Construction of Zn^{II}/Cd^{II}-based MOFs containing a tripodal aromatic

caboxylate ligand with unequal arms and their fluorescent detection for

 $Cu^{2+} \mbox{ and } Fe^{3+} \mbox{ cations }$

Gui-Mei Huang^{ab}, Shuang Li^a, Meng-Xia Ma^a, Shi-Ming Li^a, Wen-Qiang Li^a, Qing-Ling Ni^a, Liu-Cheng Gui^{*a}, Xiu-Jian Wang^{*a}

Content

Figure. S1 Infrared spectra of 3-H₃BABA, compounds 1-4.

Figure. S2 EIS-MS spectra of 3-H₃BABA.

Table. S1 Crystallographic data and structure refinement results for compounds 1-4

Table. S2 Selected bond lengths (Å) and angles (deg) for compound 1.

Table. S3 Selected bond lengths (Å) and angles (deg) for compound 2.

Table. S4 Selected bond lengths (Å) and angles (deg) for compound **3**.

Table. S5 Selected bond lengths (Å) and angles (deg) for compound 4.

- Figure. S3 Coordination modes of the 3-BAB³⁻ ligand and the *bpa* ligand in compound **1**.
- Figure. S4 Coordination modes of the 3-BAB^{3–} ligand and the *bpa* ligand in compound **2**.
- Figure. S5 The coordination environment of Cd²⁺ ions in compound 2 with hydrogen atoms omitted for clarity. Symmetry codes: (i) 1/2-x, +y, -z.
- Figure.S6 The coordination environment of Cd^{2+} ions in compound 4. Symmetry codes: (i) 1/2-x, +y, -z.
- Figure. S7 PXRD patterns of compounds 1-4.
- Figure. S8 TGA plot of compounds 1-4.
- Figure. S9 PXRD patterns of compounds 1-4 immersed 60 h in different solvents.
- Figure. S10 Emission spectra of compounds 1-4 (1 mg/5 mL) in different solvents, e_x of compound 1-4: 266 nm, 265 nm, 277 nm, 286 nm, respectively.
- Figure. S11 Emission spectra of compounds 1-4 (1 mg/5 mL) in different metal solutions, e_x of compounds 1-4: 266 nm, 265 nm, 277 nm, 286 nm, respectively.
- Figure. S12 (a) Luminescence spectra of compound $1@Cu^{2+}$ DMA suspensions with Cu^{2+} concentrations varying from 0 to 3.07×10^{-1} mM; (b) Luminescence spectra of compound $2@Fe^{3+}$ H₂O suspensions with Fe³⁺ concentrations varying from 0 to 2.43×10^{-1} mM; (c) Luminescence spectra of compound $3@Fe^{3+}$ DMA suspensions with Fe³⁺ concentrations varying from 0 to 3.11×10^{-1} mM (d) Luminescence spectra of compound $4@Fe^{3+}$ H₂O suspensions with Fe³⁺ concentrations varying from 0 to 3.53×10^{-1} mM.

Table S6 Performance comparison between various fluorescent material sensors for

 Fe^{3+} and Cu^{2+}

Figure. S13 UV-vis adsorption spectra of $M(NO_3)_n$ solutions and the excitation spectrum of 1-4.

Figure. S14 PXRD patterns of compounds 1-4 before and after recyclable experiments.

Figure. S2 EIS-MS spectra of 3-H₃BABA.

