Electronic Supporting Information (ESI)

High-performance UV-activated room temperature NO₂ sensors

based on TiO₂/In₂O₃ composite

Zhicheng Cai^a, Jiho Park^b, Doyeon Jun^c, Sunghoon Park^{c,d*}

^a Department of Software Convergence, Sejong University, 209 Neungdong-ro, Gwangjin-gu,

Seoul, South Korea

^b Department of Electronics and Information Engineering, Sejong University, 209

Neungdong-ro, Gwangjin-gu, Seoul, South Korea

^c Department of Intelligent and Mechatronics Engineering, Sejong University, 209

Neungdong-ro, Gwangjin-gu, Seoul, South Korea

^d Department of Semiconductor System Engineering, Sejong University, 209 Neungdong-ro,

Gwangjin-gu, Seoul, South Korea

Corresponding authours. Ph.D Sunghun Park, E-mail: s.park@sejong.ac.kr

S1. The IDE chip with 10 nm Ti adhesion layer and 100 nm Au conduction layer on SiO_2 -

deposited Si wafer substrate and homemade gas sensing system.

Sample	In 3d _{5/2}	In 3d _{3/2}	Ti 2p _{3/2}	Ti 2p _{1/2}
	binding energy	binding energy	binding energy	binding energy
	(eV)	(eV)	(eV)	(eV)
S0	444.93	452.47	-	-
S 1	444.61	452.15	457.29	462.83
S2	444.42	451.96	457.31	462.85
S 3	443.90	451.44	257.98	463.52

 Table 1. Binding energies of the In 3d and Ti 2p peaks for different samples determined

 using XPS.

Sample	O _{lattice} binding energy (eV)	O _{vac} binding energy (eV)	O _{abs} binding energy (eV)	O _{lattice} percentage (%)	O _{vac} percentage (%)	O _{abs} percentage (%)
S0	529.36	530.96	532.16	76.02	19.70	4.28
S 1	530.29	531.90	533.10	66.15	24.62	9.23
S2	530.23	531.94	533.07	59.87	38.08	2.05
S3	530.20	531.80	533.01	65.02	28.33	6.65

Table 2. Binding energies and proportions of the three components of the O 1s peak for

 different samples determined using XPS.

Material	Temperature (°C)	Concentration (ppm)	Response	Refs.
In ₂ O ₃ /rGO	RT	30	8.25	[1]
Walnut-like In ₂ O ₃	RT	3	13	[2]
Mesoporous In ₂ O ₃ nanorod arrays	RT	1	20.9	[3]
In ₂ O ₃ /ZnO	RT	10	29.1	[4]
In ₂ O ₃ /ZnO YS NFs	RT	1	6	[5]
TiO ₂ /In ₂ O ₃ NFs	RT	5	49.29	This work

Table 3. Comparison of the NO₂ sensing properties of previously reported In_2O_3 -based nanostructures and TiO₂/In₂O₃ NFs of the present study at RT.

References

1. F. Gu, R. Nie, D. Han and Z. Wang, Sens. Actuator B Chem., 2015, 219, 94-99.

- H. Ma, L. Yu, X. Yuan, Y. Li, C. Li, M. Yin and X. Fan, J. Alloy. Compd., 2019, 782, 1121-1126.
- Y. Shen, X. Zhong, J. Zhang, T. Li, S. Zhao, B. Cui, D. Wei, Y. Zhang and K. Wei, *Appl. Surf. Sci.*, 2019, **498**, 143873.
- 4. X. Liang, J. Zhang, L. Du and M. Zhang, Sens. Actuator B Chem., 2021, 329, 129230.
- C. Han, X. Li, Y. Liu, X. Li, C. Shao, J. Ri, J. Ma and Y. Liu, *J. Hazard. Mater.*, 2021, 403, 124093