Electronic Supplementary Material (ESI) for CrystEngComm. This journal is © The Royal Society of Chemistry 2023

#### SUPPORTING INFORMATION

# Polymorph prediction through observed structural isomorphism leading to a new crystalline form of cannabidiol

Hannah Straker, Lynn McMillan, Lina Mardiana, Glen R Hebberd, Elle Watson, Paul G Waddell, Michael R Probert and Michael J Hall

| General experimental information                                                                                                                                                                                                                                                                                                                  | S3                       |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|
| Crystallisation of CBD Form 1 by Classical Methods - Slow Solvent Evaporation                                                                                                                                                                                                                                                                     | S4                       |
| ENaCt Experiments: Crystallisation of CBD Form 1 by ENaCt                                                                                                                                                                                                                                                                                         | S5                       |
| ENaCt Experiments: Crystallisation of CBD Form 2 by ENaCt with Seeding with CBD-3 and CBD-4                                                                                                                                                                                                                                                       | S8                       |
| Crystallisation of CBD Form 2 by ENaCt with Seeding with CBD-3                                                                                                                                                                                                                                                                                    | S9                       |
| Crystallisation of CBD Form 2 by ENaCt with Seeding with CBD-4                                                                                                                                                                                                                                                                                    | S10                      |
| Unit Cells for CBD Form 1 and Form 2 formed via ENaCt with Seeding with CBD, CBD-3 and CBD-4                                                                                                                                                                                                                                                      | S11                      |
|                                                                                                                                                                                                                                                                                                                                                   |                          |
| ENaCt Experiments: Formation of CBD Form 2 Crystals from DCE/MO seeded with CBD-3                                                                                                                                                                                                                                                                 | S12                      |
| ENaCt Experiments: Formation of CBD Form 2 Crystals from DCE/MO seeded with CBD-3 for Melting Point Analysis                                                                                                                                                                                                                                      | S12                      |
|                                                                                                                                                                                                                                                                                                                                                   | S12<br>S13               |
| for Melting Point Analysis                                                                                                                                                                                                                                                                                                                        |                          |
| for Melting Point Analysis<br>Crystallisation of CBD Form 2 by ENaCt with Seeding with CBD-3 for Melting Point Analysis<br>Cross-Polarised Microscopy Images of CBD Crystals<br>CBD Form 1 and Form 2 Crystals Grown via ENaCt with CBD or CBD-3 Seeding                                                                                          | S13<br>S14<br>S14        |
| for Melting Point Analysis<br>Crystallisation of CBD Form 2 by ENaCt with Seeding with CBD-3 for Melting Point Analysis<br>Cross-Polarised Microscopy Images of CBD Crystals                                                                                                                                                                      | S13<br>S14               |
| for Melting Point Analysis<br>Crystallisation of CBD Form 2 by ENaCt with Seeding with CBD-3 for Melting Point Analysis<br>Cross-Polarised Microscopy Images of CBD Crystals<br>CBD Form 1 and Form 2 Crystals Grown via ENaCt with CBD or CBD-3 Seeding                                                                                          | S13<br>S14<br>S14        |
| for Melting Point Analysis<br>Crystallisation of CBD Form 2 by ENaCt with Seeding with CBD-3 for Melting Point Analysis<br>Cross-Polarised Microscopy Images of CBD Crystals<br>CBD Form 1 and Form 2 Crystals Grown via ENaCt with CBD or CBD-3 Seeding<br>CBD Form 2 Crystals Grown via ENaCt with CBD-3 Seeding for Melting Point Measurements | S13<br>S14<br>S14<br>S14 |

#### **General Experimental Information**

Melting points were measured using Stuart SMP3 melting point apparatus. Crystallisation experiments were completed using a TTP LabTech mosquito<sup>®</sup> liquid handling robot using SwissSCI Modular LCP 96 well glass plates with a 100 micron spacer and sealed with a glass cover slip. Visualisation of experiments was carried out with a Nikon SMZ1000 microscope fitted with a cross polariser, with photographs were taken with a GXCAM-U3-5 5.1MP camera. Single crystal X-ray diffraction experiments were performed using an in-house diffractometers (Rigaku Oxford Diffraction Gemini ultra with an Atlas detector and Cu sealed tube source with focussing optics, or a Bruker D8 Venture with a Photon 2 detector and an Incoatec IµS (Cu) both equipped with an Oxford Cryosystems Cryostream cryostream with data recorded at 150 K).

#### Crystalisation of CBD Form 1 by Classical Methods - Slow Solvent Evaporation

5 mg of CBD was placed into straight sided glass sample tubes, into which was added 0.5 - 1 mL of an organic solvent (pentane, *n*-hexane, *n*-heptane, dichloromethane and chloroform) until no solid remained. Glass sample tubes were then sealed with a plastic lid, into which two-three small holes had been made, and left to crystallise at room temperature in the dark. Visual examination, by crosspolarised optical microscopy, for the presence of CBD crystals was performed every few days.

Single crystals of CBD were subsequently observed after 1-2 weeks from *n*-pentane, *n*-hexane, *n*-heptane and dichloromethane. Single crystals suitable for SCXRD were analysed on an in-house X-ray diffractometer. Full SCXRD analysis was performed on a crystal obtained from *n*-pentane by Dr Paul Waddell, to give an X-ray structure consistent with known CBD Form 1 (CANDOM01, CANDOM10 and CANDOM11). Unit cell analysis was also carried out on CBD crystals obtained from *n*-hexane, *n*-heptane, and dichloromethane, showing that they all had the same unit cell parameters as CBD Form 1.

## ENaCt Experiments: Crystalisation of CBD Form 1 by ENaCt

Approximately, 50 mg of CBD was dissolved in a minimum of 50 µL of solvent, with additional solvent added as required to dissolve the sample, resulting CBD stock solutions in *n*-pentane [0.11 g/mL], *n*-hexane [0.084 g/mL], *n*-heptane [0.063 g/mL], chloroform [1.00 g/mL], 1,2-dichloroethane [1.00 g/mL], toluene [1.02 g/mL], fluorobenzene [1.00 g/mL], chlorobenzene [1.01 g/mL], and hexafluorobenzene [0.20 g/mL]. These stock solutions, labelled as high concentration (H), were also diluted by two fold, medium concentration (M), and four fold, low concentration (L), to provide three different sample concentrations for our ENaCt experiments. Next, using a SPT LabTech mosquito<sup>®</sup> liquid-handling robot, 200 nL of each inert oil (PDMSO, FC-40, FY and mineral oil) were dispensed into each well of a Laminex<sup>™</sup> 96-well glass plate, followed by injection of 50 nL of the appropriate CBD solution into each oil droplet. The 96-well glass plates were then sealed with a glass cover slip and stored in the dark at room temperature for up to 14 days (Figure S1).

|             |   |   |        |   | 50 | nL of | CBD | stock | solut | ions    |    |    |    |
|-------------|---|---|--------|---|----|-------|-----|-------|-------|---------|----|----|----|
| Oils        |   | 1 | no oil | s |    |       |     | with  | 200 r | nL oils |    |    |    |
| Olis        |   | Η | М      | L |    | Н     |     |       | Μ     |         |    | L  |    |
|             |   | 1 | 2      | 3 | 4  | 5     | 6   | 7     | 8     | 9       | 10 | 11 | 12 |
| PDMSO       | А |   |        |   |    |       |     |       |       |         |    |    |    |
| PDIVISO     | В |   |        |   |    |       |     |       |       |         |    |    |    |
| FC-40       | С |   |        |   |    |       |     |       |       |         |    |    |    |
| FC-40       | D |   |        |   |    |       |     |       |       |         |    |    |    |
| FY          | Е |   |        |   |    |       |     |       |       |         |    |    |    |
| FI          | F |   |        |   |    |       |     |       |       |         |    |    |    |
| Mineral oil | G |   |        |   |    |       |     |       |       |         |    |    |    |
| wineral off | Н |   |        |   |    |       |     |       |       |         |    |    |    |

#### **Oils Used for ENaCt Experiments**

|       | ENaCt Oils                                                       |
|-------|------------------------------------------------------------------|
| PDMSO | poly(dimethylsiloxane); CAS: 63148-62-9; supplier: Sigma Aldrich |
| FC-40 | Fluorinert FC-40; CAS: 51142-49-5; supplier: Fluorochem          |
| FY    | Fomblin YR-1800; CAS: 69991-67-9; supplier: Alfa Aesar           |
| MO    | Mineral oil; CAS: 8042-47-5; supplier: Sigma Aldrich             |

**Figure S1**. A typical arrangement of a 96-well glass plate containing inert oils and CBD solutions. H = high concentration (100% stock solution), M = medium concentration (50% stock solution), L = low concentration (25% stock solution). Oils used in ENaCt.

Plates were checked for the presence of crystals by cross-polarised optical microscopy at day 1, 7 and 14. Each experimental outcome was categorized as either: (F) failed; (1) in solution; (2) oiled-out or non-crystalline solid; (3) microcrystalline solid and (4) single crystals suitable for SCXRD (**Figure S2**).



**Figure S2**. Examples of ENaCt outcome of CBD crystallisations: (1) in solution; (2) oiled-out or non-crystalline solid; (3) microcrystalline solid and (4) single crystals suitable for SCXRD.

