Supplementary Information

Dimensional expansion of 1D zigzag chains to a 2D two-fold interpenetrated Metal-Organic Framework for adsorption of lanthanide cations and white light emission

Mengyi Huang,^{ab} Zhenxin Liang^b Jinling Huang^{ab} Shuyu Zhang^{bc} Yuehong Wen, *^{bc} and Xintao Wu^{bc}

- ^a College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China
- ^b State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
- ^c University of Chinese Academy of Sciences, Beijing 100049, China

*Corresponding Authors. E-mail: yhwen@fjirsm.ac.cn

Name	HSB-W10		
Empirical formula	C ₂₂ H ₃₁ N ₄ O ₈ Cd		
М	591.91		
Crystal system	triclinic		
Space group	P-1		
a (Å)	9.7448(3)		
b (Å)	11.2596(3)		
c (Å)	14.0846(4)		
α (°)	68.021(3)		
β (°)	84.398(2)		
γ (°)	66.219(3)		
$V/Å^3$	1308.81(8)		
Z	2		
ρ_{calc} (g/cm ⁻³)	1.502		
μ/mm^{-1}	4.832		
2θ range(°)	5.894 to 105.862		
h, k, l, ranges	-11 to 10, -13 to 11, -16 to 16		
F(000)	606.0		
R1, ^a wR ₂ ^b [I > $2\sigma(I)$]	0.0432, 0.1149		
GOF on F ²	1.053		
^a R = $\Sigma(Fo - Fc)/\Sigma Fo $. ^b Rw = { $\Sigma w[(Fo^2 - Fc^2)^2]/\Sigma w[(Fo^2)^2]$ } ^{1/2} .			

 Table S1. Crystallographic data and refinement details for HSB-W10.

Table S2. Selected bond lengths (Å) and angles(°) of HSB-W10.

Cd1 ^a -O1 ^a	2.198(3)
Cd1 ^a -O4 ^a	2.435(3)
Cd1 ^a -N1 ^a	2.358(3)
Cd1 ^a -N2 ^a	2.338(4)
Cd1 ^a -N4 ^b	2.377(3)
Cd1 ^a -C19 ^a	2.734(4)
O3 ^a -Cd1 ^a - O4 ^a	54.72(9)
O4 ^a -Cd1 ^a -C19 ^a	27.71(11)
O1 ^a -Cd1 ^a -O3 ^a	97.13(12)
O1 ^a -Cd1 ^a -O4 ^a	150.51(12)

O1 ^a -Cd1 ^a -N4 ^c	87.10(12)
O1 ^a -Cd1 ^a -N1 ^a	98.97(13)
O1 ^a -Cd1 ^a -C19 ^a	123.20(13)
O1 ^a -Cd1 ^a -N2 ^a	114.69(15)
N4 ^c -Cd1 ^a -O3 ^a	86.93(11)
N4 ^c -Cd1 ^a -O4 ^a	83.10(10)
N4 ^c -Cd1 ^a -C19 ^a	81.35(11)
N1 ^a -Cd1 ^a -O3 ^a	94.49(11)
N1 ^a -Cd1 ^a -O4 ^a	92.55(11)
N1 ^a -Cd1 ^a -N4 ^c	173.52(12)
N1 ^a -Cd1 ^a -C19 ^a	97.03(12)
N2 ^a -Cd1 ^a -O3 ^a	148.09(13)
N2 ^a -Cd1 ^a -O4 ^a	94.08(12)
N2 ^a -Cd1 ^a -N4 ^c	96.55(13)
N2 ^a -Cd1 ^a -N1 ^a	78.93(14)
N2 ^a -Cd1 ^a -C19 ^a	121.79(14)

Symmetry codes: (a) x, y, z; (b) 1+x, +y, +z; (c) 1+x, +y, +z.

Figure S1. FT-IR spectra of HSB-W10.

Figure S2. View of the coordination environment of Cd(II) ion in Cd-bdc (hydrogen atoms and free water molecules have been omitted for clarity).

Figure S3. PXRD patterns of simulated HSB-W10 (A), dispersed bulk HSB-W10 (B) and clustered HSB-W10 (C).

Figure S4. TGA plots for HSB-W10.

Figure S5. Emission spectra of bdc, hsb-2 and HSB-W10 with excitation wavelength

 (λ_{ex}) of 365 nm

Figure S6. The photographs of crystals $Tb(H_2O)_x^{3+}$ @HSB-W10 and $Eu(H_2O)_x^{3+}$ @HSB-W10, and their pieces irradiated by a standard 254 nm laboratory UV lamp.

Table S3. The amounts of Eu^{3+} in $Eu(H_2O)_x^{3+}$ @HSB-W10 composites based on ICP measurement.

Composite name	Initial concentration of	Amount of	Amount of
xEu(H ₂ O) _x ³⁺ @HSB-W10	Eu^{3+} (mol L ⁻¹)	Cd ²⁺ (%)	Eu ³⁺ (%)
0.024Eu(H ₂ O) _x ³⁺ @HSB- W10	0.009	15.94	0.52
0.042Eu(H ₂ O) _x ³⁺ @HSB- W10	0.018	17.97	1.02
0.04Eu(H ₂ O) _x ³⁺ @HSB- W10	0.027	17.48	0.96

Table S4. The amounts of Tb^{3+} in $Tb(H_2O)_8^{3+}$ @HSB-W10 composites based on ICP measurement.

Composite name xTb(H ₂ O) _x ³⁺ @HSB- W10	Initial concentration of Tb ³⁺ (mol L ⁻¹)	Amount of Cd ²⁺ (%)	Amount of Tb ³⁺ (%)
0.021Tb(H ₂ O) _x ³⁺ @HSB- W10	0.006	16.44	0.49
0.024Tb(H ₂ O) _x ³⁺ @HSB- W10	0.012	16.16	0.55
0.03Tb(H ₂ O) _x ³⁺ @HSB- W10	0.018	15.50	0.64

Table S5. The amounts of Eu^{3+} and Tb^{3+} in WLE $Eu(H_2O)_x^{3+}/Tb(H_2O)_x^{3+}$ @HSB-W10 composites based on ICP measurement.

Composite name	Amount of	Amount of	Amount of
xTb(H ₂ O) _x ³⁺ /yEu (H ₂ O) _x ³⁺ @HSB-W10	Cd ²⁺ (%)	Eu ³⁺ (%)	Tb ³⁺ (%)
0.064Tb(H ₂ O) _x ³⁺ /0.012Eu(H ₂ O) _x ³⁺ @HSB- W10	14.91	0.25	1.34

Figure S7. Comparation of the emission spectra of $0.064 \text{Tb}(\text{H}_2\text{O})_x^{3+}/0.012$ Eu(H₂O)_x³⁺@HSB-W10 (fresh vs. after 60 days).