figure S17. ${ }^{\mathbf{1}} \mathrm{H}$ NMR ($\mathbf{5 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$) of compound 3 ha

Figure S18. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 3ha

Figure S19. ${ }^{1} \mathrm{H}$ NMR ($\mathbf{5 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$) of compound 3ia

Figure S20. ${ }^{13} \mathrm{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z , ~} \mathrm{CDCl}_{3}$) of compound 3ia

Figure $\mathbf{S 2 1} .^{\mathbf{1}} \mathrm{H}$ NMR ($\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) of compound $\mathbf{3 j a}$

¢응융 	$\begin{aligned} & \text { ొ} \\ & \stackrel{\circ}{\circ} \\ & \stackrel{\circ}{1} \end{aligned}$	N- 	$$			$\begin{aligned} & \infty \\ & \\ & \text { O } \\ & \infty \end{aligned}$	

Figure S22. ${ }^{13} \mathrm{C}$ NMR ($\mathbf{1 2 5} \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{3 j a}$

Figure S23. ${ }^{1} \mathrm{H}$ NMR ($\mathbf{5 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$) of compound $\mathbf{3 k a}$

\%	$\stackrel{\text { Mo }}{\substack{\circ \\ \hline \\ \hline 6 \\ \hline \\ \hline}}$		$\stackrel{\circ}{\text { O }}$	
8	N-10	$\bar{\circ}$	$\stackrel{\infty}{+}$	MN®

3ka

Figure S24. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{3 k a}$

Figure S25. ${ }^{1} \mathrm{H}$ NMR ($\mathbf{5 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$) of compound 3la

Figure S26. ${ }^{13} \mathrm{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z , ~} \mathrm{CDCl}_{3}$) of compound 3la

Figure S27. ${ }^{\mathbf{1}} \mathrm{H}$ NMR ($\mathbf{5 0 0} \mathbf{~ M H z , ~} \mathrm{CDCl}_{3}$) of compound 3ma

Figure S28. ${ }^{13} \mathrm{C}$ NMR ($\mathbf{1 2 5} \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 3ma

Figure S29. ${ }^{1} \mathrm{H}$ NMR ($\mathbf{5 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$) of compound 3na

Figure $\mathbf{S 3 0} .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 3na

Figure S31. ${ }^{1} \mathrm{H}$ NMR ($\mathbf{5 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$) of compound 30 a

Figure S32. ${ }^{13} \mathrm{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$) of compound 30 a

Figure S33. ${ }^{1} \mathrm{H} \mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound 3pa

Figure $\mathbf{S 3 4}^{13}{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 3pa

Figure S35. ${ }^{1} \mathrm{H}$ NMR ($\mathbf{5 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$) of compound $\mathbf{3 q a}$

Figure S36. ${ }^{13} \mathrm{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z , ~} \mathrm{CDCl}_{3}$) of compound $\mathbf{3 q a}$

Figure S37. ${ }^{1} \mathrm{H}$ NMR ($\mathbf{5 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$) of compound 3ra

$\stackrel{\stackrel{N}{\mathrm{~m}}}{\stackrel{-}{\square}}$	守家		\%	
\%	NA\%	¢0\%	$\stackrel{\infty}{\square}$	

3ra

Figure S38. ${ }^{13} \mathrm{C}$ NMR ($\mathbf{1 2 5} \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 3ra

Figure S39．${ }^{1} \mathrm{H}$ NMR（ $\mathbf{5 0 0} \mathbf{~ M H z , ~} \mathrm{CDCl}_{3}$ ）of compound 3sa

$\stackrel{\sim}{\circ} \stackrel{\square}{\sim}$	∞	$\stackrel{\infty}{\infty}$	Nツ®					
\bigcirc	$\stackrel{1}{0}$	$\stackrel{\circ}{\odot}$	N0	$\stackrel{\infty}{\circ}$		¢ ¢ $_{\text {¢ }}$	¢	
「த்ツ	$\stackrel{\square}{6}$	$\stackrel{\infty}{\infty}$	$\stackrel{\sim}{0}$	\cdots	－	Nor	\bigcirc	
	$\stackrel{\square}{\square}$		$\stackrel{\sim}{\sim}$	¢	N	¢ ¢ ¢	$\stackrel{\infty}{\square}$	¢NNNNN®N
\1？	1	，		＋		，		1！！1

Figure S40．${ }^{13} \mathrm{C}$ NMR（ $\mathbf{1 2 5} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$ ）of compound 3 sa

Figure S41. ${ }^{1} \mathrm{H}$ NMR ($\mathbf{5 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$) of compound 3ab

	$\begin{aligned} & \stackrel{8}{\circ} \\ & \stackrel{6}{\leftarrow} \\ & \stackrel{i}{i} \end{aligned}$	ષ. 	$\begin{aligned} & \stackrel{\circ}{\overleftarrow{\circ}} \\ & \stackrel{\rightharpoonup}{\Phi} \end{aligned}$			8 \%	