From the 864 ENaCt experiments undertaken, 18 (2.1%) gave single crystals suitable for SCXRD after 14 days (3 from chloroform, 4 from 1,2-dichloroethane, 6 from toluene, and 5 from fluorobenzene). 11 of 18 of the single crystals observed were formed from high concentration (H) solutions of CBD, whilst the majority 16 of 18 was formed from experiments containing mineral oil. Control experiments, without the presence of inert oils, gave no suitable single crystals (**Figure S3**).



**Crystallisation solvents** 

**Figure S3.** CBD single crystals suitable for SCXRD observed from different solvents and oils using ENaCt.

Single crystals of CBD grown via ENaCt showed a needle-like morphology, similar to those grown under classical conditions. Therefore, we examined four single crystals of CBD grown via ENaCt from chloroform, toluene, and fluorobenzene using in-house X-ray analysis (**Figure S4**).



**Figure S4.** Single crystals of CBD grown using ENaCt, with encapsulation by mineral oil, showing needle-like morphology: (1) chloroform; (2) toluene; (3) fluorobenzene.

X-ray analysis was undertaken for all three of the single crystals selected, all of which gave unit cell data that matched the known crystal structure of CBD. A complete X-ray crystal structure was determined for a CBD crystal grown from toluene and mineral oil using Cu K $\alpha$  radiation. This gave an excellent data set showing a monoclinic  $P2_1$  space group with unit cell dimensions which aligned well with the structural data available from the CCDC (CANDOM01, CANDOM10 and CANDOM11), with measurement of the absolute stereochemistry of CBD also possible (**Figure S5**).



**Figure S5**. Structure of CBD derived from X-ray diffraction data, crystal obtained from ENaCt protocol (solvent: toluene, encapsulation: mineral oil). Hydrogen atoms bound to carbon have been removed for clarity. Anisotropic displacements have been plotted at the 50% probability level.

## ENaCt Experiments: Crystalisation of CBD Form 2 by ENaCt with Seeding with CBD-3 and CBD-4

### Preparation of Stock Solutions for ENaCt

Stock solutions were prepared as follows: into 1.5 mL screw top glass vials was weighed 25 - 50 mg of CBD, and solvent was added portionwise until the sample fully dissolved at room temperature.

## Stock Solutions for Plates GW001 to GW005

| Vial | Solvent                          | Concentration of substrate / mg mL <sup>-1</sup> |
|------|----------------------------------|--------------------------------------------------|
| 1    | Chloroform (CHCl <sub>3</sub> )  | 1888                                             |
| 2    | 1,2-Dichloroethane (DCE)         | 1700                                             |
| 3    | 1,1,2,2-Tetrachloroethane (TeCE) | 926                                              |
| 4    | Toluene                          | 1042                                             |
| 5    | 4-Fluorotoluene                  | 1042                                             |

## Stock Solutions for Plates GW006 to GW010

| Vial | Solvent                          | Concentration of substrate / mg mL <sup>-1</sup> |
|------|----------------------------------|--------------------------------------------------|
| 6    | Chloroform (CHCl <sub>3</sub> )  | 1852                                             |
| 7    | 1,2-Dichloroethane (DCE)         | 1852                                             |
| 8    | 1,1,2,2-Tetrachloroethane (TeCE) | 694                                              |
| 9    | Toluene                          | 1042                                             |
| 10   | 4-Fluorotoluene                  | 1042                                             |

## Seeding of Plates

Seed crystals were prepared starting from classically recrystallized material or commercially supplied crystalline material and were crushed using a spatula to provide a stock of seed crystals. Seeding of ENaCt plates was completed via use of a Hampton micro-tool. This was used to pick up a small quantity of crushed seed crystals which were then manually placed in each well.

## **ENaCt Experimental Setup**

Using a STP Labtech mosquito liquid handling robot, 250 nL of one of four oils (PDMSO, FC-40, FY and mineral oil) were dispensed into each well of a 96 well SWISSCI LCP plate with a 100 micron spacer. Following which 100 nL of each stock solution containing CBD was collected from the parent plate and dispensed into each of the oil droplets within the wells. The plates were sealed with a glass cover slip and were stored in the dark at room temperature and after 1 week, evaluation of crystals growth was carried out visually by a cross-polarised optical microscopy.

| Sampl | e's code          |   |   |   |   |   |      |       |         |       |   |    |    |    |    |                                    |
|-------|-------------------|---|---|---|---|---|------|-------|---------|-------|---|----|----|----|----|------------------------------------|
|       | Standard Method   |   |   |   |   |   | Volu | me of | 0il = 2 | 50 nL |   |    |    |    |    |                                    |
| Vial  | Volume of Solvent |   |   |   |   |   |      | 100   | ) nL    |       |   |    |    |    |    |                                    |
|       | Solvents          |   | 1 | 2 | 3 | 4 | 5    | 6     | 7       | 8     | 9 | 10 | 11 | 12 |    |                                    |
|       |                   | А | 1 |   |   |   |      |       |         |       |   |    |    |    | 1  | remained in solution               |
|       |                   | в |   |   |   |   |      |       |         |       |   |    |    |    | 2  | oiled out/amorphous solids         |
|       |                   | с |   |   | 2 |   |      |       |         |       |   |    |    |    | 3  | microcrystals (needle-like, Form 1 |
|       | Solvent used to   | D |   |   |   |   | 3    |       |         |       |   |    |    |    | 3* | microcrystals (block-like, Form 2) |
| ×     | dissolve sample   | Е |   |   |   |   |      |       | 3*      |       |   |    |    |    | 4  | crystals (needle-like, Form 1)     |
|       |                   | F |   |   |   |   |      |       |         |       | 4 |    |    |    | 4* | crystals (block-like, Form 2)      |
|       |                   | G |   |   |   |   |      |       |         |       |   |    | 4* |    |    |                                    |
|       |                   | н |   |   |   |   |      |       |         |       |   |    |    |    |    |                                    |

## Key for Outcomes of ENaCt Experiments for the Formation of CBD Form 1 and Form 2 Crystals

## Crystallisation of CBD Form 2 by ENaCt with Seeding with CBD-3

| GW00 | 01                | - | -     |    |       | - | -     |        | -       | -     |        |     | -      |    | GW00 | 1                 |   |   |   |   | - |      | -     |          | -     |    |    |    |    |
|------|-------------------|---|-------|----|-------|---|-------|--------|---------|-------|--------|-----|--------|----|------|-------------------|---|---|---|---|---|------|-------|----------|-------|----|----|----|----|
|      | Standard Method   |   |       |    |       |   | Vol   | ume of | Oil = 2 | 50 nL |        |     |        |    |      | Standard Method   |   |   |   |   |   | Volu | me of | Oil = 2! | 50 nL |    |    |    |    |
| Vial | Volume of Solvent |   |       |    |       |   |       | 10     | 0 nL    |       |        |     |        |    | Vial | Volume of Solvent |   |   |   |   |   |      | 100   | ) nL     |       |    |    |    |    |
|      | Solvents          |   | 1     | 2  | 3     | 4 | 5     | 6      | 7       | 8     | 9      | 10  | 11     | 12 |      | Solvents          |   | 1 | 2 | 3 | 4 | 5    | 6     | 7        | 8     | 9  | 10 | 11 | 12 |
|      | CHCl <sub>3</sub> | Α | No oi |    | PDMSC | C | No oi |        | PDMSC   | С     | No oil |     | PDMSC  | )  |      | CHCl <sub>3</sub> | Α | 1 | 2 | 2 | 2 | 3    | 4     | 4        | 1     | 4* | 4* | 4* | 4* |
|      | CHCl <sub>3</sub> | в | No oi |    | PDMSC | C | No oi |        | PDMSC   | C     | No oil |     | PDMSC  | )  |      | CHCl <sub>3</sub> | в | 1 | 2 | 2 | 2 | 3    | 4     | 4        | 1     | 4* | 4* | 4* | 4* |
|      | CHCl <sub>3</sub> | с | No oi |    | FC-40 |   | No oi |        | FC-40   |       | No oil |     | FC-40  |    |      | CHCl <sub>3</sub> | С | 1 | 1 | 1 | 1 | 3    | 3     | 3        | 4     | 4  | 3  | 3  | 3  |
|      | CHCl <sub>3</sub> | D | No oi |    | FC-40 |   | No oi |        | FC-40   | 1     | No oil |     | FC-40  |    |      | CHCl <sub>3</sub> | D | 1 | 1 | 1 | 1 | 3    | 3     | 3        | 4     | 4  | 3  | 3  | 3* |
| 1    | CHCl <sub>3</sub> | E | No oi |    | FY    |   | No oi |        | FY      |       | No oil |     | FY     |    | 1    | CHCl <sub>3</sub> | Е | 1 | 1 | 1 | 1 | 3    | 3     | 3        | 4     | 4* | 4  | 4  | 2  |
|      | CHCl <sub>3</sub> | F | No oi |    | FY    |   | No oi |        | FY      |       | No oil |     | FY     |    |      | CHCl <sub>3</sub> | F | 1 | 1 | 1 | 1 | 3    | 3     | 3        | 4     | 4  | 4  | 4* | 4* |
|      | CHCl <sub>3</sub> | G | No oi |    |       |   | No oi |        | MO      |       | No oil |     | MO     |    |      | CHCl <sub>3</sub> | G | 1 | 2 | 2 | 2 | 3    | 4     | 4        | 4     | 4  | 4* | 4* | 1  |
|      | CHCl <sub>3</sub> | н | No oi |    | MO    |   | No oi |        | MO      |       | No oil |     | MO     |    |      | CHCl <sub>3</sub> | н | 1 | 2 | 2 | 2 | 3    | 4     | 4        | 4     | 4* | 4* | 4* | 2  |
|      |                   |   |       | No | seed  |   |       | CBD    | seed    |       |        | CBD | v seed |    |      |                   |   |   |   |   |   |      |       |          |       |    |    |    |    |