Table S1. Crystallographic data and structure refinement results for compounds $1-4^a$

Identification code	Compound 1	Compound 2	Compound 3	Compound 4	
Empirical formula	$C_{90}H_{68}N_{10}O_{14}Zn_3$	$C_{90}H_{64}Cd_3N_{10}O_{12}$	$C_{94}H_{68}Cd_3N_6O_{12}$	$C_{88}H_{82}Cd_{3}N_{8}O_{15}$	
Formula weight	1709.71	1814.74	1810.74	1810.83	
Crystal system	monoclinic	monoclinic	monoclinic	monoclinic	
Space group	C2/c	<i>I</i> 2/ <i>a</i>	<i>I</i> 2/ <i>a</i>	C2/c	
a/Å	16.7507(2)	26.6374(6)	27.0745(5)	38.9381(7)	
<i>b</i> /Å	20.1161(3)	9.7433(2)	9.7503(2)	9.43740(10)	
c/Å	23.6396(3)	29.7932(7)	29.6517(5)	29.5532(5)	
a/°	90	90	90	90	
$eta/^{\circ}$	94.5950(10)	90.922(2)	91.899(2)	132.196(3)	
γ/°	90	90	90	90	
Volume/Å ³	7939.97(18)	7731.4(3)	7823.3(3)	8045.7(4)	
Z	4	4	4	4	
$ ho_{ m calc}{ m g/cm^3}$	1.430	1.545	1.537	1.495	
μ/mm^{-1}	0.973	0.889	0.878	6.866	
F (000)	3520.0	3592.0	3656.0	3680.0	
	0.260 [P] -0.0207	0.072 [P - 0.0358]	8820 [P0.0268	8386 [<i>P</i> -0.0280	
Independent reflections	P = -0.02751	$9072 [R_{int} - 0.0338,$	R = -0.04261	$k_{\rm int} = 0.0280,$	
	$\Lambda_{\text{sigma}} = 0.0373$	$\Lambda_{\text{sigma}} = 0.0412$	R _{sigma} 0.0120] R _{sigma} 0.0201]		
Goodness-of-fit on F^2	1.063	1.056	1.049	1.064	
Final R indexes [$I >= 2\sigma$	$R_1 = 0.0445,$	$R_1 = 0.0363,$	$R_1 = 0.0354,$	$R_1 = 0.0262,$	
(1)]	$wR_2 = 0.1064$	$wR_2 = 0.0761$	$wR_2 = 0.0658$	wR ₂ =0.0705	
Final <i>R</i> indexes [all data]	$R_1 = 0.0647,$	$R_1 = 0.0545,$	$R_1 = 0.0514,$	$R_1 = 0.0279,$	
	$wR_2 = 0.1165$	$wR_2 = 0.0874$	$wR_2 = 0.0739$	$wR_2 = 0.0718$	
Largest diff.	0.71/-0.38	0.83/-0.79	0.66/-0.55	0.44/-0.72	
peak/hole/eÅ-3					
CCDC Number	2233885	2233886	2233887	2233888	
	$a R_1 = \overline{\Sigma \ F_o\ } - F_c\ /\Sigma$	$\Sigma F_o , \ _wR_2 = [\Sigma_w(F_o^2 -$	$F_c^2)^2]/[\Sigma_w(F_o^2)^2]^{1/2}$		

Zn1—O3 ¹	1.9775(19)	O3 ¹ —Zn1—O4 ¹	59.23(7)
Zn1—O5	1.9595(19)	O3 ¹ —Zn1—O7	103.09(9)
Zn1—O4 ¹	2.3805(19)	O3 ¹ —Zn1—N5	117.69(8)
Zn1—O7	2.021(2)	O5—Zn1—O3 ¹	128.25(8)
Zn1—N5	2.043(2)	O5—Zn1—O4 ¹	95.29(8)
Zn2—O1	1.975(2)	O5—Zn1—O7	100.55(9)
Zn2—O1 ²	1.975(2)	O5—Zn1—N5	104.35(9)
Zn2—N2	2.071(2)	O7—Zn1—O4 ¹	161.59(9)
Zn2—N2 ²	2.071(2)	O7—Zn1—N5	96.45(9)
N5—Zn1—O4 ¹	88.58(8)	O1—Zn2—N2 ²	99.67(9)
O1—Zn2—O1 ²	147.69(14)	O1 ² —Zn2—N2	99.67(9)
O1 ² —Zn2—N2 ²	100.82(9)	N2 ² —Zn2—N2	100.54(13)
O1—Zn2—N2	100.82(9)		

