Supporting information

Shaoqing Guan, Guixia Zhao, Yichen Sun, Zhenxun Tang, Jiahong Pan, JianjunWang, Zhuoyu Ji*, Xiangke Wang*

College of Environmental Science and Engineering, North China Electric Power

University, Beijing 102206, China.

Figure S1. (a) π - π interactions between AZO and pdIFB. (b) π - π interactions between BPE and

pdIFB.

	a (Å)	b (Å)	c (Å)	α (°)	β (°)	γ (°)
AIC	4.660	9.128	22.550	94.046	94.548	92.390
BIC	4.733	9.065	22.598	94.530	93.220	92.320

Table S1. Summarized crystallographic parameters of AIC and BIC

Figure S2. Heteroepitaxial growth optical image of pdAIC on pdBIC. scale bar, 100 µm.

Figure S3. Fluorescence microscopy images of AZO_{10%}-BPE_{90%}-IFB alloy microribbons.

Figure S4. Infrared (IR) spectra of AZO, BPE and IFB powder, AZO-IFB cocrystals and BPE-IFB cocrystals.

Figure S5. Differential Thermal Analysis (DTA) spectra of AZO-IFB cocrystals and BPE-IFB cocrystals.

Doping Ratio	1%	3%	5%
¹ H-NMR	0.67%	2.7%	6.9%

Table S2. the dopant concentrations in the crystals at 1%, 3%, 5% doped ratio.

Figure S6. Photoluminescence (PL) spectra of AZO_x -BPE_{1-x}-IFB mixed solution (x = 0, 5%, 10%, 15%, 20%, 25%, 30%, 50%, 100%) when excited by unfocused UV light. In the upper right corner, BPE-IFB solution with fluorescence is on the left and nonfluorescent AZO-IFB solution is on the

right.