| GW0  | 02                |                      |                                                   |    |       |   |       |        |         |       |        |      |        |    | GW0  | 02                |   |   |   |   |   |      |       |          |       |     |    |     |    |
|------|-------------------|----------------------|---------------------------------------------------|----|-------|---|-------|--------|---------|-------|--------|------|--------|----|------|-------------------|---|---|---|---|---|------|-------|----------|-------|-----|----|-----|----|
|      | Standard Method   |                      |                                                   |    |       |   | Vol   | ime of | Oil = 2 | 50 nL |        |      |        |    |      | Standard Method   |   |   |   |   |   | Volu | me of | Dil = 25 | 50 nL |     |    |     |    |
| Vial | Volume of Solvent |                      |                                                   |    |       |   |       | 10     | 0 nL    |       |        |      |        |    | Vial | Volume of Solvent |   |   |   |   |   |      | 100   | nL       |       |     |    |     |    |
|      | Solvents          |                      | 1                                                 | 2  | 3     | 4 | 5     | 6      | 7       | 8     | 9      | 10   | 11     | 12 |      | Solvents          |   | 1 | 2 | 3 | 4 | 5    | 6     | 7        | 8     | 9   | 10 | 11  | 12 |
|      | DCE               | А                    | No oil PDMSO No oil PDMSO                         |    |       |   |       |        |         |       | No oil |      | PDMS   | 50 |      | DCE               | Α | 1 | 2 | 2 | 2 | 3    | 4     | 4        | 2     | 4*  | 4* | 4*  | 4* |
|      | DCE               | в                    | No oil PDMSO No oil PD                            |    |       |   |       |        |         | )     | No oil |      | PDMS   | 50 |      | DCE               | В | 1 | 4 | 2 | 2 | 3    | 2     | 2        | 4     | 4*  | 4* | 4*  | 4* |
|      | DCE               | с                    | No oil PDMSO No oil PDM   No oil FC-40 No oil FC- |    |       |   |       |        |         |       | No oil |      | FC-4   | 0  |      | DCE               | С | 1 | 1 | 1 | 1 | 3    | 4     | 4        | 4     | 4   | 3  | 3   | 4* |
| -    | DCE               | D                    | No oi                                             |    | FC-40 |   | No oi |        | FC-40   |       | No oil |      | FC-4   | 0  |      | DCE               | D | 1 | 1 | 1 | 1 | 3    | 4     | 4        | 4     | 4*  | 3  | 3   | 2  |
| 2    | DCE               | Е                    | No oi                                             |    | FY    |   | No oi |        | FY      |       | No oil |      | FY     |    | 2    | DCE               | Е | 1 | 1 | 1 | 1 | 3    | 4     | 4        | 4     | 4*  | 4  | 4   | 4* |
|      | DCE               | F                    | No oi                                             |    | FY    |   | No oi |        | FY      |       | No oil |      | FY     |    |      | DCE               | F | 1 | 1 | 1 | 1 | 3    | 4     | 4        | 4     | -4* | 4  | 4   | 4  |
|      | DCE               | G                    |                                                   |    |       |   | No oi |        | MO      |       | No oil |      | MO     |    |      | DCE               | G | 1 | 2 | 2 | 1 | 3    | 4     | 4        | 4     | 4   | 4* | 4*  | 4* |
|      | DCE               | H No oil MO No oil M |                                                   |    |       |   |       |        |         | _     | No oil |      | MO     |    |      | DCE               | н | 1 | 2 | 2 | 2 | 3    | 4     | 4        | 4     | 4   | 4* | -4* | 4* |
|      |                   |                      |                                                   | No | seed  |   |       | CBD    | seed    |       |        | CBDv | / seed | 1  | 1    |                   |   |   |   |   |   |      |       |          |       |     |    |     |    |

| GW00 | )3                |   |        |    | -     |   |       |       |          |       | · · · · · |     |        |    | GW00 | 13   |                 |   |   |   | - | · | -    |        | ·        |       | ·  |     |     |    |
|------|-------------------|---|--------|----|-------|---|-------|-------|----------|-------|-----------|-----|--------|----|------|------|-----------------|---|---|---|---|---|------|--------|----------|-------|----|-----|-----|----|
|      | Standard Method   |   |        |    |       |   | Volu  | me of | Oil = 25 | 50 nL |           |     |        |    |      | Sta  | andard Method   |   |   |   |   |   | Volu | ime of | Oil = 2! | 50 nL |    |     |     |    |
| Vial | Volume of Solvent |   |        |    |       |   |       | 10    | 0 nL     |       |           |     |        |    | Vial | Vo   | lume of Solvent |   |   |   |   |   |      | 100    | ) nL     |       |    |     |     |    |
|      | Solvents          |   | 1      | 2  | 3     | 4 | 5     | 6     | 7        | 8     | 9         | 10  | 11     | 12 |      |      | Solvents        |   | 1 | 2 | 3 | 4 | 5    | 6      | 7        | 8     | 9  | 10  | 11  | 12 |
|      | TeCE              | Α | No oil |    | PDMSC | ) | No oi |       | PDMSO    | )     | No oil    |     | PDMS   | 50 |      | TeCE |                 | Α | 2 | 2 | 2 | 2 | 4    | 4      | 4        | 4     | 4* | 3   | -4* | 3  |
|      | TeCE              | в | No oil |    | PDMSC | ) | No oi |       | PDMSO    | )     | No oil    |     | PDMS   | 50 |      | TeCE |                 | в | 2 | 2 | 2 | 2 | F    | 4      | 4        | 4     | 2  | 4*  | -4* | 3  |
|      | TeCE              | с | No oil |    | FC-40 |   | No oi |       | FC-40    |       | No oil    |     | FC-4   | 0  |      | TeCE |                 | С | 2 | 1 | 1 | 1 | 4    | 4      | 4        | 4     | 4* | 4*  | -4* | 3  |
|      | TeCE              | D | No oil |    | FC-40 |   | No oi |       | FC-40    |       | No oil    |     | FC-4   | 0  | 3    | TeCE |                 | D | 2 | 1 | 1 | 1 | 4    | 4      | 4        | 4     | 2  | 3   | -4* | 2  |
| 3    | TeCE              | Е | No oil |    | FY    |   | No oi |       | FY       |       | No oil    |     | FY     |    | 3    | TeCE |                 | Е | 1 | 1 | 1 | 1 | 4    | 1      | 1        | 4     | 4* | 4*  | -4* | 2  |
|      | TeCE              | F | No oil |    | FY    |   | No oi |       | FY       |       | No oil    |     | FY     |    |      | TeCE |                 | F | 1 | 1 | 1 | 1 | 4    | -4     | 4        | 4     | 4  | - 4 | 2   | 2  |
|      | TeCE              | G | No oil |    | MO    |   | No oi |       | MO       |       | No oil    |     | MO     |    |      | TeCE |                 | G | 1 | 2 | 2 | 2 | 4    | 4      | 4        | 4     | 2  | 4*  | -4* | 4* |
|      | TeCE              | н | No oil |    | MO    |   | No oi |       | MO       |       | No oil    |     | MO     |    |      | TeCE |                 | н | 1 | 2 | 2 | 2 | 4    | 4      | 4        | 4     | 4  | 4*  | -4* | 4* |
|      |                   |   |        | No | seed  |   |       | CBD   | seed     |       |           | CBD | v seed | ł  |      |      |                 |   |   |   |   |   |      |        |          |       |    |     |     |    |