Table. S2 Selected bond lengths (Å) and angles (deg) for compound 1

Symmetry codes: ¹1-*x*, 1-*y*, 1-*z*; ²-*x*, +*y*, 1/2-*z*

1 401	c. 55 Selected bolid length	(H) and angles (deg) for	
Cd1—O1	2.288(2)	O1—Cd1—O1 ¹	92.96(11)
Cd1—O1 ¹	2.288(2)	O1 ¹ —Cd1—O5 ²	104.36(8)
Cd1—O5 ²	2.319(2)	O1-Cd1-O5 ²	84.44(8)
Cd1—O5 ³	2.319(2)	O11-Cd1-O53	84.44(8)
Cd1—N5 ⁴	2.367(3)	O1—Cd1—O5 ³	104.36(8)
Cd1—N5 ⁵	2.367(3)	O11-Cd1-N54	87.81(9)
Cd2—O1	2.375(2)	O1—Cd1—N5 ⁴	167.28(9)
Cd2—O2	2.325(2)	O1—Cd1—N5 ⁵	87.81(9)
Cd2—N2	2.358(3)	O11-Cd1-N55	167.28(9)
Cd2—O46	2.440(2)	O5 ³ —Cd1—O5 ²	167.39(12)
Cd2—O36	2.265(2)	O5 ² —Cd1—N5 ⁵	88.35(10)

Table. S3 Selected bond lengths (Å) and angles (deg) for compound 2.

Cd2—O6 ²	2.185(2)	O5 ² —Cd1—N5 ⁴	83.07(10)
O5 ³ —Cd1—N5 ⁴	88.35(10)	O2—Cd2—N2	87.49(9)
O5 ³ —Cd1—N5 ⁵	83.07(10)	O2-Cd2-O4 ⁶	103.44(9)
N5 ⁴ —Cd1—N5 ⁵	94.24(15)	N2—Cd2—O1	111.59(8)
O1-Cd2-O4 ⁶	99.20(8)	N2-Cd2-O46	147.92(8)
O2—Cd2—O1	55.47(7)	O36—Cd2—O1	138.14(8)
O3 ⁶ —Cd2—O2	95.33(8)	O6 ² —Cd2—N2	86.92(9)
O3 ⁶ —Cd2—N2	94.17(8)	O6 ² —Cd2—O4 ⁶	93.94(9)
O3 ⁶ —Cd2—O4 ⁶	55.28(7)	O6 ² —Cd2—O3 ⁶	109.11(9)
O6 ² —Cd2—O1	104.84(8)	Cd1—O1—Cd2	118.02(9)
O6 ² —Cd2—O2	155.26(9)		

Symmetry codes : ¹1/2-*x*, +*y*, -*z*; ²1/2-*x*, 3/2-*y*, -1/2-*z*; ³+*x*, 3/2-*y*, 1/2+*z*; ⁴-1/2+*x*, -*y*, +*z*; ⁵1-*x*, -*y*, -*z*; ⁶1-*x*, 1-*y*, -*z*

Table. S4 Selected bond lengths (Å	A) and angles (deg) for compound 3 .
------------------------------------	--