Figure $\mathbf{S 4 2}$. ${ }^{13} \mathrm{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$) of compound $\mathbf{3 a b}$

Figure S43. ${ }^{1} \mathrm{H}$ NMR ($\mathbf{5 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$) of compound 3ac

Figure $\mathrm{S} 44 .{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound 3ac

Figure $\mathbf{S 4 5}^{\mathbf{1}}{ }^{\mathbf{H}} \mathrm{H}$ NMR ($\mathbf{5 0 0} \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 3ad

Figure S46. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{3 a d}$

Figure S47. ${ }^{1} \mathrm{H} \mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound 3ae

		免				
	1 ¢	-	䞨	eiow		erong ig

Figure $\mathrm{S} 48 .{ }^{13} \mathrm{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$) of compound 3ae

Figure S49. ${ }^{1} \mathrm{H}$ NMR ($\mathbf{5 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$) of compound 3af

Figure S50. ${ }^{13} \mathrm{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$) of compound 3af

Figure S51. ${ }^{1} \mathrm{H}$ NMR ($\mathbf{5 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$) of compound 3 ag

Figure S52. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 3 ag

Figure S53. ${ }^{1} \mathrm{H}$ NMR ($\mathbf{5 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$) of compound $\mathbf{3 a h}$

Figure S54. ${ }^{13} \mathrm{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$) of compound 3ah

Figure $\mathbf{S 5 5 .}^{\mathbf{1}} \mathrm{H}$ NMR ($\mathbf{5 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$) of compound 4 aa

4aa

Figure S56. ${ }^{13} \mathrm{C}$ NMR ($\mathbf{1 2 5} \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 4 aa

Figure S57. ${ }^{1} \mathrm{H}$ NMR ($\mathbf{5 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$) of compound $\mathbf{4 b a}$

Figure S58. ${ }^{13} \mathrm{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z , ~} \mathrm{CDCl}_{3}$) of compound 4ba

Figure S59. ${ }^{\mathbf{1}} \mathrm{H}$ NMR ($\mathbf{5 0 0} \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{4 c a}$

Figure S60. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 4 ca

Figure $\mathbf{S 6 1}^{\mathbf{1}}{ }^{\mathbf{H}} \mathrm{N}$ NR ($\mathbf{5 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$) of compound 4da

Figure $\mathrm{S}_{62} .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 4 da

Figure S63. ${ }^{1} \mathrm{H}$ NMR ($\mathbf{5 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$) of compound 4 ea

Figure S64. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 4 ea

Figure S65. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 4 fa

Figure S66. ${ }^{13} \mathrm{C}$ NMR ($\mathbf{1 2 5} \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 4 fa

Figure S67．${ }^{1} \mathrm{H}$ NMR（ $\mathbf{5 0 0} \mathbf{~ M H z , ~} \mathrm{CDCl}_{3}$ ）of compound $\mathbf{4 g a}$

		B． 	$\begin{aligned} & \stackrel{\circ}{0} \\ & \dot{\omega} \\ & \underset{\infty}{\infty} \end{aligned}$			N	発宫	
「ごす	「T゙	－25］	¢	人気	¢	i	N／	

Figure S68．${ }^{13} \mathrm{C}$ NMR（ $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）of compound 4 ga

Figure S69. ${ }^{1} \mathrm{H}$ NMR ($\mathbf{5 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$) of compound 4ha

Figure S70. ${ }^{13} \mathrm{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$) of compound 4ha

4ia

Figure S71. ${ }^{1} \mathrm{H}$ NMR ($\mathbf{5 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$) of compound 4 ia

Figure S72. ${ }^{13} \mathrm{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z , ~} \mathrm{CDCl}_{3}$) of compound 4ia
∞
$\stackrel{\infty}{\circ}$
$\stackrel{1}{0}$
$\stackrel{1}{1}$ 8
8
0
1

4ja

								¢				$\begin{aligned} & \stackrel{T}{5} \\ & \stackrel{1}{0} \\ & \hline \end{aligned}$			$\stackrel{T}{\vdots}$		
8.5	8.0	7.5	7.0	6.5	6. 0	5. 5	5.0	4.5	${ }^{4.0}$	3.5	3.0	2.5	2.0	1.5	1.0	0.5	0.0

Figure S73. ${ }^{1} \mathrm{H}$ NMR ($\mathbf{5 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$) of compound $\mathbf{4 j a}$

-168.1132
-164.8899
164.0516
159.8704
-149.7746
-139.0608
$\int_{134.3656}^{131.4411}$
129.8054
128.5923
127.1297
122.9534
-100.0340
-19.0283
-19.6394
77.4147
76.1600

Figure S74. ${ }^{13} \mathrm{C}$ NMR ($\mathbf{1 2 5} \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{4 j a}$