| GW00 | 04                | - |        |    |                                                              |   |      |       |           |      |        |     |        |    |   | GW0  | 4                 |   |   |   |   |   |      |       |         |       |     |    |    |     |
|------|-------------------|---|--------|----|--------------------------------------------------------------|---|------|-------|-----------|------|--------|-----|--------|----|---|------|-------------------|---|---|---|---|---|------|-------|---------|-------|-----|----|----|-----|
|      | Standard Method   |   |        |    |                                                              |   | Vol  | ume o | f Oil = 2 | 50 n | ۱L     |     |        |    |   |      | Standard Method   |   |   |   |   |   | Volu | me of | Oil = 2 | 50 nL |     |    |    |     |
| Vial | Volume of Solvent |   |        |    |                                                              |   |      | 1     | 00 nL     |      |        |     |        |    |   | Vial | Volume of Solvent |   |   |   |   |   |      | 100   | ) nL    |       |     |    |    |     |
|      | Solvents          |   | 1      | 2  | 3                                                            | 4 | 5    | 6     | 7         | 8    | 3 9    | 10  | 11     | 12 |   |      | Solvents          |   | 1 | 2 | 3 | 4 | 5    | 6     | 7       | 8     | 9   | 10 | 11 | 12  |
|      | Toluene           | Α | No oil |    | PDMSC                                                        | С | No o | 1     | PDMSC     | )    | No oil |     | PDMS   | 50 |   |      | Toluene           | Α | 1 | 2 | 2 | 2 | 4    | 2     | 2       | 2     | 4*  | 2  | 2  | 2   |
|      | Toluene           | в | No oil |    | PDMSC                                                        | С | No o | 1     | PDMSC     | )    | No oil |     | PDMS   | 50 |   |      | Toluene           | в | 1 | 2 | 2 | 2 | 4    | 4     | 4       | 4     | 4*  | 2  | 4* | 4   |
|      | Toluene           | с | No oil |    | PDMSO No oil PDMSO   PDMSO No oil PDMSO   FC-40 No oil FC-40 |   |      |       |           |      |        |     | FC-4   | 0  |   |      | Toluene           | С | 1 | 1 | 1 | 1 | 4    | 4     | 4       | 4     | 4*  | 4  | 4* | 3   |
|      | Toluene           | D | No oil |    | FC-40                                                        | 1 | No o |       | FC-40     |      | No oil |     | FC-4   | 0  |   |      | Toluene           | D | 1 | 1 | 1 | 1 | 4    | 4     | 4       | 4     | 4*  | 4  | 2  | 2   |
| 4    | Toluene           | E | No oil |    | FY                                                           |   | No o | 1     | FY        |      | No oil |     | FY     |    |   | 4    | Toluene           | Е | 1 | 1 | 1 | 1 | 4    | 4     | 4       | 4     | 4*  | 4  | 4* | 4*  |
|      | Toluene           | F | No oil |    | FY                                                           |   | No o |       | FY        |      | No oil |     | FY     |    |   |      | Toluene           | F | 1 | 1 | 1 | 1 | 4    | 4     | 4       | 4     | 4*  | 4  | 4  | -4* |
|      | Toluene           | G | No oil |    | MO                                                           |   | No o |       | MO        |      | No oil |     | MO     |    |   |      | Toluene           | G | 1 | 2 | 2 | 2 | 4    | 4     | 4       | 4     | 4*  | 4* | 4* | 2   |
|      | Toluene           | н | No oil |    | MO                                                           |   | No o |       | MO        |      | No oil |     | MO     | 1  | 1 |      | Toluene           | н | 1 | 2 | 2 | 2 | 4    | 4     | 4       | 4     | -4* | 2  | 2  | 2   |
|      |                   |   |        | No | seed                                                         |   |      | CB    | D seed    |      |        | CBD | v seed | 1  |   |      |                   |   |   |   |   |   |      |       |         |       |     |    |    |     |

| GW00 | 5                 |   |       |    |       |   |       | -      |         |       |        | ·    |       |    | GW00 | 5                 |   |   |   | - | · | -    | ·     |          |       | ·  | -  |     | -  |
|------|-------------------|---|-------|----|-------|---|-------|--------|---------|-------|--------|------|-------|----|------|-------------------|---|---|---|---|---|------|-------|----------|-------|----|----|-----|----|
|      | Standard Method   |   |       |    |       |   | Volu  | ime of | Oil = 2 | 50 nL |        |      |       |    |      | Standard Method   |   |   |   |   |   | Volu | me of | 0il = 2! | 50 nL |    |    |     |    |
| Vial | Volume of Solvent |   |       |    |       |   |       | 10     | 0 nL    |       |        |      |       |    | Vial | Volume of Solvent |   |   |   |   |   |      | 100   | nL       |       |    |    |     |    |
|      | Solvents          |   | 1     | 2  | 3     | 4 | 5     | 6      | 7       | 8     | 9      | 10   | 11    | 12 |      | Solvents          |   | 1 | 2 | 3 | 4 | 5    | 6     | 7        | 8     | 9  | 10 | 11  | 12 |
|      | 4-Fluorotoluene   | Α | No oi |    | PDMSC | C | No oi |        | PDMSC   | )     | No oil |      | PDMSC | )  |      | 4-Fluorotoluene   | Α | 1 | 2 | 2 | 2 | 4    | 4     | 4        | 4     | 4* | 4* | 4*  | 4* |
|      | 4-Fluorotoluene   | в | No oi |    | PDMSC | C | No oi |        | PDMSC   | )     | No oil |      | PDMSC | )  |      | 4-Fluorotoluene   | в | 1 | 2 | 2 | 2 | 4    | 2     | 4        | 4     | 4* | 2  | 4*  | 2  |
|      | 4-Fluorotoluene   | с | No oi |    | FC-40 |   | No oi |        | FC-40   |       | No oil |      | FC-40 |    |      | 4-Fluorotoluene   | С | 1 | 2 | 1 | 1 | 4    | 4     | 4        | 4     | 4* | 4* | 4*  | 4* |
| -    | 4-Fluorotoluene   | D | No oi |    | FC-40 |   | No oi |        | FC-40   |       | No oil |      | FC-40 |    | -    | 4-Fluorotoluene   | D | 1 | 2 | 1 | 1 | 4    | 4     | 4        | 4     | 4* | 4* | 4   | 4* |
| 3    | 4-Fluorotoluene   | Е | No oi |    | FY    |   | No oi |        | FY      |       | No oil |      | FY    |    | 2    | 4-Fluorotoluene   | Е | 1 | 1 | 1 | 1 | 4    | 4     | 4        | 4     | 4* | 4  | -4  | 4* |
|      | 4-Fluorotoluene   | F | No oi |    | FY    |   | No oi |        | FY      |       | No oil |      | FY    |    |      | 4-Fluorotoluene   | F | 1 | 1 | 1 | 1 | 4    | 4     | 4        | 4     | 4* | 4  | 4   | 2  |
|      | 4-Fluorotoluene   | G | No oi |    | MO    |   | No oi |        | MO      |       | No oil |      | MO    |    |      | 4-Fluorotoluene   | G | 1 | 2 | 2 | 2 | 4    | 4     | 4        | 4     | 4* | 4* | -4* | 2  |
|      | 4-Fluorotoluene   | н | No oi |    | MO    |   | No oi |        | MO      |       | No oil |      | MO    |    |      | 4-Fluorotoluene   | н | 1 | 2 | 2 | 2 | 4    | 4     | 4        | 4     | 4* | 4* | -4* | 2  |
|      |                   |   |       | No | seed  |   |       | CBD    | seed    |       |        | CBDv | seed  |    |      |                   |   |   |   |   |   |      |       |          |       |    |    |     |    |

## Crystallisation of CBD Form 2 by ENaCt with Seeding with CBD-4

| GW00 | 6                 |   |        |                    |                                                                                        |   |        |       |          |       |        |     |        |    | GW00 | 6                 |   |   |   |   |     |      |        |          |       |      |    |     |        |
|------|-------------------|---|--------|--------------------|----------------------------------------------------------------------------------------|---|--------|-------|----------|-------|--------|-----|--------|----|------|-------------------|---|---|---|---|-----|------|--------|----------|-------|------|----|-----|--------|
|      | Standard Method   |   |        |                    |                                                                                        |   | Volu   | me of | Oil = 25 | i0 nL |        |     |        |    |      | Standard Method   |   |   |   |   |     | Volu | ume of | Oil = 25 | 50 nL |      |    |     |        |
| Vial | Volume of Solvent |   |        |                    |                                                                                        |   |        | 100   | 0 nL     |       |        |     |        |    | Vial | Volume of Solvent |   |   |   |   |     |      | 100    | ) nL     |       |      |    |     |        |
|      | Solvents          |   | 1      | 2                  | 3                                                                                      | 4 | 5      | 6     | 7        | 8     | 9      | 10  | 11     | 12 |      | Solvents          |   | 1 | 2 | 3 | 4   | 5    | 6      | 7        | 8     | 9    | 10 | 11  | 12     |
|      | CHCI <sub>3</sub> | Α | No oil |                    | PDMSO                                                                                  |   | No oil |       | PDMSO    | )     | No oil |     | PDMSC  | )  |      | CHCl <sub>3</sub> | Α | 1 | 2 | 2 | 3   | 3    | 3      | 3        | 3     | - 4* | 4* | 4*  | - 4* - |
|      | CHCI <sub>3</sub> | в | No oil |                    | PDMSO                                                                                  |   | No oil |       | PDMSO    | )     | No oil |     | PDMSC  | )  |      | CHCl <sub>3</sub> | В | 1 | 1 | 2 | 1   | 3    | 3      | 3        | 3     | 3    | 4* | 4*  | - 4* - |
|      | CHCI <sub>3</sub> | С | No oil |                    | FC-40                                                                                  |   | No oil |       | FC-40    |       | No oil |     | FC-40  |    |      | CHCl <sub>3</sub> | С | 3 | 1 | 1 | 1   | 3    | 3      | 3        | 3     | - 4* | 4* | 4*  | - 4*   |
|      | CHCI <sub>3</sub> | D | No oil |                    | FC-40                                                                                  |   | No oil |       | FC-40    |       | No oil |     | FC-40  |    | 6    | CHCl <sub>3</sub> | D | 1 | 1 | 1 | 1   | 3    | 3      | 3        | 3     | - 4* | 3  | 4*  | - 4*   |
| 6    | CHCI <sub>3</sub> | Е | No oil |                    | FY                                                                                     |   | No oil |       | FY       |       | No oil |     | FY     |    | ь    | CHCl <sub>3</sub> | Е | 1 | 1 | 1 | 1   | 3    | 3      | 3        | 3     | -4*  | 3  | 3*  | 3*     |
|      | CHCI3             | F | No oil | oil FY No oil FY N |                                                                                        |   |        |       |          |       |        |     | FY     |    |      | CHCI <sub>3</sub> | F | 1 | 2 | 1 | 1   | 3    | 3      | 3        | 3     | 3    | 3  | 3*  | 3*     |
|      | CHCl <sub>3</sub> | G | No oil |                    |                                                                                        |   |        |       |          |       |        |     | MO     |    |      | CHCl <sub>3</sub> | G | 1 | 2 | 2 | 2   | 3    | 3      | 3        | 3     | 1    | 3  | -4* | - 4*   |
|      | CHCl <sub>3</sub> | н | No oil |                    | MO No oil MO No oil MC   MO No oil MO No oil MC   No seed CBD seed CBD4 seed CBD4 seed |   |        |       |          |       |        |     |        |    |      | CHCl <sub>3</sub> | н | 1 | 2 | 4 | - 4 | 3    | 3      | 3        | 3     | 3    | 3  | 3*  | 3*     |
|      |                   |   |        | No                 | seed                                                                                   |   |        | CBD   | seed     |       |        | CBD | 4 seed |    |      |                   |   |   |   |   |     |      |        |          |       |      |    |     |        |