Cd1011	2.2881(18)	O3—Cd2—N2 ⁶	82.9(3)
Cd1—O1	2.2881(18)	O3—Cd2—N2A ⁶	90.9(3)
Cd1—O4 ²	2.3255(19)	N26-Cd2-O14	115.6(4)
Cd1—O4 ³	2.3255(19)	N26-Cd2-O65	144.2(4)
Cd1—N1	2.327(17)	Cd1—O1—Cd2 ²	116.41(7)
Cd1—N1 ¹	2.327(17)	O5 ⁵ —Cd2—N2 ⁶	95.5(4)
Cd1—N1A ¹	2.36(2)	O3—Cd2—O1 ⁴	104.77(7)
Cd1—N1A	2.36(2)	O3—Cd2—O2 ⁴	153.59(7)
Cd2—O1 ⁴	2.3811(18)	O3—Cd2—O5 ⁵	115.99(7)
Cd2—O2 ⁴	2.3226(17)	O3—Cd2—O6 ⁵	91.97(7)
Cd2—O5 ⁵	2.308(2)	O24—Cd2—O6 ⁵	107.65(8)
Cd2—O3	2.1792(18)	O24—Cd2—N26	90.5(3)
Cd2—O6 ⁵	2.406(2)	O5 ⁵ —Cd2—O1 ⁴	131.30(7)

Cd2—N2 ⁶	2.362(16)	O5 ⁵ —Cd2—O2 ⁴	90.05(7)
Cd2—N2A ⁶	2.31(2)	O5 ⁵ —Cd2—O6 ⁵	55.15(7)
O1 ¹ —Cd1—O1	91.47(10)	N1 ¹ —Cd1—N1A ¹	8.4(6)
O1-Cd1-O4 ²	85.83(7)	N1—Cd1—N1A ¹	94.4(2)
O1 ¹ —Cd1—O4 ²	103.16(7)	N1A—Cd1—N1A ¹	100.8(9)
O1-Cd1-O4 ³	103.16(7)	O14-Cd2-O65	99.99(7)
O1 ¹ —Cd1—O4 ³	85.83(7)	O24-Cd2-O14	55.38(6)
O1—Cd1—N1	171.0(3)	O4 ³ —Cd1—N1A ¹	79.7(4)
O1 ¹ —Cd1—N1 ¹	171.0(3)	O4 ³ —Cd1—N1A	92.2(4)
O1—Cd1—N1 ¹	90.7(4)	O4 ² —Cd1—N1A	79.7(4)
O1 ¹ —Cd1—N1	90.7(4)	O4 ² —Cd1—N1A ¹	92.2(4)
O1 ¹ —Cd1—N1A	85.8(5)	N1—Cd1—N1 ¹	88.5(8)
O1—Cd1—N1A	164.2(4)	O4 ² —Cd1—N1 ¹	85.7(3)
O1—Cd1—N1A ¹	85.8(5)	O4 ² —Cd1—N1	85.2(3)
O1 ¹ —Cd1—N1A ¹	164.2(4)	O4 ³ —Cd1—N1 ¹	85.2(3)
O4 ³ —Cd1—O4 ²	167.25(10)	O4 ³ —Cd1—N1	85.7(3)

Symmetry codes : ${}^{1}1/2-x$, +y, 1-z; ${}^{2}+x$, 3/2-y, 1/2+z; ${}^{3}1/2-x$, 3/2-y, 1/2-z; ${}^{4}+x$, 3/2-y, -1/2+z; ${}^{5}1-x$, 1/2+y, 1/2-z; ${}^{6}1/2+x$, 3/2+y, -1/2+z

Table. S5 Selected bond lengths (Å) and angles (deg) for compound 4.

Cd2—071	2.3509(14)	O1—Cd1—N1	87.19(8)
Cd2—07 ²	2.3509(14)	N1—Cd1—O6 ¹	86.08(7)
Cd2—O2 ³	2.2311(17)	N1—Cd1—O4 ⁴	92.61(7)
Cd2—O2	2.2310(17)	N1—Cd1—O7 ¹	110.08(7)
Cd2—O3	2.234(3)	N1—Cd1—O5 ⁴	146.97(7)
Cd2—O3 ³	2.234(3)	O54—Cd1—O61	93.15(6)
Cd2—O2A	2.258(6)	O54—Cd1—O71	95.93(6)
Cd2—O2A ³	2.258(6)	O1—Cd1—O6 ¹	159.78(7)