Figure S75. ${ }^{\mathbf{1}} \mathrm{H}$ NMR ($\mathbf{5 0 0} \mathbf{~ M H z , ~} \mathbf{C D C l}_{3}$) of compound $\mathbf{4 k a}$

Figure S76. ${ }^{13} \mathrm{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z , ~} \mathrm{CDCl}_{3}$) of compound $\mathbf{4 k a}$

Figure S77. ${ }^{1} \mathrm{H}$ NMR $\left(500 ~ M H z, ~ \mathbf{C D C l}_{3}\right)$ of compound 4la

Figure S78. ${ }^{13} \mathrm{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$) of compound 4la

Figure S79. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) of compound $\mathbf{4 m a}$

Figure S80. ${ }^{13} \mathrm{C}$ NMR ($\mathbf{1 2 5} \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 4 ma

Figure S81. ${ }^{1} \mathrm{H}$ NMR ($\mathbf{5 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$) of compound 4na

Figure S82. ${ }^{13} \mathrm{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$) of compound 4na

Figure S83. ${ }^{1} \mathrm{H}$ NMR ($\mathbf{5 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$) of compound 40 a

Figure S84. ${ }^{13} \mathrm{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z , ~} \mathrm{CDCl}_{3}$) of compound 40 a

$\begin{array}{ll}6 \\ \infty & N \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0\end{array}$
-0.0000

Figure S85. ${ }^{1} \mathrm{H}$ NMR ($\mathbf{5 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$) of compound 4 pa

Figure S86. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 4 pa

4qa

Figure S87. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 4 qa

Figure S88. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 4 qa

Figure S89. ${ }^{1} \mathrm{H}$ NMR ($\mathbf{5 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$) of compound $\mathbf{4 a b}$

Figure S90. ${ }^{13} \mathrm{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$) of compound $\mathbf{4 a b}$

Figure S92. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 4 ac

Figure S93. ${ }^{1} \mathrm{H}$ NMR ($\mathbf{5 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$) of compound $\mathbf{4 a d}$

4ad

Figure S94. ${ }^{13} \mathrm{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z , ~} \mathrm{CDCl}_{3}$) of compound $\mathbf{4 a d}$

Figure S95. ${ }^{\mathbf{1}} \mathrm{H}$ NMR ($\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) of compound 4ae

Figure S96. ${ }^{13} \mathrm{C}$ NMR ($\mathbf{1 2 5} \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 4ae

Figure S97. ${ }^{1} \mathrm{H}$ NMR ($\mathbf{5 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$) of compound 4af

Figure S98. ${ }^{13} \mathrm{C}$ NMR ($\mathbf{1 2 5} \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 4af

Figure S99. ${ }^{1} \mathrm{H}$ NMR ($\mathbf{5 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$) of compound $\mathbf{4 a g}$

 	$\begin{aligned} & \stackrel{0}{\infty} \\ & \stackrel{1}{\omega} \\ & \stackrel{j}{\tau} \end{aligned}$		$\begin{aligned} & \stackrel{\circ}{5} \\ & \stackrel{+}{\square} \\ & \stackrel{0}{2} \end{aligned}$		$\stackrel{\text { \% }}{\stackrel{\circ}{\square}}$	¢	

Figure S100. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 4 ag

Figure S101. ${ }^{\mathbf{1}} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{4 a h}$

So ion $\stackrel{\infty}{\circ} \stackrel{\circ}{\circ} \stackrel{\circ}{\circ} \stackrel{\circ}{\square}$	\circ 0 0 0 1		$\begin{aligned} & \stackrel{\infty}{\underset{N}{N}} \\ & \underset{\sim}{\mathrm{O}} \end{aligned}$		$\overline{8}$ $\stackrel{\text { or }}{ }$ $\stackrel{-}{1}$	N	

Figure S102. ${ }^{13} \mathrm{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) of compound 4 ah

6aa

Figure S103．${ }^{\mathbf{1}} \mathrm{H}$ NMR（ $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）of compound 6aa

๙에잉	$\stackrel{\infty}{\infty}$		$\stackrel{\square}{\square}$						
¢0\％	웅	「－	\bigcirc	¢\％	N	$\stackrel{\infty}{\square}$	$\stackrel{\sim}{\infty}$	$\stackrel{\sim}{\sim}$	N
¢ ¢ ¢ ¢ ¢	$\stackrel{\sim}{\circ}$	ஸ゙	8		$\stackrel{\sim}{\circ}$	$\stackrel{\square}{\square}$	$\stackrel{\square}{0}$	\cdots	$\stackrel{\square}{\square}$
，	「5	「－5\％	$\stackrel{\square}{1}$		¢ 0	\bigcirc	\cdots	N	－

Figure S104．${ }^{13} \mathrm{C}$ NMR（ $\mathbf{1 2 5} \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）of compound 6aa