| GW00 | 7                 |   |        |    |        |   |       |        |          |       |        |      |       |    | GW00 | 7                 |   |   |   |   |   |      |        |          |       |    |    |    |      |
|------|-------------------|---|--------|----|--------|---|-------|--------|----------|-------|--------|------|-------|----|------|-------------------|---|---|---|---|---|------|--------|----------|-------|----|----|----|------|
|      | Standard Method   |   |        |    |        |   | Vol   | ume of | Oil = 25 | 50 nL |        |      |       |    |      | Standard Method   |   |   |   |   |   | Volu | ume of | Oil = 25 | i0 nL |    |    |    |      |
| Vial | Volume of Solvent |   |        |    |        |   |       | 10     | D nL     |       |        |      |       |    | Vial | Volume of Solvent |   |   |   |   |   |      | 100    | ) nL     |       |    |    |    |      |
|      | Solvents          |   | 1      | 2  | 3      | 4 | 5     | 6      | 7        | 8     | 9      | 10   | 11    | 12 |      | Solvents          |   | 1 | 2 | 3 | 4 | 5    | 6      | 7        | 8     | 9  | 10 | 11 | 12   |
|      | DCE               | Α | No oil |    | PDMSC  | ) | No oi |        | PDMSO    | )     | No oil |      | PDMS  | С  |      | DCE               | А | 1 | 2 | 2 | 2 | 3    | 3      | 2        | 2     | 4  | 3  | 1  | 4*   |
|      | DCE               | в | No oil |    | PDMSC  | ) | No oi |        | PDMSO    | )     | No oil |      | PDMS  | 2  |      | DCE               | В | 1 | 2 | 2 | 2 | 3    | 2      | 3        | 3     | 1  | 2  | 1  | 4*   |
|      | DCE               | с | No oil |    | FC-40  |   | No oi |        | FC-40    |       | No oil |      | FC-40 |    |      | DCE               | С | 1 | 2 | 1 | 1 | 3    | 3      | 3        | 3     | 3* | 2  | 3* | 2    |
|      | DCE               | D | No oil |    | FC-40  |   | No oi |        | FC-40    |       | No oil |      | FC-40 |    | -    | DCE               | D | 1 | 1 | 1 | 1 | 3    | 3      | 3        | 3     | 4* | 4* | 4* | 3    |
|      | DCE               | Е | No oil |    | FY     |   | No oi |        | FY       |       | No oil |      | FY    |    | 1    | DCE               | Е | 1 | 1 | 1 | 1 | 1    | 3      | 4        | 3     | 4* | 3  | 3  | 4*   |
|      | DCE               | F | No oil |    | FY     |   | No oi |        | FY       |       | No oil |      | FY    |    |      | DCE               | F | 1 | 1 | 1 | 1 | 3    | 2      | 4        | 1     | 4* | 3  | 4* | - 4* |
|      | DCE               | G | No oil |    | MO     |   | No oi |        | MO       |       | No oil |      | MO    |    |      | DCE               | G | 3 | 2 | 2 | 2 | 3    | 4      | 4        | 1     | 4* | 4* | 4* | -4*  |
| 1    | DCE               | н | No oil |    | MO     |   | No oi |        | MO       |       | No oil |      | MO    |    |      | DCE               | н | 1 | 2 | 2 | 2 | 3    | 4      | 4        | 4     | 4* | 4* | 4* | 4*   |
|      |                   |   |        | No | o seed |   |       | CBD    | seed     |       |        | CBD4 | seed  |    |      |                   |   |   |   |   |   |      |        |          |       |    |    |    |      |

| GW00 | 8                 |   |        |    |       |   |        |       |          |      |        |      |       |    | GW00 | 1        |            |   |   |   |   |   |      |        |          |       |    |    |    |    |
|------|-------------------|---|--------|----|-------|---|--------|-------|----------|------|--------|------|-------|----|------|----------|------------|---|---|---|---|---|------|--------|----------|-------|----|----|----|----|
|      | Standard Method   |   |        |    |       |   | Volu   | me of | Oil = 25 | 0 nL |        |      |       |    |      | Standard | d Method   |   |   |   |   |   | Volu | ume of | Oil = 25 | i0 nL |    |    |    |    |
| Vial | Volume of Solvent |   |        |    |       |   |        | 100   | ) nL     |      |        |      |       |    | Vial | Volume   | of Solvent |   |   |   |   |   |      | 100    | ) nL     |       |    |    |    |    |
|      | Solvents          |   | 1      | 2  | 3     | 4 | 5      | 6     | 7        | 8    | 9      | 10   | 11    | 12 |      | Solver   | nts        |   | 1 | 2 | 3 | 4 | 5    | 6      | 7        | 8     | 9  | 10 | 11 | 12 |
|      | TCE               | А | No oil |    | PDMSC | ) | No oil |       | PDMSO    |      | No oil |      | PDMSC | )  |      | TCE      |            | Α | 1 | 2 | 2 | 2 | 3    | 2      | 4        | 2     | 4* | 1  | 4* | 2  |
|      | TCE               | В | No oil |    | PDMSC | ) | No oil |       | PDMSO    |      | No oil |      | PDMSC | )  |      | TCE      |            | В | 1 | 2 | 2 | 2 | 3    | 3      | 3        | 2     | 4* | 4* | 2  | 2  |
|      | TCE               | С | No oil |    | FC-40 |   | No oil |       | FC-40    |      | No oil |      | FC-40 |    |      | TCE      |            | С | 1 | 1 | 1 | 1 | 3    | 1      | 3        | 3     | 1  | 4* | 4* | 4* |
| _    | TCE               | D | No oil |    | FC-40 |   | No oil |       | FC-40    |      | No oil |      | FC-40 |    |      | TCE      |            | D | 1 | 2 | 2 | 1 | 1    | 1      | 3        | 3     | 4* | 4* | 4* | 4* |
| 8    | TCE               | E | No oil |    | FY    |   | No oil |       | FY       |      | No oil |      | FY    |    | 8    | TCE      |            | Е | 1 | 1 | 2 | 2 | 1    | 1      | 3        | 3     | 4* | 1  | 1  | 1  |
|      | TCE               | F | No oil |    | FY    |   | No oil |       | FY       |      | No oil |      | FY    |    |      | TCE      |            | F | 1 | 1 | 1 | 1 | 3    | 1      | 4        | 1     | 1  | 4* | 4  | 4* |
|      | TCE               | G | No oil |    | MO    |   | No oil |       | MO       |      | No oil |      | MO    |    |      | TCE      |            | G | 1 | 2 | 2 | 2 | 3    | 4      | 4        | 4     | 4* | 3  | 1  | 4* |
|      | TCE               | н | No oil |    | MO    |   | No oil |       | MO       |      | No oil |      | MO    |    |      | TCE      |            | н | 1 | 2 | 2 | 2 | 3    | 4      | 4        | 4     | 1  | 4* | 4* | 4* |
|      |                   |   |        | No | seed  |   |        | CBD   | seed     |      |        | CBD4 | seed  |    |      |          |            |   |   |   |   |   |      |        |          |       |    |    |    |    |