Cd1—O6 ²	2.3960(16)	O1-Cd1-O44	97.54(7)
Cd1—O4 ⁴	2.3496(16)	O1—Cd1—O7 ¹	110.53(6)
Cd1—O7 ²	2.3733(16)	O1—Cd1—O5 ⁴	102.79(7)
Cd1—O5 ⁴	2.3655(16)	O3 ³ —Cd2—O2A ³	23.3(2)
Cd1—O1	2.1965(17)	O2A ³ —Cd2—O2A	125.3(5)
Cd1—N1	2.2718(19)	O44—Cd1—O61	101.80(6)
O7 ¹ —Cd2—O7 ²	178.99(8)	O44—Cd1—O71	144.16(5)
O2 ³ —Cd2—O7 ²	88.60(7)	O44—Cd1—O54	55.19(5)
O2 ³ —Cd2—O7 ¹	92.16(7)	O71-Cd1-O61	54.69(5)
O2—Cd2—O7 ²	92.16(7)	O3 ³ —Cd2—O7 ²	98.74(11)
O2—Cd2—O7 ¹	88.60(7)	O3 ³ —Cd2—O7 ¹	80.49(11)
O2—Cd2—O2 ³	83.13(11)	O3—Cd2—O7 ²	80.49(11)
O2—Cd2—O3	172.58(11)	O3—Cd2—O7 ¹	98.74(11)
O2—Cd2—O3 ³	97.57(15)	O3 ³ —Cd2—O3	82.7(3)
O2 ³ —Cd2—O3 ³	172.58(11)	O3—Cd2—O2A ³	103.2(3)
O2 ³ —Cd2—O3	97.57(15)	O2 ³ —Cd2—O2A ³	158.9(3)
O2—Cd2—O2A	158.9(3)	O2 ³ —Cd2—O2A	75.8(3)
O2—Cd2—O2A ³	75.8(3)		

Symmetry codes : 1-1/2+*x*, 3/2-*y*, -1/2+*z*; ²3/2-*x*, 3/2-*y*, 1-*z*; ³1-*x*, +*y*, 1/2-*z*; ⁴1-*x*, 1-*y*, 1-*z*

Figure. S3 Coordination modes of the 3-BAB^{3–} ligand and the *bpa* ligand in compound **1**.

Figure. S4 Coordination modes of the 3-BAB^{3–} ligand and the *bpa* ligand in compound **2**.

Figure. S5 The coordination environment of Cd^{2+} ions in compound **2** with hydrogen atoms omitted for clarity. Symmetry codes: (i) 1/2-x, +y, -z.

Figure. S6 The coordination environment of Cd^{2+} ions in compound 4. Symmetry codes: (i) 1/2-x, +y, -z.

Figure.S7 PXRD patterns of compounds 1-4.

Figure. S8 TGA plot of compounds 1-4.

Figure.S9 Emission spectra of compounds 1-4 (1 mg/5 mL) in different solvents, ex of compounds 1-4: 266 nm, 265 nm, 277 nm, 286 nm, respectively.

Figure. S10 PXRD patterns of compounds 1-4 immersed 60 h in different solvents.

Figure. S11 Emission spectra of compounds 1-4 (1 mg/5 mL) in different metal solutions, e_x of compounds 1-4: 266 nm, 265 nm, 277 nm, 286 nm, respectively.

Figure. S12 (a) Luminescence spectra of compound 1@Cu²⁺ DMA suspensions with Cu²⁺ concentrations varying from 0 to 3.07×10^{-1} mM; (b) Luminescence spectra of compound 2@Fe³⁺ H₂O suspensions with Fe³⁺ concentrations varying from 0 to 2.43×10^{-1} mM; (c) Luminescence spectra of compound 3@Fe³⁺ DMA suspensions with Fe³⁺ concentrations varying from 0 to 3.11×10^{-1} mM (d) Luminescence spectra of compound 4@Fe³⁺ H₂O suspensions with Fe³⁺ concentrations varying from 0 to 3.53×10^{-1} mM.

Table S6 Performance comparison between various fluorescent material sensors for

Compounds	Analyte	K _{SV}	LOD	References
[Zn(1,1'-bbi)(C ₂ O ₄)] n	Fe ³⁺	6.98×10 ⁴	0.43 μM	[1]
[Cd ₃ (L) ₂ (NH ₂ -BDC) ₆ (DMF) ₂]	Fe ³⁺	3.23×10 ⁴	2.23 μM	[2]
[Cd ₃ (3-BABA) ₂ (bpe) ₂] _n (3)	Fe ³⁺	2.98×10 ⁴	0.265	This work
$[Cd_3(L)_2(1,1'-bbi)(H_2O)_4]_n$	Fe ³⁺	2.36×10 ⁴	1.27 μM	[3]
$\{[Cd_2(SA)_2(L)_2]\cdot H_2O\}_n$	Fe ³⁺	2.1×10 ⁴	2.40 µM	[4]
$[Cd_2(1,3-bimb)(bpta)(H_2O)]_n \cdot 0.5nH_2O$	Fe ³⁺	1.91×10 ⁴	/	[5]
$[Zn_2(TPOM)(NDC)_2]$ ·3.5H ₂ O	Fe ³⁺	1.9×10 ⁴	2 µM	[6]
[Zn ₃ (3-BABA) ₂ (bpa) ₂ (H ₂ O) ₂] _n (1)	Cu ²⁺	1.77×10 ⁴	0.363	This work
[Cd ₃ (3-BABA) ₂ (bpa) ₂] _n (2)	Fe ³⁺	1.14×10 ⁴	0.539	This work
{[Cd ₃ (3- BABA) ₂ (bib)(DMA) ₂]·0.9H ₂ O} _n (4)	Fe ³⁺	8050	0.748	This work
[Cd(CDC)(L)]n	Fe ³⁺	4900	74 µM	[7]
$[Zn_2(L_1)_2(bpe)_2(H_2O)_2]$	Fe ³⁺	2395	25 µM	[8]

Fe³⁺ and Cu²⁺

Figure. S13 UV-vis adsorption spectra of $M(NO_3)_n$ solutions and the excitation spectrum of 1-4.

Figure. S14 PXRD patterns of compounds 1-4 before and after recyclable experiments.

References

- C. Fan, X. Zhang, C. Xu, R. Wu, N. Li, L. Wang, D. Zhang, S. Bi and Y. Fan, *Inorganica Chimica Acta*, 2020, 509, 119665.
- M. Y. Fan, H. H. Yu, P. Fu, Z. M. Su, X. Li, X. L. Hu, F. W. Gao and Q. Q. Pan, *Dyes and Pigments*, 2021, 185, 108834.
- C. Fan, Z. Zong, X. Meng, X. Zhang, X. Zhang, D. Zhang, C. Xu, H. Wang and Y. Fan, *CrystEngComm*, 2019, 21, 4880-4897.
- S. Chand, M. Mondal, S. C. Pal, A. Pal, S. Maji, D. Mandal and M. C. Das, *New Journal of Chemistry*, 2018, 42, 12865-12871.
- 5. L. Ma, Y. Liu and F. Su, Journal of Solid State Chemistry, 2019, 269, 65-71.
- 6. R. Lv, H. Li, J. Su, X. Fu, B. Yang, W. Gu and X. Liu, Inorg Chem, 2017, 56, 12348-12356.

- S. Chand, M. Mondal, S. C. Pal, A. Pal, S. Maji, D. Mandal, M. C. Das, *New Journal of Chemistry*, 2018, 42, 12865-12871.
- 8. F. L. Hu, Y. X. Shi, H. H. Chen and J. P. Lang, *Dalton Trans*, 2015, 44, 18795-18803.