| GW00 | 9                 |   |        |    |       |   |       |        |          |       |        |      |       |    | GW00 | 9                 |   |   |   |   |   | -    |        |          |       |    |    |    |        |
|------|-------------------|---|--------|----|-------|---|-------|--------|----------|-------|--------|------|-------|----|------|-------------------|---|---|---|---|---|------|--------|----------|-------|----|----|----|--------|
|      | Standard Method   |   |        |    |       |   | Vol   | ume of | Oil = 25 | i0 nL |        |      |       |    |      | Standard Method   |   |   |   |   |   | Volu | ume of | Oil = 25 | 50 nL |    |    |    |        |
| Vial | Volume of Solvent |   |        |    |       |   |       | 10     | 0 nL     |       |        |      |       |    | Vial | Volume of Solvent |   |   |   |   |   |      | 100    | ) nL     |       |    |    |    |        |
|      | Solvents          |   | 1      | 2  | 3     | 4 | 5     | 6      | 7        | 8     | 9      | 10   | 11    | 12 |      | Solvents          |   | 1 | 2 | 3 | 4 | 5    | 6      | 7        | 8     | 9  | 10 | 11 | 12     |
|      | Toluene           | А | No oil |    | PDMSC | ) | No oi |        | PDMSC    | )     | No oil |      | PDMS  | D  |      | Toluene           | А | 2 | 3 | 2 | 2 | 3    | 2      | 4        | 2     | 3* | 4* | 2  | 2      |
|      | Toluene           | в | No oil |    | PDMSC | ) | No oi |        | PDMSC    | )     | No oil |      | PDMS  | 0  |      | Toluene           | в | 1 | 2 | 2 | 2 | 3    | 3      | 4        | 2     | 1  | 2  | 2  | 4*     |
|      | Toluene           | С | No oil |    | FC-40 |   | No oi |        | FC-40    |       | No oil |      | FC-40 | )  |      | Toluene           | С | 1 | 1 | 1 | 2 | 3    | 3      | 3        | 3     | 3* | 3  | 3  | - 4* - |
|      | Toluene           | D | No oil |    | FC-40 |   | No oi |        | FC-40    |       | No oil |      | FC-40 | )  | 9    | Toluene           | D | 2 | 1 | 1 | 1 | 3    | 3      | 3        | 3     | 3* | 4* | 4* | 3*     |
|      | Toluene           | Е | No oil |    | FY    |   | No oi |        | FY       |       | No oil |      | FY    |    | ,    | Toluene           | Е | 2 | 1 | 1 | 1 | 3    | 1      | 4        | 1     | 3* | 4* | 4* | -4*    |
|      | Toluene           | F | No oil |    | FY    |   | No oi |        | FY       |       | No oil |      | FY    |    |      | Toluene           | F | 2 | 1 | 1 | 1 | 3    | -4     | 1        | 3     | 3* | 4* | 4* | -4*    |
|      | Toluene           | G | No oil |    | MO    |   | No oi |        | MO       |       | No oil |      | MO    |    |      | Toluene           | G | 3 | 2 | 2 | 2 | 3    | -4     | 4        | -4    | 3* | 4* | 4* | -4*    |
|      | Toluene           | н | No oil |    | MO    |   | No oi |        | MO       |       | No oil |      | MO    |    |      | Toluene           | н | 2 | 2 | 2 | 2 | 3    | - 4    | 4        | 4     | 3* | 4* | 4* | 4*     |
|      |                   |   |        | No | seed  |   |       | CBD    | seed     |       |        | CBD4 | seed  |    |      |                   |   |   |   |   |   |      |        |          |       |    |    |    |        |

| GW01 | 0                 |   |        |    |       |   |        |       |          |                    |        |      |       |    | GW01            | )                 |   |   |   |   |   |      |       |          |       |    |    |     |     |
|------|-------------------|---|--------|----|-------|---|--------|-------|----------|--------------------|--------|------|-------|----|-----------------|-------------------|---|---|---|---|---|------|-------|----------|-------|----|----|-----|-----|
|      | Standard Method   |   |        |    |       |   | Volu   | me of | Oil = 25 | 0 nL               |        |      |       |    |                 | Standard Method   |   |   |   |   |   | Volu | me of | Dil = 25 | i0 nL |    |    |     |     |
| Vial | Volume of Solvent |   |        |    |       |   |        | 10    | ) nL     |                    |        |      |       |    | Vial            | Volume of Solvent |   |   |   |   |   |      | 100   | nL       |       |    |    |     |     |
|      | Solvents          |   | 1      | 2  | 3     | 4 | 5      | 6     | 7        | 8                  | 9      | 10   | 11    | 12 |                 | Solvents          |   | 1 | 2 | 3 | 4 | 5    | 6     | 7        | 8     | 9  | 10 | 11  | 12  |
|      | 4-Fluorotoluene   | Α | No oil |    | PDMSC | ) | No oil |       | PDMSO    |                    | No oil |      | PDMSC | )  |                 | 4-Fluorotoluene   | А | 1 | 2 | 2 | 2 | 4    | 4     | 4        | -4    | 3* | 2  | 2   | 2   |
|      | 4-Fluorotoluene   | в | No oil |    | PDMSC | ) | No oil |       | PDMSO    |                    |        |      |       | )  |                 | 4-Fluorotoluene   | В | 1 | 2 | 2 | 2 | 3    | 4     | 4        | -4    | 3* | 4* | 2   | 4*  |
|      | 4-Fluorotoluene   | С | No oil |    | FC-40 |   | No oil |       | FC-40    | FC-40 No oil FC-4  |        |      |       |    |                 | 4-Fluorotoluene   | С | 1 | 2 | 2 | 2 | 3    | 3     | з        | 3     | 3* | 4* | 4*  | 3*  |
| 10   | 4-Fluorotoluene   | D | No oil |    | FC-40 |   | No oil |       | FC-40    | FC-40 No oil FC-40 |        |      |       |    | 10              | 4-Fluorotoluene   | D | 1 | 2 | 2 | 2 | 3    | 3     | в        | 3     | 3* | 4* | 4*  | 4*  |
|      | 4-Fluorotoluene   | Е | No oil |    | FY    |   | No oil |       | FY       |                    | No oil |      | FY    |    | 10              | 4-Fluorotoluene   | Е | 1 | 1 | 1 | 1 | 3    | 4     | з        | 3     | 3* | 1  | 1   | 1   |
|      | 4-Fluorotoluene   | F | No oil |    | FY    |   | No oil |       | FY       |                    | No oil | -    |       |    | 4-Fluorotoluene | F                 | 1 | 1 | 4 | 1 | 3 | 1    | з     | -4       | 3     | 3  | 4* | -4* |     |
|      | 4-Fluorotoluene   | G | No oil |    | MO    |   | No oil |       | MO       |                    | No oil |      |       |    | 4-Fluorotoluene | G                 | 3 | 2 | 2 | 2 | 3 | 4    | 4     | - 4      | 3     | 4* | 4* | 4*  |     |
|      | 4-Fluorotoluene   | н | No oil |    | MO    |   | No oil |       | MO       |                    |        |      |       |    |                 | 4-Fluorotoluene   | н | 1 | 2 | 2 | 4 | 3    | 4     | 4        | 4     | 3* | 1  | 4*  | -4* |
|      |                   |   |        | No | seed  |   |        | CBD   | seed     |                    |        | CBD4 | seed  |    |                 |                   |   |   |   |   |   |      |       |          |       |    |    |     |     |

## Unit Cells for CBD Form 1 and Form 2 formed via ENaCt with Seeding with CBD, CBD-3 and CBD-4

| ENaCt<br>Conditions               | Description           | a/ Å        | b/ Å        | c/ Å        | α   | β          | Ŷ   | Z | Bravais Lattice |
|-----------------------------------|-----------------------|-------------|-------------|-------------|-----|------------|-----|---|-----------------|
| GW_002_H7<br>DCE, MO              | CBD<br>seeded w/ CBD  | 10.59 (3)   | 10.61 (3)   | 17.23 (3)   | 90° | 95.25 (3)° | 90° | 1 | Monoclinic P    |
| GW_002_H8<br>DCE, MO              | CBD<br>seeded w/ CBD  | 10.51 (6)   | 10.53 (7)   | 10.09 (11)  | 90° | 95.19 (4)° | 90° | 1 | Monoclinic P    |
|                                   |                       |             |             |             |     |            |     |   |                 |
| GW_002_G12<br>DCE, MO             | CBD<br>seeded w/ CBDV | 10.88 (3)   | 12.81 (3)   | 13.69 (3)   | 90° | 90°        | 90° | 1 | Orthorhombic P  |
| GW_002_G12<br>DCE, MO             | CBD<br>seeded w/ CBDV | 10.89 (15)  | 12.83 (17)  | 13.71 (19)  | 90° | 90°        | 90° | 1 | Orthorhombic P  |
|                                   |                       |             |             |             |     |            |     |   |                 |
| GW_010_G11<br>4-fluorotoluene, MO | CBD<br>seeded w/ CBD4 | 10.868 (13) | 12.812 (14) | 13.668 (15) | 90° | 90°        | 90° | 1 | Orthorhombic P  |
| GW_010_H11<br>4-fluorotoluene, MO | CBD<br>seeded w/ CBD4 | 10.869 (14) | 12.796 (17) | 13.679 (18) | 90° | 90°        | 90° | 1 | Orthorhombic P  |

## ENaCt Experiments: Formation of CBD Form 2 Crystals from DCE/MO seeded with CBD-3 for Melting Point Analysis

In order to grow CBD Form 2 crystals for melting point experiment, a stock solution of CBD in DCE was prepared (50 mg of CBD in 96 µL DCE, 521 mg mL<sup>-1</sup>). Seed crystals of CBD-3 (CBDV) were prepared starting from classically recrystallized material and were crushed using a spatula to provide a stock of seed crystals. Seeding of ENaCt plates was completed via use of a Hampton micro-tool. This was used to pick up a small quantity of crushed CBD-3 seed crystals which were then manually placed in each well. Using a STP Labtech mosquito liquid handling robot, 250 nL of mineral oil was dispensed into each well of a 96 well SWISSCI LCP plate with a 100 micron spacer. Following which, 100 nL of each stock solution containing CBD was dispensed into each of the oil droplets within the wells. A total of 4 plates were used to grow crystals of CBD Form 2 (GW\_MP2\_P1 to GW\_MP2\_P4). The plates were sealed with a glass cover slip and were stored in the dark at room temperature and after 1 week, evaluation of crystals growth was carried out visually by cross-polarised optical microscopy. CBD Form 2 crystals were identified by morphology, and wells containing CBD Form 2 were opened and individual crystals transferred onto a glass slide and then packed into a melting point tube. Melting points were then measured using Stuart SMP3 melting point apparatus.

## Crystallisation of CBD Form 2 by ENaCt with Seeding with CBD-3 for Melting Point Analysis

| GW_I  | VIP2_P1           |   |   |   |   |   |      |        |         |       |   |    |   |    |    | GW_I | /IP2_P1           | - |    |     |    |     |      |       |         |       |     |    | -   |     |
|-------|-------------------|---|---|---|---|---|------|--------|---------|-------|---|----|---|----|----|------|-------------------|---|----|-----|----|-----|------|-------|---------|-------|-----|----|-----|-----|
|       | Standard Method   |   |   |   |   |   | Volu | me of  | Oil = 2 | 50 nL |   |    |   |    |    |      | Standard Method   |   |    |     |    |     | Volu | me of | Oil = 2 | 50 nL |     |    |     |     |
| Vial  | Volume of Solvent |   |   |   |   |   |      | 100    | 0 nL    |       |   |    |   |    |    | Vial | Volume of Solvent |   |    |     |    |     |      | 100   | ) nL    |       |     |    |     |     |
|       | Solvents          |   | 1 | 2 | 3 | 4 | 5    | 6      | 7       | 8     | 9 | 10 | 1 | 11 | 12 |      | Solvents          |   | 1  | 2   | 3  | 4   | 5    | 6     | 7       | 8     | 9   | 10 | 11  | 12  |
|       | DCE               | Α |   |   |   |   |      |        |         |       |   |    |   |    |    |      | DCE               | Α | 4* | 4*  | 4* | 4*  | 4*   | 4*    | 4*      | 4*    | 4*  | 4* | 1   | 4*  |
|       | DCE               | В |   |   |   |   |      |        |         |       |   |    |   |    |    |      | DCE               | в | 4* | 4*  | 4* | 4*  | 2    | 4*    | 4*      | 4*    | 4*  | 4* | 4*  | 4*  |
|       | DCE               | с |   |   |   |   |      |        |         |       |   |    |   |    |    |      | DCE               | С | 4* | 4*  | 4* | 4*  | 4*   | 4*    | 4*      | 2     | 4*  | 4* | 4*  | 4*  |
| MP2   | DCE               | D |   |   |   |   |      |        | ral oil |       |   |    |   |    |    |      | DCE               | D | 4* | 4*  | 4* | 4*  | 4*   | 2     | 4*      | 4*    | -4* | 4* | 4*  | 4*  |
| IVIPZ | DCE               | Е |   |   |   |   |      | iviine | rai oli |       |   |    |   |    |    | MP2  | DCE               | Е | 4* | 4*  | 4* | 4*  | 4*   | 4*    | 4*      | 4*    | -4* | 4* | 4*  | 4*  |
|       | DCE               | F |   |   |   |   |      |        |         |       |   |    |   |    |    |      | DCE               | F | 4* | 4*  | 4* | 4*  | -4*  | 4*    | 4*      | 4*    | -4* | 4* | 4*  | -4* |
|       | DCE               | G |   |   |   |   |      |        |         |       |   |    |   |    |    |      | DCE               | G | 4* | -4* | 4* | -4* | -4*  | 4*    | -4*     | 4*    | -4* | 4* | -4* | 2   |
|       | DCE               | н |   |   |   |   |      |        |         |       |   |    |   |    |    |      | DCE               | н | 4* | -4* | 4* | -4* | -4*  | 4*    | -4*     | 4*    | -4* | 4* | -4* | -4* |
|       |                   |   |   |   |   |   |      | CBD    | / seed  |       |   |    |   |    |    |      |                   |   |    |     |    |     |      |       |         |       |     |    |     |     |

| GW_   | MP2_P2           |   |   |   | _ |   | _ |        | _      |         | _     | _ |   |    |    |      | GW_I  | /IP2_P2           |   |    |     |     |     |      |        |         |       |     |     |     |    |
|-------|------------------|---|---|---|---|---|---|--------|--------|---------|-------|---|---|----|----|------|-------|-------------------|---|----|-----|-----|-----|------|--------|---------|-------|-----|-----|-----|----|
|       | Standard Method  |   |   |   |   |   | ١ | Volume | e of ( | Oil = 2 | 50 nl | L |   |    |    |      |       | Standard Method   |   |    |     |     |     | Volu | ime of | 0il = 2 | 50 nL |     |     |     |    |
| Vial  | Volume of Solven |   |   |   |   |   |   |        | 100    | ) nL    |       |   |   |    |    |      | Vial  | Volume of Solvent |   |    |     |     |     |      | 100    | ) nL    |       |     |     |     |    |
|       | Solvents         |   | 1 | 2 | 3 | 4 |   | 5      | 6      | 7       | 8     |   | 9 | 10 | 11 | . 12 |       | Solvents          |   | 1  | 2   | 3   | 4   | 5    | 6      | 7       | 8     | 9   | 10  | 11  | 12 |
|       | DCE              | А |   |   |   |   |   |        |        |         |       |   |   |    |    |      |       | DCE               | А | 4* | 4*  | 4*  | 4*  | 4*   | 4*     | 4*      | 4*    | 4*  | 4*  | 1   | 4* |
|       | DCE              | в |   |   |   |   |   |        |        |         |       |   |   |    |    |      |       | DCE               | в | 4* | 4*  | 4*  | 4*  | 4*   | 4*     | 4*      | 4*    | 4*  | 4*  | 4*  | 4* |
|       | DCE              | с |   |   |   |   |   |        |        |         |       |   |   |    |    |      |       | DCE               | С | 4* | 4*  | 4*  | 4*  | 4*   | 4*     | 4*      | 4*    | 4*  | 4*  | 4*  | 2  |
| MP2   | DCE              | D |   |   |   |   |   |        |        | ral oil |       |   |   |    |    |      | MP2   | DCE               | D | 4* | 4*  | 4*  | 4*  | 4*   | 4*     | 4*      | 4*    | 4*  | 4*  | 4*  | 1  |
| IVIP2 | DCE              | E |   |   |   |   |   | N      | liner  | rai oli |       |   |   |    |    |      | IVIPZ | DCE               | Е | 4* | 4*  | 4*  | 4*  | 4*   | 4*     | 4*      | 4*    | 4*  | 4*  | 4*  | 4* |
|       | DCE              | F |   |   |   |   |   |        |        |         |       |   |   |    |    |      |       | DCE               | F | 4* | 4*  | 4*  | 4*  | 4*   | 4*     | 4*      | 4*    | 4*  | 4*  | 4*  | 4* |
|       | DCE              | G |   |   |   |   |   |        |        |         |       |   |   |    |    |      |       | DCE               | G | 4* | 4*  | 4*  | -4* | -4*  | 2      | 2       | -4*   | 4*  | 4*  | 4*  | 4* |
|       | DCE              | н |   |   |   |   |   |        |        |         |       |   |   |    |    |      |       | DCE               | н | 4* | -4* | -4* | -4* | -4*  | 4*     | 4*      | -4*   | -4* | -4* | -4* | 4* |
|       |                  |   |   |   |   |   |   | c      | BDV    | / seed  |       |   |   |    |    |      |       |                   |   |    |     |     |     |      |        |         |       |     |     |     |    |

| GW_   | MP2_P3            |   |   |   |   |   |      |        |          |        |   |    |   |    |    | GW_I  | AP2_P3            |   |    |     |     |     |      |       |         |       |     |    |     |     |
|-------|-------------------|---|---|---|---|---|------|--------|----------|--------|---|----|---|----|----|-------|-------------------|---|----|-----|-----|-----|------|-------|---------|-------|-----|----|-----|-----|
|       | Standard Method   |   |   |   |   |   | Volu | ime of | Oil = 2  | 250 nL |   |    |   |    |    |       | Standard Method   |   |    |     |     |     | Volu | me of | 0il = 2 | 50 nL |     |    |     |     |
| Vial  | Volume of Solvent |   |   |   |   |   |      | 10     | 0 nL     |        |   |    |   |    |    | Vial  | Volume of Solvent |   |    |     |     |     |      | 100   | ) nL    |       |     |    |     |     |
|       | Solvents          |   | 1 | 2 | 3 | 4 | 5    | 6      | 7        | 8      | 9 | 10 | 1 | 11 | 12 |       | Solvents          |   | 1  | 2   | 3   | 4   | 5    | 6     | 7       | 8     | 9   | 10 | 11  | 12  |
|       | DCE               | Α |   |   |   |   |      |        |          |        |   |    |   |    |    |       | DCE               | Α | 4* | 4*  | 4*  | 4*  | 4*   | 4*    | 4*      | 4*    | 4*  | 4* | 4*  | 4*  |
|       | DCE               | в |   |   |   |   |      |        |          |        |   |    |   |    |    |       | DCE               | в | 4* | 4*  | 4*  | 4*  | 4*   | 4*    | 4*      | 4*    | 4*  | 4* | 4*  | 4*  |
|       | DCE               | С |   |   |   |   |      |        |          |        |   |    |   |    |    |       | DCE               | С | 4* | 4*  | 4*  | 4*  | 4*   | 4*    | 4*      | 4*    | 4*  | 4* | 4*  | 4*  |
| MP2   | DCE               | D |   |   |   |   |      |        | eral oil |        |   |    |   |    |    | MP2   | DCE               | D | 2  | 4*  | 4*  | 4*  | 2    | 4*    | 4*      | 4*    | 4*  | 1  | 4*  | 4*  |
| IVIPZ | DCE               | Е |   |   |   |   |      | wiine  | erai oli |        |   |    |   |    |    | IVIPZ | DCE               | Е | 4* | 4*  | 4*  | -4* | -4*  | 4*    | 4*      | 4*    | 4*  | 4* | 4*  | -4* |
|       | DCE               | F |   |   |   |   |      |        |          |        |   |    |   |    |    |       | DCE               | F | 4* | -4* | 4*  | -4* | -4*  | 4*    | 4*      | 4*    | -4* | 1  | 4*  | -4* |
|       | DCE               | G |   |   |   |   |      |        |          |        |   |    |   |    |    |       | DCE               | G | 4* | -4* | 4*  | 4*  | -4*  | 4*    | 4*      | 4*    | -4* | 4* | 1   | -4* |
|       | DCE               | н |   |   |   |   |      |        |          |        |   |    |   |    |    |       | DCE               | н | 4* | -4* | -4* | -4* | -4*  | 4*    | 4*      | 4*    | -4* | 4* | -4* | -4* |
|       | ]                 |   |   |   |   |   |      | CBD    | V seed   |        |   |    |   |    |    |       |                   |   |    |     |     |     |      |       |         |       |     |    |     |     |

| GW_I | MP2_P4            |   |   |   |   |   |      |        |          |       |   |   |    |    |     |   | GW_I | /IP2_P4           |   |    |    |    |    |      |        |         |       |    |    |    |     |
|------|-------------------|---|---|---|---|---|------|--------|----------|-------|---|---|----|----|-----|---|------|-------------------|---|----|----|----|----|------|--------|---------|-------|----|----|----|-----|
|      | Standard Method   |   |   |   |   |   | Volu | ume of | Oil = 2  | 50 nL |   |   |    |    |     |   |      | Standard Method   |   |    |    |    |    | Volu | ime of | Oil = 2 | 50 nL |    |    |    |     |
| Vial | Volume of Solvent |   |   |   |   |   |      | 10     | 0 nL     |       |   |   |    |    |     |   | Vial | Volume of Solvent |   |    |    |    |    |      | 100    | ) nL    |       |    |    |    |     |
|      | Solvents          |   | 1 | 2 | 3 | 4 | 5    | 6      | 7        | 8     | 9 | 9 | 10 | 11 | . 1 | 2 |      | Solvents          |   | 1  | 2  | 3  | 4  | 5    | 6      | 7       | 8     | 9  | 10 | 11 | 12  |
|      | DCE               | Α |   |   |   |   |      |        |          |       |   |   |    |    |     |   |      | DCE               | Α | 4* | 4* | 4* | 4* | 4*   | 4*     | 4*      | 4*    | 4* | 4* | 4* | -4* |
|      | DCE               | в |   |   |   |   |      |        |          |       |   |   |    |    |     |   |      | DCE               | в | 4* | 4* | 4* | 4* | 4*   | 4*     | 4*      | 4*    | 4* | 4* | 4* | -4* |
|      | DCE               | с |   |   |   |   |      |        |          |       |   |   |    |    |     |   |      | DCE               | С | 4* | 4* | 4* | 4* | 4*   | 4*     | 4*      | 4*    | 4* | 4* | 4* | -4* |
|      | DCE               | D |   |   |   |   |      |        |          |       |   |   |    |    |     |   |      | DCE               | D | 4* | 4* | 4* | 4* | 4*   | 2      | 4*      | 4*    | 4* | 4* | 1  | 2   |
| MP2  | DCE               | Е |   |   |   |   |      | Mine   | eral oil |       |   |   |    |    |     |   | MP2  | DCE               | Е | 4* | 4* | 4* | 4* | 4*   | 1      | 4*      | 4*    | 4* | 4* | 4* | 1   |
|      | DCE               | F |   |   |   |   |      |        |          |       |   |   |    |    |     |   |      | DCE               | F | 4* | 4* | 4* | 4* | 4*   | 4*     | 4*      | 4*    | 4* | 4* | 4* | 4*  |
|      | DCE               | G |   |   |   |   |      |        |          |       |   |   |    |    |     |   |      | DCE               | G | 4* | 4* | 4* | 4* | 4*   | 2      | 2       | 4*    | 4* | 4* | 4* | 4*  |
|      | DCE               | н |   |   |   |   |      |        |          |       |   |   |    |    |     |   |      | DCE               | н | 4* | 4* | 4* | 4* | 4*   | 2      | 4*      | 4*    | 4* | 4* | 4* | 4*  |
|      |                   |   |   |   |   |   |      | CBD    | V seed   |       |   |   |    |    |     |   |      |                   |   |    |    |    |    |      |        |         |       |    |    |    |     |

#### **Cross-Polarised Microscopy Images of CBD Crystal**

## Comparison of CBD Form 1 and Form 2 Crystals Grown via ENaCt with CBD or CBD-3 Seeding



## CBD crystals grown with CBD seeds in mineral oil

## CBD crystals grown with CBDV seeds in mineral oil



## CBD Form 2 Crystals Grown via ENaCt with CBD-3 Seeding for Melting Point Measurements



CBD Form 2 crystals retrieved from plates



CBD Form 2 crystals in a melting point tube



CBD Form 2 crystals after melting point experiment

## Crystal Data and Structure Refinement for Additional Strucutres

CBD Form 1 with CBD Seeding



| Table 1 Crystal data and structure refinement for CBD_seeded_CBD |
|------------------------------------------------------------------|
|------------------------------------------------------------------|

| Identification code                         | CBD_seeded_CBD                                                |
|---------------------------------------------|---------------------------------------------------------------|
| Empirical formula                           | $C_{21}H_{30}O_2$                                             |
| Formula weight                              | 314.45                                                        |
| Temperature/K                               | 150.00                                                        |
| Crystal system                              | monoclinic                                                    |
| Space group                                 | P21                                                           |
| a/Å                                         | 10.4346(3)                                                    |
| b/Å                                         | 10.8763(3)                                                    |
| c/Å                                         | 16.7922(5)                                                    |
| α/°                                         | 90                                                            |
| β/°                                         | 95.4500(10)                                                   |
| γ/°                                         | 90                                                            |
| Volume/Å <sup>3</sup>                       | 1897.13(9)                                                    |
| Z                                           | 4                                                             |
| $\rho_{calc}g/cm^3$                         | 1.101                                                         |
| µ/mm⁻¹                                      | 0.530                                                         |
| F(000)                                      | 688.0                                                         |
| Crystal size/mm <sup>3</sup>                | $0.2 \times 0.13 \times 0.11$                                 |
| Radiation                                   | CuKα (λ = 1.54178)                                            |
| 20 range for data collection/°              | 5.286 to 133.344                                              |
| Index ranges                                | $-12 \le h \le 12, -12 \le k \le 12, -20 \le l \le 19$        |
| Reflections collected                       | 29162                                                         |
| Independent reflections                     | 6688 [R <sub>int</sub> = 0.0199, R <sub>sigma</sub> = 0.0140] |
| Data/restraints/parameters                  | 6688/1/437                                                    |
| Goodness-of-fit on F <sup>2</sup>           | 1.059                                                         |
| Final R indexes [I>=2σ (I)]                 | $R_1 = 0.0281$ , $wR_2 = 0.0734$                              |
| Final R indexes [all data]                  | $R_1 = 0.0284$ , $wR_2 = 0.0737$                              |
| Largest diff. peak/hole / e Å <sup>-3</sup> | 0.19/-0.13                                                    |
| Flack parameter                             | 0.02(3)                                                       |
|                                             |                                                               |

## CBD Form 2 with CBD-3 Seeding



| Table 1 Crystal data and structure refinement for C | CBD form2 s | seeded CBDV. |
|-----------------------------------------------------|-------------|--------------|
|                                                     |             |              |

| Identification code                         | CBD_form2_seeded_CBDV                                        |
|---------------------------------------------|--------------------------------------------------------------|
| Empirical formula                           | $C_{21}H_{30}O_2$                                            |
| Formula weight                              | 314.45                                                       |
| Temperature/K                               | 150.00                                                       |
| Crystal system                              | orthorhombic                                                 |
| Space group                                 | P2 <sub>1</sub> 2 <sub>1</sub> 2 <sub>1</sub>                |
| a/Å                                         | 10.1971(6)                                                   |
| b/Å                                         | 13.0846(8)                                                   |
| c/Å                                         | 13.6747(8)                                                   |
| α/°                                         | 90                                                           |
| β/°                                         | 90                                                           |
| γ/°                                         | 90                                                           |
| Volume/ų                                    | 1824.55(19)                                                  |
| Z                                           | 4                                                            |
| $\rho_{calc}g/cm^3$                         | 1.145                                                        |
| µ/mm⁻¹                                      | 0.551                                                        |
| F(000)                                      | 688.0                                                        |
| Crystal size/mm <sup>3</sup>                | 0.176 × 0.145 × 0.116                                        |
| Radiation                                   | CuKα (λ = 1.54178)                                           |
| 20 range for data collection/°              | 9.354 to 133.12                                              |
| Index ranges                                | $-12 \le h \le 12$ , $-15 \le k \le 14$ , $-16 \le l \le 16$ |
| Reflections collected                       | 10534                                                        |
| Independent reflections                     | 3188 [ $R_{int} = 0.0169$ , $R_{sigma} = 0.0145$ ]           |
| Data/restraints/parameters                  | 3188/0/219                                                   |
| Goodness-of-fit on F <sup>2</sup>           | 1.034                                                        |
| Final R indexes [I>=2σ (I)]                 | R <sub>1</sub> = 0.0250, wR <sub>2</sub> = 0.0644            |
| Final R indexes [all data]                  | $R_1 = 0.0252$ , $wR_2 = 0.0645$                             |
| Largest diff. peak/hole / e Å <sup>-3</sup> | 0.11/-0.14                                                   |
| Flack parameter                             | 0.06(3)                                                      |
|                                             |                                                              |